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ON THE TRANSPORTATION PROBLEM USED IN THE DEFINITION 
OF ORNSTEIN'S DISTANCE d 

Jan Kwiatkowski 
Feliks Maniakowski 

Summary. 
The transportation problem used in the definition of Ornstein's 

d distance is considered. Some properties of optimal solutions are 
given. The d distance for Bernoulli measures and for some binary Mar­
kov stationary measures is calculated. 

1. Introduction 
In the paper [1] Ornstein defined a distance d between two 

stationary processes. A stationary process is a pair (T,P), where T 
is an ergodic automorphism of a Lebesguefs space ü with a nonatomic 
measure m and where P = (P ..... P is a finite partition 

v 0 > 's - 1 
of Q . To any stationary process corresponds a measure y defined 
on the a-algebra of Borel subsets of the set X of doubly infinite 
sequences x = (..., X-1,XQ,X^,...) , where 0 < x̂  < s-1 . The mea­
sure y is defined as follows : if C is a cylinder i.e. 
C = {x e X : X q = i ,...,x .j = in_1 } , then y (C) = m(i\{T:i?i : 
j = 0,...,n-1}). It is well known that such a function can be exten­
ded to a measure on Q and we denote this measure with the same letter p. 
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Two stationary processes (T,P) , (S,Q) , where 

Q = (QQ,...>Qn_i) are equivalent, if they define the same measure 
in the space X . Thus the notion of distance between two stationary 
processes may be reduced to the distance between two stationary mea­
sures on X , corresponding to these processes. Now, we shall give 
two equivalent definitions coming from the Ornstein's papers / corn-
pair : QlJ and a foot-note of Vershik in the Russian translation [4] 
of \J]/. Let X n be a set of n-tuples of symbols 0,1,...,s-1 
If b = (bQ,...,bn_1) , c = (cQ,...,cn_1) e X n , then 

P(b,c) = 1 |{r: b r / cr , r=0,1,...,n-1}| 

Let yn , for a measure y on X , denote y | o r , equiva-
lently, 

y (b ,.. . ,b 1 ) = y ( { x e X : x =b,...,x i=b .,}) . n v o' ' n-r v o o' ' n-1 n-1 ' 
Let Y = X x X and let p1,p? be projections of Y 

IT XI Tl I Ld IT 

Definition 1 
d(y,v) = sup d

n(v n,v n) , where 
^ (yn,v ) = min I p"(b,c) a (b,c) 

n n n an b,ceX„ n 

n n 
a n being any measure on the / finite / set Y n such that 

Pi an = yn a n d P2 an = vn * 
It may be shown [2], that d(y,v) = lim ̂ n(^ n» v

n) • 
It is clear that in order to find d it is sufficient to solve 

n 
a transportation problem with the costs matrix p(b,c). 

The equivalent definition of d is following. Consider the set 
Y of doubly infinite sequences (...,y_1,yQ,y1,...) elements of 
which are pairs yi of symbols 0 ,1, . . . ,s -1. The set Y

n
 = x

n
 x x

n 

can be treated as (Y)n» i 1 : means as the set of sequences 
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TRANSPORTATION PROBLEM AND d DISTANCE 

o z = (z ,...,z „) with z, e {0,1 ,...,s-1} . Consider a measure a ^ o* ' n-r 1 
on Y which is invariant under the shift or the space Y , with the 
property p 1a n = , p2o^ = n = 0,1,... . Define : 

b,CeX 
n y It may be shown that k n O n ) = (i,j) , 

where i,j = 0,...,s-1 , and are treated as 1-tuples . 

Definition 2 
d(y,v) = inf £ a1(i»j) , where a runs the set of invariant 

measure on Y such that P-ja
n
 = Pn > ?2an = ^n * 

By occasion of this definition let us make the following remarks. 
The condition for a measure a on Y to be invariant are following: 

I S _ 1 0- (bi,cj) = Is"1 a (ib,jc) 
i,j=0 n i,j=0 n 

for any (b,c) e Y n and for n = 1,2,... Consider any measure a R 

on Y n satisfying these conditions. Let 
V V V = i n f {kn<-an> : Pl°n - vn ' P2an = V • 
Define CJ^_| on Y n by equality : 

Cb.c) - X s-] an(bi,cj) i,3=0 
for (b,c) e Y - . It is easy to see that a71

 i is an invariant n-1 n-1 
measure. Similarly define a^_2 b^ means of .̂-j > anc* so on. As 
a result one obtains a sequence of measures a^_3 > an-4 '' ' ' , a 1* 
such that 

k l ( 0») = k2(0;) = ... = V i K - P - W -

Hence d.j < d̂  < d̂  < . . . 

Of course d < d for any n and from Definition 2 d < d. 
n - n n -
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Therefore lim d n = d . In what follows, we show that the case 
dL > d may occur, n n 7 

In the present paper we consider the transformation problem ap­
pearing in the Definition 1 of Ornstein's d distance, describe some 
properties of optimal solutions of such problems and use them for a 
calculation of the distance d between Bernoulli measures and bet­
ween some binary Markov measures. 

2. The matrix of the transportation problem considered here is 
a square matrix with s11 columns and rows, s and n being posi­
tive integrs. Each number k = 0,1,...,sn-1 is represented by a n-
tuple (k ,k1,.. .,k J such that k = Y^=n"1 k.d11"1"1 . The ele-v K o 1 n-r Li=n 1 
ments of the matrix are denoted by p .̂. and defined by the equality. 

p.. = |{r: i r + j r , r=0,1,...,n-1} | (i,j=0,1,...,sn-1) . 
where |A| is the number of elements of a set.A. Thus p^ is the 
number of places on which (i ,...,i and (j have 

v o n-1 v jo 'Jn-^J 

different symbols. 
We use an unoriented graph G defined as follows. The vertices 

of G are numbers k = 0,1,...,sn-1 or, equivalenty, n-tuples re­
presenting them. Two n-tuples (iQ,...,iR-^), (jQ,...,Jn_1) are 
joined by an edge iff p^ = 1. A pair of such vertices is refered as 
neighbour. 

In order to solve a transportation problem one can use two func­
tions (ui) , (vi) , i = 0,1,..., s11"1 such that the numbers 

(1) = + u i - v.. (i, j=0,1 ,. . . ,sn-1) 
satisfy following conditions 

(2) d. . > 0 , 
(3) d^ = 0 for (i,j) constituing a basis. 
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TRANSPORTATION PROBLEM AND d DISTANCE 

By a basis, we mean any set of 2sn-1 cells of the matrix of a 
transportation problem not containing a closed loop. A feasible solu­
tion of transportation problem is optimal if for any cell (i,j) oc­
cupied by the solution, d̂ . = 0 . 

It follows from results of Vershik £3] , that any transportation 
problem with the costs matrix described above has a solution 
which occupies all the cells (i,i),i=0,...,sn-1 and we can suppose 
dii = 0 o r ui = vi f i = 0 »• • • J s11"1) • Thus we can use one fonction 
(u.) instead of two (u.) and (v.) . 1 1 1 

We call a potential any function (u^),i=0,...,sn-1 such that 
the matrix d.. with elements 

(4) d. . = P . - + u. - u. 
satisfies conditions (2) and (3) . 

It is well known that a solution of the transportation problem 
with matrix p^ is optimal iff for all cells (i,j) occupied by 
this solution d^ = 0 for some potential. 

Our aim is to describe all potentials for one matrix p^ and 
give an effective method of producing all potentials in the case 
s = 2 for any given n . 

3. For the proof of the main theorem we need two easy lemmas. 
Lemma 1. 
If (û ) is a potential and U Q = 0 , then û  is an integer 

for all i = 0,1,. . .,s n-1. 

Proof. 
d̂.. = 0 for all (i,j) from some basis. Taking U Q = 0, we 

can calculate step by step all others û  from the equation 
p.. + u . - U j = 0 . 
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Because p^. are integers, all û  are integers. 
Remark. 

Note, we can suppose U Q = 0 without any loss of generality, 
because if we substract a constant from the function (û ) , we don't 
change the array d̂ . . 

Lemma 2. 
For every two vertices i = (iQ,. . . , i ^ ) , j = (j q, . . . , ) 

of the graph G the inequality 
(5) |u. - u.I < p. . 

holds for any potential (û ) . 

Proof. 
If the vertices i,j are neighbour, then the condition L̂j=0 

is equivalent to the following : 

(6) u. - u. = ±1 . 
Inequality (5) is an another form of d̂.. > 0 . The condition 

(6) is implied by the equality p^ = 1 for all (i,j) such that 
i,j are vertices of the same edge. 

Theorem 
A function (ui : i=0,1,...,sn-1) is a potential iff two follo­

wing conditions are satisfied : 
a) |ui - | < p^ for all i , j =0 ,1 ,. . . , sn-1 , 
b) there exists a partial graph D of G which is a tree and 

such that for every edge (i,j) of D |ui " ujI = 1-

Proof. 
First we are going to show that the condition a) and b) imply 
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that (IK) is a potential. Given a tree D which is a partial graph 
of G , the set of the cells corresponding to the edges of D toge­
ther with the cells (i,i), (i=0,1,...,sn-1) form a basis because the 
number of these cells is 2sn-1 and they are independent i.e. they 
do not form a closed loop. In fact, suppose the cells 

( i o , i 1 ) , ( i 1 , i 2 ) , . . . , ( i k _ 1 , i k ) = ( i o , i k ) 

form a cycle and that (i.,i. 6 D whenever i- ^ i. . . It is 
clear that vertices iQ,i^,...,i^ from a cycle in D . This is impos­
sible, because D is a tree. Now, conditions (2),(3) are obviously 
fullfiled. 

For necessity of conditions a), b) suppose B is a basis of 
cells with the property d^ = 0 for all (i,j) e B . We need to 
build a tree D for which a) and b) hold. Let H be a graph with 
vertices 0,1,...,sn-1 , and edges joining exactly those vertices 
i,j for which the cell (i,j) belongs to B . H is a connected 
graph, because every cell in the matrix of our transportation problem 
may be included in a cycle formed by the edges of the graph H . 
Define a graph as follows. An edge (i,j) € iff it lies on 

a shortest path in G from k to 1 , where (k,l) * H . Of course, 
H.j is a connected graph. We'll show, that d^ = 0 for (i,j) € . 
Let 

(k>V = ( v V ' (vV-'tVi'V = ( i p - 1 ' l } 

be a shortest path in G from k to 1 and let (k,1) fc, H. Since 

^kl = ^ a n c* pkl = P ' ^ Uk" Ul^ = P • 0 n t n e other hand, 

Iuk"ull 
yr-p-1 |u. - u. I 

1r xr+1 
yr=p-1 p(i r,i r + 1) 

and as p(i r,i r + 1) = 1 , |u(ir) - u ( i r + 1 ) | = 1 for any edge (i r,± r + 1) 
(r = 0,1 , . . . ,p-1) . Thus we have shown that p ^ = 1 and | - u.. | = 1 
for any edge (i,j) of the connected graph . Now for D we can 
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take any partial graph of , which is a tree. 

Corollary : 
In the case s = 2 a potential is any fonction 

(ui : i = 0,1 ,. . . , sn-1) such that |û  - tt_. | = 1 for every pair of 
neighbour vertices of the graph G . 

Proof. 
If a partial graph D is a tree, then every two vertices i,j 

of G may be connected by means of a path in D . The length of the 
path is an odd number, if i,j are neighbour. 

As ui - Uj = £(u(kr) - u(kr+1)) , where (kr,kr+1) are edges 
of the path, |u(kr) - u(k r + 1)| = 1 and |ui - u.| < = 1 , we 
have |û  - Uj| =1 . 

4. A process of generating of all potentials in the case s = 2. 
We consider a potential as a function, which domain is the set 

of all vertices of the graph G . This set is a union of sets 
AQ,A^,...,An corresponding to the number of 1's. Precisely 

A i = {(ar...,an) : ̂  a. = i} (i = 0 ,1 , . . . ,n) . 
It is clear that any two vertices k,l joined by an edge in the 

graph G belong to Ai and A i +^ /or conversly/ for a suitable i=0,1,... ,n-1 
The following procedure generates all possible potentials for a given n . 

(.1) Take u 0 = 0 . 
(2) For i e A-| define u i = 1 or u i = -1 
(3) For r = 2,3,...,n and for i e A r examine the set 
U. = {u.:j e Ar.1 , P i j - 1 l . 

If U i = {k} , then take u1 = k-1 or u i = k+1 . 
If U i = {k-1 , k+1} , than take ^ = k . 
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Proof of correctness of the procedure. 
It is obvious that any function defined by this procedure has 

even values on the sets with even i and odd values on the A^ 
with odd i . 

We will be done if we show that in the step (3) of the procedu­
re only two possibilities can occur i.e. that always 

(7) U i = {k} or IK = {k-1 , k+1} 
for a suitable k . 

We shall prove this by induction on r. Suppose, (7) holds for 
r < p-1 and there exist , j 2 , j^ e A .j such that = 1 for 
j = h ' J2 9 3̂ a n d - k~ 2 ' u ^ 2 ^ = k 9 u ^ 3 ^ - k + 2 £ o r 

some k . Only one position, say m̂  , distinguishes j 1 from 
i : ĵ (m̂ ) f i(m̂ ) (1=1,2,3). Without l©ss of generality one can as­
sume that m1 = 1 (1=1,2,3). Then i = (111...), j = (011...), 
j 2 = (101...) , = (110...), where the symbols replaced by dots, 
the same in all j's, are inessential. Now consider k̂  = (001...) , 
k2 = (010...) , k3 = (100...) e A p_ 2 . One of k1 , namely k2 , is 
joined with j^ and j^ and on the (p-1)-th step contains 
two numbers one of wich is < k-2 and the second on is > k+2 . This 
is a contradiction to the induction hypotesis. 

5. Example showing that d^ f 
Let s= 2 , n=3 . We have 
y1 = (0. 07, 0. 1 1 , 0. 02 , 0.20, 6. 1 1 , 0.1 1 , 0. 2 0 , 0.18) , 
P2 = (0.12 , 0.08 , 0. 10, 0. 15, 0. 08 , 0. 1 7 , 0.15 , 0.15) . 

We get the transportation problem given by Table 1 with a solu­
tion given by Table 2 . We shall show this solution is optimal. It is 
sufficient to find a potential for which . = 0 for 
(i,j) = d,0) , (3,2) , (4,5) , (6,0) , (6,2) , (7,5) . 
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We represent these cells by arrows in the diagram 

It is easy to see, that if we take U Q = 0 , then we have 
u1=u2=u4=-1 , u5=u6=-2 , u5=0 , u7=1 . dij are given in the Table 3. 
All j _ 0 and for all cells of Table 2 occupied by numbers 0 
we have = 0. Thus the solution is optimal. Moreover, every opti­
mal solution has the form given in Table 4. /A basis is formed of 
cells (i,i)(i=0,1,...,7), (i,0)(i=0,1,2,3,4,6), (4,5), (6,7)/. 

Now we shall show that no optimal solution can be an invariant 
measure. Conditions for a measure a^ to be invariant in this case 
are following : 

Table 1. 
15 3 2 2 1 2 1 1 0 
15 2 3 1 2 1 2 0 1 
1 7 2 1 3 2 1 0 2 1 
8 1 2 2 3 0 1 1 2 
15 2 1 1 0 3 2 2 1 
10 1 2 0 1 2 3 1 2 
8 1 0 2 1 2 1 3 2 
12 0 1 1 2 1 2 2 3 

7 1 1 2 20 1 1 1 1 20 18 
Transportation problem 

Table 2. 
15 15 
15 15 3 
17 3 11 
8 8 
15 15 

2 * з 
8 8 
12 7 3 £ 

7 11 2 20 11 11 20 18 
A optimal solution 
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Table 3. 
1 4 2 2 0 2 2 0 0 

2 4 4 2 2 2 4 0 4 

0 2 0 2 0 0 0 0 2 

1 2 2 2 2 0 2 0 4 

2 4 2 2 0 4 4 2 4 

1 2 2 0 0 2 4 0 4 

1 2 0 2 0 2 2 2 4 

0 0 0 0 0 0 2 0 4 

0 - 1 - 1 -2 - 1 0 -2 - 1 

Valuations d. . 
13 

Table 4. 
15 а 3 7 а 6 7 а77 

15 а б б 

17 а 1 5 а 3 5 а 4 5 а 5 5 а 6 5 

8 а 4 4 а 6 4 

15 а З З 

10 а12 а 2 2 а62 

8 a l 1 а31 

12 аОО а Ю а 2 0 аЗО а 4 0 а 6 0 

General optimal solution 

(8) a(x,y) + a(x+4,y) + a(x,y+4) + a(x+4,y+4) = 
a(2x,2y) + a(2x+1,2y) + a(2x,2y+1) + a(2x+1,2y+1) 

for x,y = 0,1,2,3 . 
From these conditions for (x,y) = (1,3), (2,3) we get o^y - 0 

and a = 0 respectively and hence = 15 , = 0 . From the 
same condition for (x,y) = (0,1) , (0,2) , (1,2) , (2,1) one ob­
tains oAC - a i r = o~c = Og-r = 0 and from that onc = 6 . The con-

45 15 35 65 /5 
tradiction shows that no invariant measure a is an optimal solution 
of our transportation problem. Therefore, in this example d̂  > cT̂  . 
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b. Applications 
Let y and y be two Bernoulli measures on X given by two p q 

probability vectors p = (p.j ,• ,pg) , q = (q^,•••,qg) Suppose that 
P i < qi (i = 1, 2,... ,k) and p̂^ > qi ((i=k+1 ,... ,s) . Define a Bernoulli 
measure r on X = X x X with a vector r = (ri.)(i,j = 1,2,... ,s) 
such that 

rii = pi (i=1>--->k) > -r±± = q± (i=k+1 ,. . . ,s) 
and the remaining r̂ j arbitrarily preserving only conditions 
I rij = p j ' I r i j = qi Cj , i = 1 , . . . ,s) . It is clear that r^ = 0 if 
i ̂  j and i = 1,...,k or j = k+1,...,s . Futhermore, it is aasy to 
verify that P l r n = (y p) n , p 2r n = (y q) n for n=1,2,... and 

k n ( r n ) - k ^ ) - J . r l ( i j ) - + 1 |prq.| - \ 1{Z* Ip^q.l 
as r is an invariant measure on Y . 

It follows from definition 2 that d(y ,y ) < -~ | p - — | -
Since ^((yp),) , ((yq) ̂  = \ IPj-qjl and 

1 i= s 
3(yp,yq) > d1((yp)r(yq)l) we have d(y ,y ) = ̂  = 1 |p±-q± | . Taking into 
account potentials it is possible to find that d

n ^ y p ^ n » ^yq^n^ i s 

1 i = s 
exactly equal to j J\=1 |pi~qi| . 

Now we'll show that k
n( r

n) = dR(yp,yq)(n=1,2,...) 
Let u be a potential defined as follows : 
u(iQ,...,iu_1) = |{j:k+1 < i j < s>l-
/If s=2 u is the number of 1's in the sequence /̂ 

and let S Q = {(i,j) : i=j or k+1 < i < s and 1 < j < k} . Then 
the set Y^ of zeros of u may be characterized by the equivalence 

(b,c) e Y n iff (b^c.) e S q , 

where b = Cb 0 , . . - ,b n _ 1 ) , c = (c Q, . . . , C R _ 1 ) z X r . For n = 1 and 
n = 2, s = 5 Y n is the set cancelled on the diagram 2. It is easy 
to see that the measure r is concentrated on Ŷ  . Thus 

n n 
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kn(i*n) = and therefore 

d n = i ill* iPi-̂ ii = 3 < v V • 

Diagram 2 

The set Y. . Cases n=1 and n=2 . /s=5 and k=3/. 1 

In case s=2 the same potential can be used to determine the 
Ornstein's distance between two Markov measures. Let y,v be two Mar­
kov measures given by 

P = (P0>P-|) y p = [poo Poi" 

JlO P11_ 

q = (q0>q-i) > Q =

 qoo q01 
_q10 q11_ 

respectively. We'll define a Markov measure y on the set 
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I = n {0,1} = {0,1} such that 
— 00 
(9) P, u n - yn , P 2 Pn = V N . 

In order to define the measure TTit: is sufficient to give the 
transition matrix R , because the initial vector r can be obtained 
from the equation rR = r . First we define an operation on probabili­
ties vectors. When p = (p0,p.j), q = (q0,q.j) are such two vectors, 
let v = p v q denotes a vector v = (VQO'v01'v11^ w i t n 

v i i = min(pi,qi) (i = 0,1) , v Q 1 » PQ-VQQ , v 1 Q = p^v^ . We have 
V00+V01 = P 0 ' V10+V11 = p1 ' V00+V10 = q0 ' V01+V11 = q1 ' Let US 
denote 

Pi = fPiÔ Pil̂  
qi = Cqi0^ii) 
r(i,j=pi v qi 

for i,j = 0,1. Now the matrix R = (r ( (i , j ) ,.(k, 1) ) ) is defined in 
such a way that the (i,j) - th row of R is equal to r(i,j). 

A proof of the equalities (9) requires some preparations. Let 
S = {0,1,... , s-1 } , X = n S and y . be a stationary Markov measure 

— oo 
on X given by the probability vector r = ( ro > • • • » r

s - i) a n < * t n e 

transition matrix R = (r^j)(0<i j<s-1) ' Furtner, let S = (a^'''a
t)> 

t < s is a partition of S,Y = 8 5 and P:X+X is the mapping defi-
— oo 

ned by (P(x))i = ai for x i e . Then we can define a stationary 
measure v on Y as follows 

v(B) = y (P~1 (B)) for B e Y . 
Lemma 3. 

If Y r. . = I r, . , whenever i,k e a , then v is a Markov 
measure. 
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Proof. 
Let v ,v be the measures on X and Y determined by n' n n n 7 

respectively, where X = nn 1 S , Y = TT"1 S . Put 
N 0 0 

P(r) = (r' ,r' ,...,r' ) , where rf = I r. and 
1 2 t iea 

P(R) = r , (a,$eS) with r = I r.. , iea. We show by induction 
a|3 j e 3 1J 

on n that Pŷ  = v . It is easy to check this for n=1,2. 
n n ' ' Suppose Py = v for some n > 2 . Then for n n 

C = (cQ,...,cn) e Y n + 1 we have 

n ' inecn iec, i ec yn+1 U 0 ,'--' 1n J 

0 0 1 1 n n 
= I I r. r. . ...r. . 
in i- i 1 0 1 0 1 ln-1 n u i n 

1 I . . . £ r. r r. . I r. . = 
in i, i 1

 X 0 1 0 1 1 ln-2 ln-1 i ec ln-1 ln 0 1 n-1 n n 
= r Y I ... V r. 

C iC . L . L .L 1 01 . n-1 n i n i1 i 1 n-2 n-l U I n-1 

= V ,c vn( c0'"" cn-1 ) • n~ l n 

This means that v is a Markov measure given by the probability 
vector P(r) and the transition matrix P(R). 

Now we are able to prove the equalities (9). 
Let S = { (00) , (01) , (11) } and let S} = {aQ,a^} , S £ = {IQ,?-,} 

be the partitions of S defined as follows aQ = { (00 ) , (01)} , 

= { (10 ) , (11 ) } , I Q = { (00 ) , (10 ) } , 3 1 = { ( 01 ) , ( 11 ) } . One can veri­
fy that the partitions S.j,S2 satisfy the conditions of lemma 3 and 
that P^r) = p , P^R) = P , P2(R) = q» P2(R) = Q , and P1 ,V2 are 
the mappings determined by ,S2 respectively. Thus we obtain 
P^y) = , P2(y) = v. 
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Now analizing use of Lemma 3 and definition 2 we conclude that 

5 0 > v ) 1 r o i + r i o ' M o r e o v e r > i £ Poo , p io - < q o o , q i o t h e n it i s e a s y 

to see that measure y is concentrated on the set of zeros of the 
n 

potential u given above. Consequently d(y,v) = r Q i + r i o and then 

d(y,v) = q0-pQ , as p Q < qQ and r = (pQ,0,qQ-p0,q1) • 
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