Astérisque

Jan KwiatKowski
 FELIKs MANIAKOWSKi
 On the transportation problem used in the definition of Ornstein's distance \bar{d}

Astérisque, tome 50 (1977), p. 223-238
http://www.numdam.org/item?id=AST_1977__50__223_0
© Société mathématique de France, 1977, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE TRANSPORTATION PROBLEM USED IN THE DEFINITION

OF ORNSTEIN'S DISTANCE $\overline{\mathrm{d}}$

Jan Kwiatkowski
Feliks Maniakowski

Summary.

The transportation problem used in the definition of Ornstein's $\overline{\mathrm{d}}$ distance is considered. Some properties of optimal solutions are given. The $\overline{\mathrm{d}}$ distance for Bernoulli measures and for some binary Markov stationary measures is calculated.

1. Introduction

In the paper [1] Ornstein defined a distance $\overline{\mathrm{d}}$ between two stationary processes. A stationary process is a pair (T,P), where T is an ergodic automorphism of a Lebesgue's space Ω with a nonatomic measure m and where $P=\left(P_{o}, \ldots, P_{s-1}\right)$ is a finite partition of Ω. To any stationary process corresponds a measure u defined on the σ-algebra of Borel subsets of the set X of doubly infinite sequences $x=\left(\ldots, x_{-1}, x_{0}, x_{1}, \ldots\right)$, where $0 \leq x_{i} \leq s-1$. The measure μ is defined as follows : if C is a cylinder i.e. $C=\left\{x \in X: x_{o}=i_{o}, \ldots, x_{n-1}=i_{n-1}\right\}$, then $\mu(C)=m\left(\bigcap_{\{T}{ }^{j_{P_{i}}}{ }_{j}\right.$: $\mathrm{j}=0, \ldots, \mathrm{n}-1\}$). It is well known that such a function can be extended to a measure on Ω and we denote this measure with the same letter μ.

Two stationary processes (T,P), (S,Q), where $Q=\left(Q_{0}, \ldots, Q_{n-1}\right)$ are equivalent, if they define the same measure in the space X. Thus the notion of distance between two stationary processes may be reduced to the distance between two stationary measures on X, corresponding to these processes. Now, we shall give two equivalent definitions coming from the Ornstein's papers / compair : [1] and a foot-note of Vershik in the Russian translation [4] of [1]/. Let X_{n} be a set of n-tuples of symbols $0,1, \ldots, s-1$. If $b=\left(b_{o}, \ldots, b_{n-1}\right), \quad c=\left(c_{o}, \ldots, c_{n-1}\right) \varepsilon X_{n}$, then
$\bar{\rho}(b, c)=\frac{1}{n}\left|\left\{r: b_{r} \neq c_{r}, r=0,1, \ldots, n-1\right\}\right|$
Let μ_{n}, for a measure μ on X, denote $\mu \mid X_{n}$ or, equiva1ently,
$\mu_{n}\left(b_{o}, \ldots, b_{n-1}\right)=\mu\left(\left\{x \in X: x_{o}=b_{o}, \ldots, x_{n-1}=b_{n-1}\right\}\right)$.
Let $Y_{n}=X_{n} x X_{n}$ and let p_{1}, P_{2} be projections of Y_{n}.

Definition 1

$\bar{d}(\mu, v)=\sup d_{n}\left(\mu_{n}, v_{n}\right)$, where
$d_{n}\left(\mu_{n}, \nu_{n}\right)=\min _{\sigma_{n}} \sum_{b, c \in X_{n}} \bar{\rho}(b, c) \sigma_{n}(b, c)$
σ_{n} being any measure on the / finite / set Y_{n} such that $p_{1} \sigma_{n}=\mu_{n}$ and $p_{2} \sigma_{n}=\nu_{n}$.

It may be shown [2], that $\bar{d}(\mu, v)=\lim d_{n}\left(\mu_{n}, v_{n}\right)$.
It is clear that in order to find d_{n} it is sufficient to solve a transportation problem with the costs matrix $\bar{\rho}(b, c)$.

The equivalent definition of \bar{d} is following. Consider the set Y of doubly infinite sequences $\left(\ldots, y_{-1}, y_{o}, y_{1}, \ldots\right)$ elements of which are pairs y_{i} of symbols $0,1, \ldots, s-1$. The set $Y_{n}=X_{n} X_{n}$ can be treated as $(Y)_{n}$, it means as the set of sequences
$z=\left(z_{0}, \ldots, z_{n-1}\right)$ with $z_{1} \varepsilon\{0,1, \ldots, s-1\}^{2}$. Consider a measure σ on Y which is invariant under the shift or the space Y, with the property $p_{1} \sigma_{n}=\mu_{n}, p_{2} \sigma_{n}=\nu_{n} n=0,1, \ldots$. Define :

$$
k_{n}\left(\sigma_{n}\right)=\sum_{b, c \in X_{n}} \bar{\rho}(b, c) \sigma_{n}(b, c)
$$

It may be shown that $k_{n}\left(\sigma_{n}\right)=\sum_{i \neq j} \sigma_{1}(i, j)$, where $i, j=0, \ldots, s-1$, and are treated as 1 -tuples.

Definition 2

$d(\mu, v)=\inf \sum_{i \neq j} \sigma_{1}(i, j)$, where σ runs the set of invariant measure on Y such that $p_{1} \sigma_{n}=\mu_{n}, p_{2} \sigma_{n}=\nu_{n}$.

By occasion of this definition let us make the following remarks. The condition for a measure σ on Y to be invariant are following:

$$
\sum_{i, j=0}^{s-1} \quad \sigma_{n}(b i, c j)=\sum_{i, j=0}^{s-1} \sigma_{n}(i b, j c)
$$

for any $(b, c) \varepsilon Y_{n}$ and for $n=1,2, \ldots$ Consider any measure σ_{n} on Y_{n} satisfying these conditions. Let

$$
\begin{aligned}
& \tilde{d}_{n}\left(\mu_{n}, \nu_{n}\right)=\inf \left\{k_{n}\left(\sigma_{n}\right): p_{1} \sigma_{n}=\mu_{n}, p_{2} \sigma_{n}=\nu_{n}\right\} \\
& \text { Define } \sigma_{n-1}^{n} \text { on } Y_{n} \text { by equality: } \\
& \sigma_{n-1}^{n}(b, c)=\sum_{i, j=0}^{s-1} \sigma_{n}(b i, c j)
\end{aligned}
$$

for $(b, c) \varepsilon Y_{n-1}$. It is easy to see that σ_{n-1}^{n} is an invariant measure. Similarly define σ_{n-2}^{n} by means of σ_{n-1}^{n}, and so on. As a result one obtains a sequence of measures $\sigma_{n-3}^{n}, \sigma_{n-4}^{n}, \ldots, \sigma_{1}^{n}$ such that
$k_{1}\left(\sigma_{1}^{n}\right)=k_{2}\left(\sigma_{2}^{n}\right)=\ldots=k_{n-1}\left(\sigma_{n-1}^{n}\right)=k_{n}\left(\sigma_{n}\right)$.

Hence $\tilde{\mathrm{d}}_{1} \leq \tilde{\mathrm{d}}_{2} \leq \tilde{\mathrm{d}}_{3} \leq \cdots$
Of course $d_{n} \leq \tilde{d}_{n}$ for any n and from Definition $2 \tilde{d}_{n} \leq \bar{d}$.

Therefore $\lim \tilde{\mathrm{d}}_{\mathrm{n}}=\overline{\mathrm{d}}$. In what follows, we show that the case $\tilde{d}_{n}>d_{n}$ may occur.

In the present paper we consider the transformation problem appearing in the Definition 1 of Ornstein's $\overline{\mathrm{d}}$ distance, describe some properties of optimal solutions of such problems and use them for a calculation of the distance \bar{d} between Bernoulli measures and between some binary Markov measures.
2. The matrix of the transportation problem considered here is a square matrix with s^{n} columns and rows, s and n being positive integrs. Each number $k=0,1, \ldots, s^{n}-1$ is represented by a $n-$ tuple $\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)$ such that $k=\sum_{i=n}^{i=n-1} k_{i} d^{n-i-1}$. The elements of the matrix are denoted by $\rho_{i j}$ and defined by the equality.

$$
\rho_{i j}=\left|\left\{r: i_{r} \neq j_{r}, r=0,1, \ldots, n-1\right\}\right|\left(i, j=0,1, \ldots, s^{n}-1\right) .
$$

where $|A|$ is the number of elements of a set.A. Thus $\rho_{i j}$ is the number of places on which $\left(i_{o}, \ldots, i_{n-1}\right)$ and $\left(j_{0}, \ldots, j_{n-1}\right)$ have different symbols.

We use an unoriented graph G defined as follows. The vertices of G are numbers $k=0,1, \ldots, s^{n}-1$ or, equivalenty, n-tuples representing them. Two n-tuples ($\left.i_{o}, \ldots, i_{n-1}\right),\left(j_{o}, \ldots, j_{n-1}\right)$ are joined by an edge iff $\rho_{i j}=1$. A pair of such vertices is refered as neighbour.

In order to solve a transportation problem one can use two functions $\left(u_{i}\right),\left(v_{i}\right), i=0,1, \ldots, s^{n-1}$ such that the numbers
(1) $\quad d_{i j}=\rho_{i j}+u_{i}-v_{j} \quad\left(i, j=0,1, \ldots, s^{n}-1\right)$ satisfy following conditions
(2) $\mathrm{d}_{\mathrm{ij}} \geq 0$,
(3) $d_{i j}=0$ for (i,j) constituing a basis.

By a basis, we mean any set of $2 s^{n}-1$ cells of the matrix of a transportation problem not containing a closed loop. A feasible solution of transportation problem is optimal if for any cell (i,j) occupied by the solution, $d_{i j}=0$.

It follows from results of Vershik [3] , that any transportation problem with the costs matrix $\rho_{i j}$ described above has a solution which occupies all the cells $(i, i), i=0, \ldots, s^{n}-1$ and we can suppose $d_{i i}=0$ or $u_{i}=v_{i}\left(i=0, \ldots, s^{n}-1\right)$. Thus we can use one fonction $\left(u_{i}\right)$ instead of two $\left(u_{i}\right)$ and $\left(v_{i}\right)$.

We call a potential any function $\left(u_{i}\right), i=0, \ldots, s^{n}-1$ such that the matrix $d_{i j}$ with elements
(4) $\quad d_{i j}=P_{i j}+u_{i}-u_{j}$
satisfies conditions (2) and (3) .
It is well known that a solution of the transportation problem with matrix $\rho_{i j}$ is optimal iff for all cells (i,j) occupied by this solution $d_{i j}=0$ for some potential.

Our aim is to describe all potentials for one matrix $\rho_{i j}$ and give an effective method of producing all potentials in the case $s=2$ for any given n.
3. For the proof of the main theorem we need two easy lemmas.

Lemma 1.
If $\left(u_{i}\right)$ is a potential and $u_{o}=0$, then u_{i} is an integer for all $i=0,1, \ldots, s^{n}-1$.

Proof.
$d_{i j}=0$ for all (i,j) from some basis. Taking $u_{0}=0$, we can calculate step by step all others u_{i} from the equation

$$
\rho_{i j}+u_{i}-u_{j}=0
$$

Because $\rho_{i j}$ are integers, all u_{i} are integers. Remark.

Note, we can suppose $u_{0}=0$ without any loss of generality, because if we substract a constant from the function (u_{i}), we don't change the array $d_{i j}$.

Lemma 2.
For every two vertices $i=\left(i_{0}, \ldots, i_{n-1}\right), j=\left(j_{0}, \ldots, j_{n-1}\right)$ of the graph G the inequality
(5) $\left|u_{i}-u_{j}\right| \leq \rho_{i j}$
holds for any potential (u_{i}).

Proof.
If the vertices i, j are neighbour, then the condition $d_{i j}=0$ is equivalent to the following :
(6) $u_{i}-u_{j}= \pm 1$.

Inequality (5) is an another form of $\mathrm{d}_{\mathrm{ij}} \geq 0$. The condition (6) is implied by the equality $\rho_{i j}=1$ for all (i,j) such that i, j are vertices of the same edge.

Theorem

A function $\left(u_{i}: i=0,1, \ldots, s^{n}-1\right)$ is a potential iff two following conditions are satisfied :
a) $\left|u_{i}-u_{j}\right| \leq \rho_{i j}$ for all $i, j=0,1, \ldots, s^{n}-1$,
b) there exists a partial graph D of G which is a tree and such that for every edge (i, j) of $D\left|u_{i}-u_{j}\right|=1$.

Proof.
First we are going to show that the condition a) and b) imply
that $\left(u_{i}\right)$ is a potential. Given a tree D which is a partial graph of G, the set of the cells corresponding to the edges of D together with the cells (i,i), $\left(i=0,1, \ldots, s^{n}-1\right)$ form a basis because the number of these cells is $2 \mathrm{~s}^{\mathrm{n}}-1$ and they are independent i.e. they do not form a closed loop. In fact, suppose the cells

$$
\left(i_{o}, i_{1}\right),\left(i_{1}, i_{2}\right), \ldots,\left(i_{k-1}, i_{k}\right)=\left(i_{o}, i_{k}\right)
$$

form a cycle and that $\left(i_{j}, i_{j+1}\right) \in D$ whenever $i_{j} \neq i_{j+1}$. It is clear that vertices $i_{o}, i_{1}, \ldots, i_{k}$ from a cycle in D. This is impossible, because D is a tree. Now, conditions (2), (3) are obviously fullfiled.

For necessity of conditions a), b) suppose B is a basis of cells with the property $d_{i j}=0$ for all $(i, j) \varepsilon B$. We need to build a tree D for which a) and b) hold. Let H be a graph with vertices $0,1, \ldots, s^{n}-1$, and edges joining exactly those vertices i,j for which the cell (i, j) belongs to $\mathrm{B} . \mathrm{H}$ is a connected graph, because every cell in the matrix of our transportation problem may be included in a cycle formed by the edges of the graph H. Define a graph H_{1} as follows. An edge (i,j) € H_{1} iff it lies on a shortest path in G from k to 1 , where $(k, 1) \in H$. Of course, H_{1} is a connected graph. We'll show, that $d_{i j}=0$ for $(i, j) \in H_{1}$. Let

$$
\left(k, i_{1}\right)=\left(i_{o}, i_{1}\right),\left(i_{1}, i_{2}\right), \ldots,\left(i_{p-1}, i_{p}\right)=\left(i_{p-1}, 1\right)
$$

be a shortest path in G from k to 1 and let $(k, 1) \in H$. Since $d_{k 1}=0$ and $\rho_{k 1}=p,\left|u_{k}-u_{1}\right|=p$. On the other hand,

$$
\left|u_{k}-u_{1}\right| \leq \sum_{r=0}^{r=p-1}\left|u_{i_{r}}-u_{i_{r+1}}\right| \leq \sum_{r=0}^{r=p-1} \rho\left(i_{r}, i_{r+1}\right)
$$

and as $\rho\left(i_{r}, i_{r+1}\right)=1,\left|u\left(i_{r}\right)-u\left(i_{r+1}\right)\right|=1$ for any edge ($\left.i_{r}, i_{r+1}\right)$ $(r=0,1, \ldots, p-1)$. Thus we have shown that $\rho_{i j}=1$ and $\left|u_{i}-u_{j}\right|=1$ for any edge (i, j) of the connected graph H_{1}. Now for D we can
take any partial graph of H_{1}, which is a tree.

Corollary :

In the case $s=2$ a potential is any fonction ($u_{i}: i=0,1, \ldots, s^{n}-1$) such that $\left|u_{i}-\mathbf{H}_{j}\right|=1$ for every pair of neighbour vertices of the graph G.

Proof.
If a partial graph D is a tree, then every two vertices i, j of G may be connected by means of a path in D. The length of the path is an odd number, if i, j are neighbour.

As $u_{i}-u_{j}=\sum\left(u\left(k_{r}\right)-u\left(k_{r+1}\right)\right)$, where $\left(k_{r}, k_{r+1}\right)$ are edges of the path, $\left|u\left(k_{r}\right)-u\left(k_{r+1}\right)\right|=1$ and $\left|u_{i}-u_{j}\right| \leq \rho_{i j}=1$, we have $\left|u_{i}-u_{j}\right|=1$.
4. A process of generating of all potentials in the case $s=2$.

We consider a potential as a function, which domain is the set of all vertices of the graph G. This set is a union of sets $A_{o}, A_{1}, \ldots, A_{n}$ corresponding to the number of $1^{\prime} s$. Precisely
$A_{i}=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right): \sum_{j=1}^{j=n} \alpha_{j}=i\right\} \quad(i=0,1, \ldots, n)$.
It is clear that any two vertices $k, 1$ joined by an edge in the graph G belong to A_{i} and A_{i+1} /or conversly/ for a suitable $i=0,1, \ldots, n-1$ The following procedure generates all possible potentials for a given n.
(1) Take $u_{o}=0$.
(2) For $i \in A_{1}$ define $u_{i}=1$ or $u_{i}=-1$
(3) For $r=2,3, \ldots, n$ and for $i \in A_{r}$ examine the set
$U_{i}=\left\{u_{j}: j \varepsilon A_{r-1}, \rho_{i j}=1\right\}$.
If $U_{i}=\{k\}$, then take $u_{1}=k-1$ or $u_{i}=k+1$.
If $U_{i}=\{k-1, k+1\}$, than take $u_{i}=k$.

Proof of correctness of the procedure.
It is obvious that any function defined by this procedure bas even values on the sets A_{i} with even i and odd values on the A_{i} with odd i .

We will be done if we show that in the step (3) of the procedure only two possibilities can occur i.e. that always
(7) $U_{i}=\{k\}$ or $U_{i}=\{k=1, k+1\}$
for a suitable k.
We shall prove this by induction on r. Suppose, (7) holds for $r \leq p-1$ and there exist $j_{1}, j_{2}, j_{3} \varepsilon A_{p-1}$ such that $\rho_{i j}=1$ for $j=j_{1}, j_{2}, j_{3}$ and $u\left(j_{1}\right) \leq k-2, u\left(j_{2}\right)=k, u\left(j_{3}\right) \geq k+2$ for some k. Only one position, say m_{1}, distinguishes j_{1} from i : $j_{1}\left(m_{1}\right) \neq i\left(m_{1}\right) \quad(1=1,2,3)$. Without loss of generality one can assume that $m_{1}=1(1=1,2,3)$. Then $i=(111 \ldots), j_{1}=(011 \ldots)$, $j_{2}=(101 \ldots), j_{3}=(110 \ldots)$, where the symbols replaced by dots, the same in all $\mathrm{j}^{\prime} \mathrm{s}$, are inessential. Now consider $\mathrm{k}_{1}=(001 . .$.$) ,$ $k_{2}=(010 \ldots), k_{3}=(100 \ldots) \varepsilon A_{p-2}$. One of k_{1}, namely k_{2}, is joined with j_{1} and j_{3} and on the ($p-1$)-th step $U_{k_{2}}$ contains two numbers one of wich is $\leq k-2$ and the second on is $\geq k+2$. This is a contradiction to the induction hypotesis.
5. Example showing that $\overline{\mathrm{d}}_{\boldsymbol{n}} \neq \mathrm{d}_{\mathrm{n}}$

Let $s=2, n=3$. We have
$\mu_{1}=(0.07,0.11,0.02,0.20,0.11,0.11,0.20,0.18)$,
$\mu_{2}=(0.12,0.08,0.10,0.15,0.08,0.17,0.15,0.15)$.
We get the transportation problem given by Table 1 with a solution given by Table 2. We shall show this solution is optima1. It is sufficient to find a potential for which $\mathrm{d}_{\mathrm{ij}}=0$ for $(i, j)=(1,0),(3,2),(4,5),(6,0),(6,2),(7,5)$.

We represent these cells by arrows in the diagram

It is easy to see, that if we take $u_{0}=0$, then we have $u_{1}=u_{2}=u_{4}=-1, u_{5}=u_{6}=-2, u_{5}=0, u_{7}=1 . d_{i j}$ are given in the Table 3. All $d_{i j}-0$ and for all cells of Table 2 occupied by numbers 0 we have $d_{i j}=0$. Thus the solution is optimal. Moreover, every optimal solution has the form given in Table 4. /A basis is formed of cells (i,i) $(i=0,1, \ldots, 7),(i, 0)(i=0,1,2,3,4,6),(4,5),(6,7) /$.

Now we shall show that no optimal solution can be an invariant measure. Conditions for a measure $\sigma_{i j}$ to be invariant in this case are following :

Table 1.
15
15
17
8
8
15
10
8

12 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | 1 | 2 | 1 | 2 | 0 | 1 |
| 2 | 1 | 3 | 2 | 1 | 0 | 2 | 1 |
| 1 | 2 | 2 | 3 | 0 | 1 | 1 | 2 |
| 2 | 1 | 1 | 0 | 3 | 2 | 2 | 1 |
| 1 | 2 | 0 | 1 | 2 | 3 | 1 | 2 |
| 1 | 0 | 2 | 1 | 2 | 1 | 3 | 2 |
| 0 | 1 | 1 | 2 | 1 | 2 | 2 | 3 |
| 7 | 11 | 2 | 20 | 11 | 11 | 20 | 18 |

Transportation problem

Table 2.

A optimal solution

Table 3.

1
2
0
1
2
1
1
0
:---:
4
2
2
4
2
2
0
0

Table 4.

General optimal solution
(8) $\sigma(x, y)+\sigma(x+4, y)+\sigma(x, y+4)+\sigma(x+4, y+4)=$ $\sigma(2 x, 2 y)+\sigma(2 x+1,2 y)+\sigma(2 x, 2 y+1)+\sigma(2 x+1,2 y+1)$
for $x, y=0,1,2,3$.
From these conditions for $(x, y)=(1,3),(2,3)$ we get $\sigma_{37}=0$ and $\sigma_{67}=0$ respectively and hence $\sigma_{77}=15, \sigma_{75}=0$. From the same condition for $(x, y)=(0,1),(0,2),(1,2),(2,1)$ one obtains $\sigma_{45}=\sigma_{15}=\sigma_{35}=\sigma_{65}=0$ and from that $\sigma_{75}=6$. The contradiction shows that no invariant measure σ is an optimal solution of our transportation problem. Therefore, in this example $\tilde{d}_{3}>\bar{d}_{3}$.

6. Applications

Let μ_{p} and μ_{q} be two Bernoulli measures on X given by two probability vectors $p=\left(p_{1}, \ldots, p_{s}\right), q=\left(q_{1}, \ldots, q_{s}\right)$ Suppose that $p_{i} \leq q_{i}(i=1,2, \ldots, k)$ and $p_{i} \geq q_{i}((i=k+1, \ldots, s)$. Define a Bernoulli measure r on $X=X \times X$ with a vector $\bar{r}=\left(r_{i j}\right)(i, j=1,2, \ldots, s)$ such that

$$
r_{i i}=p_{i}(i=1, \ldots, k), r_{i i}=q_{i}(i=k+1, \ldots, s)
$$

and the remaining $r_{i j}$ arbitrarily preserving only conditions $\sum_{i} r_{i j}=p_{j}, \sum_{j} r_{i j}=q_{i}(j, i=1, \ldots, s)$. It is clear that $r_{i j}=0$ if i $\neq \mathrm{j}$ and $\mathrm{i}=1, \ldots, \mathrm{k}$ or $\mathrm{j}=\mathrm{k}+1, \ldots, \mathrm{~s}$. Futhermore, it is easy to verify that $p_{1} r_{n}=\left(\mu_{p}\right)_{n}, p_{2} r_{n}=\left(\mu_{q}\right)_{n}$ for $n=1,2, \ldots$ and

$$
k_{n}\left(r_{n}\right)=k_{1}\left(r_{1}\right)=\sum_{i \neq j} r_{1}(i, j)=\sum_{i=k+1}^{i=s}\left|p_{i}-q_{i}\right|=\frac{1}{2} \sum_{i=1}^{i=s}\left|p_{i}-q_{i}\right|
$$ as r is an invariant measure on Y.

It follows from definition 2 that $\bar{d}\left(\mu_{p}, \mu_{q}\right) \leq \frac{1}{2} \sum_{i=1}^{i=s}\left|p_{i}-q_{i}\right|$. Since $d_{1}\left(\left(\mu_{p}\right)_{1}\right),\left(\left(\mu_{q}\right)_{1}\right)=\frac{1}{2} \sum_{i=1}^{i=s}\left|p_{i}-q_{i}\right|$ and $\bar{d}\left(u_{p}, \mu_{q}\right) \geq d_{1}\left(\left(u_{p}\right)_{1},\left(\mu_{q}\right)_{1}\right)$ we have $\bar{d}\left(\mu_{p}, \mu_{q}\right)=\frac{1}{2} \sum_{i=1}^{i=s}\left|p_{i}-q_{i}\right| . \quad$ Taking into account potentials it is possible to find that $d_{n}\left(\mu_{p}\right)_{n},\left(\left(\mu_{q}\right)_{n}\right)$ is exactly equal to $\frac{1}{2} \sum_{i=1}^{i=s}\left|p_{i}-q_{i}\right|$.

Now we'11 show that $k_{n}\left(r_{n}\right)=d_{n}\left(\mu_{p}, \mu_{q}\right)(n=1,2, \ldots)$
Let u be a potential defined as follows :
$u\left(i_{o}, \ldots, i_{u-1}\right)=\left|\left\{j: k+1 \leq i_{j} \leq s\right\}\right|$.
/If $s=2 u$ is the number of 1 's in the sequence $i_{o}, \ldots, i_{n-1} /$
and let $S_{o}=\{(i, j): i=j$ or $k+1 \leq i \leq s$ and $1 \leq j \leq k\}$. Then the set Y_{n} of zeros of u may be characterized by the equivalence

$$
(b, c) \varepsilon Y_{n} \quad \text { iff } \quad\left(b_{i}, c_{i}\right) \varepsilon S_{o},
$$

where $\mathrm{b}=\left(\mathrm{b}_{\mathrm{o}}, \ldots, \mathrm{b}_{\mathrm{n}-1}\right), \mathrm{c}=\left(\mathrm{c}_{\mathrm{o}}, \ldots, \mathrm{c}_{\mathrm{n}-1}\right) \varepsilon \mathrm{X}_{\mathrm{n}}$. For $\mathrm{n}=1$ and $\mathrm{n}=2, \mathrm{~s}=5 \mathrm{Y}_{\mathrm{n}}$ is the set cancelled on the diagram 2. It is easy to see that the measure r_{n} is concentrated on Y_{n}. Thus
$k_{n}\left(r_{n}\right)=d_{n}$ and therefore

$$
d_{n}=\frac{1}{2} \sum_{i=1}^{i=s}\left|p_{i}-q_{i}\right|=\bar{d}\left(\mu_{p}, \mu_{q}\right) .
$$

Diagram 2

The set Y_{i}. Cases $n=1$ and $n=2 . / s=5$ and $k=3 /$.
In case $s=2$ the same potential can be used to determine the Ornstein's distance between two Markov measures. Let μ, v be two Markov measures given by

$$
\begin{aligned}
& p=\left(p_{0}, p_{1}\right), \quad P=\left[\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right] \\
& q=\left(q_{0}, q_{1}\right) \quad, \quad Q=\left[\begin{array}{ll}
q_{00} & q_{01} \\
q_{10} & q_{11}
\end{array}\right]
\end{aligned}
$$

respectively. We'11 define a Markov measure $\bar{\mu}$ on the set
$I=\underset{-\infty}{\infty} \underset{-\infty}{\infty}\{0,1\}=\{0,1\}^{\mathbf{Z}} \quad$ such that
(9) $p_{1} \bar{\mu}_{n}=\mu_{n} \quad, \quad p_{2} \bar{\mu}_{n}=v_{n}$.

In order to define the measure $\bar{\mu} i t$ is sufficient to give the transition matrix \tilde{R}, because the initial vector \tilde{r} can be obtained from the equation $\tilde{r} \tilde{R}=\tilde{r}$. First we define an operation on probabilities vectors. When $p=\left(p_{0}, p_{1}\right), q=\left(q_{0}, q_{1}\right)$ are such two vectors, let $v=p \mathrm{v} q$ denotes a vector $v=\left(v_{00}, v_{01}, v_{11}\right)$ with $v_{i i}=\min \left(p_{i}, q_{i}\right)(i=0,1), v_{01}=p_{0}-v_{00}, v_{10}=p_{1}-v_{11}$. We have $v_{00}+v_{01}=p_{0}, v_{10}+v_{11}=p_{1}, v_{00}+v_{10}=q_{0}, v_{01}+v_{11}=q_{1}$. Let us denote

$$
\begin{aligned}
& \bar{p}_{i}=\left(p_{i 0}, p_{i 1}\right) \\
& \bar{q}_{i}=\left(q_{i 0}, q_{i 1}\right) \\
& \bar{r}(i, j)=\bar{p}_{i} v \bar{q}_{i}
\end{aligned}
$$

for $i, j=0,1$. Now the matrix $\tilde{R}=(r((i, j),(k, 1)))$ is defined in such a way that the (i, j) - th row of R is equal to $\bar{r}(i, j)$.

A proof of the equalities (9) requires some preparations. Let $S=\{0,1, \ldots, s-1\}, X={\underset{-}{-\infty}}_{\infty}^{\infty} S$ and μ. be a stationary Markov measure on X given by the probability vector $r=\left(r_{0}, \ldots, r_{s-1}\right)$ and the transition matrix $R=\left(r_{i j}\right)(0 \leq i, j \leq s-1)$. Further, let $\bar{S}=\left(\alpha_{1} \cdots \alpha_{t}\right)$, $t \leq s$ is a partition of $S, Y=\frac{\infty}{\Pi} S$ and $P: X \rightarrow X$ is the mapping defined by $(P(x))_{i}=\alpha_{i}$ for $x_{i} \varepsilon^{-\infty} \alpha_{j}$. Then we can define a stationary measure ν on Y as follows

$$
\nu(B)=\mu\left(P^{-1}(B)\right) \quad \text { for } \quad B \subset Y
$$

Lemma 3.
If $\sum_{j \in \beta} r_{i j}=\sum_{j \varepsilon \beta} r_{k j}$, whenever $i, k \varepsilon \alpha$, then v is a Markov measure.

TRANSPORTATION PROBLEM AND \bar{d} DISTANCE

Proof.
Let μ_{n}, ν_{n} be the measures on X_{n} and Y_{n} determined by
 $P(r)=\left(r_{\alpha_{1}}^{\prime}, r_{\alpha_{2}}^{\prime}, \ldots, r_{\alpha}^{\prime}\right)$, where $r^{\prime}=\sum_{i \varepsilon \alpha} r_{i}$ and $P(R)=\tilde{r}_{\alpha \beta}$, $(\alpha, \beta \varepsilon \bar{S})$ with $\tilde{r}_{\alpha \beta}=\sum_{j \varepsilon \beta} r_{i j}$, i\&a. We show by induction on n that $P \mu_{n}=\nu_{n}$. It is easy to check this for $n=1,2$.

Suppose $P_{\mu_{n}}=\nu_{n}$ for some $n \geq 2$. Then for $\mathrm{C}=\left(\mathrm{c}_{0}, \ldots, \mathrm{c}_{\mathrm{n}}\right) \varepsilon \mathrm{Y}_{\mathrm{n}+1}$ we have

$$
\begin{aligned}
& v_{n+1}(C)=\sum_{i_{0} \sum_{0}} \sum_{i_{1} \sum_{1}} \cdots \sum_{i_{n} c_{n}} \mu_{n+1}\left(i_{0}, \ldots, i_{n}\right)= \\
& =\sum_{i_{0}} \sum_{1} \cdots \sum_{i_{n}} r_{i_{0}} r_{i_{0} i_{1}} \cdots r_{i_{n-1} i_{n}}= \\
& =\sum_{i_{0}} \sum_{1} \cdots \sum_{i_{n-1}}^{\sum} r_{i_{0}} r_{i_{0} i_{1}} \cdots r_{i_{n-2} i_{n-1}} \sum_{i_{n} \varepsilon c_{n}}^{\sum} r_{i_{n-1} i_{n}}= \\
& =\tilde{r}_{c_{n-1}} c_{n} \sum_{0} \sum_{i} \cdots \sum_{i_{n-1}} \mathbf{r}_{i_{n-2} i_{n-1}}= \\
& =\tilde{r}_{c_{n-1}} c_{n} v_{n}\left(c_{0}, \ldots, c_{n-1}\right) .
\end{aligned}
$$

This means that v is a Markov measure given by the probability vector $P(r)$ and the transition matrix $P(R)$.

Now we are able to prove the equalities (9).
Let $S=\{(00),(01),(11)\}$ and let $\bar{S}_{1}=\left\{\bar{\alpha}_{0}, \bar{\alpha}_{1}\right\}, \bar{S}_{2}=\left\{\bar{\beta}_{0}, \bar{\beta}_{1}\right\}$ be the partitions of S defined as follows $\bar{\alpha}_{0}=\{(00),(01)\}$, $\bar{\alpha}_{1}=\{(10),(11)\}, \bar{\beta}_{0}=\{(00),(10)\}, \bar{\beta}_{1}=\{(01),(11)\}$. One can verify that the partitions $\overline{\mathrm{S}}_{1}, \overline{\mathrm{~S}}_{2}$ satisfy the conditions of lemma 3 and that $P_{1}(\tilde{r})=\bar{p}, P_{1}(\tilde{R})=P, P_{2}(\tilde{R})=\bar{q}^{\prime} P_{2}(\tilde{R})=Q$, and P_{1}, P_{2} are the mappings determined by $\overline{\mathrm{S}}_{1}, \overline{\mathrm{~S}}_{2}$ respectively. Thus we obtain $P_{1}(\bar{\mu})=, P_{2}(\bar{\mu})=v$.

Now analizing use of Lemma 3 and definition 2 we conclude that $\bar{d}(\mu, \nu) \leq r_{01}+r_{10}$. Moreover, if $p_{00}, p_{10} \leq<q_{00}, q_{10}$ then it is easy to see that measure $\bar{\mu}_{n}$ is concentrated on the set of zeros of the potential u given above. Consequently $\bar{d}(\mu, \nu)=r_{01}+r_{10}$ and then $\overline{\mathrm{d}}(\mu, \nu)=\mathrm{q}_{0}-\mathrm{p}_{0}$, as $\mathrm{p}_{0} \leq \mathrm{q}_{0}$ and $\mathrm{r}=\left(\mathrm{p}_{0}, 0, \mathrm{q}_{0}-\mathrm{p}_{0}, \mathrm{q}_{1}\right)$.

References :

[1] D.S. Ornstein, An application of ergodic theory to probability theory. Ann. Prob., vol. 1 (1973), 43-65.
[2] R.M. Gray, D.L. Neuhoff, P.C. Shields, A generalis ation of Ornstein's \bar{d} distance with applications to information theory. Ann. Prof., vol. 3 (1975), 315-328.
[3] A.M. Vershik, Nieskolko zamieczanij o biezkoniechnych zadaczach liniejnogo programmirowanija, Usp. Mat. Nauk, 25 wyp. 5 (1970) 117-124.
[4] D.S. Ornstein, Russian translation of [1], Usp. Mat. Nauk, 30 wyp. 3 , (1975), 123-146.

J. Kwiatkowski
F. Maniakowski
Institute of Mathematics
u1. Chopina $12 / 18$
87-100 Torún
Poland

