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GROUP-THEORETICAL INVESTIGATIONS O N COMPUTERS II 

by 
Leonhard Gerhards 

For solving group-theoretical problems often the structure of the maximal subgroups of a finite group G is of 
great importance. Although it is possible to determine the maximal subgroups of G by calculating the complete 
lattice V(G) of all subgroups of G [4], [10], it seems to be profitable to develop an effective computational 
algorithm for determining only the maximal subgroups of G. 

Making use of theoretical results of a paper of E. Altmann [0] the present paper - mainly written under 
computational aspects — contains a complete description of the principal methods of such a program for a 
finite group G containing a „Hall system {Hj / i € I}" of subgroups Hj if G [0], [5] . 
The underlying group classes for the program are the class of finite solvable groups and the class of finite non 
solvable groups, which contain a chain of normal Hall groups [5]. 

In both cases the computational methods are based on results of the theory of factorizations of finite groups 
[1),[3]: 
If G can be factorizated by the groups hL of a Hall system {Hi / i € I} of G and if for any subgroup U of G 

* * * there exists a conjugate group U such that U is a factorization by the subgroups U n Hjof Hj, then assuming 
the computational construction of the lattice V(Hj) of all subgroups of Hj the lattice V(G) of G can be deter­
mined by an iterative process constructing the maximal subgroups of maximal subgroups and their corresponding 
conjugate series. 

The present paper consists of two central parts: 

In section 1 we develop an effective algorithm for the determination of the maximal subgroups of a finite 
group G in the following cases*. 

a) G is solvable 
b) G is non-solvable but contains a chain of normal subgroups. 

In section 2 the algorithm will be exended to the calculation of the complete lattice V(G) of all subgroups 
of G. 

1. Determination of the maximal subgroups of a finite group G factorizated by a Hall system  

1.1 Preliminaries 

1.1.1 Representation and multiplication of the elements of a finite group G 

In the following any finite group G will be given abstractly by 

a) a system <>i - {aj, . . . , a n} of generating elements of G 
b) a system Rj(o) = e, . . . , Rt(oi) = e of defining relations. 
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L. GERHARDS 

If any element a E G can be represented uniquely by a „normal form" a= a^ •... *a n
n (0 <r^ <|a1l, a° = e) 

we get a representation ̂ (a) of a G G in form of the n-tupel <Tj, . . . , r n>. Assuming further that v^a^) 
can be calculated uniquely from v ^ ) and <p(aj) for all pairs {a^} C G, multiplication in G is well defined. 
If such an algorithm of multiplication exists, the generating system ot= {aj,. . . , an)is called a „special 
generating system of C" . 

Basic programs for the multiplication of the elements of G are developed in [2], [6], [8]. 

1.1.2 Representation of subgroups of G 
oti a 

Let id = Pi * • • • * P r
r be the prime power decomposition of the order IGl of G, {U} the set of all subgroups 

U C G and (S(U) } the set of all systems S(U) containing all cyclic subgroups of G of prime power order contained 
in U. Then we get a 1-l^correspondence {U)<—• {S(U)}between {U}and (S(U)}: 

(1.1) G D U ^ S ( U ) = { < z > C G / < z > C U, K z > l = p a, o > I, p prime} . and a system 

(1.2) E(U) = {zp . . . ,z m} ( U C G , m = IS(U)I} 

of generating elements of all cyclic subgroups of S(U) forms a uniquely determined generating system of U C G. 

To store the subgroups U C G of G in the computer by characteristic numbers", the elements of E(G) shall 
be listed. Then, if E(U) * {z{ ,. . . , Zj }C E(G) ({ij,. .., i £}C {1 lE(G)IJ is a generating system of U 
by 1 

9. i.-l 
(1.3) KtU] = 2 2J 

a dual number is defined, which uniquely corresponds to the subgroup U of G : U «-* K[UJ. 

Using the Boolean operation of intersection "A " we get 

(1.4) KJU] A K [ V ] = K [ U n V ] 
U С V<-+ K(U] Л K[V] = K(U] 

(U,VC G) 

1.2 Factorization of G by a Hall system  

1.2.1 Definition of a Hall system 

A system K := {Hj / i - 1, .. . , r} of subgroups of G is called a Hall system of G, if 

a) G = H 1-...'H r 

b) H i H k = H k H i (i,k=l,...,r; i* k) 

< L 5> c) (IHJI, lHkl) = 1 
d) {H| r}is conjugate to every system {H* / i = 1, . . . , r} of G satisfying a) . . . c) 

(g H-g~* « H* for some g € G) . 

If G contains a Hall system K, we also say that G is «factorizated by the Hall system K" . 

1.2.2 Sylow basis of a solvable gToup G 
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Oft QL 
Let G be solvable of order IGl = pj 1 •... • (pj prime number). Then G contains a system {P|/i*l ,...0*} 
of pfSylow subgroups of G satisfying (1.5),a),. . ., d). {Pj/i*l,..., r}is called a ..Sylow basis of G " [7]. 

1.2.3 Groups containing a chain of normal Hall groups 

A subgroup chain 

(16) G - G R D ... D Gj D ... D Gj D G Q - < e > 

is called a .chain of normal Hall groups of G", if Gj < G and (lGjl, [G : Gj]) * 1 (I • 1,.... F). 

Since P C Gj for all p-Sylow subgroups of G with P/|Q.|^GJ is a characteristic subgroup of G. Therefore, 
(1.6) is a chain of normal Hall groups of G, if and only if Gj < G i + 1 and (lGjl, [G J +j : Gj]) • 1, (i*l,...j-1). 
In the case that G contains a chain of normal Hall groups, G can be factorizated by a Hall system [5] : 

Theorem 1.1: Under the assumption that G contains a chain (1.6) of normal Hall groups we obtain: 
a) G contains a Hall system {Hj/ i • 1,..., r} of subgroups of G such that: 
flj)Gj-Iiy... - Hj 0 ) H j H k « H k H j 

(1.7) y) (iHji, iHki) «1 a) Hj < H j H k o < k) 
O H j * ^ t O k - 1 r, i*k) 

b) Any two Hall systems of G are conjugate in G. 

If G is not solvable, by the theorem of Feit-Thompson in a chain (1.6) of normal Hall groups of G at most 
one factor ̂ k/G k_j is not solvable. 

Under this assumption on G it can be shown that every Hall group Hfi ̂ k) of G can be substituted by a 
system of special Sylow subgroups of G [5]: 

Theorem 1.2: Let G be a non solvable group with a chain (1.6) of normal Hall groups of G and let k be the 
only index such that ̂ k/G k_j is not solvable. Then G contains a Hall system {Hj/i-1,.. ., r} 
satisfying (1.7) and: 

a) For i £k there exists a Sylow basis Pjj,.. . , P j ^ of Hj such that the ..complete Hall system** 

(1.8) P u,.... P ^ , . . . . P k _ u , . . . . P k - M ^ j ' Hk» Pk+l,l» • • • • Vk+lfifri Pr,l» • • •. P r^ f 

satisfies (1.7) 

b) Any two complete Hall systems of G are conjugate in G. 

From Theorem 1.2 consequently follows that without regard to the non solvable part of G the development of 
a computational algorithm for a non solvable group G, which contains a chain of normal Hall groups, is similar 
to the case G being solvable. 

1.3 Factorization of G [1 ], [3] 

1-3.1 Let G * H j H 2 • ̂ H j , Hj n H 2
 s <e > be a factorization of G by Hj,H2. Then for every hj € Hj 

0*1,2) we obtain a map hj* : H k -> H k of R into H k defined by : 

hjih 2 « H 1 h 2 h 1 O H 2 f o r a U h 2 G H 2 

(1.9) 
r^i h! » bjhjH^nHj for all hj G H, 
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These mappings hjK together with the defining relations of the components Hj (I S 1,2) of G define the structure 
of G. This is obvious, because multiplication in G is completely determined by the relation: 

(1.10) h 2 • hj = h2'«h1 • hjil^ , 

which is equivalent to (1.9). 

1.3.2 By the theory of factorization [3] it follows that the set of mappings h* forms a permutation subgroup 
n i k of the symmetric group S,^, o f d e g r e e j ^ , T h e ^ N . . = { h. € H j/h ikh k = h k for all h k € Hk}is the 
maximal normal subgroup of G contained in Hj, which determines the homomorphism r-xy : Hj -* IIj^, 
^i/Nj — Ilj k [3]. An other important group for the theory of factorization is the „fix group" 
Fj :* {hj € Hj / hk-ihj = hj for all h k e H k > Between Fj and the normalizer N G ( H k ) of H k in G we obtain the 
following relation [5] : 

(1.11) Fj - N G ( H k ) O Hj , N G ( H k ) - FjH k = H kF, 

1-3.3 if G * Hj •.. . • Hj is a factorization of G by a Hall system {Hj / i « 1,.. . ,r}of G, we can apply the 
theory of factorization to the subgroups := HjH k (i + k) of G. FJf may denote the ilxgroup of IIj^ and 

the maximal subgroup of Gj^ contained in Hj. 

Regarding the factorization G • Q • Hj, Q :• Hj •... • HJ_JHJ +J •... • Hj, it follows 

(1.12) Fi- £ F*. N j - ^ N k 

and using (1.11): 

N c ( ( » n H j « F j « A F J < « A C N G i J c ( H k ) n H j ] 
W W 

( 1 1 3 ) 

« A t N G ( H k ) n H i l = L ^ N G ( H k ) l n H j = r i ^ N G ( H k ) ] n H j 
k* k>i 

Since Fj consists of all elements of Hj normalizing all H k, we get i^k*]" 1^ 1 € H j O H k « < e > . Therefore, 
the system normalizer ¥(K) :* rS N G ( H k ) of G related to the Hall system K :« {Hj / i « 1,..., r}of G 

can be represented as the direct product of the Fj : F(W) - Fj X ... X F f . 

1.4 Calculation of Ilj k, F p , computational companion of products 

1.4.1 Determination of Ilj k 

For the determination of Ilj k the elements of the components Hj (i = 1,. . ., r) of G may be numbered in the 

same sequence as they are generated by the generating process ([6]). Then, generating the subgroups Gj^HjH^Hj^Hj 
(i,k = 1 r; i < k) one the one hand as a product of Hj,Hk on the other hand as a product of Hk,Hj we obtain 
by comparing the products: 

(i,4) ^ ) = h ^ v = 4 % h £ > . ̂  & 1 2 < • •; ^ 

From these relations we obtain the permutation hW*of k H k related to the element h ^ € Hj : h[^-*h(^k K s ) • 
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If £ runs from 1 to №¡1 we get n i k. Fixing s(l < s < |Hkl) we similarly can determine for variable £ (£*!,...,№;() 
the permutation hj^i « ( $ ) related to h ^ E Hk,and if s runs from 1 to lHkl we get . 

1.4.2 Determination of F^ and 

Let G « Hj •... • Hj be a factorization by a Hall system (Hj / i« 1 r} and E(Hj) (j « i,k) defined as 
in 1.1.2 . 
Then using the results of 1.3.2 by a fundamental well known generating process [6] the groups F^ and can 
be determined: 

F^ - < 2j> generated by all Zj € EOty, z ^ r 1 € H k for all z k € E(H k) 

( , 1 5 ) N ^ - < Z j > generated by all Zj € ^Hj), z kz iz k
 1 € Hj for all z k € E(H k) . 

1.4.3 Companion of products 

Let G = Hj •... • Hj be a factorization pf G by a Hall system {H| / i « 1,. .., r} of G. Then, for proving 
the equality UjH k = H kU|, Uj C Hj (k + i) we have to verify the invariancc of U| JPk by applying the permu­
tations hj^ € n kj, Ujk € n i > k to Uj,Hk, respectively. Since H k is invariant against all hjk € ITj k we only have 
to prove, whether U| is invariant applying all h^ € to U|. According to [[3], Theorem 2.2] it is sufficient 
to prove h ^ i U| € U| for all û  € Uj and for all h ^ of a system {h^} of generating elements of H k. Such 
companions of products will be used in the algorithm of determining the maximal subgroups of a finite group 
G. (cf. 1.7.3) . 

l.S Determination of a Sylow basis of a solvable group G 

l.S.l The Sylow basis as a intersection of Sylow-complements [1], [3] 

Let G be a solvable group of order IGl - pj 1 •... • Pj . Then, calculating a system {Kj / i • 1,..., r}of 
pi-Sylow complements IC of G of order IKJ * if pfJ, we get a Sylow basis of G by 

{Р, - Л 1С/ i- 1 г} . 

1.5.2 Determination of the system {Kj / i • 1,..., r} of Pj-Sylow complements 

Let M| = {zj,. . . , Zf }C E(G) be the set of generating elements of all cyclic subgroups < Zg > C G (8 * l,...,t) 
of p^-prime power order, where p^ + pj. 
If Kj is a pj-Sylow complement of G, then E(Kj)C Mj, and conversely to every z € Mj there exists a pj-Sylow 
complement containing z. 
A Pj-Sylow complement Kj of G can successively be generated by the calculation of the subgroup chain 

< e > C Uj C . .. C U s = Kj with Uj * <zj>, U k = < U k _ l f z ^ > (k*l,...,s) , 

where 1 < < ... < l k < . . . < i f and i k is the minimum of all j ̂  t, such that 

Zj^U k_j and p i / V l < U k - 1 ^ j > l . 

There exists an algorithm for determining <U,g> ( U C G , g $ U) described in [6] . 
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1.6 Construction ot a chain of normal Hall groups for a non-solvable group G and the determination of 

a complete Hall system of G ft 

In the following let G be a non-solvable group of order IGl s p** •. .. • . 

1.6.1 The lattice of normal Hall groups of G 

The set of normal Hall groups of G forms a complete and distributive lattice *£(G). Any two subgroups series 

of 35(G) have isomorphic refinements. Therefore, a complete Hall system of G belonging to a chain of normal 

Hall groups, which cannot be refined, is up to an inner automorphism of G uniquely determined [0] . 

1.6.2 Construction of special minimal Hall groups 

For any prime number Pi/|Q| we get a minimal group N^j € *£(G) such that ^/|N^I' 

To construct N ^ Q let Z| < ZJJ, , z i > $> be the subgroup of G generated by the generating elements Zj^ of 

all cyclic pj-subgroups < z-xj> of prime power order of G (1 • 1,..., r) . 

We set Mj1 :« {p| / Pi/^} and define inductively: 

(1.16) ^ M J f U ^ ^ M . 1 (i«l....,r) 

Then to any MJ* (i » 1,..., r) there uniquely corresponds a vector 

Oft. ...flfcb where 
Ä - i , ар,ем\. 

d j » 0 , i fp , fEM¡ k 

and these vectors together form a matrix (/?••) (l < y < r). 

Using the Boolean operations for addition: 

0 + 0 - 0 

1 + b - 1 , if at least one term of the sum is + 0 

from (1.16) we get by matrix multiplication: 

(1.17) 0J|)«0J) k 0 J - 1 r ; l < k < r - l ) 

If (0,j)k s (0jj)k+1, then IN^I • pj*1 1 • . .. • p r

i r r and N ^ can be generated by the generating elements of 

all cyclic pj-subgroups of prime power order of G, where pj is running through the set of all prime numbers, 

the exponent ft of which is equal to 1. 

1.6.3 Determination of a chain of normal Hall groups of G 

Because N € <£(G) is uniquely determined by the set of prime numbers dividing IN I, we get N • II N/j\. Using 

Pi/INI 

fundamental program systems described in [6] it is possible to determine the lattice X(G) and consequentely an 

appropriate chain of normal Hall groups. 

1.6.4 Determination of a complete Hall system of G 

In the following let G be a finite non solvable group with a chain (1.6) of normal Hall groups. Without loss of 
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generality for our investigations we can consider the chain G = G3 D G2 D Gj D G Q = < e >, where 2/Gj is not 
solvable and G2/Gj does not contain a normal Hall group. 

If lGjl c p|l -. .-. • p^, by the method described in 1.5 it is possible to determine a pj-Sylow complement 

Q| (i » 1,. .., t) and F • <\ Qj is a subgroup of G such that G is a splitting extension of Gj by F : 

Gj O G = F-Gj, F n G , « < e > , F a G/Gj 
Further, the system _ t ,^ ^ „ . , , . 

{Pj s f i ( Q i
n G 1 ) / i * 1 t) 

ft 

is a tylow basis of Gj such that Pj <0 FPj (i = 1,.. ., t). H = F O G2 is a subgroup of G, which represents the 
factor group G2/Gj in Gj. Since H s G2/Gj, by assuption H does not contain a normal Hall group, and we still 
have to construct a complete Hall system for the chain F D H 3 < e > : 

If Pj is a Pj-Sylow subgroup of H with pJ/(HI» w c get by [12] , IV, Exerc: 

N^Pp/N^Pj) a F/H, 

which means that Nj^P.) is a normal Hall group of Np(Pj). By the theorem of Feit-Thompson H has even order. 
In the case pj = 2 it.follows that is of odd order and consequently solvable. Therefore, N^(Pj) and 
moreover Nj^Pj) are solvable. Calculating a subgroup L of Np(Pj) such that Np(Pj) • L»Nj|(Pj) and applying the 
method of 1.5 to L we obtain a Sylow basis P t +j,. .., P t + J of L. Then the system Pj,... iP^H^+j,... ,P t + f 

is a complete Hall system of G as desired in Theorem 1.2. 

1.7 Algorithm for the determination of the maximal subgroups of a solvable group G 

In this section let G be a solvable group of order IGl - p j 1 •... • p~\ Then G • Pj •... • Pf, where 
{Pj / i = 1,... , r}is a Sylow basis of G. 

1.7.1 Basic theorems 
Without proofs we write up the basic theorems, which will be used for the development of the computational 
algorithm for determining all maximal subgroups of G : 

0f| OL 0| 
Theorem 1.3: Let U be a subgroup of the solvable group G, tOl • p j 1 •. .. • p^ , lUl * pj 1 •... -pf

 r 

(0 < 0j < OJ; i « 1,. .. , r). Then to any Sylow basis PjCU),... , PfiJ) of U there corresponds a Sylow 
basis Pj,...,P r ofGsuchthat Pj(U) s Pj O U (i e 1,... , r) Ql]9 p 666) . 

Theorem 1.4: Every maximal subgroup M of G has prime power index in G ([7], p. 164) . 

Theorem 1.5: Let M be a maximal subgroup of G. Then: 

a) If M < G, then l G /Ml « p ( p prime number) 

b) If M /0G, [G : M] = p n, and if G'p is a p-Sylow complement of G such that Gj, CM, then N G ( G p C M 
([7], P- 734) . 

1.7.2 Consequences of Theorems 1.3.—1.5 for the development of the algorithm 

A) Let M be a maximal subgroup of G. Since any two Sylow bases are conjugate in G, it follows from Theorem 
1.3 that there exists a conjugate maximal subgroup M* of G such that from the factorization G=Pj •.. . *Pf 
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we obtain a factorization M* = (M* n Pj) • . . . • (M* n Pf) for M* . 

B) By Theorem 1.4, however, only one term M* O Pj is different from Pj : M* O P k = P ( k £i), hence 
M* « Pj • . . . • (M* n P|) • . . . • P r . k 

Q Gp = Pj • . . . • Pj_^Pi+j • . . . • P f is a ppSylow complement contained in M* . 
If M P G, by Theorem 1.5 we get KG(G'JC_ M*, hence Fj = NG(G'p) O P._C_ M* O Pj, where Fj is the 
i-th component of the system normalizer F = Fj X . . . X F f of G (1.3.3). Fj depends only on the factori­
zation G = Pj • . . . • P f of G. In the case M <3G we get 

°/M = P l - * • • # ?xj?x . . P i. 1(MnPjJP i + 1- ... -Pr a Pi/M O Pj. 
This means that M O Pj is a maximal subgroup of Pj with [Pj: (M O Pj)] « pj, (M O Pj)Pk « P k(M O Pj) 
(k=l,...,r, kfM). 

1.7.3 The algorithm 

By the following algorithm it is possible to calculate all maximal subgroups of the solvable group G - Pj • . . . • P f 

of order |G| = p^l «... • p" r factorizated by the pj-Sylow groups of a Sylow basis {Pj / i * 1,. . . , r}of G. 
We assume that the lattice V(Pj) of all subgroups of Pj(i - 1,. .. , r) has been determined by one of the methods 
described in [2], [4], [10]. 
Let us fix the index i ( 1 < i < r).Since IPjl * p^, V(Pj) consists of Oj + 1 layers. The s-th layer 2 $ of V(Pj) 
contains only those subgroups of Pj having order pjS ( 0 < 5 < a.) 

The groups Q Q j j,... , of the layer E ^ j of V(Pj), which satisfy 

(1.18) Q o j P k « P k Q o j 0-1,..., s 0, k « 1 r, k *l) *> 

are the components of the normal maximal subgroups 
M o j = p r • • • p i - i Q 0 j p m • • O - i . . - . . ^ 

of G, for which PjjSL M Q j . 
For the further iterative procedure only the groups of the set 

w :- < H 6 § V - / F ' - H } * . ) 

are relevant. 

Now we define inductively that part of the algorithm, by which non-normal maximal subgroups of G are defined: 

IfSt(Pj)f*P (1< t < Oj) , where 

St(Pj)» {H6S t_j(Pj)/H£Q t_ij a n d l H l # p a r t Q - 1 «t-l» 

we pick up all subgroups Q t V . .., Qt^ ^ ( P j ) , which belong to the (<*j - 1 - l)-th layer of V(Pj) and 
satisfy the relations: 

Qt/k = pkQtj G - 1 v k " > k « -

*) For prooving the relations 1.18 see (1.4.3 ). 

**) 
v^i £ O j - ^ fa c q u a l t 0 ^ u n i o n o f 2 1 1 e^oups H € V(Pj) contained in the layers E ^ , , (v = 2, . .. , o^of V(Pj\ 

98 



COMPUTERS IN GROUP THEORY 

Then the groups 

M t j - P , . . . . . P i _ , Q t < j P i + , . . . . . P r 0 - 1 «t) 

are non-normal subgroups of G, for which Pj,.. . , Pj_j» M y O Pj,Pj.H»..., P r is a Sylow basis. 
St+|(Pj) will be obtained from St(Pj) by eliminating all groups of St(Pj), which are subgroups of the Q t j 
(j » 1,... , st) or satisfy a special order relation: 

W f y * {H € S%(?) I H $ Q g and IHI # p 0*" 1" 1 ( j • 1,. .. ,st)} 

If Sm(Pj) «0 (1 < m < QCJ) all maximal subgroups M of G, for which P j t . . ., P|_|, M n Pjf P J + 1 P f 

is a Sylow basis, are determined. 

Repeating this method for each i € {1,. .., r }we get the set ft of all maximal subgroups M of G, for which 
M n Pj,..., M n P r is a Sylow basis. 

From the theory of Sylow systems finally follows that the set t of all maximal subgroups of G will be 
obtained by the application of special inner automorphisms r(gj) of G on all elements 

К € « : т ( & ) К : я gT Kgt , 

where gj are the representatives of the coset decomposition G * Fgj;.. /Fgj (gj • e) of G by the system 
normalizer F « T O NQ(PJ) of G. 

1.8 The algorithm for non-solvable groups containing a chain of normal Hall groups  

1.8.1 Basic theorems 

Let G be a finite non solvable group, which contains a chain G * G f 3 . ,. 3 Gj 3 . .. 3 Gj 3 < e > of 
normal Hall groups. Then, similar to the theorems of section 1.7 in [0] the following fundamental results are 
proved: 
Theorem 1.6: Let G * G r 3 . .. 3 Gj 3 .. . 3 Gj 3 < e > be a chain of normal Hall groups of G and M a 

maximal subgroup of G. Then I G : M I / lGj/G. ^ for some i € {1,.... r}. Additionally, if Gi/Gj_| 
is solvable, [G : M] is a prime power. ([0], Theorem II, 1.4). 

Theorem 1.7: Let G = G r 3 ... 3 Gj 3 ... 3 Gj 3 < e > be a chain of normal Hall groups of G and U a 
subgroup of G with a chain U « U f 3 . . . 3 Uj 3 . .. 3 Uj 3 < e > of normal Hall groups 
U| = U O Gj (i • 1 r) of U. Then to every complete Hall system X(U) of U there exists a 
complete Hall system 7C(G) of G such that the elements of 3C(U) can be obtained by intersecting the 
elements of JC(G) with U. ([0D. Theorem II. 1.11) . 

Theorem 1.8: Let G * G r 3 . .. 3 Gj 3 . .. 3 Gj 3 < e > be a chain of normal Hall groups of G. With 
regard to this chain let further 
pl,l» • • • ^ U j ' • • • fk-l,V '' * ' k - U k - i ^ V k + M ' • • • ^ k + U j ^ ' • • • ^r.l''' • ̂ . n, 
be a complete Hall system of G, where H k is the non solvable part of the Hall system.Then: 
a) If M is a maximal subgroup of G such that [G : MjX'HjJ, then [G : M] * p a for some prime 

number p. 
b) If M O G , [G : Mj/lH kl, then [G : M] * p. 
c) If M # G , [ G : M] YiHjJ , then there exists a maximal subgroup M of G, which is conjugate to M, 

such that 

P M n M * , . . . funit... . , P k _ U n M : ; . . . V l ^ _ 1
f t M X P k H . l n M * • • • ' f w ^ ' - ^ l ^ - f r , ^ ' 
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is a complete Hall system of M* with: 

Pjjnif-Py.lf P ^ j j l 

P r , s ™ * = Pr*,s 5F r > s, if P/IPr>sl 

Fr,s = pr,s n NG< Hk> i Q } s

 NG(pj4> * Theorem II. 1.13) 

1.8.2 Some remarks about the proofs of Theorem 1.6 - Theorem 1.8 
Theorem 1.6 follows trivially for n > 2, if it is true for n = 2. Therefore, let G = F°N, N O G , (IN I, iFl) = 1 be 
a splitting extension of G and let futher M be a maximal subgroup of G. 
Then, if M D N, M / N is maximal in G / N and Theorem 1.6 follows from Theorem 1.4. If M $ N, we get G = M-N, 
hence IGl = lMl°|N| j j M n which yields fc : Ml = iNl j In the case N being solvable for an appropriate 
prime number p N contains a non-trivial characteristic p-subgroup C. For C <t M we get G = M*C and for C C M 
the result follows by induction. 
If G is a solvable group of order IGl s p| 1 • ...» p j , A a subgroup of its automorphism group such that 
(lAl, IGO • 1 and if further n is a set of prime numbers dividing IGl, then it can be shown that any A-allowable 
w-subgroup U of G is contained in an A-allowable ir-Hall group of G. Using this result under the same 
assumptions on G it follows that to every A-allowable Sylow system Pj(U), . . ., Pf(TJ) of an A-allowable sub­
group U of G there corresponds an A-allowable Sylow system Pj,. .., P f of G such that Pj O U » Pj(U) 
(i • ] , . . . , r). Making use of this result Theorem 1.7 follows immediately. 
Let M be a maximal A-allowable subgroup of the solvable group G. Then, if M < G and A induces the identity 
on g / M , G / M is cyclic of prime order. In the case that M <0 G and A does not induce the identity on or 
M <P G, we obtain [ G : M | s p f t ( a > l ) for some prime number p and [NQ(GJ ))] A C M for a p-complement 
Gp of G contained in M. From this Theorem 1.8 follows consequently. 

1.8.3. Computational consequences 

From the point of view of computation Theorem 1.8 shows, that the algorithm in the case of a non solvable 
group G, which contains a complete Hall system Pj,. .. , Pt,H,Pt+1,. .. , P t + S, with the exception of the 
non solvable part H of G is exactly the same as in the case G being solvable. 

Proceeding from a generating system E(H) (cf. 1.1.2) and using a subgroup chain 

< e > » K 0 C K 1 C . . . C K s = H where Kj * <K i_ 1,z t > , zt. G E(H) (i - 1,.... a) 
in [6], 1 it is pointed out, that making coarser this subgroup chain it is possible to find an appropriate generating 
system of H, the elements of which can be multiplied most effectively. 

A complete Hall system Pj,.. ., Pt,H,Pt+j,. . . , P t + S can be determined by the method developed in 1.6.4. 

Since H is not solvable, it is necessary to calculate V(H) by an algorithm described in [4], [6], [10]. 

By lieorem 1.6, Theorem 1.7 and the property of conjugateness of a Hall system it follows that in the case M 
being maximal in G with № ' ̂ ty iHl there exists a conjugate subgroup M* of M in G such that 
M* = Pj • . . . • P tQP t+i • .. . 0 Ps, Q C H. But if M* O G , Q is not generally maximal in H. Therefore, the 
normality of M must be proved separately. 

If Qj j,. .. , Qj ̂  are the subgroups of the j-th layer of V(H) such that Mj* k = Pj° . . •°Pt-lQj,kPt+f * * ' "Pt+s 
(k = 1,. . ., s(j)) are maximal in G, then only subgroups of the lower layers of V(H), which are not contained in the 
Qj k s , can generate further maximal subgroups of G. 

Taking notice only of this property the algorithm developed for p-Sylow groups P can also be used in the case H 
being a non-solvable group of the Hall system of G. 
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2. Extension of the method for determining the maximal subgroups of a finite group G to an algorithm for the 

teterTnination of the complete lattice V(G) of G  

2.1 The case of a solvable group G 

2.1.1 The semi-lattice T(Pt,. . . , Pr) as the underlying structure of V(G) 

Let {PjI i = 1, . . . , r}be a Sylow basis of a solvable group G of order IGl = pj 1 • . . . • p r
T . Then, having 

calculated the semi-lattice T(Pj, . . . , Pf) of all subgroups U of G, for which U n Pj, . . . , U O P f is a Sylow 
basis, by Theorem 1.3 and by making use the properties of a Hall system we obtain the complete lattice V(G) 
of G from T(Pj, . . . , Pf) by the application of special inner automorphisms r(gj) (i * 1,. . . , s) to the 
elements of T(Pj,. . . , Pr) where gj are the representatives of the coset decomposition of G by the System 
normalizer F of the Sylow basis {Pj / i.= 1, . . . , r}. 

2.1.2 Construction of T(P l t. . . , P f ) 

To construct T(Pj, . . . , Pf) of G, it is necessary to determine the maximal subgroups M of G with MOPj,. . . ,MnP r 

being a Sylow basis of M and for every M similar the maximal subgroups M' with M' O Pj,..., M' O P f being a 
Sylow basis of M', a.s.o. . 

Assuming that U is a subgroup of G such that U n Pj,. .. , U O P f is a Sylow basis of U, a maximal subgroup 
V of U with Sylow basis 

V O (U O Pj) - V O Pj,. . . , V O (U O Pf) « V O P f 

can be determined, if it is possible to calculate the permutation groups n ^ U ) related to the factorization 
U « (U O Pj) ..... (U n Pf) of U. 

2.1.3 Calculation of the permutation group FTj ̂ (U) 

Let ̂  = {aitl,.. . , a I T(Q} be a generating system of Pj Q6]),l) and {a^k,.... the set of permuta­
tions of Ilj k related to-Ctj. 
Then, if pj(*) are the elements of a generating system {pW } of U n Pj and if 

_rir> _ _ c l cií(\ 
P Í " у ' • • • ' * № 

is the representation of p W as a word of the ay's (j = 1 t(i)) , we obtain the following permutations 

p W k o f P k : 

(2.1) 
p J O k - i ^ k ) ' » - . . . - ^ ^ < i > k > 

р № к = (а^ 0к) С 4(0..... ( а. 1 к )
с1 ( i < k ) 

The restrictions of these permutations on U O are the required generating elements of the groups IIj ̂ (U). 
In this way we are able to construct FI| ̂ (U) for every U € T(Pj,. . . , Pf) . 

2.2 The case of a non solvable group G containing a chain of normal Hall groups 

Let Pj,..., Pt»Ho*Yn' • • •»*t+s a Bxn&zte Hall system of the non solvable group G related to a chain of 
normal Hall groups. 
If U € T(Pj, . . . , P t»H Q,P t +j,. . . P t + S), then we use an appropriate generating system for H Q to calculate 
n o k(U)fromri o k(k=l,...,t + s)-
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2.2.1 Determination of an appropriate generating system of H Q 

Outgoing from a generating system E ^ Q ) of HQ(cf. 1.1.2), such a generating system for H Q can be determined 

by an appropriate subgroup chain: 

< e > - K 0 C . . . C K j C . . . C ^ = H Q where ̂  = <K j_ 14i j>, hj G E ^ , [Kj:Kj_1]=rj, 0=1. • • • . *) • 

IfR,:- {of> I v = o, . . . , ij-1} is a system of representatives of a right coset decomposition of Kj by Kj_j 

(j = 1,. .. , s), o£°) s e, every element h Q G H Q has a unique representation in the form 

u < X1>* <X2> (\> 
(2.2) h o = °1 *2 • • ' °i 

and if the relations s- _ ̂  . n. % ^ 

(Z3) o k aj -aj •...•<* k »«l,...,k 

(k-1,... , s, fi=l,.. . , k, Xk=o,... , r k_j, Xg« o rg_j) 

s 
are known, the system vl» U R. is a generating system of H Q of the desired form ([6], 1.3.4). 

2.2.2 Computational Reduction for the calculation of 1~I0 ̂  

Since P k O H Q- P k (k = 1 t) and H Q < H Q - P k (k = t+1, . . . , t+s), the elements of n Q k (k = 1 t) 

are automorphisms of P k and n o k (k = t+1, . . . , t+s) only consists of the identical permutation of P k. Therefore, 

the operation of ll0 k on P k (k = 1, . . . , t) is already uniquely determined by the operation of the elements 

(related to the elements oj V of the generating system of H Q) applied to a generating system of P k ([3], 

Theorem 2.2). Similar conditions are valid for n k Q. But using these reductions the calculation of Il0 k(U) from 

n o k for U G T(P|,. . . iPt»H0,Pt+|,. .. tP̂ +j) is a time-saving procedure in the computational program. 
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