Astérisque

S. E. Newhouse
 Topological entropy and Hausdorff dimension for area preserving diffeomorphisms of surfaces

Astérisque, tome 51 (1978), p. 323-334
http://www.numdam.org/item?id=AST_1978__51__323_0

© Société mathématique de France, 1978, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Société Mathématique de France
Astérisque 51 (1978) p.323-334

Topological entropy and Hausdorff dimension
for area preserving diffeomorphisms of surfaces
by
S. E. Newhouse

In this paper we present two new generic properties of C^{1} area preserving diffeomorphisms of a compact oriented surface. We obtain a lower bound for the topological entropy of a generic diffeomorphism, and we show that such a diffeomorphism always has closed invariant sets with dense orbits and Hausdorff dimension two.

Before stating our results precisely, let us fix some notation and recall some definitions. Let M be a C^{∞} compact, connected, orientable 2-manifold, and let ω be a C^{∞} area form on M. That is, ω is a nowhere vanishing differential 2-form of class C^{∞}. Let $\operatorname{Diff}_{\omega}^{1}{ }^{M}$ denote the space of C^{1} diffeomorphisms of M which preserve ω, and give $\operatorname{Diff}{ }_{\omega}^{1} M$ the uniform C^{1} topology.

For f in Diff ω_{ω}^{1}, a point $p \in M$ is periodic if $f^{n} p=p$ for some $n>0$. Let $\tau(p)=\inf \left\{n>0: f_{p}=p\right\}$. This is the period of p. The periodic point p is hyperbolic if all eigenvalues of $T_{p} f^{\tau(p)}$ have norm different from one. In our case this means that $T_{p} f^{\tau(p)}$ has a single eigenvalue of norm bigger than one. Call this eigenvalue $\lambda(p)$. Let $n>0$ be a positive integer, and let Hyp f denote the set of hyperbolic periodic points of f with period less than or equal to n. Define $s_{n}(f)=\max \left\{\frac{1}{\tau(p)} \log |\lambda(p)|: p \in \operatorname{Hyp}_{n} f\right\}$, and set $s(f)=\sup _{n \geq 1} s_{n}(f)$.

Let d be a topological metric on M. For $\varepsilon>0$, $n>0$, a $\overline{s e t} E \subset M$ is (n, ε)-separated if for any $x \neq y$ in E, there is a $0 \leq j<n$ such that $d\left(f^{j} x, f^{j} y\right)>\varepsilon$. Let $r(n, \varepsilon, f)$ be the maximal cardinality of an (n, ε)-separated set. The number $h(f)=\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \sup r(n, \varepsilon, f)$ is the topological entropy of f. It is a rough asymptotic measure of how much f mixes up the points in M. For any C^{1} diffeomorphism, $0 \leq h(f)<\infty$.

If $\Lambda \subset M$ is a closed f-invariant set, then $h(f \mid \Lambda)$ is defined similarly, and it is easy to see that $h(f \mid \Lambda) \leq h(f)$. Also, for any integer n,

$$
\mathrm{h}\left(\mathrm{f}^{\mathrm{n}} \mid \Lambda\right)=\ln \mid \mathrm{h}(\mathrm{f} \mid \Lambda), \text { and if } \phi: \Lambda \rightarrow \Lambda_{1}
$$

is a homeomorphism, then $h\left(\phi f \phi^{-1} \mid \Lambda_{1}\right)=h(f \mid \Lambda)$. For more properties of h we refer to [2]. If p is a hyperbolic periodic point of the diffeomorphism f with orbit $o(p)$, we let $H(p, f)$ be the set of transverse homoclinic points of p. Thus $H(p, f)$ is the set of transverse intersections of $W^{u}(o(p), f)$ and $W^{s}(o(p), f)$ where $W^{u}(o(p), f)$ and $W^{s}(o(p), f)$ are the unstable and stable manifolds of the orbit $o(p)$. Then the closure $\overline{H(p, f)}$ of $H(p, f)$ is a closed f-invariant set on which f has a dense orbit [4].

If E is a closed subset of M and $\alpha>0, \varepsilon>0$ are positive real numbers, let

$$
\begin{aligned}
H_{\varepsilon}^{\alpha}(E)=\inf \left\{\sum_{i}\left(\operatorname{diam} U_{i}\right)^{\alpha}:\left\{U_{i}\right\}\right. & \text { is a countable open covering of } E \text { each } \\
& \text { of whose elements has diameter less than } \varepsilon\} .
\end{aligned}
$$

The Hausdorff α-outer measure of E is the number $H^{\alpha}(E)=\lim _{\varepsilon \rightarrow 0} H_{\varepsilon}^{\alpha}(E)$. The Hausdorff dimension of E, denoted $H D(E)$, is the number

$$
\inf \left\{\alpha: H^{\alpha}(E)=0\right\}=\sup \left\{\beta: H^{\beta}(E)=\infty\right\} .
$$

If $\operatorname{dim} E$ is the topological dimension of E, then $H D(E) \geq \operatorname{dim} E$. Also, $m(E)>0$ implies $H D(E)=2$, but not conversely, where $m(E)$ is the Lebesgue measure of E .

A closed f-invariant set Λ is hyperbolic if there are a continuous splitting $T_{\Lambda} M=E^{s} \oplus E^{\mathbf{u}}$, a Riemann norm $|\cdot|$, and a constant $0<\lambda<1$ such that $\operatorname{Tf}\left(E^{s}\right)=E^{s}, \operatorname{Tf}\left(E^{u}\right)=E^{u},|T f| E^{s} \mid<\lambda$, and $\left|T f^{-1}\right| E^{u} \mid<\lambda$. The hyperbolic set Λ is a hyperbolic basic set if $f \mid \Lambda$ has a dense orbit and there is a compact neighborhood U of Λ such that $\bigcap_{-\infty<n<\infty} f^{n} U=\Lambda$. For $g C^{1}$ near f, there is a
hyperbolic basic set $\Lambda(g)=\bigcap_{-\infty<n<\infty} g^{n} U$ for g such that $f \mid \Lambda(f)$ and $g \mid \Lambda(g)$ are topologically equivalent [3].

If M is a hyperbolic set for f, then f is called Anosov.

Theorem. There is a residual set $B \subset$ Diff $^{1} M$ such that if \underline{f} is in \underline{B}, then each set $\overline{\underline{H(p, f)}}$ has Hausdorff dimension two. In addition, if \underline{f} is in \underline{B} and \underline{f} is not Anosov, then
(*) $\quad \underline{h(f)} \geq s(f)$

Recall that a residual set is one which contains a countable intersection of dense open sets. Properties true for residual sets are called generic, and a generic diffeomorphism is defined to be an element of some residual set.

Remarks 1. For an Anosov diffeomorphism f, each $\overline{H(p, f)}=M$, so the first statement of our theorem is trivially true. On the other hand, it is easily seen that there are open sets of Anosov diffeomorphisms for which (*) fails. For instance, if f is linear, then $h(f)=\log |\lambda(p)|$ where $f(p)=p$. However, with a small perturbation, we can increase the expansion at non-fixed periodic points to make (*) fail. With a bit more work one can show that (*) fails for an open dense set of Anosov diffeomorphisms. To see this, consider the function ϕ^{u} of Bowen and Ruelle [1]. We may suppose that f is C^{2}, so Lebesgue measure is the unique equilibruim state for $\phi^{\mathbf{u}}$. Let μ be the unique invariant measure of maximal entropy for f. Then, $-\int \phi d \mu \leq s(f)$. As μ and m are ergodic f-invariant probability measures, they are either equivalent or mutually singular. Using Proposition 4.5 of [1] and simple perturbation techniques, one can show that C^{2} generically, μ is singular with respect to m. Then,

$$
\begin{aligned}
0=P_{m}\left(\phi^{u}\right) & =h_{m}(f)+\int \phi^{u} d m \\
& >h_{\mu}(f)+\int \phi^{u} d \mu \\
& =h(f)+\int \phi^{u} d \mu,
\end{aligned}
$$

so $h(f)<s(f)$. Since $h(f)<s(f)$ is a C^{1} open condition for Anosov diffeomorphisms, (*) fails for a C^{1} open dense set.
2. It would be nice to know if C^{1} generically each set $\overline{M(p, f)}$ has positive measure or if $f \mid \overline{H(p, f)}$ has positive measure theoretic entropy. Also, what analogs of our results hold for the C^{r} topology, $r \geq 2$?

We proceed to the proof of the theorem.
In view of remark 1 our theorem only has content for non-Anosov diffeomorphisms.
Let A be the set of Anosov diffeomorphisms on M and let $D=\operatorname{Diff} \frac{1}{\omega} M-A$. Of course, A is open in $D_{i f f}{ }_{\omega} M$ and is empty unless M is the two-dimensional torus.

For positive integers n and m, let $B_{n, m}$ be the set of diffeomorphisms f in D such that there are a p in $\operatorname{Hyp}_{n} f$ and a hyperbolic basic set $\Lambda \subset \overline{H(p, f)}$ satisfying $h(f \mid \Lambda)>s_{n}(f)-\frac{1}{m}$. Analogously, we let $B_{n, m}^{\prime}$ be the set of diffeomorphisms f in D such that $\operatorname{Hyp}_{n} f \neq \emptyset$, and, for each p in $H y p_{n} f$, there is a hyperbolic basic set $\Lambda \subset \overline{H(p, f)}$ so that $H D(\Lambda)>2-\frac{1}{m}$.

We assert that (1) $B_{n, m}$ and $B_{n, m}^{\prime}$ are dense open sets in D.
The theorem follows from (1) by taking $B=A \cup \bigcap_{n, m}^{B} n_{n, m} \cap B_{n, m}^{\prime}$.
The main step in the proof of (1) is the next result.

Proposition. Suppose p is a hyperbolic periodic point of the diffeomorphism f and $W^{u}(o(p))$ is tangent to $W^{s}(o(p))$ at some point. Given $\varepsilon>0$ and any neighborhood N of f in D, there is $a \operatorname{in} N$ such that p is a hyperbolic periodic point for g, and
(a) g has a hyperbolic basic set Λ in $\overline{H(p, g)}$ on which $h(g \mid \Lambda)>\frac{1}{\tau(p)} \log |\lambda(p)|-\varepsilon$
(b) each g_{1} near g has a hyperbolic basic set $\Lambda\left(g_{1}\right)$ in $\overline{H\left(p\left(g_{1}\right), g_{1}\right)}$ such that $\operatorname{HD}\left(\Lambda\left(g_{1}\right)\right)>2-\varepsilon$.

Before proving the proposition, let us show how we can use it to prove assertion (1).

Let $f \in D$, and let n and m be positive integers. We may perturb f to f_{1} so that the hyperbolic and elliptic periodic points of f_{1} are dense in M by theorems (1.3) and Corollary (3.2) in [5]. Using Takens [10], we may also assume $W^{u}\left(p, f_{1}\right) \cup W^{S}\left(p, f_{1}\right) \subset \overline{H\left(p, f_{1}\right)}$ for each hyperbolic periodic point p of f_{1}. Choose $p \in \operatorname{Hyp}_{n}\left(f_{1}\right)$ so that $\frac{1}{\tau(p)} 10 g|\lambda(p)|>s_{n}\left(f_{1}\right)-\frac{1}{2 m}$.

Since f_{1} has elliptic periodic points, it is in D. If $\overline{H\left(p, f_{1}\right)}$ were hyperbolic, it would have interior (since $W^{u}(p) \cup W^{s}(p) \subset \overline{\left.H\left(p, f_{1}\right)\right)}$. But then local product structure [9, Theorem (7.4)] and topological transitivity would imply that $\overline{H\left(p, f_{1}\right)}$ is open and closed in M. So $\overline{H\left(p, f_{1}\right)}$ would equal M, making f_{1} Anosov and giving a contradiction. Thus, $\overline{\mathrm{H}\left(\mathrm{p}, \mathrm{f}_{1}\right)}$ is not hyperbolic. Using [5], we can find $f_{2} C^{1}$ near f_{1} so that $p \in \operatorname{Hyp}_{n} f_{2}$, and $W^{u}(o(p))$ has a tangency with $W^{s}(o(p))$. Applying statement (a) in the proposition enables us to find $f_{3} C^{1}$ near f_{2} so that f_{3} has a hyperbolic basic set Λ with entropy larger than $\frac{1}{\tau(p)} \log |\lambda(p)|-\frac{1}{4 m}$. Also, $s_{n}(\cdot)$ is continuous, so if f_{3} is near f_{1} and f^{\prime} is near f_{3}, we have $s_{n}\left(f^{\prime}\right)<s_{n}\left(f_{1}\right)+\frac{1}{4 m}$. But Λ continues to topologically equivalent hyperbolic sets for perturbations f^{\prime} of f_{3}. Hence, for f^{\prime} near f_{3},

$$
\begin{aligned}
h\left(f^{\prime}\right) & >\frac{1}{\tau(p)} \log |\lambda(p)|-\frac{1}{4 m} \\
& >s_{n}\left(f_{1}\right)-\frac{3}{4 m} \\
& >s_{n}\left(f^{\prime}\right)-\frac{1}{m}
\end{aligned}
$$

This proves that $B_{n, m}$ is dense and open in D. Similarly, we can use statement (b) of the proposition to prove that $B_{n, m}^{\prime}$ is dense and open in D.

It remains to prove the proposition. All of our estimates will be with respect to the C^{r} norm induced from a fixed finite covering by symplectic coordinate charts, $r=1$ and 2. The C^{r} norm of a function f will be the maximum of the $r^{\text {th }}$ order partial derivatives computed in that covering, and we denote it by $|f|_{C}$

All of our approximations are local and will be done in local coordinates using generating functions. Let us recall the main properties of these functions.

Suppose (x, y) are coordinates in $I R^{2}$ and $f(x, y)=(f,(x, y), \eta(x, y))$ is an area preserving C^{1} diffeomorphism with $f(0,0)=(0,0)$ and $\frac{\partial \eta}{\partial y}$ nowhere zero. Then we may solve for y as a c^{1} function of x and η in the equation $\eta=\eta(x, y)$, and the mapping $(x, \eta) \longrightarrow(x, y(x, \eta))$ allows us to use x and η as coordinates on $\mathbb{I R}^{2}$. Since f preserves area, the 1 -form $\alpha=\xi \mathrm{d} \eta+y \mathrm{dx}$ is closed, and we may find a unique C^{2} function $S(x, \eta)$ so that $S(0,0)=0$, $S_{x}=y, \quad S_{\eta}=\xi$, and $S_{x \eta}$ never vanishes. The function S is called the generating function of f. Conversely, given a C^{2} function $S(x, \eta)$ so that $S(0,0)=0$ and $S_{x \eta}(x, \eta)$ is never zero, we may solve for η as a function of x and y in the equation $S_{x}(x, \eta)=y$, and obtain an area preserving diffeomorphism by

$$
f(x, y)=\left(S_{\eta}(x, \eta(x, y)), \eta(x, y)\right)
$$

If g is an area preserving diffeomorphism C^{1} near f, then its generating function $\overline{\mathbf{s}}$ is C^{2} near S, and conversely, The generating function for the identity transformation is $S(x, \eta)=x \eta$.

We now begin the proof of the proposition. Let us assume, at first, for notational simplicity, that p is a fixed point of f, so $\tau(p)=1$.

Suppose $W^{u}(p, f)$ is tangent to $W^{s}(p, f)$ at z_{o}. With a preliminary C^{1} approximation we may make $W^{u}(p, f)$ and $W^{s}(p, f)$ coincide on a small curve, say I, around z_{o} in $W^{u}(p, f)$. The picture is as follows:

Figure 1

Let U be a small neighborhood around z_{0} in M with $f^{-1} U \cap U=\emptyset$ and assume I small enough to be in U. Introduce local symplectic coordinates $z=(x, y)$ about $z_{0}=(0,0)$ in U so that I is contained in $(y=0)$. Thus there is a diffeomorphism $\phi: U \rightarrow \mathbb{R}^{2}$ so that $\phi\left(z_{o}\right)=(0,0), \phi(I) \subset\{(x, y):$ $y=0\}$, and $\phi^{*}(d x \wedge d y)=\omega$. Let $a>0$ be such that $\phi^{-1}([-2 a, 2 a]) \subset I$.

We identify \mathbb{R}^{2} with U via ϕ in the sequel.
Let $\varepsilon>0$. We will produce an area preserving C^{1} perturbation g of f with $g(z)=f(z)$ for $z \notin f^{-1} U$ such that g has a hyperbolic basic set $\Lambda \subset \overline{H(p, g)}$ such that $h(g \mid \Lambda)>\log |\lambda(p)|-\varepsilon$.

Intuitively, we obtain Λ in the following way. Introduce a large number of bumps in $W^{\mathrm{u}}(\mathrm{p}, \mathrm{g})$ over the interval $[-\mathrm{a}, \mathrm{a}]$ in I without disturbing the fact that $I \subset W^{s}(p, g)$. Letting I^{\prime} denote the piece of $W^{u}(p, g)$ over I, we arrange for I^{\prime} to be the graph of the function $x \rightarrow A \cos \left(\frac{\pi N x}{2 a}\right)$ with $-a \leq x \leq a$, N a large positive integer, and A a small positive number. The maximum height of I^{\prime} is A, the minimum is $-A$, and I^{\prime} has N intersections with I. This gives the next figure

Figure 2

To do this with $g \delta-C^{1}$ close to f we will need $2 A\left(\frac{2 a}{N}\right)^{-1}<K_{1} \delta$ for some constant K_{1} independent of N. Suppose we take $A=\frac{K_{1} \delta a^{N}}{2 N}$. Since $I \subset W^{s}(p, g)$ and $I^{\prime} \subset W^{u}(p, g)$, we will be able to find a rectangle D_{A} with distance around $\frac{A}{4}$ units from I whose image under g^{n} for some large n is around $\frac{A}{h}$ units from I^{\prime} as in the next figure

Figure 3

The "around" in the preceding statement means we are ignoring constants independent of N. Then, if Λ_{1} is the largest invariant set for $g^{n} \mid D_{A}$, Λ_{1} will be hyperbolic for g^{n} and $h\left(g^{n} \mid \Lambda_{1}\right)=\log N$. This gives us $\Lambda=\bigcup_{0<j<n} g^{j} \Lambda_{1}$ hyperbolic for g and $h(g \mid \Lambda)=\frac{1}{n} \log N$. From the construction, g has a periodic point in Λ which is homoclinically related to p, so $\Lambda \subset \overline{H(p, g)}$. Except, for constants independent of N, we will have $|\lambda(p)|^{-n}=\frac{A}{4}=\frac{K_{1} \delta a}{K_{1} \delta\left(N_{a}\right.}$. Thus, $-n \log |\lambda(p)|=\log \frac{K_{1} \delta a}{8}-\log N$ or $\log |\lambda(p)|=-\frac{1}{n} \log \frac{K_{1} \delta a}{8}+\frac{\log N}{n}$. Choosing N very large forces n to be large, so we can get

$$
h(g \mid \Lambda)=\frac{1}{n} \log N>\log |\lambda(p)|-\varepsilon .
$$

Let us now specify more precisely how we obtain g.
Let $\alpha(x, y)$ be a C^{∞} function from U to \mathbb{R} so that $\alpha(x, y)=1$ on a neighborhood U_{1} of I and $\alpha(x, y)=0$ off a slightly larger neighborhood contained
in U. Given the neighborhood N of f, let $\delta>0$ be small enough so that any g which is $\delta-C^{1}$-close to
f must be in N. Let A be a small constant, and consider the area preserving transformation $\xi(x, y)=\left(x, A \cos \frac{\pi x N}{2 a}+y\right)$. It carries the line segment $-a \leq x \leq a, y=0$ onto a curve I^{\prime} as described earlier.

The generating function for ξ is $S(x, \eta)=x \eta-\int_{0}^{x} A \cos \left(\frac{\pi s N}{2 a}\right) d s$ where $\zeta(x, y)=x$ and $n(x, y)=A \cos \left(\frac{\pi x N}{2 a}\right)+y$. Note that $S_{x \eta}=1$ throughout the region, so (x, n) is a good coordinate system throughout.

Let $\beta(x, \eta)=\alpha(x, y(x, \eta))=\alpha\left(x, \eta-A \cos \frac{\pi x N}{2 a}\right)$, and let $S_{1}(x, \eta)=\beta(x, \eta)(S(x, \eta)$

- $x n)+x n$. The reader may check that as AN approaches 0 , the function $S(x, \eta)$ - $x \eta$ approaches 0 in the C^{2} topology. Thus, for AN small, $S_{1 x \eta}(x, \eta) \neq 0$ for all x, η. We may find a C^{1} function $\eta_{1}(x, y)$ so that $S_{1 x}\left(x, \eta_{1}(x, y)\right)=y$, and $\eta_{1}(x, y)$ approaches $\eta(x, y)$ in the C^{1} topology as $A N \rightarrow 0$. Let $\psi(x, y)=\left(S_{1 \eta}\left(x, \eta_{1}(x, y)\right), \eta_{1}(x, y)\right)$ be the area preserving transformation induced by S_{1}, and let $g=\psi \circ f$. For some small constant $K_{1}>0$, if we put $A=\frac{K_{1} \delta a}{2 N}$, then $|\mathrm{g}-\mathrm{f}|_{\mathrm{C}^{1}}<\delta$ and $\mathrm{g}=\mathrm{f}$ off $\mathrm{f}^{-1} \mathrm{U}_{1}$ as required.

We now construct the rectangle D_{A}. Let $W_{l o c}^{s}(p, g)$ be a closed interval in $W^{s}(p, g)$ containing p and I in its interior, and let V be a tubular neighborhood of $\mathrm{N}_{\text {loc }}^{s}(\mathrm{p}, \mathrm{g})$. We assume that U is contained in V. For a set E and a point z in E, let $C(z, E)$ be the connected component of E which contains z. Let γ_{1} be the curve in U given by $x=-a, 0 \leq y \leq 2 A$, and let γ_{2} be the curve given by $x=a, 0 \leq y \leq 2 A$. Set $\left\{z_{1}\right\}=\gamma_{1} \cap I^{\prime}$ and $\left\{z_{2}\right\}=\gamma_{2} \cap I^{\prime}$. Since $I^{\prime} \subset W^{u}(p, g)$, parts of backward iterates of γ_{1} and γ_{2} will accumulate on $W_{l o c}^{s}(p, g)$ by the λ-lemma [8]. Also, there are constants $K_{2}, K_{3}>0$ so that if $g^{j}(z) \in V$ for $0 \leq j \leq m$, then

$$
K_{2}|\lambda(p)|^{-m} \leq \operatorname{dist}\left(z, W_{1 o c}^{s}(p, g)\right) \leq K_{3}|\lambda(p)|^{-m},
$$

and if $g^{-j}(z) \varepsilon V$ for $0 \leq j \leq m$, then

$$
K_{2}|\lambda(p)|^{-m} \leq \operatorname{dist}\left(z, C\left(p, W^{u}(p, g) \cap v\right)\right) \leq K_{3} \mid \lambda\left(\left.p\right|^{-m}\right.
$$

For this step it is convenient to assume via a preliminary approximation that f is C^{2}. Then g is C^{2} as well and hence C^{1} linearizable on $W^{s}(p, g)$ and $W^{u}(p, g)$ near p.

For n large the curves $\gamma_{1}, \gamma_{2}, C\left(g^{-n} z_{1}, g^{-n} \gamma_{1} \cap V\right)$, and $C\left(g^{-n} z_{2}, g^{-n} \gamma_{2} \cap V\right)$ will enclose a rectangle R_{n} in U near I. Let γ_{1}^{\prime} and γ_{2}^{\prime} be the pieces of r_{1} and r_{2} In that rectangle as indicated in figure 4.

Figure 4

Let n be the smallest positive integer such that $C\left(g^{-n} z_{1}, g^{-n} \gamma_{1} \cap V\right)$ and $C\left(g^{-n} z_{2}, g^{-n} \gamma_{2} \cap V\right)$ are c^{1} closer to $W_{10 c}^{s}(p, g)$ than $\frac{A}{4}$ and $g^{n} \gamma_{1}^{\prime}$ and $g^{n} \gamma_{2}^{\prime}$ are C^{1} closer to I^{\prime} than $\frac{A}{4}$. There are constants $K_{4}, K_{5}>0$ so that $K_{4}|\lambda(p)|^{-n} \leq A \leq K_{5}|\lambda(p)|^{-n}$. Set $\quad D_{A}=R_{n}, \Lambda_{1}=\bigcap_{-\infty<j<\infty} g^{j n} D_{A}$, and $\Lambda=\bigcup_{0 \leq j \leq n} g^{j} \Lambda_{1}$. For N large, the reader may verify, with estimates similar to those $\ln [\bar{m}]$ and [6], that Λ is hyperbolic basic set for g. Clearly, $\Lambda \subset \overline{\mathrm{H}(\mathrm{p}, \mathrm{g})}$ and, as we have indicated, $h(g \mid \Lambda)=\frac{1}{n} \log N>\log |\lambda(p)|-\varepsilon$. This proves statement (a) of the proposition when $\tau(p)=1$.

When $\tau(p)>1$, the proof is analogous except that z_{0} will be in $W^{s}(p, f) \cap W^{u}\left(f^{k} p, f\right)$, $[0 \leq k<\tau(p)]$. The n above may then be chosen of the form $n=\tau(p) n_{1}+k$, and we have the estimate $K_{4}|\lambda(p)|^{-n} 1 \leq A \leq K_{5}|\lambda(p)|^{-n} 1$. We obtain Λ and g near f so that $h(g \mid \Lambda)=\frac{1}{n} \log N=\frac{1}{\tau(p) n_{1}+k} \log N$, and $\frac{1}{\tau(p) n_{1}+k} \log N \rightarrow \frac{1}{\tau(p)} \log |\lambda(p)|$ as $\mathrm{N} \rightarrow \infty$.

We now move on to statement (b) of the proposition. We assume $\tau(p)=1$ leaving the remaining generalization to the reader.

Consider the rectangle D_{A} and the mapping g^{n}. It is clear from figure 3 that $g^{n} D_{A} \cap D_{A}$ has N components. These are slanted "rectangles" joining the top and bottom of D_{A} as in the next figure.

Figure 5
Also, $g^{-n}\left(D_{A}\right) \cap D_{A}$ consists of N rectangular strips stretching across D_{A}. In the standard way, this implies that for $k>0, \bigcap_{-k \leq j \leq 0} g^{j n} D_{A}$ consists of N^{k} thin rectangular strips joining the sides of $D_{A}, \frac{-k \leq j \leq 0}{a n d} \int_{0 \leq j \leq k} g^{j n} D_{A}$ consists of N^{k} thin slanted rectangular strips joining the top and bottom of D_{A}. Each component of $\bigcap_{-k \leq j \leq k} g^{j n} D_{A}$ is a small disk whose diameter is larger than $\left(K_{6}|\lambda(p)|^{-n}\right)^{k}$ with $K_{6}>0$ independent of N. There are $N^{2 k}$ such compunents and their diameters approach zero as $k \rightarrow \infty$.

From this it follows that the Hausdorff dimension α of $\int_{-\infty<j<\infty} g^{j n} D_{A}$ satisfies

$$
\alpha \geq \alpha_{1}=\inf \left\{\beta: \inf _{k \geq 0} N^{2 k}\left(k_{6}|\lambda(p)|^{-n}\right)^{k \beta}=0\right\}
$$

Now α_{1} is given by $N^{2}\left(K_{6}|\lambda(p)|^{-n}\right)^{\alpha}=1 \quad$ or $\quad \alpha_{1}=\frac{2 \log N}{n \log |\lambda(p)|-\log K_{6}}$.
But for some constant $K_{7}>0$ independent of $N, n \log |\lambda(p)|<K_{7}+\log N$, so $\quad \alpha_{1}>\frac{2 \log N}{\mathrm{~K}_{7}+\log \mathrm{N}-\log \mathrm{K}_{6}}$. Thus $\alpha_{1}+2$ as $\mathrm{N} \rightarrow \infty$, so $\alpha \rightarrow 2$. Given $\varepsilon>0$, we choose N_{1} large enough so that $\frac{2 \log N_{1}}{\mathrm{~K}_{7}+\log \mathrm{N}_{1}-\log \mathrm{K}_{6}}>2-\varepsilon$. Then,
$\mathrm{HD}(\Lambda)>2-\varepsilon$ with $\Lambda=\bigcup_{0 \leq j \leq \mathrm{n}} g^{j}\left(\bigcap_{-\infty<k<\infty} g^{n k} D_{A}\right)$. For g_{1} near g, each component of $\bigcap_{-k \leq j \leq k} g_{1}^{j n_{D}}$ has diameter larger than $\left(K_{6}|\lambda(p)|^{-n}-\varepsilon_{1}\right)^{k}$ with ε_{1} small, so we can insure that $\operatorname{HD}\left(\Lambda\left(g_{1}\right)\right)>2-\varepsilon$. This completes the proof of the proposition.

References

1. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math. No. 470, Springer-Verlag, N.Y., 1975.
2. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Math. No. 527, Springer-Verlag, N.Y., 1976.
3. M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis, Proc. Symp. in Pure Math Vol. XIV, AMS, Providence, RI, 1970, 133-165.
4. S. Newhouse, Hyperbolic Limit Sets, Trans. AMS 167 (1972), 125-150.
5. \qquad , Quasi-elliptic periodic points in conservative dynamical systems, Amer. Jour. of Math., to appear.
6. \qquad , The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, to appear.
7. $\frac{43-141}{}$ and J. Palis, Cycles and bifurcation theory, Asterisque 31 (1976),
8. J. Palis, On Morse-Smale dynamical systems, Topology 8 (1969), 385-405.
9. S. Smale, Differentiable dynamical systems, Bull. AMS 73 (1967), 748-817.
10. F. Takens, Homoclinic points in conservative systems, Inventiones Math. 18 (1972), 267-292.

S.E.NEWHOUSE

Department of Mathematics University of North Carolina Chapel Hill, N.C. 27514 U.S.A.

