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In everyday computing experience one can often speed 

up programs at the expense of using extra storage space. 

Alternatively, one can often reduce the storage space used 

at the expense of increasing computing time. It is natural 

to wonder whether such phenomena are isolated or whether 

they correspond to some general computational laws. 

Our aim here is to show how such questions are 

formulated, to survey the few results that are now available, 

and to illustrate the fundamental and wide-ranging signif­

icance to computer science that further progress on these 

problems, in whichever direction, would have. 

1. Computational Models 

In order to ask precise quantitative questions about 

computations we have to commit ourselves to a specific 

machine model. In each context it is desirable to use a 

model that captures the intuitive notions that we are trying 

to describe as closely as possible. However, it is also 
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essential that the model be simple enough to be suitable for 

analysis. 

For discussing the time and tape requirements of 

discrete computations the most widely-used model is the 

multi-tape Turing machine (TM). This consists of a read-only 

input tape, a finite number of read-write work tapes, and a 

finite-state control that is the program (as defined for 

example, in [11]). We say that the time-complexity of a TM 

is f(n) if for all n symbol inputs the computation halts after 

f(n) steps of the machine. The space- complexity is g(n) if 

for all n symbol inputs at most g(n) work-tape squares are 

ever visited. 

The attraction of the TM model is that, while it is 

very simple to define and deal with, these two complexity 

measures for it are not gross overestimates in comparison 

with other reasonable models. In fact, in reprogramming an 

algorithm that^ takes f (n) steps on another model, onto a TM, one 

never has to increase the time complexity more than polynomially 

(i.e. not to more than (•£ ( n ) ) k for some k, (k £ 2 usually)). 

Space complexity is even more robust, being usually essentially 

invariant under changes of machine model. 

The above considerations show that by resolving 

complexity questions for TM computations we may expect to 

obtain results that have universal machine-independent 

significance. The evidence for this universality is analogous 

to Church's Thesis, resting, on the one hand, on a concensus 

about which are the relevant reasonable models, and, on the 

other, on proofs that these are equivalent to within 

efficient translations [1]. 
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2. Complexity Classes 

Define TIME(f(n)) to be the class of computational 

problems for which there is a TM of time-complexity f(n), 

and SPACE(f(n)) to be the class of problems for which there 

is a TM of space-complexity f(n). Fundamental facts about 

the time and space requirements of computations can be 

expressed by inclusion relations among such complexity 

classes. For example, the following relations, for arbitrary 

f(n), summarise the most obvious aspects of the time-space 

problem: 

( X Q ) : TIME(f(n)) c SPACE(f(n)). 

(Y ) : SPACE(f(n)) c U T I M E ( c f ( n ) ) . 
° "c=l 

The first expresses the fact that in f(n) steps at most f(n) 

tape squares can be visited, the second that if the tape 

alphabet is of size c then after about c x steps any computation 

on x tape squares must start repeating configurations. 

The only progress on whether, and by how much, these 

relations can be tightened, has been achieved recently. 

It is shown in [10] that 

( X ^ : TIME (f (n) log (f(n) ) c SPACE (f (n) ) , 

and that for any suitable increasing 6(n) (e.g. logloglog n) 

(Y±): SPACE(f(n)) 5* TIME(f(n)log(f(n))/6(n)). 

We shall return to these results in Section 4. Here we merely 

observe that the logarithmic factor is too fine to make these 

results necessarily universal in the sense of the previous 

section. 
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However, we can pose analogous questions in a manner 

that is coarse enough to ensure universal machine-independence 

significance. Let PTIME = U T I M E ( n k ) , PS^CE = U S P A C E ( n k ) , 
k=l ^ k=l 

and PLOGSPACE = kQ^SPACE ([log n ] k ) . We can now ask the 

following questions: 

(X): PTIME c? PLOGSPACE, and 

(Y): PSPACE c? PTIME. 

It is widely accepted that (X) and (Y) are two of the 

most fundamental open problems of computer science. As 

indicated below, this belief is based both on the relevance 

of these problems to resolving the inherent computational 

complexity of numerous particular computational tasks, and 

also to their relationship to other general questions. 

It is appropriate to start by mentioning some basic 

types of results that shed light on several questions raised 

by the above formulation itself. Historically the first are 

perhaps the hierarchy theorems obtained by diagonalization 

arguments (e.g. [19]). A fundamental result is that for 

suitably well behaved f(n) and g ( n ) , if 

lim f (n) = 

n+°° g(n) 

then SPACE (f(n)) ^ SPACE (g(n)). A similar proper inclusion 

result for time classes is provable under the stronger 

restriction that lim(f(n)log(f(n))/g(n)) = 0. Such facts 

contrast with linear speedup theorems which state, for 

example, that TIME(f(n)) = TIME(kf(n)) for any positive 

constant k. 
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Another type of result, obtained by padding or 

translational arguments, gives logical implications among 

relations between complexity classes. A typical result 

that holds for all suitably well behaved f ,g and h, where 

h(n) > n, is that 

TIME(f(n)) c SPACE(g(n)) 

=> TIME(f(h(n)) c SPACE (f (h(n)) . (1) 

The value of diagonalization and padding arguments 

is that they can be used to reduce the potentially unlimited 

number of possible questions about complexity classes to a 

small number of distinct types (see [2] for such applications). 

The following is an easy application: Suppose (X) is true. 

Then by (1) it is immediate that TIME(2 n) c SPACE(n k) for 

some k. But from the hierarchy theorem for time we have 

that T I M E ( 2 n > / 2 ) p TIME (2 n) . The two relations together imply 

that SPACE(n k) T I M E ( 2 n / 2 ) . We have therefore deduced that 

if (X) is true then (Y) must be false. However, no converse 

of this is known and since it is widely conjectured that both 

(X) and (Y) are false, the two problems can be treated as 

distinct. 

In conclusion we mention the following well-known 

and immediate connection with the Cook-Karp problem [4][13]: 

"if Y is true then P=NP*. This suggests that in attempting to 

disprove P=NP, one ought to try to disprove Y first. 

3. Complete Problems 

A tantalising aspect of these general questions, that 

has been discovered only recently, is that whichever way they 

are resolved, they will settle important complexity questions 

for many specific natural computational problems. Conversely, 
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this means that it is sufficient to resolve these questions 

for these particular problems in order to determine the truth 

of the general assertions (X) and (Y). 

The specific problems in this category are called 

complete in analogy with related phenomena in the theory of 

recursive functions. We say that a problem A in PSPACE is 

complete for (X) if it is provable that "A e PTIME if and 

only if PTIME = PSPACE". Intuitively, this means that A is 

of about maximal complexity among all the problems computable 

in polynomial space. It turns out that many natural problems 

are complete for (Y). These include 

(i) Equivalence of regular expressions [20]. 

(ii) Validity in the first order theory of equality [20]. 

(iii) Shannon switching game on vertices [7]. 

(iv) Context-sensitive recognition. 

The last follows from the classical result of language 

theory that any TM that uses linear space can be encoded into 

a context sensitive language [14]. Proofs that the other 

problems are complete are of an analogous nature. However, 

the discovery that TM computations can be encoded into such 

diverse problems was a highly significant and surprising step 

with far reaching consequences [15]. 

Natural complete problems for (X) are also known. 

These are problems in PTIME with the property that they belong 

to PLOGSPACE if and only if PTIME = PLOGSPACE. These include 

"path systems" as defined in [5], and the emptiness of 

context-free languages [12]. 

Besides such specific problems, relationships with 

fundamental questions about other computational models are 
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known. A particular example is the size-depth problem for 

combinational Boolean circuits. It is observed in [3] that 

if (X) is true then it follows that for any circuit with 
v 

n gates, there is an equivalent circuit of depth Clog(n)] 

(for some fixed k). The best bound on depth that has been 

proved for this is 0(n/log n) [17]. 

4. Results on Space-Time Tradeoffs 

We shall now outline the results (X^) and (Y^) stated 

in Section 2. We start by considering a different computational 

model: A straight-line program is a sequence of instructions 

each of the form x:= F( y , z ) , where x, y and z are distinct 

elements from a set of variables, with the restriction that x 

cannot occur in any preceding instruction in the sequence. The 

domain of the variables and the set of operations from which 

each F can be chosen, are immaterial. 

With each straight-line program a directed acyclic 

graph can be associated by identifying each variable u with 

a node u, and each instruction x:= F(y,z) with a directed arc 

from y to x and one from z to x. Directed paths in the graph 

therefore represent the flow of information in the program. 

The execution of such a program can be regarded as a 

game on the graph with pebbles. (This game was introduced in 

[16] in the context of program schemas). The aim is to place 

a pebble on a distinguished output node using only the 

following types of moves: 

(i) a pebble can be placed on a node either if it has no 

ancestors, or else if there are pebbles already on 

both of its immediate ancestors. 

(ii) a pebble can be removed from any node (at any time). 
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Each pebble corresponds to a storage location. Placing 

a pebble on a node corresponds to storing the current value 

in the location. Rule (i) ensures that unless the variable 

is an input variable, the values of the variables from which 

it is computed are currently available in storage. Removing 

a pebble corresponds to freeing a storage location (with the 

possibility of recomputing it later). 

Clearly the execution of the program defines a sequence 

of pebble moves all of type (i). However, any sequence of 

pebble moves that reaches the output node corresponds to a 

different but equivalent straight-line program. The question 

therefore arises as to whether some of these equivalent programs 

require substantially fewer pebbles. This is answered by the 

following result [10]. 

Theorem; Any node of a directed acyclic graph with n nodes 

and indegree k can be reached using c^n/log 2n pebbles. 

This can be regarded as a space-time tradeoff, showing 

as it does that space can be reduced by a logarithmic factor 

at the expense of increasing the length of the straight-line 

program (possibly exponentially). The longer program saves 

storage by judiciously forgetting information and recomputing 

it later. 

The proof given in [10] of this result implies (after 

a slight modification) an asymptotic upper bound on c^ of 4 for 

all k such that log k = o(log n ) . Paterson has observed that 

if the constructive splitting strategy of [17] is used in the 

proof, then this can be improved to 2. (N.B. in the above 

application the case k = 2 is sufficient). 

Paul, Tarjan and Celoni [18] have shown that the above 
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theorem is optimal. The graphs that are shown to require 

O(n/log n) pebbles are defined in terms of subgraphs for 

which only existential proofs are known. However, the universal 

graphs introduced in [21] are natural constructive examples 
2 

that are known to require at least O(n/(log n) ) pebbles. 

Returning now to Turing machines, we note that each 

computation history can be regarded as a straight-line program. 

The difficulty, however, is that this graph may depend on the 

input and therefore cannot be determined beforehand. As is 

shown in [10], this can be overcome and it is possible to 

simulate any time f(n) TM by a space f(n)/log(f(n)) TM. The 

trick is to split up the computation into "large" blocks so 

that the graph of a computation is sufficiently "small". This 

ensures that the overheads of guessing the correct graph and 

the correct pebbling strategy add up to no more than a lower 

order term as compared with the space required to store the 

"contents of the pebbles". 

The relation (X^) follows from the above. The relation 

(Y^), which can be re-interpreted as a nonlinear bound on the 

complexity of context-sensitive recognition, can be deduced 

by a diagonalization argument. 

We conclude by mentioning that analogous results do 

exist for more restricted models. For one such model it has 

been shown that(x) is false [6]. Another example is the one-tape 

JIM for which it is known that TIME (f (n)) c SPACE (/f (n)) [ 9 ] . However, 

one-tape machines are very restrictive in the sense that it 

can be easily shown that some problems (e.g. palindrome 
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2 recognition) that require 0(n ) time on them can be computed 

much more efficiently (i.e. 0(n)) on other models [11]. Since 

this has not been demonstrated for multi-tape TM's, even 

such apparently weak results as (X 1) and (Y 1) are of new 

significance. 
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