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A REMARK ON VECTOR FIELDS ON OPEN MANIFOLDS

by

T . NADZIEJA

Summary . A partial answer ie given to the question im what
circumstances for a vector field X on an open manifold M there
exists a neighborhood U in @ - Whitney tepeleogy , such that

for every YEU and compact KCM the closure of positive

semitrajectory v Yt(K) is compact .
t20

Let M be an open differentiable manifold [ i.e. nem compact
witheut boundary , with a ceuntable basis / and let 11(11) be
the class of all 01 vector fields on M endowed with Co-'lhitnoy
topology which is given by the neighborhoods of zero

{xex'e) & Ix@ls €@}
where € 1is a real positive continuous function on M end
I | is a Riemsnnian complete metric on M ,

Throughout the paper X will denote a complete 01 vector field
on M and {xts tER will be the corresponding flow generated
by X .The positive semitrajectory of a point pE€M will be
denoted by Ox(p) = {Xt(p): tzo_}, its @ -1limit set by cox(p)

and o~ limit set by oL X(p)e
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Most of the notations and definitions used here are as in[1] , 3]
DEFINITION 1. We say that X€ X1( M) is C -stable iff there

exists a neighborhood U of X such that for every Y€ U and every

compact KC M the closure of semitrajectory of K tyo Yt(K)
is compact . !
EXAMPLES, Let M = R° and let flow {xt} scr De given by

Eg_x1 = x2 a%_ 2 =~x1
The vector field (x2 s - x1) is not C-stable, It is easy to see
that the vector field on R® given by

= —X
is C-stable ,

We ask ¢ Whieh comditioms imply C-stability of X 2

In this paper we give a partial amswer to this question. Proofs
and ideas we use in this paper are similar to those used in
studying the phenomenon of S2 -explosion / see [2] / .
DEFINITION 2 o A compact invariant subset A of M is called an
attractor iff there exists a neighborhood V of A such that for
every pEV its <> -1limit set cOX(p) is contained in A . The
domain of attraction of A is a maximal subset D of M such that
for every p€D , wx(p)CA o
DEFINITION 3 ., Let A be an attractor. We say that A is uniformly
asymptotically stable if for every neighborhood U of A there

exists neighborhood V of A such that VCU and Xt(V)CV for every

t%O .
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Wilson [4] proved that if A is uniformly asymptotically stable
and D is a domain of attraction of A then there exists a smooth
function L : D —» RY such that :
I L\A =0
II. For any ce€R* dist(L”'(¢), A)< +00  and
lim dist (L—1(c) ’ A) = 0 here dist denotes the Hausdorff
c—0

distance .

III. 1lim L(pn) = +00 and lim L(pn) = + 00

Py> o0 Mg 2D

and p,—> 0O means that dist(p, , A) tends to + OO
d

IV. If p6DNA then g L(Xt(p)) £ 0
The function L is called Lyapunov function .
DEFINITION 4 . A filtration for X is a collection

{Mi : 1 = 1,2,.00_}

of submanifolds of M / with boundaries / such that for every i

1e Mi is compact and M; C Int M9
20 X, (My) ¢ M;  for every t20
3. X is transverse to the boundary E)Mi of My
4. o Mi =M

i€N
It is clear that if a filtration for X exists then for every

compact KCM ) Xt(K) is eompact.,
t>0
The following property which follows immediately from Definition 4

shows that the existence of filtration is an open property .

LEMMA 1 o If {Mi :1=1,2,.0.148 a filtration for X then there
is a O~ neighborhood U of X such that {M; : 1 = 1,2,...] is
also a filtration for every YEU ,
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In virtue of this Lemma the existence of a filtration implies
C-stability of X .
LEMMA 2, Let X€ X1(M) ’ W be compact for every compact
KCM and let A be an attrac/tor with domain of attraction M. Then
there is an uniformly assymptotically stable set B such that ACB .

PROOF, We present in detail an argument from [2] .

Let B = {pel : o¥(@)n 4 # g} . By definition B is invariant
and closed., Let W be the compact neighborhded of A, If p&€M and

Epyna 4 ¢ then there exists t<O such that X (p)é€W

hence p € tUO xt(w) 80 the set B is compact / being a closed

7
subset of compact >LJ X (W) / o It is clear that B is an attractor.

t>0
We show that B is uniformly asymptotically stable ., Let U be
the compact neighborhood of A. By definition of the set B, all
points of UNB have their ol-1imit sets empty. For every positive
real number r denote A, = f\ Xt(U). We note that the
O<stsr

compact sets Ar are nested . We show that for sufficiently large
r, Xt(Ar)CInt Ay for 0 €t <1 , Consider the sets

v. = U x,(a)N1Int A

T ostst +(r) 1
which are a nested family of compact sets with empty intersection
hence there existsrsuch that V, = #. For such r and OSTS1

XT(Ar)CAr o This implies that XT(Ar)CAr for every T>0 . We

put Int Ar =V . Then BCVCU and Xt(V)CV for every t20 .
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THEOREM 1 . Let X€ X'(M) and let for every compact K C M the

closure of positive semitrajectory tyo Xt(K) and the set
F = p%JM wx(p) be compact. Then the v/ector field X is C-stable .
PROOF, F is an attractor with domain of attraction M , By Lemma 2
there is an uniformly asymptotically stable set B with domain
of attraction M. Therefore [4] there exists a smooth Lyapunov
function L for B. We define M, = I:1 ([O ’ 1]). M, is a compact
/ being a closed , bounded subset of Riemannian manifold with
ocomplete metric / submanifold and Xt(M1) CM,; for every 120 ,
Now define a sequence of submanifolds {ni 1= 1,20000]
by putting M, s X_, (¥;)s It is then clear that {mi 14 = 1,2,...}
is a filtration for X, and by Lemma 1 , X is C stable .

Suppose that for a vector field X the set F = %)M cox(p) is
& union of compact , invariant , isolated subset pwi i.e,

(*) p,coiu wzu QBU"‘

Let W° &, = ip eM : cwX(p)C wi} and WY “’izip EM zocx(p)c‘*’ij

and define m{coi t1=1,2,.0. the relation

8 u
Oy € Wy iff WO N Wy 44

LEMMA 3. Let <, , “32 . "’3 be any sets appearing in (*) and

suppose that there exists a point p, € ¢, such that (pn)= &
. 0 2 0 2

If o, > P> “’3 then in every neighborhoods U and V of X and

°°1 respectively there are YEU and p €V such that ooY(p)C “-73

This Lemma is consequence lemma 9 from [:2_] .
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THEOREM 2 , Let X be a vector field , F = U COX(p)= 601v002u,,.
peM

be a union of infinitely many compact , invariant , isolated

i
Oy(p) = ©O; . Moreover let y Xt(K) be compact for every

z

sets and let for every 001 there exists Pj € <O, such that

compact K + Then X is stable iff no infinite sequence
R, F O = O =, exists .
i i i
1 2 3
PROOF, If suffices to show the existence of & filtration for X

We define a set

A ={' @O, : there is a sequence 6011 vees 9 Wy

[Zw] (V] (Fv) = QO
such that 11 = 1 ij = K and

?
R ...awij}

Due to our asumption there is no infinite sequence

ooi1 > COi > 6\913>/ cee

_— 2

and since U x (K) is compact for every compact K , A, is
finite and C; = oo?é 4 €O, is compact, therefore there is
& neighborhood V of C; such that for every pEv co¥ (p) is

contained in C1 . Hence C1 is an attractor with a domain of

8 X
attraction D, = COiLGJsA.] W C‘Oi o Let B, ={p €Dy :al"(p)nCy i‘ﬁ_}
The set B.‘ is compact inveriant / see Lemma 2 / and B4C Dy by
definition of the relation<¥, In the some way as in Lemma 2 we
may show that B1 is uniformly asymptotically stable ., Let L1

-1

be & Lyapunov function for B1 and M; = L, ( [o ’ ﬂ).
Starting with M1 we construct a filtration M1 ’ M2 ’ M3 9 oee

by induction . Suppose that the submanifolds M1,M2, M3 y eoe My

are already done . To define M, 4 , put N =X (Mk).
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We choose a get <O i not contained in Nk and define

0
Ak+1 ={- COk : there is a sequence 0011, ese o wij
- o, = QW
such that 0011 = iO and k= 13 and
Q. % W, .2 .pw }
i1 i, 13

Again
\ co
Ck+1 = . €A i (%) B is an attractor.
i k+1
Let Bk+1 be the uniformly asymptotically stable set such that

Cri c B ,1 ®nd let L, 4 be a Lyapunov function for B, .

Put Mk+‘l = I"1:—+‘1| (EO ’ ckj) where cy is chosgan such that NkC Mk+1

The sequence M1 ’ M2 ’ M3 s eee Of compact submanifelds is a
filtration for X , for it is clear that X (M;)CM; for t>0
and X is transverse to ©M, . To verify that 191 M, =M,
take p €M, by assumption oox(p) # # » hence there exists k
such that p is contained in domain of attraction of Bk « By
our construction X_; (Mk) Cc M ,i 80 there exists 1 such that
peM]_ s Bence 191 Mi =M.,

Suppose now that there exists an infinite sequence

W, T Wy > “ . Z «es o We will show then , that in

1 2 3
every neighborhood of the vector X there is & vector field Y

and a point pEM such that co Y(p):,@’ o Since the closure of

the semitrajectory of every compact set is compact ,we may

choose from the sequence <>, , &3, , .., a sequence
wi 7 ©O, 2 %, Z ... such that if only k> 141 then
1 2 3
8 = a —
V'R a W9y -4
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~ ~

Then choose for every (V) @ neighborhood V of <o
g " iy

such that Vi N Vi = ¢ if k # 1 o By Lemma 3 there are a vector
k i

Y ~
field Y, and p, €V, such that <o '(p; ) C @
1 11 11 i1 13
Y, = X off vi1 and qurgl | Y1(p) - X (P)|| is arbitrarily emall .
Similarly we change the vector field ¥, on V;_  so that for this

3
Y ~
new vector field Y o @ (py )C@ and then repeat this
2 11 14

procedure for Vi ’ Vi5 s eoe o In this way we get a vector

4
field Y which is arbitrarily near to X and such that COY(pi V=4
1

This proves the necessity part of our theorem ,
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