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GROUP-THEORETICAL INVESTIGATIONS ON COMPUTERS 11

by
Leonhard Gerhards

For solving group-theoretical problems often the structure of the maximal subgroups of a finite group G is of
great importance. Although it is possible to determine the maximal subgroups of G by calculating the complete
lattice V(G) of all subgroups of G [4], [10], it seems to be profitable to develop an effective computational
algorithin for determining only the maximal subgroups of G.

Making use of theorctical results of a paper of E. Altmann [0] the present paper — mainly written under
computational aspects — contains a complete description of the principal methods of such a program for a
finite group G containing a ,,Hall system {H; /i €1}" of subgroups H; if G [0], [5] .

The underlying group classes for the program are the class of finite solvable groups and the class of finite non
solvable groups, which contain a chain of normal Hall groups (5)}.

In both cases the computational methods are based on results of the theory of factorizations of finite groups
(1), [3):

If G can be factorizated by the groups H; of a Hall system {H; /i€ 1} of G and if for any subgroup U of G
there exists a conjugate group U" such that U" is a factorization by the subgroups u*n H;of H;, then assuming
the computational construction of the lattice V(H,) of all subgroups of H; the lattice V(G) of G can be deter-
mined by an iterative process constructing the maximal subgroups of maximal subgroups and their corresponding
conjugate series.

The present paper consists of two central parts:

In section 1 we develop an effective algorithm for the determination of the maximal subgroups of a finite
group G in the following cases:

a) G is solvable
b) G is non-solvable but contains a chain of normal subgroups.

In section 2 the algorithm will be exended to the calculation of the complete lattice V(G) of all subgroups
of G.

1. Determination of the maximal subgroups of a finite group G factorizated by a Hall system

1.1 Preliminaries

1.1.1 Representation and multiplication of the elements of a finite group G

In the following any finite group G will be given abstractly by
a) a system O = {ay, ..., a,} of generating elements of G
b) a system Ry(@) =e, ..., R = e of defining relations.
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L. GERHARDS

If any element a € G can be represented uniquely by a ,,normal form” a= a;l L °a;" (0 <r; <lgl, a? =e)
we get a representation ¢(a) of a € G in form of the n-tupel <rl, PN rn>. Assuming further that \;'(aiaj)
can be calculated uniquely from ¢(ai) and sp(aj) for all pairs {ai,aj} C G, multiplication in G is well defined.
If such an algorithm of multiplication exists, the generating system o= {aj, ..., a,}is called a ,,special
generating system of G .

Basic programs for the multiplication of the elements of G are developed in 2], [6], [8].

1.1.2 Representation of subgroups of G

a a

Let IGl = pll L p‘,I be the prime power decomposition of the order IGl of G, {U} the set of all subgroups
U C G and {S(U)} the set of all systems S(U) containing all cyclic subgroups of G of prime power order contained
in U. Then we get a 1—1-correspondence {U}+— {S(U)}between {U}and {S(U)}:

(1.1 Go2U—SU)={<z>CG [ <z>C U, 1<z>I=p% a>1, p prime} »and a system

1.2 EU) = (z},...25} (UCSG, m=15U)l}

of generating elements of all cyclic subgroups of S(U) forms a uniquely determined generating system of U C G.

To store the subgroups U C G of G in the computer by ,,characteristic numbers”, the elements of E(G) shall
be listed. Then, if E(U) = {zil, ey zig)g E@G) ({ij, . . ., ig}C {1,y IE(G)!) is a generating system of U
by

[T |
(1.3) K[U] = zj=l 2]
a dual number is defined, which uniquely corresponds to the subgroup U of G : U «— K[U].

Using the Boolean operation of intersection “A*“ we get

(1.4) K[U] A K[V]= KIUNYV]

uve 6
U C Ve K[U] A K[V] = K[U]

1.2 Factorization of G by a Hall system

1.2.1 Definition of a Hall system

Asystem JC := {H; /i=1,..., 1} of subgroups of G is called a Hall system of G, if
8) G=Hl."'.HI'
b) HH, = HH; (Gik=1,...,5 it k)
a5 o mlHEH=1
d) {H;/i=1,...,r}is conjugate toevery system {H; /i=1,...,r} of G satisfying a) . . . c)
(g Hig"l - Hi. for some g € G) .

If G contains a Hall system J(, we also say that G is ,factorizated by the Hall system 3 .

1.2.2 Sylow basis of a solvable group G
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«
Let G be solvable of order |Gl = pll LR p:' (p; prime number). Then G contains a system {P/i=1,...r}
of p;-Sylow subgroups of G satisfying (1.5),3), . . . , d). {Pyfi=l, ..., r}is called a ,Sylow basis of G " [7].

1.2.3 Groups containing a chain of normal Hall groups

A subgroup chain
1.6) G=G,>...2G;>...2G,; DG, =<e>
is called a _,chain of normal Hall groups of G”,if G;AG and (IG;L[G:GD=1 (i=1,...,n).

Since P C G; for all p-Sylow subgroups of G with p/ IG p-Gy is a characteristic subgroup of G. Therefore,
(1.6) is a chain of normal Hall groups of G, if and only if G; 9G4y and (IG; l, [Gi41 : GiD = 1, (i=1,....1=1).
In the case that G contains a chain of normal Hall groups, G can be factorizated by a Hall system [S5] :

Theorem 1.1: Under the assumption that G contains a chain (1.6) of normal Hall groups we obtain:
2) G contains a Hall system {Hi/ i=1,...,r)} of subgroups of G such that:

“)GiEHl"'”Hi ﬁ)H’Hk‘HkHi
a.n 2 (H, 1D =1 8) Hy OHH, (<K
G)Higcilci—l (‘,k‘l.-.-.l’, lf k)

b) Any two Hall systems of G are conjugate in G.

If G is not solvable, by the theorem of Feit-Thompson in a chain (1.6) of normal Hall groups of G at most
one factor Gk/Gk_l is not solvable.

Under this assumption on G it can be shown that every Hall group Hi(i £k) of G can be substituted by a
system of special Sylow subgroups of G [5]:

Theorem 1.2: Let G be a non solvable group with a chain (1.6) of normal Hall groups of G and let k be the
only index such that k/Gk { is not solvable. Then G contains a Hall system {H;i=1,...,r}
satisfying (1.7) and:
a) For i £k there exists a Sylow basis P; (R LERED) P, e of H; such that the ,,complete Hall system”

1.8 PiyoooesPy oy, P R » Hy, P IR ¢ N AT
(.8 1,1 1n, k-1,1 k-1 Hie Prer 1 kttgyys e Pt oo Prp
satisfies (1.7)
b) Any two complete Hall systems of G are conjugate in G.

From Theorem 1.2 consequently follows that without regard to the non solvable part of G the development of
a computational algorithm for a non solvable group G, which contains a chain of normal Hall groups, is similar
to the case G being solvable.

1.3 Factorization of G [1], [3]

L3.1 Let G = HjH, = HyH;, H} NHy =<e> be a factorization of G by HI'H2' Then for every h; € H;
(i=1,2) we obtain a map hj& : Hy+ Hyof Hk into Hy defined by :

hyth, = Hihshy NH, forall hy € Hy

1.9
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These mappings h;k together with the defining relations of the components H; (i=1,2) of G define the structure
of G. This is obvious, because multiplication in G is completely determined by the relation:

(1.10 hy * hy =hyth; * hy2hy ,
which is equivalent to (1.9).

1.3.2 By the theory of factorization [3] it follows that the set of mappings h)X forms a permutation subgroup

II; i of the symmetric group Sipy | of degree |Hyl. The set N, := {h; € H/hkhy = hy_ for all hy € Hy }is the
maximal normal subgroup of G contained in H;, which determines the homomorphism 7; X H; - I X

Hi/Ni =1 [3]). An other important group for the theory of factorization is the ,,fix group™

F= {h€H/ hkihi = h, for all hy € Hy'} Between F; and the normalizer NG(Hk) of Hy in G we obtain the
following relation [5] :

.11 F; = Ng(Hp) NH; , NG(H) = F;H, = HF;

1_-3;3 IfG= Hl ... -H‘ is a factorization of G by a Hall system {H; /i=1,... r}of G, we can apply the
theory of factorization to the subgroups G;  := HiHy (i £k) of G. F}‘ may denote the fixgroup of My ;and
N}‘ the maximal subgroup of G; X contained in H;.

Regarding the factorization G= Q *H;, Q:=H; *... *H_jHy ... H, it follows

(1.12) = O FE N AN
i K

and using (1.11):
| § I
N(Q N H = Fy= [\ Ff = 1 [Ng, G 0 1]
K kh

(1.13)
= A INc(H) N H] = [A Ne@E nH = [ A Naap]n
ki
Since F; consists of all elements of H; normalizing all Hy, we get fify f;” le le H; N Hy = <e > . Therefore,
the system normalizer F(¥() := l(jl Ng(Hy) of G related to the Hall system ¥ = {H [i=1,...,r}of G

can be represented as the direct product of the F; : F(#) = F; X ... X F_.

1.4 Calculation of TI; F}‘, N}‘ , computational comparsion of products

1.4.1 Determination of II;

For the determination of II;  the elements of the components H; (i=1,...,r) of G may be numbered in the
same sequence as they are generated by the generating process ([6]). Ther, generating the subgroups Gi,k=Hin=HkHi
@Gik=1,...,r i<Kk)one the one hand as a product of Hi'Hk on the other hand as a product of Hk'Hi we obtain
by comparing the products:
2) (s=1,...,IHD

O = 1EHED o (O 1O i 1O k
(1.14) WO = n Py k b + hfi nf a<e< 1R s
From these relations we obtain the permutation hsg)Koﬁ Hy related to the element }11(2) €H;: hg)-» hgz)k '=(s,), .
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If £ runs from 1 to IH;| we get I, - Fixing (1 <s < |H,) we similarly can determine for variable 2 (2=1,...I1H;h
the permutation hf)i =( g ) related to h&‘) € Hyyand if s runs from 1 to lﬂkl we get ITy d-
(4

1.4.2 Determination of FX and NK

Let G=H, «... *H; bea factorization by a Hall system {Hili- 15,...,1} lndE(l-lj)(j-l.k)defmedu
inl.12.
Then using the results of 1.3.2 by a fundamental well known generating process [6] the groups Fr and N}‘ can
be determined:

F}‘ = <z;> generated by all z; € E(H), zizkzi'l €H, forallzp € E(Hy)

(1.1%) N = <z,> generated by all z; € E(H), 22z € Hy for all 2y € E(Hy) .

1.4.3 Comparsion of products

Let G = Hy +.".. « H_ be a factorization of G by a Hall system {H; /i=1,...,r} of G. Then, for proving
the equality UHy = HLU; , U; CH; (k #i) we have to verify the invariance of U;,P) by applying the permu-
tations hyi € I i uk € ﬂi,k to U;,Hy, respectively. Since Hk is invariant against all h.k € "i,k we only have
to prove, whether U, is invariant applying all hyi € Il ; to U;. According to [[3], Theorem 2.2] it is sufficient
to prove hg)i y; € U for all u; € U; and for all hg) of a system {hg)}of generating elements of Hy. Such
comparsions of products will be used in the algorithm of determining the maximal subgroups of a finite group
G. (cf. 1.2.3) .

1.5 Determination of a Sylow basis.of a solvable group G

1.5.1 The Sylow basis as a intersection of Sylow-complements [1], [3]

a
Let G be a solvable group of order IG| = pll- R p;x, . Then, calculating a system (K; /i=1,...,r}of
Py Sylow complements K; of G of order IK;l = ﬂl piJ , we get a Sylow basis of G by
i

®o=\ K/i=1,...,1) .
1§} K;

1.5.2 Determination of the system {K; /i=1,..., 1} of p;Sylow complanents

Let M; = {z,. .., 2 }C E(G) be the set of generating elements of all cyclic subgroups <z > C G (2 = 1,...,t)
of py-prime power order, where py #p;.

If K; is a p;-Sylow complement of G, then E(K,)< M;, and conversely to every z € M; there exists a p;-Sylow
complement containing z.

A p;-Sylow complement K; of G can successively be generated by the calculation of the subgroup chain

<e> CUIC.-.C US=Ki with Ul =<Zl>, Uk_=<Uk_l,Zik>(ktl,...,l),
where 1 <iy <...<i  <...<i; and iy is the minimum of all j < t, such that

€ Uy and p XI<U_p2D1

There exists an algorithm for determining <U,g> (UC G, g€ U) described in [6] .
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1.6 Construction ot a chain of normal Hall groups for a non-solvable group G and the determination of
a complete Hall system of G «
In the following let G be a non-solvable group of order |G| = pll LI p:!' .

1.6.1 The lattice of normal Hall groups of G

The set of normal Hall groups of G forms a complete and distributive lattice ‘{(G). Any two subgroups series
of X(G) have isomorphic refinements. Therefore, a complete Hall system of G belonging to a chain of normal
Hall groups, which cannot be refined, is up to an inner iutomorphism of G uniquely determined [O] .

1.6.2 Construction of special minimal Hall groups

For any prime number Pi/ iG| We get a minimal group N(i) € ‘£(G) such that Pi/ N, (i)l

To construct N(i) let Z; ;=< Zjpree s zi,si> be the subgroup of G generated by the generating elements z; X of
all cyclic p;subgroups < z; P of prime power orderof G(1=1,...,1).

We set M = {p, / Pi/ lZ‘l} and define inductively:

(1.16) Mkl =Mk U \_

1 =
PjeMl( Mj (i 1,..-,]’)
Then to any M{‘ (i=1,...,r) there uniquely corresponds a vector
ka1, ifp eml
G o8, where ;";.f R <M
=0 e
and these vectors together form a matrix (p!gs) (l<lJ<l’).
Using the Boolean operations for addition:

0+0=0
a+b=1 , if atleast one term of the sum is $0

from (1.16) we get by matrix multiplication:

.17 69 =eh* j=1,....1 1<k<r-1)
k ko
If ‘pq)k (ﬁl“)kﬂ then IN(i)l = p‘: eee pi" Tand N(j) can be generated by the generating elements of

all cyclic p: sungoups of prime power order of G, where P is running through the set of all prime numbers,
the exponent B of which is equal to 1.

1.6.3 Detenmnatlon of a chain of normal Hall groups of G

Because N € £(G) is uniquely determined by the set of prime numbers dividing INI, we get N= 11 N(‘) Using

Pi/INI
fundamental program systems described in [6] it is possible to determine the lattice f(G) and consequentely an
appropriate chain of normal Hall groups.

1.6.4 Determination of a complete Hall system of G

In the following let G be a finite non solvable group with a chain (1.6) of normal Hall groups. Without loss of

96



COMPUTERS IN GROUP THEORY

generality for our investigations we can consider the chain G = G3 3 G5 D G} D G, = < >, where GZ/GI is not
solvable and GZ/Gl does not contain a normal Hall group.
IfiGl= p‘i’l LRI p?‘. by the method described in 1.5 it is possible to determine a p;-Sylow complement

Q@G=1...,)andF= iél Q; is a subgroup of G such that G is a splitting extension of G by F:

G, 9G=FG,, FNG, =<e> F= S,
Further, the system ® = rtﬁ(Qj NGY/i=1,...,1)
i=1
2
is a Y/low basis of G; such that P; <)FPi (i=1,...,1). H=F NG, isasubgroup of G, which represents the
factor group GZ/GI in G;. Since H = GZ/Gl. by assuption H does not contain a normal Hall group, and we still
have to construct a complete Hall system for the chain FOHDO <e>:

If Pj isa pj-Sylow subgroup of H with Pj/|H|.we get by [12] , IV, Exerc.:

NF(Pj)/NH(Pj) = F/H,
which means that NH(P’-) is a normal Hall group of NF(Pj)‘ By the theorem of Feit-Thompson H has even order.
In the case p= 2 it.follows that NH(Pj)/l’- is of odd order and consequently solvable. Therefore, Ny(P.) and
moreover NF(Pj) are solvable. Calculating a subgroup L of NF(Pj) such that NF(Pj) = L-NH(PJ) and applying the
method of 1.5 to L we obtain a Sylow basis Pt+l' ey P“, of L. Then the system Pl' N 'Pt'H'Ptﬂ' -

Prag
is a complete Hall system of G as desired in Theorem 1.2.

1.7 Algorithm for the determination of the maximal subgroups of a solvable group G

a
In this section let G be a solvable group of order IGI= pll LI p:'. ThenG =Py *... * P, where
{P;/i=1,...,r}is a Sylow basis of G.

1.7.1 Basic theorems

Without proofs we write up the basic theorems, which will be used for the development of the computational
algorithm for determining all maximal subgroups of G :

a
Theorem 1.3: Let U be a subgroup of the solvable group G, IGl= pll LI :', Ul = pgl LI 'pf'
(0<f;<e;i=1,...,r1). Then to any Sylow basis Py(U), ..., P(U) of U there corresponds a Sylow
besis Py,..., P, of Gsuchthat P(U)=B,NUG=1,...,1) (7], p666).

Theorem 1.4: Every maximal subgroup M of G has prime power index in G ([7], p. 164) .

Theorem 1.5: Let M be a maximal subgroup of G. Then:
2) If M 9G, then S/MI = P (p prime number)

b) If M RG, [G : M] = p?, and if G;, is a p-Sylow complement of G such that G;, CM, then NG(Gi)) cM
a7, p. 7134) .

1.7.2 Consequences of Theorems 1.3.—1.5 for the development of the algorithm

A) Let M be a maximal subgroup of G. Since any two Sylow bases are conjugate in G, it follows from Theorem

1.3 that-there exists a conjugate maximal subgroup M" of G such that from the factorization G=Py-... P,
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we obtain a factorization M* = (M‘ NP)-...* (M‘ N P) for M.

B) By Theorem 1.4, however, only one term M n P, is different from P; : V) Pp= P ( k #i), hence
M-Pl ..~(M ﬂPl) R

0 G =Ppe... P
lf M R G, by Theorem 1.5 we get NG(GP) c M hence F; = NG(Gp) NP C cMn P;, where F; is the
ith component of the system normalizer F = Fy X ... X F_ of G (1.3.3). F; depends only on the facton-

zationG=Pl'... . Pr of G. In the case M<)Gweget

1Pi+1 *Pisa pI—Sylow complement contained in M.

=Pye... P .
Gim=P r/{ﬁ‘..__.Pi_l(MﬂPi)Piﬂ-...-PraPIIMnPi.
This means that M N P, is a maximal subgroup of P; with [P; : (M N P)] = p;, (MnPi)Pk-‘Pk(MNPi)
k=1,...,1, kti).

1.7.3 The algorithm

By the followmg algorithm it is possible to calculate all maximal subgroups of the solvable group G =Py ...« P
of order |G| = pll LERPRE 1 factorizated by the p;-Sylow groups of a Sylow basis {P; /i=1,..., r]of G.
We assume that the lattice V(P)) of all subgroups of Pi = 1, . .., r) has been determined by one of the methods
described in [2], [4], [10].
Let us fix the index i ( 1 <i < 1).Since |P}| = p:", V(P) consists of a; + 1 layers. The s-th layer Z, of V(P D
contains only those subgroups of P; having order p;$ (0<3<a,
The groups Q; 1, - - ., Qp ¢ Of the layer zai--l of V(P), which satisfy
td $ ) o
*

(118 QP =P QuGol, .- vt k=1,.eu,r, kt) )
are the components of the normal maximal subgroups

MOJgpl.""Pi—lQOJPi"’I."'.Pl’ 0'],....’0)
of G, for which ; 4 M, J
For the further iterative procedure only the groups of the set

..)

(!i
S,(P) = {HE :12 Zq_,/FigH}

are relevant.
Now we define inductively that part of the algorithm, by which non-normal maximal subgroups of G are defined:

IfS(P)FP (1<t< «) , where
S(P) = (HES_;(P) /HEQ_;; and IHI+ Pt Gl )

we pick up all subgroups Qt,l' cees Qg 5 E‘St(Pi), which belong to the (o — t — 1)-th layer of V(P)) and
satisfy the relations:

QtJPk=PthJ (jgl,.--,ﬁ, k-l,...,‘. kf‘).

*) For prooving the relations 1.18 see (1.4.3 ).

[ 0.‘
) oz. , is equal to the union of all groups H € V(P)) contained in the layers xa.i—v w=2..., 031-0‘1'f V(P).
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Then the groups
Mtdapl.”’.Pi—'th,jPi"‘l"".Pl' (j’l,...,&t)

are non-normal subgroups of G, for which Py, ..., Pi—l' Mt J N Pi'Piﬂ' ey Pt is a Sylow basis.
S;+1(Pp will be obtained from Sy(P,) by eliminating all groups of Sy(P,), which are subgroups of the Q, J
G=1,...,8) or satisfy a special order relation:
—t—1 -
Si(P) = (HES(P) /HE Q5 and HI# p i U=1,...,8)}
IS (P) =0 (1 <m < q) all maximal subgroups M of G, for which Py, ..., P, MOP, Py, ..., P
is a Sylow basis, are determined.

Repeating this method for each i € {1, . . ., t} we get the set @ of all maximal subgroups M of G, for which
MNPy, ..., MNP, is aSylow basis.

From the ytheory of Sylow systems finally follows that the set € of all maximal subgroups of G will be
obtained by the application of special inner automorphisms 7(g;) of G on all elements

KER:r(g)K =g 'K, ,

where g; are the representatives of the coset decomposition G = Fgys.. -Fgy (g) = ¢) of G by the system
normalizer F = jél NG(®) of G.

1.8 The algorithm for non-solvable groups containing a chain of riormal Hall groups

1.8.1 Basic theorems

Let G be a finite non solvable group, which contains a chain G = G, D...2G;{D...0G; O<e>of

normal Hall groups. Then, similar to the theorems of section 1.7 in [0] the following fundamental results are

proved:

Theorem 1.6: LetG=G;D...3G;D...2 Gy D <e> be a chain of normal Hall groups of G and M a
maximal subgroup of G. Then (G: M]/ 'Gi/Gi l| for some i € {1,...,r}. Additionally, if GIIG‘_I

is solvable, [G : M] is a prime power. ([0], Theorem II, 1.4).

Theorem 1.7: Let G=G;D...DG;D...D Gy D <e> be a chain of normal Hall groups of G and U a
subgroup of G with a chain U=U; 2...2U;2...2U; 2 <e> of normal Hall groups
Ui=UNG;(i=1,...,)of U Then to every complete Hall system J(U) of U there exists a
complete Hall system 3(G) of G such that the elements of ((U) can be obtained by intersecting the
elements of H(G) with U. ({0]), Theorem II. 1.11) .

Theorem 1.8: 16t G= G, >...DG;D...DG; D<e> be a chain of normal Hall groups of G. With
regard to this chain let further

LR IEEE 'Pl,nl' Y R TERE ’Pk—l,nk_l'HloPkﬂ,l' ce ’Pkﬂ,nkﬂ' R AT 'Pr.n,

be a complete Hall system of G, where Hy_ is the non solvable part of the Hall system.Then:

a) If M is a maximal subgroup of G such that [G : M] )/ IHy |, then [G : M] = p® for some prime
number p.

b)If MG, [G: MY H!, then [G:M]=p.

) MG, [G: M) )( lHkl » then there exists a maximal subgroup M of G, which is conjugate to M,
such that .

L L L ] . * * *
PLanM, e Py OM P iOMG P g OMOH B OM Piee1ng (M5 By 1M Py M

*
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is a complete Hall system of M" with:
. .
By NM =Py, if PXR
. » .
PsNM =P 2F if P [Py ¢!

,ia'*t,s NG(Pj ,i) . ([0], Theorem II. 1.13)

I8
F,,s= P, s N Ng(Hy) i

1.8.2 Some remarks about the proofs of Theorem 1.6 — Theorem 1.8

Theorem 1.6 follows trivially for n > 2, if it is true for n = 2. Therefore, let G = F°N, N <G, (IN, IF) =1 be

a splitting extension of G and let futher M be a maximal subgroup of G.

Then, if M 2 N, M/N is maximal in G/N and Theorem 1.6 follows from Theorem 1.4. If M D N, we get G = M:N,
hence IGl = IMI-|NI /M NN, which yields £ : M] = INI / MANF In the case N being solvable for an appropriate
prime number p N contains a non-trivial characteristic p-subgroup C. For Cd& M we get G = M*C and for CC M
the result follows by induction.

If G is a solvable group of order IGl= p‘:l LI :l‘. A 8 subgroup of its automorphism group such that

(lAl, IG) = 1 and if further = is a set of prime numbers dividing IGl, then it can be shown that any A—allowable
w—subgroup U of G is contained in an A—allowable r—Hall group of G. Using this result under the same
assumptions on G it follows that to every A—allowable Sylow system Pl(U), . PI(U) of an A-allowable sub-
group U of G there corresponds an A—allowable Sylow system Py, ..., P of G such that Pi N U=P(U)
(i=1,...,r). Making use of this result Theorem 1.7 follows immediately.

Let M bea maximal A—allowable subgroup of the solvable group G. Then, if M QG and A induces the identity
on G/ M, Gim is cyclic of prime order. In the case that M Q G and A does not induce the identity on G/M or
M 9 G, we obtain [G : M] = p® (a > 1) for some prime number p and [NC'((};,)]A C M for a p-complement
G;) of G contained in M. From this Theorem 1.8 follows consequently.

1.8.3. Computational consequences

From the point of view of coinputation Theorem 1.8 shows, that the algorithm in the case of a non solvable
group G, which contains a complete Hall system Py, . .., P HPyy, . . ., Py, with the exception of the
non solvable part H of G is exactly the same as in the case G being solvable.
Proceeding from a generating system E(H) (cf. 1.1.2) and using a subgroup chain

{e>= CK,C...CK, =H where K; = i 1:2,>,2Z, € i=1l,...,8

Ko €Ky Ky = H where Ky = <K_y 2, >, 2, €EH) ( )

in [6], 1 it is pointed out, that making coarser this subgroup chain it is possible to find an appropriate generating
system of H, the elements of which can be multiplied most effectively.
A complete Hall system Py, ..., P,HPy,, ..., Pyo can be determined by the method developed in 1.6.4.
Since H is not solvable, it is necessary to calculate V(H) by an algorithm described in (4], [6], [10].

By Theorem 1.6, Theorem 1.7 and the property of conjugateness of a Hall system it follows that in the case M
being maximal in G with (G : Ml iHI there exists a conjugate subgroup M" of M in G such that

M‘ = Pl L. tQPtﬂ e ... Ps' Q C H. But if M'l <G, Q is not generally maximal in H. Therefore, the
normality of M* must be proved separately.

t*s
(k=1,...,s()) are maximal in G, then only subgroups of the lower layers of V(H), which are not contained in the

Qj Kk & can generate further maximal subgroups of G.

L ]
If Qj,l' ey Qj,s(j) are the subgroups of the j—th layer of V(H) such that Mj:k = Pl' .. "Pt—le,thﬂ' ...°*P

Taking notice only of this property the algorithm developed for p-Sylow groups P can also be used in the case H
being a non-solvable group of the Hall system of G.
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2. Extension of the method for determining the maximal subgroups of a finite group G to an algorithm for the

determination of the complete lattice V(G) of G

2.1 The case of a solvable group G

2.1.1 The semi-lattice T(Py, . . . , P)) as the underlying structure of V(G)

Let {Pi /i=1,...,r)be a Sylow basis of a solvable group G of order IG| = p‘l!l L. p:(’ . Then, having
calculated the semi-lattice T(Pl, ..., P) of all subgroups U of G, for which UN Pl’ o uUnN Pr is a Sylow
basis, by Theorem 1.3 and by making use the properties of a Hall system we obtain the complete lattice V(G)
of G from T(Py, . . ., P by the application of special inner automorphisms (g) (i=1,..., s) to the
elements of T(Py, . . ., P)) where g; arc the represcntatives of the coset decomposition of G by the System
normalizer F of the Sylow basis {Pi li=1,...,1}.

2.1.2 Construction of T(Py, ..., P )

To construct T(Pl, PN Pr) of G, it is necessary to determine the maximal subgroups M of G with MnPl. v 'anr
being a Sylow basis of M and for every M similar the maximal subgroups M’ with M' N PL..., Mn P, being a
Sylow basis of M', as.o. .

Assuming that U is a subgroup of G such that UNPy,...,UN P, is a Sylow basis of U, a maximal subgroup
V of U with Sylow basis

VA@UNP)=VNP,...,VAUNP)=VNP,

can be determined, if it is possible to calculate the permutation groups I ,k(U) related to the factorization
U=(UNPy)-...*(UNP)of U

2.1.3 Calculation of the permutation group T; . (U)

Let D, = {a; 1, . - ., 8 ()} be a generating system of P; ([6]),1) and {31k, ..., li't(i)k} the set of permuta-
tions of II; | related to-y;.
Then, if pi(’z) are the elements of a generating system (p?z)} of UNP; and if

=ale. .St

A =a1-.. a0

is the representation of p?z) as a word of the a; J': G=1,..., ), we obtain the following permutations
p{Dk of Py :

@n B0k = (10 Lo (ai,‘(i)k)ct(i) i>K
Pg)k = (ai,t(i)k) ct(i). e (ai,lk)CI (<K

The restrictions of these permutations on U N Py are the required generating elements of the groups I 1 (V).
In this way we are able to construct "i,k(U) for every UE T(Py, . . ., P).

2.2 The case of a non solvable group G containing a chain of normal Hall groups

LetP, ..., Pt’Ho,Ptﬂ' «++ Py be a complete Hall system of the non solvable group G related to a chain of
normal Hall groups.

Ifue T(ﬁl, oo s PUHOP Ly o Py o), then we use an appropriate genérating system for H, to calculate
I, (V) from Mogk=1,...,t+3):-
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2.2.1 Determination of an appropriate generating system of H,

Outgoing from a generating system E(H,) of H,(cf. 1.1.2), such a generating system for H,, can be determinea
by an appropriate subgroup chain:

<e>=K,C...C ch ...C Ks=H°whereKj=<Kj_l,hj>,bjEE(HO),[Kj:Kj_]]=rj.(j=l, cees8).
If R“ = {oé”) /v=0,..., rj—l} is a system of represcntatives of a right coset decomposition of ls by Kj—-l
G=1,...,9), afo) = ¢, every element h) € H, has a unique representation in the form

. ) (
=a11' a22~...-a‘)“)

22 h,

d if the relati
and if the relations 09 0 () ) 1, = fKLNLA)
@3 % % Tt T % v=l,...,k

(Fl,....l,g‘—-l,..-.hlk%,-..,lk_l,kfo,....1’2__1)

s
are known, the systemOl= Ul Rj is a generating system of H of the desired form ([6], 1.3.4).
’=

2.2.2 Computational Reduction for the calculation of M\

Since Py Q Ho- Pk (k=1,...,t)and H, QHO- Py (k = t+1, . . ., t+s), the elements of M,k k=1,...,0)
are automorphisms of P and Mg (k = t+1, ..., t+s) only consists of the identical permutation of Py. Therefore,
the operation of M, on Py (k=1,..., 1) is already uniquely determined by the operation of the elements

an)k (related to the elements o 7’ of the generating system of H,) applied to a generating system of Py ({3],
1"hcorem 2.2). Similar conditions are valid for ) . But using these reductions the calculation of g x(U) from

no'k for UET(Py, ... PuHyPyps - -« JPyyg) is a time-saving procedure in the computational program.
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