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THE TRANSCENDENCE OP DEFINITE INTEGRALS OF ALGEBRAIC FUNCTIONS 

by 

David William MASSER 

Many numbers interesting to transcendence theorists appear as definite integrals 
of certain algebraic functions. For example, we have for algebraic a ^ 0 

/
°° 2 1 P a 

(l + x ) dx , log a = I x 1dx , 0 J 1 
the integral mentioned by Siegel in [12] 

l(log2 + ^ ) = f 0+x3)-1dx , 

and the following integrals involving values of the classical gamma function 

2 - 8 / V 1 ( r ( i ) ) 3 = J " ( x ' - , r l / i ! d x , 2 - 5 / 2

l l - , / 2 ( r ( i ) ) 2 . J " ( x 3 _ x ) - l / 2 d x # 

To describe the most general such integral it is convenient to use geometrical 
language. Let F be a polynomial in two variables with algebraic coefficients, and 
let % be the curve in complex space (D defined by the equation F(x,y) = 0 . 
Take a rational function D(x,y) on with algebraic coefficients, and form the 
differential 6 = D(x,y)dx on ̂  . If ̂  is any path on the Riemann surface & of 
ft whose endpoints have algebraic coordinates, we can define the definite integral 
6(f>) of 6 along provided f> does not pass through any poles of 6 . Clearly 
all the above integrals are examples of this general ponstruction. Thus from the 
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point of view of transcendence theory it would be useful to know the arithmetic 
nature of the number 6(f0 • 

If the curve t> is rational this knowledge comes from the basic theory of 
linear forms in logarithms of algebraic numbers, and in [10] van der Poorten gave 
necessary and sufficient conditions for 6(1P) to be a transcendental number. But 
for general \? it seems difficult even to formulate a conjecture, and we shall say 
no more about this problem. 

Instead we shall simplify the question by restricting attention to closed paths 
or loops £ on ft . By way of example, let us calculate the integrals 6(d) when 
IS is either rational or elliptic. 

In the first case, we may identify the rational curve S with the complete 
complex plane. Then 

biS) = J f (z)dz 

where the integral is taken over a closed contour and f(z) is a rational function 
with algebraic coefficients. Clearly the residue of f(z) at any pole is an alge­
braic number, and it follows that 6(i£) is an algebraic multiple of 2-rci • Hence 
&(£) is either zero or transcendental, and these two possibilities are easily 
distinguishe d, 

A similar argument shows that for general E the number &(;£) is an algebraic 
multiple of 2TZ± if £ is trivial ; i.e. homologous to a single point of R , 

Henceforth we shall consider only non-trivial loops. We may also exclude the case 
of exact differentials 6 , since 6(i£) = 0 whenever 6 = dG for some rational 
function G = G(x,y) on 1?. 

Next suppose £ is an elliptic curve, given without loss of generality in 
Weierstrass normal form 

2 3 y = 4* - g2x - ĝ  
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for algebraic numbers ĝ  , ĝ  with ĝ  ̂  27ĝ  . This curve is parametrized by the 

f ormulae 

x = p(z) , y =p(z) , 

where p(z) is the Weierstrass elliptic function with invariants ĝ  , ĝ  • 

Accordingly we obtain 

606) = j f (z)dz 

where the integral is a path from some point ẑ  to Z Q + a ) ^(z) ^s 5111 ellip­

tic function with respect to the period lattice A of p(z) . Here to is a period 

of A that vanishes if and only if the loop ¿6 is trivial. Now f (z) has a cano­

nical expression as a linear combination of functions £^r\z-u) (r > o) , where 

C(z) denotes the Weierstrass quasi-periodic function and the finitely many numbers 

u are related to the poles of f(z) . See for example [13] p. 450. The algebraic 

definition of 6 can be translated into statements about this expansion, and by 

axplicitly integrating by means of the sigma function, we find that 

6&) = ctu> + pri + y(2id) , 

where 

n = cU0+a)) - e(zQ) 

is independent of ẑ  , and a , p , y are algebraic numbers. We deduce immediately 

from a result of Coates [4] that 6 (¿6) is either zero or transcendental* In 

addition, the generalization of this result proved in the author's thesis [6] shows 

that 6(«fc) is actually transcendental unless a = p = y = 0 • Bu"^ c a n easily be 

verified by referring back to the above canonical expression for f(z) that this 

condition holds only if 6 is exact. 
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Thus we have shown that when )g is an elliptic curve the number &(;6) is 

transcendental if £ is non-trivial and 6 is non-exact. This does not quite 

remain true for curves of arbitrary genus g > 1 , as we shall see below. To 

describe the results so far obtained in this case we first recall the well-known 

classification of differentials. An arbitrary differential is called of the third 

kind ; it becomes of the second kind if its residue at every pole vanishes ; while 

if it has no poles at all it is of the first kind. 

In 1941 Schneider [n] established the following result for curves of genus 

g > 1 , If 6 is a non-exact differential of the second kind there is a loop £ 

such that 6(J6) is transcendental. Since now depends only on the homology 

class of £ , this is equivalent to the assertion that at least one of 

6&Ŝ  ),..., S&̂ ĝ  "kranscendental, where ^ , . . . ¿ 6 ^ constitute a basis for the 

homology group. In fact, if this basis is suitably chosen, Schneider proved the 

stronger statement that at least one of the numbers ),..., 6(£ ) is transcen-
1 g 

dental0 This implies the above result for elliptic curves when the differentials 

are of the second kind. 

By taking curves of the form 

y = x U-xJ 

for rational integers r,s,t Schneider deduced the transcendence of the value 

B(U,V) of the classical beta function at all positive rational non-integral u,v . 

My own recent results concern the case g = 2 . Let us call the curve £ of 

genus 2 simple if there is no non-constant rational map from £ to an elliptic 

curve. This amounts to saying that the Jacobian ^ of ^ is not isogenous to a 

product of two elliptic curves. If ^ does split in this way then the value of 

6(£) is a linear combination, with algebraic coefficients, of 2iui and certain 

periods of the corresponding two elliptic functions. Since much work has already 

been done on such expressions (Baker [l], [2] ; Coates [3], [4], [5] ; Masser [6], 
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[8]), we shall assume that is simple. Our main result is the following. 

THEOREM. .If. ^ is simple, £ is non-trivial, and 6 is non-exact of the second- 
kind, then is transcendental. 

The proof will appear in [9]. Thus we see that, in the notation introduced 
above to describe Schneider's theorem, both of the numbers &(£̂ ) , 6(^) a r e "trans­
cendental when g = 2 . Incidentally the simplicity of £ is necessary for the 
validity of the Theorem. One may see this by general arguments, or by writing down 

2 6 
an exemple as follows. If £ is the curve y = 1-x , with the obvious map to the 

2 3 
elliptic curve v = 1-u , we have 

j (1 -xf5)y~1cbc = 0 

where the integral is over any real loop starting at (x,y) = (1,0) , proceeding to 
(-1,0) via non-negative values of y , and returning via non-positive values of y. 

In [7] I had proved this Theorem for differentials of the first kind, when the 
condition that 6 is non-exact reduces simply to 6 / 0 „ If 6 is of the third 
kind, I can prove that 6fc£) is either zero or transcendental ; here of course the 
conditions of non-triviality or non-exactness are irrelevant. However, the proof 
turns out to be much simpler than the proof of the above Theorem. It remains an 
interesting problem to decide whether 6(&) is zero or transcendental in this case 
by extending the Theorem to differentials of the third kind. 

The solution of this problem would have the following consequence for the 
values of the beta function. Consider the numbers B(m/5 , n/5) as m , n run 
through all positive integers. It is quickly verified that these span a vector 
space V of dimension at most 6 over the field of algebraic numbers. Let 
|3„,...,P_ be the elements of any spanning set for V with 
0 5 

P0 = B(1,1) = 1 , P5 = 2i sinU/5)B( 1/5,4/5) = 27ii . 
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The extended Theorem would imply that the dimension of V is exactly 6 ; in other 
words, B ,...,(3 are linearly independent over the field of algebraic numbers. 0 5 

The Theorem itself gives the linear independence of |3q,...,{3 , while the 
easier result on differentials of the third kind shows that any linear combination 
of [3 ,,.#,(3_ with algebraic coefficients is either zero or transcendental. 1 5 

We conclude by mentioning some of the features of the proof of the Theorem. 
We use the Abelian functions associated with the curve g. These are functions 
A(») = A(Z^,Z^) , meromorphic on the complex space , satisfying 

A(Z+«) = A(Z) 

2 
for all fc) lying in some lattice A of C . A differential 6 of the first 

2 

kind on £ corresponds to a linear function «.a on C • A loop & corresponds 
to a period « of A , and then 6C#) = a.ca . This is the situation of [7]. More 
generally, a differential 6 of the second kind corresponds to a meromorphic 
function H(Z) quasi-periodic with respect to A • That is, the difference 

nU) = H(z+W) - H(z) 

is independent of z for each w in A • Then if $ corresponds to the period 
0) , we have = t](w) • 

One of the difficulties of the proof concerns certain division values associated 
with H(z) . A typical expression is 

<p(r,q) = H(rW/q) - rr](tt)/q ( 1 < r < q) 

where q,r are coprime integers. Without much trouble it can be shown that as q 
becomes large <p(r,q) is an algebraic number of degree at most cq . It is rela-

cq 

tively easy to deduce that its height does not exceed q for some H > 6 , and 
this crude estimate suffices for the proof of the result on differentials of the 
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third kind. For the Theorem, however, we need an estimate with K < 16/3 , and in 
fact we obtain one with K = 5 . Probably the true order of magnitude is about . 

Note that if 6 is of the first kind, then H(») is linear and cp(r,q) = 0 , 
so that these difficulties do not enter into [7]. 

In addition the proof makes use of an elimination procedure to be found in [8], 

and it also employs Gelfond's well-known criterion for transcendence. Under the 
assumption that n(w) is algebraic for some u = (o> .ŵ ) with a)̂  ̂  0 , say, we 
construct an auxiliary function and deduce from Gelfond's criterion that ^3 

an algebraic number a • This contradicts the main theorem of [7] for the differen­
tial of the first kind corresponding to the linear function ẑ  - aẑ  . 
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