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RELEVANCE OF COMPUTER EXPERIMENTS TO THE PURE MATHEMATICS OF INTEGRABLE 

AND ERGODIC DYNAMICAL SYSTEMS * 

Joseph Ford 
School of Physics 

Georgia Institute of Technology 
Atlanta, Georgia 30332 

U. S. A. 

The computer can no longer be regarded solely as an 

amusing toy for the mathematically lazy or inept. In this 

paper, we describe four, simple, computer experiments which 

have been, or promise to be, of major significance to purely 

analytic studies of integrable and ergodic dynamical Systems. 

I. INTRODUCTION 

Given a specified dynamical'System whose integrable or ergodic 

character is in question, a computer can be used to provide an almost 

définitive answer. Certainly, computer studies cannot yield a rigorous 

proof, but they can exhibit overwhelming circumstantial évidence. To use 

an analogy from everyday life, we easily recognize a duck by its unique 

vocal call, its web feet, its oily feathers, its broad bill, its 

characteristic tail, and its ability to swim; seldom do we need to 

anatomically "prove" the given fowl is a duck by dissecting it. 

Similarly, a computer can be programmed to "see" the distinctive 

characteristics of integrable or ergodic Systems. Granted the computer 
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can be "fooled11 but not frequently, provided the programmer is careful. 

In the following brief paper, we describe several spécifie cases in 

which the computer has been used to investigate interesting problems 

which had stoutly and successfully resisted analytic attack, at least 

until the computer resuit s were known. 

II. THE TODA LATTICE 

The Toda lattice^" is a one-dimensional, conservative, classical 

dynamical System governed by the Hamiltonian 

N _ 

H = E [(Vn

2/2) + e " ( q n + l - ^ n > - i j , ( 1 ) 

n=l 

where we here assume periodic boundary conditions = q n and 

where we subtract unity from each exponential in order that H = 0 

when ail the q's and p fs equal zéro. Without entering into the détails 

here, we remark only that this System has been shown to be of both 

2 3 

mathematical and physical interest, but until recently, despite the 

known existance of spécial, particular solutions, the gêneric character 

of the gênerai solution (integrable or ergodic) was unknown. As a conséquence, 

the présent author in collaboration with S. D. Stoddard and J. S. Turner 

4 

investigated this problem numerically. The first non-trivial case is 

N « 3; and it is of particular interest since for it, after neglecting the 

pure translation degree of freedom, Hamiltonian (1) can be reduced to 

the two degrees of freedom Hamiltonian 

H - ( 1 / 2 ) (p * + p 2) + ( 1 / 2 4 ) {e <2«2

 + 2 / ï V + e < V 2* V 
1 2 1 ( 2 ) 

+ e - 4 q 2 | - ( 1 / 8 ) , 

which latter can be studied via the well-known Poincare surface of 
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p 2 

Fig. 1. A surface of section for Hamiltonian (2) at E = 1. 
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< S c|2 

Fig. 2. A surface of section for Hamiltonian (2) at E = 256. 
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section technique.** Since Siegal^ has shown that generically 

Hamiltonian Systems are not integrable, we anticipated non-integrability 

for Hamiltonian (2). 

We were thus quite surprised when the computer revealed the 

numerically integrated surface of section shown in Fig. 1 for energy 

E = 1, and we were shocked by the surface of section shown in Fig. 2 at 

energy E = 256. Our incredulity only increased when similar surfaces 

of section were obtained at énergies E = 1024 and 56,000. Ail thèse 

surfaces of section, which exhibited curves everywhere even at extremely 

large nonlinearity, clearly indicate that Hamiltonian (2) is integrable. 

As an additional test, we computed a formai, truncated séries expression 

for a constant of the motion independent of Hamiltonian (2) using a 

well-known modification of the standard Birkhoff method,^ and we numerically 

integrated the équations of motion to verify the validity of this formai 

constant. We then used this constant of the motion (in conjunction with 

Hamiltonian (2)) to analytically compute the numerically integrated curves 

of Fig. 1, obtaining excellent agreement. We then sought and found a host 
g 

of periodic orbits for Hamiltonian (2) and established that they ail lay 

on intégral surfaces of periodic orbits, again indicating integrability. 

Finally, we integrated a host of initially close orbit-pairs and observed 

that the two members of ail orbit-pairs separated from each other linearly 

with time, a well-known characteristic of integrable Systems. Lastly, we 

investigated the case N = 6 for Hamiltonian (1); in particular, we 

numerically integrated initially close orbit-pairs again obtaining in every 

case a séparation which grew linearly with time. A typical example is 
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shown in Fig. 3. 

As we began an analytic search for Hamiltonian (1) constants of 

the motion, we simultaneously wrote up our computer results and sent 

a preprint to M. Henon, among others. By return mail, Henon sent us 

9 

analytic expressions for N constants of the motion (in involution) thus 

rigorously proving integrability. Only a few days after the arrivai of 

Henon1s letter, H. Flaschka dropped by Georgia Tech, and, upon learning 

of Henon's results, quickly realized that he had already, without previously 

noticing it, derived"""̂  Henon1s results via an application of the inverse 

scattering technique to the Toda lattice. Thus, independent rigorous 

proofs""""** of integrability for Hamiltonian (1) by Henon and Flaschka were 
9 10 

presented in back to back Phys. Rev. 15 articles ' . Subsequently, Kac 

and van Moerbeke"""""" and, independently, Date and Tanaka devised an analytic 

technique for obtaining the gênerai solution to the équations of motion 

generated by Hamiltonian (1). Hence, a computer investigation initiated 

a chain of remarkable achievements in pure mathematics. 
III. THE HENON-HEILES HAMILTONIAN SYSTEM 

If we expand the exponentials of the integrable Hamiltonian (2) in 

a power séries and retain terms only through cubic order, we obtain the 

Hamiltonian 

2 2 2 2 2 3 
H = (1/2) ( p + p + q + q ) + q q - q / 3 (3) 

1 2 1 2 1 2 2 

12 

studied much earlier by Henon and Heiles, who sought to détermine 

whether or not a third analytic intégral (in addition to the Hamiltonian 
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SEPARATION DISTANCE (X I0" 3 ) 
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t 

Fig. 3. A graph of séparation distance versus time for an orbit-
pair of Hamiltonian (1) with N = 6. Here D q (dashed curve) 
is position space séparation distance between two initially 
close orbits in phase space. D p (solid Curve) is momentum 
space séparation distance for the same orbit-pair. Each 
curve has an average linear growth (least squares straight 
line fit) with superimposed oscillations. Were this an 
ergodic, K-system, the orbits would have separated by many 
powers of 10 during the time interval shown. 
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and the z-component of angular monentum) exists for a star moving in 

an axially-symmetric galactic potential. As in the previous section, one 

here again seeks to détermine whether or not Hamiltonian (3) is integrable. 

In Fig. 4, we show a (q ,p ) - plane, Poincare surface of section 
2 2 

for Hamiltonian (3) at energy E = 1/12. To the computer accuracy used here, 

curves appear to be everywhere dense, indicating integrability. However, 

in Fig. 5 at E = 1/8, Hamiltonian (3) is seen to have a divided phase 

space, part of which is still filled with integrable orbits but part 

contains "ergodic" trajectories. The "random" splatter of dots in Fig. 5 

was generated by numerical intégration of a single "ergodic" trajectory. 

In the integrable région, initially close orbits separate linearly with time 

while in the "ergodic" région they separate exponentially as is character-

13 

istic of C-systems , known to be ergodic and mixing. Finally in Fig. 6, 

at energy E = 1/6, one sees that most of phase space is filled with wild 

and errâtic trajectories. 

The Henon-Heiles work not only provides a highly unexpected answer 

to the original astronomical question, but it also is now regarded as a 

14 

classic example of the transition from integrable to stochastic behav-

ior. It thus serves as a non-rigorous but highly illuminâting link 

between the near-integrable behavior predicted by the rigorous KAM 
15 13 

(Kolmogorov-Arnold-Moser) theorem and the rigorous K-systems behavior 

of Sinai's hard sphère gas."^ The récent, as yet unpublished, work of 

Benettin and Strelcyn"^ provides further numerical insight into this link 

through an investigation of the transition from rigorous integrable behavior 
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E = 0.08333333 
p 2 Scale: 1 Tic = .10 

{ ^ ^ ^ ^ ^ ^ Q 2 

Fig. 4. A surface of section for Hamiltonian (3) at E = 1/12. 
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E = 0.12500000 
P 2 Scale: 1 Tic = .10 

I n II ' * O *' ' \ 

Fig. 5. A surface of section for Hamiltonian (3) at E = 1/8. 
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E = 0.16666667 
P 2 Scale: 1 Tic = .10 

/ " » «» * * 
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Fig. 6. A surface of section for Hamiltonian (3) at E = 1/6. 
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to rigorous ergodic, K-system behavior for the motion of a billard 

confined to a plane, oval région as the boundary changes from a circle 

to a stadion (two parallel straight line segments joined at their ends 

by two semi-circles). This paper numerically computes surfaces of section 

as well as Lyapunov characteristic numbers for the flow. Thence it 

computes the Kolmogorov-Sinai entropy for any ergodic components which 

may exist in the flow. In the KAM, near-integrable parameter range 

(nearly circular boundary) for this flow, many small, disjoint ergodic 

components are detected. As the boundary approaches the K-system stadion 

shape, thèse disjoint components sequentially merge into the single, 

completely ergodic component of the stadion. This Benêttin-Strelcyn work 

uses a remarkable blend of pure analysis and computer experiments to obtain 

results of interest for both physics and pure mathematics. 

IV. A MAPPING WITH A STRANGE ATTRACTOR 

As an example of computer experiments on strictly chaotic Systems, 

we describe the numerical study of a mapping possessing a strange attractor 

18 
which has been recently published by M. Henon. This work is relevant 

19 20 21 
for weather prédiction, turbulence theory, and pure mathematics. 

First using "practical11 and theoretical arguments, Henon sought and 

found a non-area-preserving, simple, quadratic mapping which appeared a 

likely candidate for possessing a strange attractor. The spécifie mapping 

he chose to investigate may be written 

2 

n+l 
= y + 1 - a x , ; n n ' 

(4a) 

n+l = b x (4b) 
n 
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where a and b are constants. Henon shows that this mapping is, in fact, 

the most gênerai quadratic mapping having a constant Jacobian (here equal 

to (-b)). If this mapping possesses a strange attractor, then one can 

easily and accurately numerically investigate the "flow" for long "time" 

intervais and one, hopefully, can develop a purely analytic theory for 

this model since it would appear to be much simpler to treat than the 

earlier more complicated models. 

For his numerical study, Henon set a - 1.4 and b - 0.3 for reasons 

which are set forth in this paper. Figure 7 shows the gênerai appearance 

of the attractor using 10^ mapping itérâtes of Eq. (4a, b) starting from 

an initial mapping point "on" the attractor. Aside from possible initial 

transient behavior, one obtains this same figure for any initial mapping 

point "trapped" by the attractor. The attractor in Fig. 7 appears to 

consist of a set of parallel "curves" having a certain "thickness". Upon 

magnification, the small square shown in Fig. 7 becomes Fig. 8, where the 

number of mapping itérâtes is now 10"\ Enlarging the square in Fig. 8 

yields Fig. 9 which uses 10^ mapping itérâtes. Thèse figures strongly 

suggest that the attractor being graphed here is indeed a strange attractor, 

i.e., a product of a one-dimensional manifold by a Cantor set. Although 

thèse non-rigorous numerical results were initially greeted with skepticism 

by the relevant mathematical community, récent additional computer results 

and further (still non-rigorous) mathematical analysis have convinced ail 

but the most devout mathematical skeptics of the significance of Henon's 

model. His computer study thus provides a significant model for future 

purely analytic study. 
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Fig. 8. A magnified view of the small square shown in Fig. 7. 
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Fig. 9. An enlargement of the square shown in Fig. 8. Note the 
structural similarity between Figs. 8 and 9. Further 
enlargements reveal this same structure. 
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V. CONCLUDING REMARKS 

In this paper we have discussed four mathematically significant 

computer experiments. By presenting this article in the proceedings 

of a conférence dedicated primarily to pure mathematics, we hope to 

increase the flow of information between physical scientists performing 

numerical experiments and mathematicians developing rigorous théories. 

Finally, as a further device for increasing information flow, (to 

repeat an announcement made verbally at this conférence), the présent 

author has initiated a free, nonlinear science abstract service with 

the first, September, 1977, issue now available on request. This service 

collects, collâtes, and distributes a list of preprint and reprint abstracts 

covering work in ail areas of nonlinear science giving titles, author's 

name and address, abstract, and proposed (or actual) publication journal. 

Please send your abstracts and/or requests to be placed on the mailing 

list to the présent author at the by-line address. 
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