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FURTHER ASPECTS OF TRANSCENDENCE THEORY 

by A. Baker and C.L. Stewart 

1. Introduction, This is a sequel to the talk given by 

the first author at the Journées Arithmétiques held in 

Bordeaux in 1974 [4]. Since then, there have been two main 

developments in transcendence theory, one relating to 

Diophantine equations and the other concerning divisor 

properties of arithmetical sequences.^ The advances depend 

upon recent progress concerning the theory of linear forms in 

the logarithms of algebraic numbers, and we shall begin by 

recording the latest results in this field. 

2. Linear forms in logarithms. Let 

A = Ê 0

+^l l o S a 1+...+B n log a n, 

where the a"s and 3's denote algebraic numbers; we shall 

assume that the a's are not 0 or 1, that the 3's are not 

all 0, and that the logarithms have their principal values. 

We shall suppose that otj and 3j have heights at most 

Aj(> 4) and B(> 4) respectively, and that the field K 

generated by the a 1s and 3*s over the rationals has degree 

t 
For other developments, concerning for example elliptic 

functions, see the papers by D.W. Masser and M. Waldschmidt 

in these Proceedings. 
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at most d. Further we shall assume that A ^ 0. Then 
we have (see [6]) 

| A j > № ) ~ C U 1 ° g Q', where C = ( 1 6 n d ) 2 0 O n , 

fi = log A 1... log A n , and ft' = ft/log A R . 

In the special case when $ Q = 0 and $^,...,$n are 
rational integers, the bracketed factor ft has been 
eliminated to yield |A| > B " C f i l o g These theorems 
include many earlier results in the field (cf. the introduction 
to [6]);and, apart from numerical constants, it would seem 
difficult to improve substantially upon their degree of 
precision. In fact, if one neglects second order terms, then 
the estimates are best possible with respect to each of the 
parameters A^,...,A n and B separately when the others 
are regarded as fixed; moreover, even the elimination of the 
factor log ft• or the replacement of nd in C by d 
would seem to involve some new idea. An expression for C 
of the above form occurred first in some work of Shorey 
[13], and the presence of ft' rather than ft is a 
consequence of [3] together with an observation of van 
der Poorten [9]. The latter refinement is of interest, in 
particular, since in view of the trivial Liouville-type 
inequality, applicable in the rational case, namely^ 
|A| > ( 3 A ) " n d B , where A = max Aj, we obtain at once an 

t This is slightly more precise than the form given in [1]; 
see [18] for details. 
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inequality announced by Chudnovsky to the effect that 
|A| > B""cfi l o g B . It will be noted that the dependence on 
A and n in the trivial inequality is best possible; but, 
from the point of view of applications, it is essential to 
have a stronger dependence on B. The proofs of the theorems 
mentioned here will appear in the Proceedings of the conference 
on transcendence theory which was held in Cambridge early in 
1976; and the latter will contain also a paper by van der 
Poorten on p-adic aspects of the subject [11]. 

3. Diophantine equations. Among the first applications 
of the theory of linear forms in logarithms were the effective 
resolutions of the Thue equation f(x,y) = m, where f 
denotes an irreducible binary form with integer coefficients 
and degree at least 3, and of the hyperelliptic equation 
y m = f(x), where f is any polynomial with integer coefficients 
and with at least three simple zeros, and m is any integer 
> 2 (see [5]). These equations possess just two integer 
variables x and y, and, though the results were generalized 
p-adically so as to incorporate certain prime powers, this 
binary character nevertheless seemed to be an essential feature 
of the work. The recent advances in the theory of linear 
forms in logarithms, however, have led to the resolution of a 
much wider class of equations having now three and indeed, in 
some cases, even four independent integer variables. 
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This latest development was begun by Tijdeman when he 
succeeded in showing that the Catalan equation x m-y n = 1 
has only finitely many solutions in integers x,y,m,n (all > 1) 
and, furthermore, that they can all be effectively determined. 
The method of proof can be readily illustrated by considering 
the simpler equation ax n-by n = c, where a,b,c are given 
positive integers, and we seek all solutions in integers 
x,y,n (all > 2) . We shall assume that y £ x, as we may 
without loss of generality. Plainly the equation gives 
|A| << y n , where 

A = log(a/b) + n log(x/y), 

and the implied constant depends only on a,b and c. On the 
other hand, from the results recorded in §2, we have 

log|A| >> -log y log n. 

A comparison of estimates yields at once a bound for n in 
terms of a,b,c, and the theorem on the hyperelliptic equation 
referred to above then furnishes bounds for x and y. Thus, 
in principle, the equation can be solved completely. It will 
be seen that the success of the method depends critically on 
the fact that the dependence on A n in the estimate for A 
cited in §2 is best possible. This feature, which first 
entered into the theory via [3], is also crucial to Tijdeman1s 
work on the Catalan equation (see [21]). 
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The latter arguments have recently been generalized 
p-adically by van der Poorten; he has shown, for instance, 
how one can solve in integers x,y,z,m,n the equation 
x m-y n = z^, where I is the lowest common multiple of 
m and n, and z is composed solely of powers of fixed 
sets of primes (see [10]). Further, Schinzel and Tijdeman 
[12] have recently proved that the original hyperelliptic 
equation y m = f(x) has only finitely many solutions in 
integers x,y,m (with |y| > 1, m > 1) and, again, they 
can be determined effectively. Furthermore, it is shown 
in [16] that if f(x) is replaced by a binary form f(x,z) 
with at least two distinct linear factors then, in principle, 
the equation is soluble in integers x,y,z,m, where z is 
composed solely of powers of primes from a fixed set, and 
(x,z) = 1 , |y| > l , m > 2 . These results represent some 
remarkable progress in our knowledge. 

4. Polynomial divisors. St^rmer proved in 1897, using 
properties of the Pellian equation, that £(x(x+l)) -> oo 

as x «>, where P (m) denotes the greatest prime factor 
of m. Polya extended this result in 1918 to include all 
quadratic polynomials with integer coefficients and distinct 
zeros, and Siegel further extended the result in 1921 to 
polynomials of arbitrary degree; the latter work depended on 
the famous Thue-Siegel theorem. Mahler later generalized 
Siegel's result, by means of p-adic methods, to binary forms. 
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The quantitative estimate P(f(x)) >> loglog x, where 
the implied constant depends only on f, was established 
by Chowla, Mahler and Nagell in the 1930's for certain 
quadratic and cubic polynomials f, and, in 1967, Schinzel, 
using a theorem of Gelfond, obtained the corresponding 
sharpening of P6lya ,s result. Further, in 1969, Keates, 
appealing to bounds for the solutions of the equation 
2 

y = f(x) (see [2]), obtained a similar proposition for 
cubic f. The work was much extended by Coates in 1970 [7]. 
Applying the p-adic theory of linear forms in logarithms, he 
showed that P(f(x,y)) >> (loglog X ) l y / 4 for all binary 
forms f with at least three distinct linear factors, where 
X = max(|x|,|y|) and (x,y) = 1. Recent advances in this 
field have now yielded the result P(f(x,y)) >> loglog X 
(see [16], and for earlier work [17, 8]; see also [15] for 
related work on certain polynomial products). 

In another direction, the recent theorems concerning 
linear forms in logarithms have been used by Shorey and 
Tijdeman [14] to prove that P(x n+b) 0 0 as n 0 0 uniformly 
in x, and in fact van der Poorten has shown more generally 
that P(ax n+by n) •> «> as n + «> uniformly in x and y, 
where a,b are any non-zero integers (see [10]). Further, 
a similar generalization has been obtained in connexion with 
Mahler's well-known theorem to the effect that P(ax m+by n) °° 
as max(|x|,|y|) -> 0 0, where (x,y) = 1; indeed it has now 
been established that the same holds as max( | x| , | y | ,n) -* °°, 
assuming that a,b and m are fixed (see [16]) . 
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5. Lucas and Lehmer numbers. As remarked in Bordeaux, 
the second author proved some three years ago, in connexion 
with a conjecture of Erdfls, that, for any integers a > b > 0, 
P(a n-b n)/n -* » as n runs through a certain set of integers 
of density 1 which includes the primes. Since then, the 
work has been much extended to include the Lucas and Lehmer 
numbers and many other arithmetical sequences [19]. 

In 1886, Lucas, generalizing the well-known Fibonacci 
sequence 1,1,2,3,5,..., defined integers t^,t2#..« by 

t n = (a n-3 n)/(a-3), 

where a+3 and a3 are relatively prime integers (so that 
ot,3 are roots of a quadratic equation) and a/3 is not a 
root of unity; he proceeded to demonstrate the efficacy of 
the sequences in tests for primality, in researches concerning 
continued fractions, and in work on the Pellian equation. 
The studies were extended by Lehmer in 1930; he defined a 
sequence u^u 2,... of positive integers in the same way 
as Lucas for n odd, by 

u n = (a n-3 n)/(a 2-3 2) 

for n even, and subject to the weaker condition that 
2 

(a+3) and a3 be relatively prime integers. Carmichael 
proved in 1913 that if a,3 are real and n > 12 then 
P(t n) > n-1, and Ward showed in 1955 that the same holds 
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for u n« It has recently been demonstrated by means of the 

theory of linear forms in logarithms that 
4/3 

P(t n) >> n log n/(q(n)) ' , where q(n) denotes the 
number of square-free divisors of n and the implied 
constant depends only on a and $. In fact the same holds 
for u n and indeed for a n-b n; thus, in particular, we 
have P(a p-b p) >> p log p for all primes p. Moreover, it 
has been proved similarly that for the Fermat numbers the 
estimate 

9n 
P(2 Z +1) >> n2 n 

is valid for all positive integers n, where now the implied 
constant is absolute. 

Other work in this field has concerned, for instance, 
the sequences nl+l, n n+l, p 1 #..p n+l (n = 1,2,...), where 
P n denotes the n*"*1 prime, and furthermore solutions v n 

of the general linear recurrence relation 

n—zr n-rn-I n—zr n-r n-r n—z 

where a^,...,ar are rational integers; in the binary case 
(when r = 2), for example, it has been shown that 

1/3 
P(v n) >> (n/log n) ' (see [18]). The results described here 
are illustrations of the successful application of the 
estimates for linear forms in logarithms to the study of 
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arithmetical sequences of exponential growth which are at 
present not treatable by more conventional means. The 
difficulties inherent in applying sieve methods to study 

t 
such sparse sequences have been analysed by Hooley. 

There have also been some new developments in connexion 
with the result of Schinzel mentioned in Bordeaux, to the 
effect that there exist primitive prime divisors of a n - 3 n 

for relatively prime algebraic integers a,3 with a/3 
not a root of unity, and with n sufficiently large in 
terms of the degree of a/3. Schinzel1s result applies in 
particular to the Lucas and Lehmer numbers, and explicit 
calculations, using the work referred to in §2, have shown 
that these indeed possess primitive prime divisors for 
n > 1 0 3 0 0 . In fact rather more has been proved; it has been 
shown namely that, except possibly for finitely many 
exceptions, all Lucas and Lehmer numbers possess primitive 
prime divisors if n > 6 and n ^ 8, lO or 12. Further, 
this result is best possible, for one can specify infinitely 
many Lehmer sequences for which u n does not have a 
primitive prime divisor for each remaining n. Furthermore, 
the exceptional cases can, in principle, be effectively 
determined (see [20]). 

t Applications of sieve methods (Cambridge Univ. Press, 1976); 
see Chapter 7. 
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