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A REMARK ON VECTOR FIELDS ON OPEN MANIFOLDS 

by 

T • NADZIEJA 

Summary • A partial answer ie given to the question in what 

circumstances for a vector field X on an open manifold M there 

exists a neighborhood U in C° — Whitney topology f such that 

for every YeU and compact KCM the closure of positive 

semitrajectory ^ is compact • 
t^O * 

Let M be an open differentiable manifold / i#e« nen compact 

without boundary 9 with a countable basis / and let X
1(M^) be 

the class of all C 1 vector fields on M endowed with C°-Whitney 

topology which is given by the neighborhoods of zero 

( X € X 1 ( M ) t l)Xfp)jj$ S Cp) J 

where £ is a real positive continuous function on M end 

II if is a Riemannian complete metric on M • 

Throughout the paper X will denote a complete C vector field 

on M and [x^j t 6 R will be the corresponding flow generated 

by X .The positive semi trajectory of a point p6M will be 

denoted by Ox(pJ « (xt(p)i t * o J , its - limit set by O X(p) 

and limit set by c^ x(p) # 
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Most of the notations and definitions used here are as injjj f [3J 

DEFINITION 1. We say that X€X 1(M) is C- stable iff there 

exists a neighborhood U of X such that for every Y6U and every 

compact KCM the closure of semi trajectory of K Kj Y+(K) 
t *o x J 

is compact • 

EXAMPLES. Let M » R 2 and let flow {%^\ t 6 R be given by 
_JL 1 2 d 2 1 
dt x 88 x dt" x 

The vector field (x f - x ) is not C-stable# It is easy to see 
p 

that the vector field on R given by 
d 1 1 d 2 2 
dt x ""*x 3 T X 88 ^ x 

is C-stable • 

We ask s Which conditions imply C-stability of X ? 

In this paper we give a partial answer to this question* Proofs 

and ideas we use in this paper are similar to those used in 

studying the phenomenon of -£2. -explosion / see [z\ / . 

DEFINITION 2 • A compact invariant subset A of M is called an 

attractor iff there exists a neighborhood V of A such that for 

every p€V its 0 0 -limit set co A(p) is contained in A • The 

domain of attraction of A is a maximal subset D of M such that 

for every p6D f cO (p)CA. • 

DEFINITION 3 • Let A be an attractor. We say that A is uniformly 

asymptotically stable if for every neighborhood U of A there 

exists neighborhood V of A such that VCU and X t(v)cV for every 

t^O • 
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Wilson [4j proved that if A is uniformly asymptotically stable 

and D is a domain of attraction of A then there exists a smooth 

function L : D — * R + such that : 

1. L U = 0 

II. For any ceR + dist ( l T 1 ( c ) , A J < + 0 0 and 

lim dist (L ~ V C ) , A"\ = 0 here dist denotes the Hausdorff 

distance • 

III. lim L(p \ = + 0 0 and lim L(P n) 38 + CX> 

and P n-^ 0 0 means that dist(pn , A) tends to + 00 

IV. If p6DsA then ^ L(Xt(p)) 0 

The function L is called Lyapunov function • 

DEFINITION 4 • A filtration for X is a collection 

[u± : i = 1,2,...J 

of submanifolds of M / with boundaries / such that for every i 

1• is compact and C Int M^ +^ 

2. X t(M ±) C Mj[ for every t2>0 

3« X is transverse to the boundary 3M^ of 

4. M. = M 
i*N 1 

It is clear that if a filtration for X exists then for every 

compact KCM U X.fK) is compact. 
t?0 X 

The following property which follows immediately f*om Definition 4 

shows that the existence of filtration is an open property • 

LEMMA 1 • If jjH± : i = 1,2,...Jis a filtration for X then there 

is a C°— neighborhood U of X such that ^M i : i » 1,2,...J is 

also a filtration for every Y^U . 
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In virtue of this Lemma the existence of a filtration implies 

C-stability of X . 

LEMMA 2 . Let X € X 1 ( M ) , Kj X.(K) be compact for every compact 
t*0 x 

K C M and let A be an attractor with domain of attraction M. Then 

there is an uniformly assymptotically stable set B such that AcB . 

PROOF. We present in detail an argument from [2J • 

Let B • |p£M : o^X(p)o A # . By definition^ is invariant 

and closed. Let W be the compact neighborhood of A. If p€M and 

o6X(P) c\ A i<fi then there exists t^O such that Xt(p)6W 
hence p 6 so the set B is compact / being a closed 

t> 0 t  

subset of compact X+(W) / • It is clear that B is an attractor. 
t>0 x 

We show that B is uniformly asymptotically stable • Let U be 

the compact neighborhood of A. By definition of the set B f all 

points of U^B have their oC-limit sets empty. For every positive 

real number r denote A_ = X. (U). We note that the 
r O^t^r z 

compact sets A p are nested • We show that for sufficiently large 

r t x
t(A p)cint A 1 for 0<tSl . Consider the sets 

= U X . ( V ) N Int A 1  r O^St^l * r 1 

which are a nested family of compact sets with empty intersection 

hence there existsrsuch that V p = For such r and 0 £ T £ 1 

X T(A r)CA r . This implies that X T(A p)CA r for every T^O . We 

put Int A p » V . Then BCVCU and Xt(V)CV for every t^O . 
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THEOREM 1 • Let X 6 X V M ) and let for every compact K C M the 

closure of positive semitraiectory X. (K) and the set 
t*0 x ' 

co (p) he compact* Then the vector field X is C"stable • 
pGM 

PROOF* F is an attractor with domain of attraction M • By Lemma 2 

there is an uniformly asymptotically stable set B with domain 

of attraction M. Therefore [4J there exists a smooth Lyapunov 

function L for B. We define M-j » [ p , fj). M 1 is a compact 

/ being a closed , bounded subset of Riemannian manifold with 

complete metric / submanifold and X̂ (M-j) CM 1 for every t^O • 

Now define a sequence of submanifolds : i = 1 , 2 , . . . J 

by putting M i * X_^ It is then clear that j | M i : i = 1,2,...j 

is a filtration for X 9 and by Lemma 1 , X is C stable • 

Suppose that for a vector field X the set F » cOX(p) is 
p6M ' 

a union of compact , invariant 9 Isolated subset i.e. 

Let W s cj> ± 3 | P 6 M : coX(pJC and W u ^ i * | p 6 M *o6X(P)cc°jj 

and define in £ co± : i « 1 , 2 , . . . J the relation 

X>± £ <^>i iff W* co± r\ W u ̂  ^ / 

LEMMA 3 . Let ^ , °° 2 , ° 3 be any sets appearing in (*) and 

suppose that there exists a point p Q £ ^ BUCk ti3La* ° i ^ o ) a °°2 

If ^ > w
3 then in every neighborhoods U and V of X and 

°°-| respectively there are Y 6 U and pfeV such that co Y(p)C° 3 

This Lemma is consequence lemma 9 from j^2j . 
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THEOREM 2 . Let X be a vector field , F = [-J cOX(p)= ^ ^ . ч . . 
р е м 1 * 

be a union of infinitely many compact , invariant , isolated 

sets and let for every there exists p i € cO^ such that 

° Y ( P ) = • Moreover let KJ X. (K) be compact for every 
A 1 t^O x y 

compact К . Then X is stable iff no infinite sequence 
0 0 , > ° , > ^ ^ ••. exists. 

i 1 l 2 i 3 

PROOF. If suffices to show the existence of a filtration for X 

We define a set 

A-| = j cO : there is a sequence > e e e f cj^ 

such that <̂ > ш со 0 0 , = ^ and i 1 1 i^ к 

\l i 2 V 
Due to our asumption there is no infinite sequence 

C O ^ CO ^ CO ^ . . . 

and since X.(K) is compact for every compact К f A 1 is t?0 х У 1 

finite and C-j » co^G A ^ i *E COMPac*t therefore there is 

a neighborhood V of C-j such that for every р в у со C P ) is 

contained in • Hence is an attractor with a domain of 

attraction =» W s c o ± . Let B 1 ^рбВ-, :о6Х(р)ЛС1 

The set B-j is compact invariant / see Lemma 2 / and B 1 C D 1 by 

definition of the relation^. In the some way as in Lemma 2 we 

may show that B-j is uniformly asymptotically stable . Let L̂  

be a Lyapunov function for B^ and M-j = 1 ( Co , ( J ) . 

Starting with M-j we construct a filtration M-j , M 2 , M^ $ ••• 

by induction . Suppose that the submanifolds M^.Mg, M^ , ... M^ 

are already done . To define M^ + 1 , put N k = X ^ 
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We choose a set . not contained in N v and define 
x 0 K 

A^ + 1 =^ CO^ : there is a sequence oo^ f # # # f 

such that CO = cO and CO = CO and 

CO . ̂  CO . ̂  .. . > GJ j \ 
X 1 x2 V 

Again 
Ck+1 = « i ^ A k + 1 i U \ i s m ^tractor. 

Let B^ + 1 be the uniformly asymptotically stable set such that 

C k + 1 C B k + 1 and let L J c + 1 be a Lyapunov function for B^-j 

PUT ^ + 1 = Lk+1 ( °̂ • °kl) where °k is ch0*fiAn *uch ttla* F k C ̂ + 1 

The sequence , , f of compact submanifolds is a 

filtration for X f for it is clear that X t(M i)CM ± for t»0 

and X is transverse to 3 M i • To verify that i * M F 

take p £M, by assumption co A(p) f t hence there exists k 

such that p is contained in domain of attraction of • By 

our construction X - i L ( M^) C \+i so there exists 1 such that 

p GM 1 f hence ^ = M • 

Suppose now that there exists an infinite sequence 

°°, «^ co ^ °°. ^ ... . We will show then f that in i 1 i 2 i 3 

every neighborhood of the vector X there is a vector field Y 

and a point p€M such that cO Y(p) = ft • Since the closure of 

the semitrajectory of every compact set is compact ,we may 

choose from the sequence 0 0 . . c^D # # # a sequence 

^ °<> , ^ ^ ••• such that if only k>l+1 then 
1 2 x 3 

W s
 n W u £5" , ^ 

k 1 1 ~ 
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Then choose for every co. a neighborhood V.» of co. 
1k xk xk 

such that vi O V i « j2f if k f 1 . By Lemma 3 there are a vector 
^ Y ^ / 

field Y I and p. e V. such that cO 1(p* ) c ^ 
1 1 1 x 1 1 1 x3 

Y 1 = X off V ± and sup |j Y-,(p) - X (p)Ij is arbitrarily small . 
1 p€M 

Similarly we change the vector field Y-j on V i so that for this 
Y ~ ^ 

new vector field Y 2 CO 2 ( p^ )^°^^ and then repeat this 

procedure for V i 9 V i f ••• «In this way we get a vector 
4 5 

field Y which is arbitrarily near to X and such that co Y(p i ) = ^ 

This proves the necessity part of our theorem • 
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