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Ergodic theory of continuous group actions 

Jacob Feldman* 

My purpose in this discussion is to give a few examples of ideas 

and results in the ergodic theory of single transformations which have 

natural and interesting generalizations to actions of continuous groups. 

Throughout, ail groups will be assumed locally compact and second 

countable, and we will use left-invariant Haar measure. By an action 

of such a group G will always be meant a jointly measurable map 

<f): G x X X, where (X,#,u) is a Lebesgue probability space and each 

<f> is a homomorphism from G to 1-1 invertible u-preserving trans-
o 

formations of X. Sometimes <(> (x) will be called gx. The action 

will be called free if g 4 e gx 4 x, ail x. B, and T will 

dénote respectively the integers, real line, and circle. Many of the 

results on continuous groups which are described here are fairly new, 

and not yet published. 

Research supported in part by NSF Grant MCS 75-05576: A01. 

61 



J. FELDMAN 

I. Orbit-equivalence 

Two actions (j),<j>! of G, G 1 will be called orbit-équivalent 

if there is an a.e. defined and measure-preserving map 0: X -> X» 

carrying (j)-orbits onto <j)'-orbits. A striking fact, discovered by 

Dye [k]9 and later by Vershik and Belinskaya,[21] and [l], is that 

any two strictly ergodic actions of IL are orbit-équivalent. Dye 

called an action of a discrète group hyperfinite if it is orbit-equiva-

lent to an action of 2Z. I prefer to use the terra approximately finite, 

abbreviated AF. Dye also showed, in [ 5 ], that any action of a discrète  

abelian group is AF. Recently Connes and Krieger, in [ 2 ] and [13], 

obtained the same conclusion for any free ergodic action of a discrète  

solvable group. An interesting and difficult open question is whether 

every action (say, free and ergodic) of a discrète amenable group is AF. 

Another interesting problera is whether every action (say, ergodic) of a 

discrète group is équivalent to a free action. 

Now we permit G to be nondiscrete. It would in some ways be more 

natural to consider orbit-equivalences which carry over not the measure, 

but only the measure class, i.e. E C x ! is null o <()~1(E) is null. 

However, for ease of exposition, I'il stay with the measure-preserving 

case. The main fact is that continuous groups may be reduced to discrète 

groups, in a manner which I will now describe. Define a lacunary section 

for an action to be a set E C x such that there is a neighborhood U 

of e in G for which the map (g,x) H- gx is 1-1 on U x E. 

Theorem (Forrest, [9]): Every free action has a lacunary section. 
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In [ 6 ] 9 Feldman, Hahn, and Moore managed to remove the 

freeness assumption. A conséquence, using [ 6 ] and the results of 

[ 7 ] 9 is the following. 

Theorem. Every group action <j) with uncountable orbits is orbit-

equi valent to a product action (j)1 x (f)", where (j)f is an action of 

a discrète group and <|>" is a transitive action of TU . 

Because of this, approximate finiteness has a natural 

generalization to continuous groups. An action <f> will be called AF 

if, in the above représentation as (j>! x <}>"9 (j)» is AF in the discrète 

sensé; the représentation is not unique, but the property is independent 

of the représentation. Then one has (see [ 6 ] , [20]): 

1 . <J> is AF $ is orbit-equi valent to an action of B. 

2. Any two AF strictly ergodic actions with uncountable orbits 

are orbit-equivalent. 

3. Any action of an abelian group is AF. 

k. Any free ergodic action of a solvable group is AF (Séries, [20]). 

(in connection with 1 and 2, I am grateful for U. Krengel for pointing 

out that in order to get the orbit-equivalence to be measure preserving, 

and not just measure class preserving, one must supplément [6 ] with 

a variant of the arguments in [12] . ) 

The corresponding amenable group question is still there, but it 

has no new content, because a connected amenable group differs in only 

a minor way from a solvable group. 
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II. Tower building and tiling 

A subset A C G (which for convenience we will take to be open 

with compact closure) will be called a Rokhlin set if for any free 

action of G and any e > 0 there exists E C X with u(E) > 1 - £ 

and (g,x) H- gx on U x E. Then Rokhlin1 s Lemma (also proven by 

Kakutani) says that {0,...,n} is a Rokhlin set in 7L . The resuit 

extends to intervais in 7Ln (Conze [ 3], Katznelson and Weiss [10]); 

and also in ]Rn, a much harder resuit (Lind [1^]). For more gênerai 

groups, we must see what to substitute for intervais. 

Définition: For compact K C G and 6 > 0 an open set A with 

compact closure in G will be called (K,6 )-invariant if — — ^ ' < 6 

(where |»| dénotes Haar measure). Then one of the équivalent 

définitions of amenability for G is the generalization of the V^llner 

condition: for any compact K and 6 > 0. 3 A with A 

(K,6)-invariant. Following [17] and [20], G will be called a Rokhlin 

group if for any compact K and <5 the above A may be taken a 

Rokhlin set. Alternatively: define a séquence J = ^ ° ^ e a 

summing séquence if each A is open with compact closure, 
n i /-\ . i 

A C A C ..., U A = G, and ? i n + 0 for each compact K. 

Then amenability of G is équivalent to the existence of a summing 

séquence, and G is a Rokhlin group if and only if there is a summing 

séquence consisting of Rokhlin sets. (At this point it should be 

remarked that every group has a free, strictly ergodic action; see 

Example 1 of V.) 
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It may be deduced from the work of Krieger and Connes [13], 

[ 2] that any discrète solvable G is a Rokhlin group. (Recall that 

any solvable group is amenable.) This is also shown, more transparently, 

in Ornstein-Weiss [ 1 7 ] . Going over to the continuous case introduces 

nontrivial difficulties; but it has been shown by Séries [20] that 

solvable groups and almost connected amenable groups are Rokhlin groups. 

What sort of sets in G can be Rokhlin sets? If G is discrète, 

then any Rokhlin set A must tile G, in the sensé that there is a 

set C C G for which the map (a,s) H- as is 1-1 on A x C, and 

AC = G; and on the other hand, if G is a discrète Rokhlin group, 

then any A which tiles G is a Rokhlin set. This is shown in [ l6] . 

It is not difficult to get the same resuit for continuous G, provided 

we change "AC = G" to "AC ~ G has measure 0" in the définition of 

tiling set. Almost any reasonable-looking définition of "tiling set" 

will turn out to be équivalent to this. An intriguing question is 

whether there is some algebraic condition on an amenable group G (such 

as: the existence of arbitrarily large, arbitrarily left-invariant 

tiling sets) which is équivalent to its being a Rokhlin group. 

Définition. Say G has tiling if there is a summing séquence of 

tiling sets; thus any Rokhlin group has tiling. 
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III. Entropy 

The entropy of a 7L action, introduced by Kolmogorov and Sinai, 

has proven to be an extremely important tool in ergodic theory. It 

extends in a straightforward way to 7LN actions; this is carried out 

in [ 3] and [ 1 7 ] . By use of "large, almost invariant" sets in the 

rôle of intervais, it may be generalized to actions of arbitrary 

discrète amenable groups; this is carried out in Kiefferfs paper [il]. 

For actions of 3R, the définition of the entropy h(<f),<P) for a finite 

partition & is usually given as la{§$) = H(<|> | ^ ) , where H(()>,|̂ ) is 

the usual entropy of the transformation ^I^P» and p is the smallest 

<f>-invariant a-field containing P. This has the weakness that it 

dépends strongly on the existence of discrète subgroups, and I want 

to propose a way around this. 

For a Z-action, entropy may be alternately defined by the 

formula 

h(<(>, ) = inf {e > 0 for every e > 0 3N s.t. for n > N 

there is a set «D of 2 n e atoms of 
n 
V 4>_j<P with y ( ^ ) > 1 - e}. 

For an action of a discrète amenable group, one may replace "... 3N s.t. 

if n > N..." by "... 3 finite K C G and ô > 0 s.t. if A K and is 
n 1 

(K,ô)-invariant...", and " . . . 2 n e atoms of V<f>?T..." by 

" . . . 2 ' A ' e atoms of (P....11, where f> dénotes Vcf)" 1^ . At 
A A gQV g 
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this point it should be remarked that I do not want to assume 

ergodicity; but if <J> is decomposed into its ergodic components <J>; 

then 

h(cf>,<p) = ess sup^ h((f>Y,<?Y), 

where <pY is the trace of & on the yth ergodic component. The above 

définition may be shown to be the same as Kieffer's, modulo the "ess sup" 

remark. 

Now, instead of covering X by atoms, let us cover it by 

(T^-measurable sets of small d^ diameter, where 

(P, \ _ | {g € A: gx and gy have différent <f-names}|  
D A U ' Y J " ' [X] " : 

the generalization of the Hamming distance. If a J^-measurable subset 
(P /|A | \ IAIa of X has d^-diameter < a, then it contains no more than ( | A | a y P atoms, 

where p is the cardinality of. (?. Define ĥ CcJ),̂ ) as before, except that 

instead of covering X up to measure e by 0^-atoms, we cover by 

(P-measurable sets of - radius < a . Then A A 

h (4>,(P) < h (<(>,<?) < ha((f),if) + p(a), 

where p(a) = - a log a - (l-a)log (l - a) , and Stirling's formula is 

used to get the right inequality. It is now perfectly clear how to 

generalize to continuous amenable groups: simply use Haar measure to 

define d^ . The quantity ha(<j>,(P) thus defined increases as (P increases 
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or as a decreases. We now set h((\)J?) = sup h (cf>,(P) and 
a a 

h(<j>) = sup h(cf>,<P). 
(P 

Entropy may also be defined with respect to a particular summing 

séquence: instead of looking at coverings by iP^-measurable sets of 

small d^-diameter, for large and almost invariant A, we may look at 

coverings by <P^ -measurable sets of small d^-diameter, for large n. 

& n J n J 
Thus h^($,/P) and consequently h (<t>9/P)9 and h ($) may be 

defined for a summing séquence J in G. Then ha(<j),<?) <ha((j>,<f), 

etc. Conceivably there are cases where the inequality is strict, but it 

may be shown without difficulty that if d consists of tiling sets then 

we have equality. It is also the case that for discrète G equality 

holds for ail J ; this is a conséquence of the main resuit of [il]. It 

would be interesting to know if equality always holds. 

ïïow shall we see that the définition is correct for flows? This 

involves examining the relation between the entropies for groups and 

closed cocompact subgroups. Here is a fact which takes care of the 

case at hand: 

Theorem. If H is discrète and cocompact in G, then h (<(>,j?) 

= ha(((),{P) for ail summing séquences J, and 

ha(<f>|H) > |G/H|ha(<f>,<?) >ha(<f>|H,<P) 

for ail finite partitions /P. 
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IV. Equipartition 

The "asymptotic equipartition theorem" of Shannon and Macmillan may be 

stated as follows: for any action of 2Z, finite partition P of X, 

and e > 0, there exists N so that if n > N then a set $ of atoms 

of SQ may be chosen with u(UB) > 1 - e and each member of ê having 

measure lying in the interval 2~~n^^*^~S\ This theorem has been 

generalized to other discrète groups; see for example Pickel and Stëpin 

[ l8] ; and eventually Kieffer [il] got the same sort of statement for 

arbitrary amenable groups. 

For a continuous group, even 3R, it is not a priori clear what 

an asymptotic equipartition theorem should say. However, the idea of 

counting sets of small d^ diameter, rather than atoms of (P^ leads to 

a natural statement. 

Asymptotic Equipartition property (for an action <f) of G, summing 

séquence J = {A^} in G, and finite partition f). Given. e > 03 N such that 

if n > N then there is a collection S of disjoint J7^ -messurable 

n 

sets with u(Uî3) > 1 - e, and each member of <8 having d^ diameter < e 
J n 

- | A |(h (<j>,<P)±e) 
and measure in the interval 2 

Theorem. The asymptotic equipartition property holds for any amenable G 

having a discrète cocompact subgroup. 

There are two improvements to make. The first is, to get an asymptotic 

equipartition property for any collection ê of ^-measurable 

of small d^-diameter, when A is large and invariant enough and S has 

close to 2 ^ ^ ^ ' / ; ^ members (rather than simply asserting the existence 
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of such as we have done). The second is to get a "second order" 

P 
refinement, by fixing the upper bound on the d A diameter, and then getting 

- |A |h a fo , (P) 

members of S to have measure about 2 . The latter is new 

even for Z2-actions. Here is a formulation which subsumes both. 

Strong asymptotic a-equipartition property (for an action (j) of G, 

summing séquence J = { A r } in G, finite partition ff , and a > 0): Given 

e > 0,3 N and 6 > 0 such that if n > N and 6 is a collection of dis­

joint «f̂  -measurable sets of d^ -diameter < a with, cardinality of S 

n n 

|A j(hf(*,n+ô) 
<2 , and with y(U#) > 1 - 6 , then a subcollection <8Q 

with u(U# 0) > 1 — G and each member of (BQ having measure in the 

- | A \(Ju^)±e) 
interval 2 n a 

Theorem. If the amenable group G has a discrète cocompact subgroup 

with tiling, then it has the strong asymptotic ou equipartition property. 

Bernoulli actions. 

For a discrète G, there is a notion of Bernoulli action: choose 

a probability measure space (S,ir) - typically S will be finite or 

Q 

countable - and let X = S , U the product measure which is TT on 

each factor, and <f>g(x)(h)=gh. If G is also amenable, then h(<J>) 

turns out to be the usual entropy of the probability distribution ir. 

Ornstein [l6 ] proved the deep and important fact that when G = 7L 

then the entropy is a complète isomorphism invariant of the action. This 

resuit and part of the theory surrounding it have been extended to ZZn 

by Katznelson and Weiss [10] . The ingrédients of the arguments, the 
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Rokhlin-Kakutani theorem, entropy and asymptotic equipartition, are présent 

in a discrète solvable group, as we have seen. Thus it is to be expected 

that the theory will carry over to this case without essential diffi-

culty. 

The situation for continuous groups is more délicate. For G = B, 

Ornstein [l6] showed that there exists, for each a > 0, an action 

whose restriction to 7L is Bernoulli with entropy a, and that this 

action of ]R is unique up to isomorphism. Similar results hold in ]Rn, 

as shown by Lind [ 1 5 ] . 

Question: What should be meant by a Bernoulli action of a gênerai 

continuous G, and what sort of isomorphism theorems are there? Here 

are two examples. 

Example 1 . This is a candidate for the title "Bernoulli action of 

infinité entropy." Let G be noncompact. There is a stochastic 

process {£ ; A C G} , where A ranges over sets of finite measure, 

and with the Ç satisfying 

(a) Ç is a Poisson random variable with mean |A|. 

(b) If A^ are disjoint and A = U A. then {Ç^ } are 

i i 
independent and £ A = E • 

i i 

The process is unique. Thus for each g there is a measure-preserving 

transformation <J> satisfying ÇAo<J> = Ç . If g is a generator 
g A g g - l A 

for an infinité discrète subgroup H of G, then <J>|H is isomorphic 

to a Bernoulli action of infinité entropy. 
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Example 2. This is deeper, and is contained in unpublished work of 

D. Rudolph and me, [19], [ 8 ]. Let K be a compact group, a any 

ot 

automorphism of K, and G the semidirect product 7L x K. Thus, ZZ 

is a subgroup, K a normal subgroup, and 2Z acts on K by inner 

automorphisms of G, the action of 1 being precisely a. 

Theorem. For each a > 0 there is a free action of G whose restriction 

to 2Z is a Bernoulli action with entropy a. This action is unique up 

to isomorphism. 

Ail proofs of Bernoulli isomorphism to date have used "discrète 

subgroup" arguments. It would be of great interest to find a proof, 

say for G = B , in which the discrète case is not used: presumably 

by using continuous versions of entropy, the Rokhlin lemma, finitely 

determined, asymptotic equipartition> etc. This was one of the purposes 

of the entropy définition in III, but it is not yet clear whether such a 

program can work. 
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