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A COMMON GENERALIZATION OF TOPOLOGICAL AND  

MEASURE-THEORETIC ENTROPY 

Günther Palm 

Nowadays ergodic theory is split into two branches: measure-
theoretic and topological, according to the methods used. 
In both branches there are similar results proved using similar 
ideas. Therefore it is natural to look for a common generalization. 

For theorems connecting spectral and mixing properties of dyna
mical systems Nagel [2],[3j,[4] has found an approriate generali
zation in terms of Banach lattices: an abstract dynamical system is 
a triple (E,u,T), where E is a Banach lattice with quasi-interior 
point ueE+ and T:E—=>E is a lattice homeomorphism satisfying 
Tu=u (this definition is slightly different from that given in [ l\) 

For theorems concerning entropy and related questions, other 
mathematical structures are used: If one looks into the entropy 
sections of Walters' book [8], for example, the measure-theoretical 
and topological proofs of many analogous theorems look very similar 
and these proofs are based on lattice methods. Therefore I have de
fined entropy for a dynamical lattice (see definition 1.1.). 

This definition has two advantages: 
1) Given an abstract dynamical system (E,u,T), the lattice of all 

closed ideals in E yields a dynamical lattice (see 1.3.), 
whose entropy reduces to the usual entropy in both the measure-
theoretic and the 1-nnnlnairal ^aca /cno 1.4.) . 
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2) In this definition of entropy it is necessary to define the 
entropy for not necessarily disjoint covers, even in the measure-
theoretic case. But this fact allows an easy proof of Goodwyn1s 
theorem [1] by means of a generalized version of the Kolmogoroff-
Sinai theorem (see 3.4.). 

In the following I want to give the basic definitions and 
theorems for the entropy of dynamical lattices and to sketch the 
proof of Goodwyn's theorem. 

1. Dynamical Lattices. 

1.1. Definition. 
A dynamical lattice is a triple (V,m,f), where 

V is a distributive lattice with 0 and 1 , 
m:V—=>TR+ satisfies m(0)=0 and: 
m(a) =0 m(avb)=m(b) for every a,be V, 
f:V—>V satisfies f(0)=0, f(l)=l and: 
m(a) =0 =^ m(f(a))=0 for every a€V . 

1.2. Definition. 
Two dynamical lattices (V,m,f) and {V% ,mx ,£l) are called 

isomorphic, if there is a lattice isomorphism c|):V—*V* satisfying 
(j). f = f (j> and m'. (j) = m 

1.3. Definition. 
Let (E,u,T) be an abstract dynamical system. Let V be the 

lattice of all closed (lattice-)ideals in E (see f 61 ) , 
m: • 

V—HR + 

I *-sup X x€ IA[0,U] } 
f : fv *V 

Ih-^<T (I) > 
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where <A> denotes the closed ideal generated by A . Then (V,m,f) 
is called the dynamical lattice of closed ideals associated to 
(E,u,T). 

By the entropy of (E,u,T) we mean the entropy of the associated 
dynamical lattice of closed ideals. 

1.4. 
In the topological case we have a topological dynamical system 

(X,cJ)), i.e. a compact Hausdorff space X and a continuous mapping 
(j>:X >X . Here we set E:=C(X), u=l and T(f):=fo<j> ; For this ab
stract dynamical system we get (using 1.3) 

V = {open sets in X> m(a) = m (a) 
0 if a=0 
1 if â O 

and f=<J> 1 , 

In the measure-theoretic case we have a dynamical system (X,I,y,cf)) , 
i.e. a probability space (X,I,y) and a measurable, measure-preserving 
mapping (j>:X >-X . Here we set E iL̂ X, £ , y) ,and again u=l ,T (f) :=f •<(> . 
For this abstract dynamical system we get V isomorphic to the 
measure algebra (^denoting the y-nullsets) , m=y and f=(f> 1 . 

2. Entropy 

2.1» Definition. 
Let (V,m,f) be a dynamical lattice. 

1) A finite subset a of V is called a coyer, if sup a=i 
2) The set V of all covers is ordered by: 

a<$ (3 is a refinement of a) if and only if for every be3 

there is an a £ a such that b <_ a . 
3) av$ : = {a*b : as a,b € $} and n 

a : 
1-1 
i=0 

fi(a) 

4) Let a be a cover and k:= 
aea 

m(a) , then we set 
h* ( a) ; 

aea 
m(a) 
K 

log m(a) k 
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5) 1i(a):= sup{h*($) : 3^a , N(3) <_N(a)} , N(a) denoting the 
number of elements aga such that m(a) ^ 0 . 

6) h(a) : = inf 
n 
i=l 

£(S.) n 
i=l w< a n € IN} 

7) h(f,a) : = lim h(an)/n , H(f,a):= limh(an)/n 
8) h(V,m,f) := sup{h(f ,a) :a £ V} , H(V,m,f) := sup{H(f,a) :a G V} 
h(V,m,f) is called the entropy of (V,m,f) 

2.2. Remarks. 

a) It can be proved; that in many cases h(f,a) = H(f,a) holds 
for every cover a [51 . 

b) Step 5 of the definition should be explained: 
In the measure-theoretic case we want to get the measure entropy, 
therefore it should be sufficient to consider disjoint covers 
Now if V is a Boolean algebra and a any cover, there is a 
disjoint refinement 3 of a with N(B) £ N(a) , but if a is 
already disjoint, then a is the only such refinement. Therefore 
in step 6 we have 

h(a) = inf n 
i=l h(3±) 

n 
i=l 

3. > a i — w< disjoint, n 6 IN} and 

h(3) = h*(3) for disjoint 3 

c) In this general context the entropy still has many of the well-
known properties of the usual entropies: 

2.3. Theorem [ 5] 

a) If (V,m,f) and (V,m,,fl) ave isomorphic^ they have the 
same entropy. 

b) Let (V,m,f) be a dynamical lattice* where f is a 

lattice isomorphism such that m<»f=m , then 
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h(V,m,f) = H(V,m,f) and h(V,m,fk) = |k | • h (V,m, f) for 
ke E 

c) In the topological case (see 1.4.) h(V,m,f) is equal to 

the topological entropy. 

d) In the measure-theoretic case h(V,m,f) is equal to the 

measure entropy. 

3. Generators. 
Let me define pseudometrics on V and V: 

3.1. Definition. 
a) Given a,beV let 6(a,b):= inf{m(d) : dva = dvb) . 
b) Given a ,$ev with |a|<j3| (say) let d(a,3) = d(3,a):= 

= inf 
aea 

6 (a,IT (a) ) 
b^Tr (a) 

m(b) :Tr:a—*3 injective} 

3.2. Definition. 
Given two covers a,3 I shall write a ̂  3 , if there is a 

cover a1 satisfying d(a,a') < e and a1 £ 3 . 

3.3. Definition. 
A cover 3 is called a generator, if for every cover a and 

every e > 0 there is neJN such that a ̂  3n • A subset W of V 
e 

is called generating, if for every cover a and every £ > 0 there 
is a cover 3 £ W such that a ̂  3 . 

e 

With these notions we can prove a generalized version of the 
well-known Kolmogoroff-Sinai theorem (along the lines of [,7], see 
especially Lemma 5.8) [5]. 

3.4. Theorem. 
Let (V,m,f) be a dynamical lattice* V a Boolean algebra* m 
monotone (a <_ b m(a) <_ m(b) ) and subadditive 
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(m(a b) £ m(a)+m(b)) and m °f=m, then 

a)h(f,$) h(f,$) = h(V,m,f) for every generator 3 . 

b)h(f,$) h(V,m,f) = sup{h(f,3) : 3 € ^ , 3 ^ w } for every generating 

,^ùùxw< 

4. Goodwyn's theorem. 

4.1. 

Finally I will sketch a new proof of Goodwyn1s theorem [l] : 

Given a topological dynamical system (X,<j>) and a (̂ -invariant regu

lar Borel measure y on X, the topological entropy hfc of (j) 

is _> the measure entropy h^ of <|> with respect to y . 

According to 2.3. the topological entropy hfc is híV^m^f) , 

where V = {open sets in X} and f = <|> 1 , and the measure entropy 

is h(E,y,f) where Z denotes the a-algebra of Borel-sets. Since y 

is regular, V is a generating subset of E . Therefore we have 

(3.4.b): 

(*) h(£,y,f)=sup{h(f,a) :a € £, a cv}=sup{h(f,a) :a open cover of X} . 

If a is an open cover of X , clearly h (a) computed for (V,m1,f) 

is log N(a) , which is >_ h (a) computed for (E,y,f) . 

Therefore h(f,a) computed for (V,m^,f) is >̂  h(f,a) computed 

for (E,y,f) (according to definition 2.1.). 

So we can continue (*): 

h(Z,y,f)=sup{h(f ,a) :a £ E, a £ V) sup{h(f ,a) :a€ V} h t V ^ f ) 

With the same ideas the following generalization of Goodwyn's theorem 

can be proved [5]: 
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4.2. Theorem. 
Let X be a compact Hausdorff space and (E,u,T) an abstract 

dynamical system satisfying: 

a) C (X) is a dense ̂ -invariant sublattice of E . 

b) The norm of E is order-continuous. 

c) u is the function 16 C(X) . 
d) T is an isometry. 
Then T l c ( x ) corresponds to a homeomorphism (j):X *X by means 

of Tf = f<>(|) 3 and the topological entropy of $ is ̂ _ the 

entropy of (E,u,T) 
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