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COEXISTENCE, GEOMETRICAL AND 
ASYMPTOTICAL PROPERTIES OF 
HYPERBOLIC CODIMENSIONAL ONE 
ATTRACTORS. APPLICATION TO 
DIFFEOMORPHISMS WITH INFINITELY 
MANY ZERO-DIMENTIONAL ATTRACTORS . 

R.V. Plykin 

Dynamical systems with hyperbolic limit sets which admit 
an order in the sense of Smale-Newhouse are likely to have 
properties of interest concerned with mutual position and 
topology of limit se ts . 

Let M be compact differentiable manifold and f : M—> M 
be a diffeomorphism. Let IT L f- ) \_ L~* L i ) ^\ 
be a closure of the set o(-limit ĵ c*) -limit^ points of 
diff eomorphism f • 

Diffeomorphisms f : M —* M will be referred to as A-diffeo
morphism if the hyperbolic set L I i ) - LT I i ) V U1* C f ) » 
In this case L ( i V - L " ( i } - C T i ) i s known 
to be a closure of the set of periodic points and the truly 
spectral decomposition L ( ^ ) - A , ^ A ^ ^ ' • • ^ A K , 

into mutually disjunct, invariant, topologic transitive 
basic sets { A \ -= FT̂L for which the rat io ^ 
holds good. 

On the condition that A I ^ i s adequate to 
the existence of the chain A ; - A ' C . ' A l > - * - A [ ^ -
~ the elements of which are valid 

\clos w ^ A ^ ^ n w S A ; F C + t </> ( s e e L11 • [ 2 1 }-
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The maximal (minimal) in the sense of ^ basic set 
i s an attractor of the source (sink) kind and has the 
property W 5 f A } - A L w ^ A - A ] • 

Codimensional one basic set i s certain to be an attractor 
represented in the form of a f ini te union of connected 
subsets which are basic for some i terat ion f • Zero-dimen
sional attractors are at tract ive or repelling periodic 
orbi ts . 
Definition* Let us say that x Q i s a boundary periodic 
hyperbolic point of diffeomorphism f : M-̂ M i f dim W ^ o r * )~ 1_ 

[_ dim Ws(-±») -

and one of the components of the connectivity of the set 
W ^ ) ^ x-o ^W^(Ko) -Xv } has no 

homoclinic points. 
The proof of the following theorem makes use of Smale-

Newhouse's order and i s analogous to the proof of theorem 
1 . 7 Q6] . 
THEOREM 1 . Let f : M —> M be a diff eomorphism having a basic 
set A for which dim A = dim Ws(x) = dim M - 1 , 
x e A [ dim A = dim Wn(x) =» dim M - 1 ~] . The set M ^A 
has a f ini te number of connectivity components, each of 
which i s region G having the attractor of diff eomorphism f 
or some of i t s i tera t ion. 

Every components of the linear connectivity of the 
boundary of region G having at i t s intersection with some 
Wn(x), OceA [ ^ ( x j ^ o c f c A J a boundary point of 
Cantor's discontinue A ̂  \A/ ^ (boundary 
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point A n W5 (x) i f dim A a dim W n (x) « dim lì - 1 3 
i s represented in the form of manifold WsCio ) 

[Wn (x0)] which corresponds to the boundary periodic 

point x Q . 

If M a S the number of connectivity components of S ^ A 

i s not less than four. For A-diffeomorphism of S21 the 

hypothesis according to which the rank of the group n - 1 
v 

dimensional Cech cogomology of the attractor of codimensional 

one i s not less than 2 1 1 " 2* 3# 

In the case of M =* s 2 the set S ^ ^ A contains not less 

than four zero-dimensional at tractors of some i terat ion f • 

The mechanism of appearance of zero-dimensional attractors 

in the presence of one-dimensional attractor i s caused by the 

existence of the contracted loop which i s not self in ter 

secting and i s made up of the section of a stable and a 

section of an unstable manifolds of some point of one-dimen

sional attractor* 

Definition* One-dimensional attractor A- of A-diff eomor

phism of the surface i s referred to as "loosely arranged11 i f 

there i s no contracted loop without self intersecting, formed 

by a section of stable and a section of unstable manifolds of some point x E A 

The property of "loose arrangement" as one can see, i s 

not an internal property of the at t ractors , but the considera

tion of the inverse images of "loosely arranged" attractors 

on the universal covering ascertains the regular behaviour 
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on the infinity of the inverse images of stable and unstable 
manifolds of the attractor points. 

The theorems given below develop and generalize the 
statements of [ 4 ^ f [fi] f £ 7 ] and can serve as basis for 
further considerations. 

Let M be closed surface. I t i s to be remembered that i t 
can be obtained from the universal covering M through 
factorization on the group of automorphisms of universal 
covering isomorphic IT, (M). 

In case M i s different from the sphere the straight line 
of the metric of the constant curvature on M invariant 
with respect to some automorphism of universal covering or 
resptr ici ively deviated from the invariant straight line i s 
called a rational one; the line which i s not rational i s 
called an i r ra t ional one. 

/V/ 

Let p : M ->M be a mapping of the universal covering. 
THE0REM2. Given A-diffeomoiphism f : M->M of the closed 
surface having a one-dimensional at tractor . The property 
of the "loose arrangement11 i s equal to the following: for 
any x, y 6 p~' A *ke intersection of lines w > 

VV*- C%) covering Ws(px) and Wn(py) accordingly 
consists of not more than one point. 
THEOREM 3. Let A i s a "loosely arranged" at t ractor of A-

^s 
diffeomorphism of the closed surface. Then the line W (z) 
L^n "1 ~ 

W (x)J lying on the universal covering M which is covering 
the manifold W S ( P * ) w ( P having no 
boundary periodic point i s res t r ic t ively deviated from some 
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i r rat ional straight l ine 0 If ( P ^ t 1 ^ ^ ( P°L^2 
has a boundary periodic point and the inclusion Vl/s(pV) d_A 

Qw^C/^O C A ] i s valid, the line WsCx) [_ l£V*)J 

i s included into the asymptotic polygon 
formed by the lines VV5C*3 - £Coc,) > \A/s(Oc^) 3 * - - , 

W5 (xn),...A[wn(x) = Wn(x1), Wn(x2),...,Wn(xn)..] 

which contain the inverse image of boundary periodic points 
and which at the same time are res t r ic t ively deviated from 
irrat ional straight lines and VVV**) and W^C***. -) 

[ u / " ( - x , c ) and Vv ̂  C + » ) "] 
have a similar asymptotic bahaviour in one of the directions 
defined by them. 

In case the inclusion W s ( p * ) ^ A [ W ^ p * ) c A j 
doesn't take place only one of the continuity components of 
the set W ^ o c V ^ X [_ W f a ) ^ J i s res t r ic t ive
ly deviated from some irrat ional ray and goes into infinity• 
THEOREM 4 . Let q : M,j —» JUL be a two sheeted covering of the 
non-oriented surface M by the oriented surface If TV i s 
a "loosely arranged11 at tractor of A-diffeomorphism f : M—» M, 
there will be two "loosely arranged" attractors f \ t ) of 
covering diffeomorphism f̂  : ~> or i t s i terat ion f^ 
so the \ At - A , «- - -
THEOREM 5 . The number of different "loosely arranged" 
attractors of A-diffeomorphism of the surface s£* y ^ 
obtained from the oriented surface of n kind by means of 
cutting out m disks and patching of the cuttings by Moebius 
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str ips doesn't exceed 

n + max 
n + m 

2 - 1 , « } . 

Corollary. A-diffeomorphisms of the surfaces S 0 , m = 0 , 1, 2 
have no "loosely arranged" at t rac tors . 

A-diff eomorphisms of the surfaces SK , M = 0 , 1, 2, 
n » 0 , 1 have zero-dimensional at tractors in their spectral 
decomposi tions • 

In conclusion l e t us state the application of the 
structure stable diff eomorphisms of two-dimensional sphere 
which have one-dimensional at tractors to the diff eomorphisms 
having an infini te number of zero-dimentional at tractors 
introduced by Newhouse [ 3 ] * 
Definition. Some property of the elements of the set Diff^(M) 
i s called C k-typical of f Diff^(M) (k £ 1, r > 1) i f there 
i s a residual subset B of an C -neighbourhood M(f) of f in 
Diff̂ M with this property for each element of B. 
THEOREM 6 (A.Ju* Zirov, D.A. Kamaev, R.V. Plykin) 
The set of diff eomorphisms in Diff ̂ M, dim M £ 3 for which the 
property of having inf ini tely many zero-dimensional at tractors 
i s C k-typical where k ^ 1 , i s C°-dense in Diff ̂ M. 

The complete proof of this theorem is given in the appendix 
of the paper which i s a part of collective report on the 
act ivi ty of the seminar on topology and dynamical systems in 
Obninsk Branch of Moscow Engineering-Physics Inst i tute in 1976. 
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