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SINGULARITY THEORY AND  
EQUIVARIANT DYNAMICAL SYSTEMS 

Mike Field 

In this note we wish to describe some recent results in the 
theory of equivariant dynamical systems. The theorems we describe 
are, for the most part, firmly rooted in the singularity theory of 
differentiable maps as developed by Malgrange, Mather, Thorn and many 
others. Apart from applications to problems in dynamical systems 
with symmetry, we expect applications to problems involving "breaking 
of symmetry" as well as to the topology of G-manifolds. 

We start by reviewing a little of the theory of G-manifolds and 
establishing some notation. Let M denote a compact C manifold 
without boundary and G be a compact Lie group acting differentiably 
on M . If X€M , we let G(x) denote the G-orbit through x and 
Gx denote the isotropy group of G at x . The equivariant diffeo-
morphism type of G(x) is uniquely determined by the conjugacy class 
of Gx in G and clearly G(x) is equivariantly diffeomorphic to 
the homogeneous space G/Gx • Only finitely many conjugacy classes 
of isotropy subgroups occur for any given G-action on M and, in 
the obvious way, we obtain a finite decomposition of M into points 
of the same "orbit type" : 

M = M 1 U UK N 
Much of the difficulty encountered in the study of G-manifolds 
arises from the f̂ ict that the sets M^ , though submanifolds, need 
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not be closed. Put another way, the orbit space M/G can be highly 
singular. Fix xeM and take a G-invariant Riemannian metric on M 
and corresponding tubular neighbourhood of G(x) . We obtain a 
linearization of the action on Gx on a transverse disc to G(x) . 
This observation (the equivariant slice theorem) enables one to 
apply results on linear G-actions and brings in the representation 
theory of G . However, in the geometrically most interesting cases, 
Gx is not usually connected and the powerful and elegant repre­
sentation theory of compact connected Lie groups does not generalize 
at all easily to the non-connected case. For a detailed introduction 
to the theory of compact transformation groups we refer to the 
book by Bredon [l]. 

In earlier work [2, 3] we proved various genericity results for 
equivariant diffeomorphisms and vector fields. For simplicity we 
restrict attention here to equivariant diffeomorphisms and we shall 
let Diff^(M) denote the space of Cr equivariant diffeomorphisms 
of M . 

If x is a fixed (periodic) point of feDiff r G (M) , then so is 
g(x) ,geG . In other words, we have to allow for G-orbits to be 
fixed sets rather than isolated points (at least, if dimension(G) >. D• 
Recall that a fixed set G(x) for f is said to be generic if f 
is "normally hyperbolic" on G(x) (see [3] for a complete definition 
and references). With a similar definition of genericity for periodic 
points one can then prove that any equivariant diffeomorphism 
fCDiff (M) can be Cr approximated by an equivariant C diffeo-

morphism with all fixed and periodic points generic. One also has 
the usual finiteness and isotopy results. For example, given T £ 0 , 
the number of points of period _£ T is finite (mod G) for a generic 
diffeomorphism. 
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If G(x) is a generic fixed set for f^Diff r G (M) one may 
construct the stable and unstable manifolds of G(x) in the usual 
way (that they are immersed manifolds follows from [6]). To obtain 
a "reasonable" geometric description of an equivariant dynamical 
system, one needs a good definition of transversality of stable and 
unstable manifolds. In particular, transversality must be an open 
condition. For most of the remainder of this paper, we wish to des­
cribe our concept of "G-transversal". Full details will appear else­
where {4] as will examples of equivariant dynamical systems satis­
fying these conditions [5]. We remark the following theorems about 
the existence of equivariant dynamical systems (proofs in [5]). 

Theorem. 
r r 00 Let f€DiffG(M) . We may C approximate f by a C 

equivariant diffeomorphism f such that 

1. The fixed and periodic points of f1 are generic. 

2. Stable and unstable manifolds meet G-transversally. 

Theorem. 
On any compact G-manifold M ^ we can find an "equivariant 
Morse-Smale diffeomorphism". That iss there exists fCDiff^(M) 
such that 

1. ft(f) j mod G j is finite and consists of generic fixed 
and periodic points. 

2. Stable and unstable manifolds meet G-transversally. 

Similar theorems hold for equivariant vector fields. 
Deferring our definition of transversality until later we may 

summarize our main result by 
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Theorem. 
Suppose that V and M are compact G-manifolds and that W 
is a compact G-invariant submani fold of M . Let ( 00 G (V,M;s) 
denote the space of C oo equivariant maps from V into M 
with the C s topology. ffzaz/ /in<£ r > 1 and an open dense 

subset XCC oo G !V,M;r) such that if f€X , there exists an open 
neighbourhood N of f in X such that g -1 (W) is continu­

ously equivariantly isotopie to f ^(W) in V /or aZZ geN . 
Moreover, if feX , the intersection f ^(W) is given locally 
by equisingular families of real algebraic varieties. In general 

we cannot require that intersections are differenti ably stable. 

After circulating the preprint for the first half of [4], I 
learnt from E. Bierstone that he had proved results similar to the 
theorem above, though with a slightly different definition of G-
transversality. 

We shall start by giving one or two rather simple examples of 
G-transversality including an example showing that one cannot require 
intersections to be differentiably stable. We conclude by giving 
some indication of the role of equisingularity theory in our defi­
nition of G-transversality. 

Example 1. Perhaps the most remarkable feature of the trans-
versality theory of G-manifolds is that a decade ago even the simplest 
examples that we shall now describe could not have been given a 
rigourous presentation. Even now, there is no C theory, r < oo 1 . 
The geometry implicit in the G-transversality theorem seems to 
admit of many applications even for relatively simple group actions 
and we shall start by giving an example of transversality {7*^ de-
1. The Cr theory goes through if the Cr version of G.Schwarz1 

theorem is true [l3j . See also [9] . 
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notes the cyclic group of order 2 ) . 
Give R x R the coordinates (t,x) and R the coordinate (y) . 

We let Z2 act on R x R as (t,x) \ *(t,-x) and on R as 
multiplication by -1 . Give R x R x R the coordinates (t,x,y) 
and let X denote the Z^-invariant submanifold {(t,x,0):t,xeR} 
of R x R x R . Let 0:R x Ri >-R be a C°°Z2-invariant map. We 
shall consider the Z2~transversality of the graph of J? to X 
along the subset R x {0} of R x R. First note that for all 
0 ,R X (0}o graph (0)f\X . Associated to 0 we define the map 

y (0) :Ri ?R 
by 

y(0) (t) = D 2 0 (t,0) 

(D2^(t denotes the partial derivative with respect to x at 
(t,0)) . We say that graph(0) is Z2-transversal to X along R x {0} 

if y(0) is transversal to OeR . Notice that if y{0)(t) ? 0 , then 
graph(0) is transversal to X at (t,0,0(t,0))-usual definition. 
However we will in general have points of non-transversality. We 
now examine some consequences of our transversality definition. 
Suppose that we have Z2-transversality at 0 and that y(0) (0) = 0 . 
The transversality condition on y{0) implies that we can find 
a^ 0 and a C°°Z2-invariant function b:R x R >>R such that 

1) 0(t.x = axt + b(t,x), for all (t,xeR x R . 

2) D 12 b (0,0) = 0 . 

^D12^(0 0) denotes the mixed partial derivative Di^D2b^(o 0)^ * 
The intersection of the graph of 0 with X is given by the 

set of zeroes of 0(t,x) = 0 . That is, (t,x) belongs to the inter­
section if and only if 
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axt + b(t,x) = 0 . 
Now the Z2-invariance of b , together with the fact that b(t,0) = 0 
for all t€R, implies that b is divisible by x : This is an easy 
consequence of the Malgrange division theorem. That is, there exists a 
( unique ) C°° function f:R x R >R such that 

b(t,x) = xf(t,x), for all (t,x)6R X R . 
Substituting for b , we find that the intersection of graph(0) with 
X is given by the set of solutions of 

x(at + f(t,x)) = 0 . 
We already knew that x = 0 (the fixed point set of Ẑ ) lay in the 
intersection and so we are left with the problem of analysing the 
solutions of the equation 

at + f(t,x) = 0 . 
Since D 12 b (0,0) = 0,E 1 f (0,0) = 0 . By the implicit function theorem. 
we may therefore find an open neighbourhood U x V of 0€R x R and 
a C°° function g:V *R such that { (g (x) ,x) ; x€V} gives all the 
solutions of the equation at + f(t,x) = 0 in U x v . Hence the 
intersection of graph(0) with X is given in a neighbourhood of 
zero by the line x = 0 and the curve t = g(x) . 

Using the implicit function theorem, with parameters, it follows 
easily from the above argument that we have local stability of Z2~ 
transversal intersections. Indeed, if 0* is C close to 0 , 

then the intersections are close (for more details we refer to 
[4]). 

Along R x {0} , the intersection of graph(0) and X is a 
"fishbone". 

.... 

x 

t 

...... 
t-axis. 
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Now we can always perturb 0 to achieve transversality (in 
the usual sense) outside of the fixed point set of . The picture 
then becomes 

....... a 

C 

a' ....... t-axis 

Observe that we may cancel adjacent points of non-transversal 
intersection on the t-axis by equivariantly isotoping. For example, 
with the notation of the diagram, the points a and a' can be 
moved together and cancelled by "unfolding" the fold in the graph 
of 0 which gives the circle C in the intersection. Suppose that 
Z2 acts on a 3-manifold and has fixed point set F diffeomorphic 
to S"** . Let X and Y be Z^-invariant submanifolds containing F . 
Working in a tubular neighbourhood of F (diffeomorphic to a solid 
torus) it is easily seen that we can equivariantly isotop X and Y 
so that they are Z^-transversal on F with 2|m-n|points of non-
transversal intersection, where m and n denote the number of 
"twists" of X and Y around F . See also [7,8]. 

Example 2. We shall let Cp denote the complex plane, C, to­
gether with the S1 action epi9 . Suppose that pq / 0 and let 
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0:C denote an S invariant C°° map. Set W = graph (0) = 
P q. {(z,0(z))€C x C } W is an S1 invariant submanifold of C * C P 4 P q 

Since pq ^ 0 , W passes through the origin of Cp X Cq * Let x 
denote the S1 invariant submanifold C x (o) of C X C .We 
shall investigate the S1 transversality of W and X . Ignoring 
the case p = q (which is easily dealt with) we shall suppose 
p ^ q . Since the representations of Ŝ " on C and C are ir-
reducible and different, we find that W has tangent space Cp x {o> 
at zero. In other words, we cannot perturb 0 so as to obtain trans­
versality at zero. Since 0 (gz) = g0(z) for all g^S1 and zsCp , 
it follows that if 0 ^ 0 , then Zp c Zg (Zp and Zg denote the 
isotropy groups of the actions of S1 on C and C respectively). 
Now Zp C Zg if and only if p divides q . Hence if p does not 
divide q, 0 is identically zero. But this implies W = X . Ob­
viously the intersection of W and X is highly stable Finally, 
we turn to the most interesting case when p divides q . Suppose 
that q = pk,k > 1. Using the Malgrange division theorem one may 
easily show that any S invariant C map ^:Cp >Cg can be 
written in the form 

k k iMz) = p (z) z + q (z) iz , 
where p and q are C^S1 invariant real valued functions on Cp . 
In this case our S1 transversality condition requires that 
(p(0),q(0)) ^ 0 . If this condition is satisfied, the intersection 

at zero is the isolated point (0,0) . 
Example 3. In this example we show that we cannot expect 

differential stability for intersections of G-transversal maps. 
Let S1 act on C & C as (el6 ,e10) and on C as e4lQ . 

Working with complex coefficients, the general equivariant polynomial 
of degree 4 mapping from C © C to C is given by 
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4 

ï=0 
Cjz 

j 
lz2 

4-j 
, 

where cj€c • Tne discriminant locus of quintic polynomials defines 

a proper algebraic subset of R (= C ). Off the discriminant locus, 

every such polynomial has four distinct roots corresponding to four 

distinct complex lines in C ® C . In general> if we are given two 

distinct sets of four complex lines in C 6 C , we cannot find a real 

linear endomorphism of C $ C taking one set onto the other. It 

follows, looking at derivatives at the origin, that we cannot have 

differential stability of S1 invariant maps transverse to 0£C . 

Of course, this argument is based on Whitney's "cross ratio" examples. 

For the remainder of this paper we shall give a brief sketch 

of some of the main ideas used in the proof of the stability theorem. 

Let V and W be finite dimensional linear G-spaces and 

suppose that G does not act trivially on any proper subspace of V . 

We let P^(V,W) and C c» 
G 
(V,W) respectively denote the sets of equi­

variant polynomial and C°° maps from V to W . We also let P_ (V) 

and C oo 
G V) denote the sets of real valued G-invariant polynomial 

and C maps on V respectively. 

We say that a set ,F^}cPG(V,W) is a minimal set of 

generators for PG(V,W) at zero (an"MSG") if it is a minimal set 

of generators for the PG(V)-module of fractions 

{P/q:P€PG(V,W),qePG(V),q(0) ^ 0} . 

The number of elements in an MSG depends only on the given represen­

tations of G on V and W . If G acts trivially on the vector 

space T , then an MSG for PG(V,W) is also an MSG for PQ(V x T,W) . 

If {Flf ,Fk> is an MSG for PG(V,W) it is a straight­

forward consequence of the Malgrange division theorem that {F^,...,F^} 

generates the CG(V)-module CG(V,W) - at least on some neighbour­

hood of zero. Combining this with the previous remark, we find that 
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if f£CG(V x T,W) , there exist qx, ,qk€CG(V x T) , such that 

on some open neighbourhood of V x {0} in V x T we have 

f(x,t) = 
k 

j = l 
qj(XjtjFj(x) . 

Let Q(f):V x T *R denote the map defined by 

Q(f)(x,t) = (q1(x,t), ,qk(x,t)) . 

Although Q(f) need not be uniquely determined by f and the choice 

of MSG, the map 

Y (f) :T *Rk 

defined by y(f) (t) = Q(f)(0,t) is uniquely determined. The map 

Y(f) will be used in our local definition of G-transversality . 

Let F:V x R >W denote the polynomial defined by 

F(x,t) = 
k 

3 = 1 
tjFj(x) . 

For t€R , we let X(t)cV denote the algebraic variety 

{xeV:F(x,t) = 0} . Let XCV x R denote the zero set of F . Our 

definition of transversality and description of local models for 

transversal intersection rely on a careful study of equisingularity 

properties of the family {X(t):t€R } (rather, germs of this family 

along V ). The type of equisingularity that we study is a generali­

zation of "Whitney equisingularity" (see [lO] ). 

We prove that we may find a decreasing family A-̂ o oA^ 

of real algebraic subsets of R satisfying 

a) Codimension (Â ) ̂_ j , 

b) Aj ̂  Aj+i is a' possibly empty, semi-algebraic manifold 

of codimension j . 

c) {X(t):tÇRk} is Whitney equisingular "transverse" to 

A. ̂  Aj+i and Whitney equisingular over R . 

As far as condition c) goes, the family {X(t):teR } , although 
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not equisingular on Aj ̂  Aj+1 ' wil1 be equisingular if we take as 
new parameter transversal j-dimensional germs to Aj \ Aj+1 ' Tnis 
is most easily seen when j = k . will then consist of a single 
point, the origin. Since there is only one germ transverse to the 
origin, we have equisingularity with this new parametrization 
trivially. The complete description of c) requires a number of 
technicalities and we shall give full details elsewhere ( [4]). 

The fact that the varieties Aj are algebraic, allows us to 
choose a unique "minimal" family which we call a "fundamental equi­
singularity sequence" (for Pr(V,W)). 

We may now state our definition of G-transversality. 
DEFINITION 

Let f€C 00 G (V x T,W) . We say f is G-transversal to 0€W at 
(0,0)GV x T if the map 

a(f) :T »Rk 
is transversal to a fundamental equisingularity sequence for P (V,W) 
at 0€T . 

Remark. "Transversal" to a fundamental equisingularity sequence 
A.^...-2A^ means transversal to each A^ , where A^ is given a 
minimal Whitney stratification. 

Most of the main properties of G-transversality follow straight­
forwardly from the above definition. For example, local models for 
G-transversal intersection are easily obtained by studying the map 
Q(f) :V x T >V x Rk , defined by 

Q(f)(x,t) = (x,Q(f)(x,t)) . 

REFERENCES 
[l] G.E. Bredon, "Introduction to compact transformation groups", 

Academic Press, New York (1972). 

77 



M. FIELD 

[2] M.J. Field, Equivariant dynamical systems, Ph.D. thesis, Warwick 
University, 1970. 

[3] M.J. Field, Equivariant dynamical systems, Bull. A.M.S., Nov. 
1970, 1314 - 1318. 

[4] M.J. Field, Transversality in G-manifolds, to appear. 
[5] M.J. Field, Global theory of equivariant vector fields, to 

appear. 
[6] M.W. Hirsch, C.C. Pugh and M. Shub, Invariant manifolds, to 

appear. 
[7] T. Petrie, Obstructions to transversality for compact Lie groups, 

Bull. A.M.S. 80 (1974), 1133 - 1136. 
[8] T. Petrie, G-Transversality, Bull. A.M.S. 81 (1975), 721 - 722. 
[9] V. Poenaru, Stabilité structurelle equivariante (premiere partie), 

Orsay notes. No 126 75-30. 
[10] B. Teissier, Introduction to Equisingularity problems, Proc. 

of A.M.S. Symposia in Pure Mathematics, Vol. 29 (1975). 
[11] G. Schwarz, Smooth functions invariant under the action of a 

compact Lie group, Topology, Vol. 14(1975), 63 - 68. 

Mathematics Institute 
University of Warwick, 
Coventry CV4 7AL. 
England 

78 


