
Astérisque

L. G. VALIANT
Space-time tradeoffs in computations

Astérisque, tome 38-39 (1976), p. 253-264
<http://www.numdam.org/item?id=AST_1976__38-39__253_0>

© Société mathématique de France, 1976, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1976__38-39__253_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Société Mathématique de France
Astérisque 38-39 (1976) p.253-264

Space-Time Tradeoffs in Computations

L. G. Valiant,
Centre for Computer Studies,

University of Leeds,
Leeds, U.K.

In everyday computing experience one can often speed

up programs at the expense of using extra storage space.

Alternatively, one can often reduce the storage space used

at the expense of increasing computing time. It is natural

to wonder whether such phenomena are isolated or whether

they correspond to some general computational laws.

Our aim here is to show how such questions are

formulated, to survey the few results that are now available,

and to illustrate the fundamental and wide-ranging signif­

icance to computer science that further progress on these

problems, in whichever direction, would have.

1. Computational Models

In order to ask precise quantitative questions about

computations we have to commit ourselves to a specific

machine model. In each context it is desirable to use a

model that captures the intuitive notions that we are trying

to describe as closely as possible. However, it is also

253

L. G. VALIANT

essential that the model be simple enough to be suitable for

analysis.

For discussing the time and tape requirements of

discrete computations the most widely-used model is the

multi-tape Turing machine (TM). This consists of a read-only

input tape, a finite number of read-write work tapes, and a

finite-state control that is the program (as defined for

example, in [11]). We say that the time-complexity of a TM

is f(n) if for all n symbol inputs the computation halts after

f(n) steps of the machine. The space- complexity is g(n) if

for all n symbol inputs at most g(n) work-tape squares are

ever visited.

The attraction of the TM model is that, while it is

very simple to define and deal with, these two complexity

measures for it are not gross overestimates in comparison

with other reasonable models. In fact, in reprogramming an

algorithm that^ takes f (n) steps on another model, onto a TM, one

never has to increase the time complexity more than polynomially

(i.e. not to more than (•£ (n)) k for some k, (k £ 2 usually)).

Space complexity is even more robust, being usually essentially

invariant under changes of machine model.

The above considerations show that by resolving

complexity questions for TM computations we may expect to

obtain results that have universal machine-independent

significance. The evidence for this universality is analogous

to Church's Thesis, resting, on the one hand, on a concensus

about which are the relevant reasonable models, and, on the

other, on proofs that these are equivalent to within

efficient translations [1].

254

TIME VERSUS SPACE

2. Complexity Classes

Define TIME(f(n)) to be the class of computational

problems for which there is a TM of time-complexity f(n),

and SPACE(f(n)) to be the class of problems for which there

is a TM of space-complexity f(n). Fundamental facts about

the time and space requirements of computations can be

expressed by inclusion relations among such complexity

classes. For example, the following relations, for arbitrary

f(n), summarise the most obvious aspects of the time-space

problem:

(X Q) : TIME(f(n)) c SPACE(f(n)).

(Y) : SPACE(f(n)) c U T I M E (c f (n)) .
° "c=l

The first expresses the fact that in f(n) steps at most f(n)

tape squares can be visited, the second that if the tape

alphabet is of size c then after about c x steps any computation

on x tape squares must start repeating configurations.

The only progress on whether, and by how much, these

relations can be tightened, has been achieved recently.

It is shown in [10] that

(X ^ : TIME (f (n) log (f(n)) c SPACE (f (n)) ,

and that for any suitable increasing 6(n) (e.g. logloglog n)

(Y±): SPACE(f(n)) 5* TIME(f(n)log(f(n))/6(n)).

We shall return to these results in Section 4. Here we merely

observe that the logarithmic factor is too fine to make these

results necessarily universal in the sense of the previous

section.

255

L. G. VALIANT

However, we can pose analogous questions in a manner

that is coarse enough to ensure universal machine-independence

significance. Let PTIME = U T I M E (n k) , PS^CE = U S P A C E (n k) ,
k=l ^ k=l

and PLOGSPACE = kQ^SPACE ([log n] k) . We can now ask the

following questions:

(X): PTIME c? PLOGSPACE, and

(Y): PSPACE c? PTIME.

It is widely accepted that (X) and (Y) are two of the

most fundamental open problems of computer science. As

indicated below, this belief is based both on the relevance

of these problems to resolving the inherent computational

complexity of numerous particular computational tasks, and

also to their relationship to other general questions.

It is appropriate to start by mentioning some basic

types of results that shed light on several questions raised

by the above formulation itself. Historically the first are

perhaps the hierarchy theorems obtained by diagonalization

arguments (e.g. [19]). A fundamental result is that for

suitably well behaved f(n) and g (n) , if

lim f (n) =

n+°° g(n)

then SPACE (f(n)) ^ SPACE (g(n)). A similar proper inclusion

result for time classes is provable under the stronger

restriction that lim(f(n)log(f(n))/g(n)) = 0. Such facts

contrast with linear speedup theorems which state, for

example, that TIME(f(n)) = TIME(kf(n)) for any positive

constant k.

256

TIME VERSUS SPACE

Another type of result, obtained by padding or

translational arguments, gives logical implications among

relations between complexity classes. A typical result

that holds for all suitably well behaved f ,g and h, where

h(n) > n, is that

TIME(f(n)) c SPACE(g(n))

=> TIME(f(h(n)) c SPACE (f (h(n)) . (1)

The value of diagonalization and padding arguments

is that they can be used to reduce the potentially unlimited

number of possible questions about complexity classes to a

small number of distinct types (see [2] for such applications).

The following is an easy application: Suppose (X) is true.

Then by (1) it is immediate that TIME(2 n) c SPACE(n k) for

some k. But from the hierarchy theorem for time we have

that T I M E (2 n > / 2) p TIME (2 n) . The two relations together imply

that SPACE(n k) T I M E (2 n / 2) . We have therefore deduced that

if (X) is true then (Y) must be false. However, no converse

of this is known and since it is widely conjectured that both

(X) and (Y) are false, the two problems can be treated as

distinct.

In conclusion we mention the following well-known

and immediate connection with the Cook-Karp problem [4][13]:

"if Y is true then P=NP*. This suggests that in attempting to

disprove P=NP, one ought to try to disprove Y first.

3. Complete Problems

A tantalising aspect of these general questions, that

has been discovered only recently, is that whichever way they

are resolved, they will settle important complexity questions

for many specific natural computational problems. Conversely,

257

L. G. VALIANT

this means that it is sufficient to resolve these questions

for these particular problems in order to determine the truth

of the general assertions (X) and (Y).

The specific problems in this category are called

complete in analogy with related phenomena in the theory of

recursive functions. We say that a problem A in PSPACE is

complete for (X) if it is provable that "A e PTIME if and

only if PTIME = PSPACE". Intuitively, this means that A is

of about maximal complexity among all the problems computable

in polynomial space. It turns out that many natural problems

are complete for (Y). These include

(i) Equivalence of regular expressions [20].

(ii) Validity in the first order theory of equality [20].

(iii) Shannon switching game on vertices [7].

(iv) Context-sensitive recognition.

The last follows from the classical result of language

theory that any TM that uses linear space can be encoded into

a context sensitive language [14]. Proofs that the other

problems are complete are of an analogous nature. However,

the discovery that TM computations can be encoded into such

diverse problems was a highly significant and surprising step

with far reaching consequences [15].

Natural complete problems for (X) are also known.

These are problems in PTIME with the property that they belong

to PLOGSPACE if and only if PTIME = PLOGSPACE. These include

"path systems" as defined in [5], and the emptiness of

context-free languages [12].

Besides such specific problems, relationships with

fundamental questions about other computational models are

258

TIME VERSUS SPACE

known. A particular example is the size-depth problem for

combinational Boolean circuits. It is observed in [3] that

if (X) is true then it follows that for any circuit with
v

n gates, there is an equivalent circuit of depth Clog(n)]

(for some fixed k). The best bound on depth that has been

proved for this is 0(n/log n) [17].

4. Results on Space-Time Tradeoffs

We shall now outline the results (X^) and (Y^) stated

in Section 2. We start by considering a different computational

model: A straight-line program is a sequence of instructions

each of the form x:= F(y , z) , where x, y and z are distinct

elements from a set of variables, with the restriction that x

cannot occur in any preceding instruction in the sequence. The

domain of the variables and the set of operations from which

each F can be chosen, are immaterial.

With each straight-line program a directed acyclic

graph can be associated by identifying each variable u with

a node u, and each instruction x:= F(y,z) with a directed arc

from y to x and one from z to x. Directed paths in the graph

therefore represent the flow of information in the program.

The execution of such a program can be regarded as a

game on the graph with pebbles. (This game was introduced in

[16] in the context of program schemas). The aim is to place

a pebble on a distinguished output node using only the

following types of moves:

(i) a pebble can be placed on a node either if it has no

ancestors, or else if there are pebbles already on

both of its immediate ancestors.

(ii) a pebble can be removed from any node (at any time).

259

L. G. VALIANT

Each pebble corresponds to a storage location. Placing

a pebble on a node corresponds to storing the current value

in the location. Rule (i) ensures that unless the variable

is an input variable, the values of the variables from which

it is computed are currently available in storage. Removing

a pebble corresponds to freeing a storage location (with the

possibility of recomputing it later).

Clearly the execution of the program defines a sequence

of pebble moves all of type (i). However, any sequence of

pebble moves that reaches the output node corresponds to a

different but equivalent straight-line program. The question

therefore arises as to whether some of these equivalent programs

require substantially fewer pebbles. This is answered by the

following result [10].

Theorem; Any node of a directed acyclic graph with n nodes

and indegree k can be reached using c^n/log 2n pebbles.

This can be regarded as a space-time tradeoff, showing

as it does that space can be reduced by a logarithmic factor

at the expense of increasing the length of the straight-line

program (possibly exponentially). The longer program saves

storage by judiciously forgetting information and recomputing

it later.

The proof given in [10] of this result implies (after

a slight modification) an asymptotic upper bound on c^ of 4 for

all k such that log k = o(log n) . Paterson has observed that

if the constructive splitting strategy of [17] is used in the

proof, then this can be improved to 2. (N.B. in the above

application the case k = 2 is sufficient).

Paul, Tarjan and Celoni [18] have shown that the above

260

TIME VERSUS SPACE

theorem is optimal. The graphs that are shown to require

O(n/log n) pebbles are defined in terms of subgraphs for

which only existential proofs are known. However, the universal

graphs introduced in [21] are natural constructive examples
2

that are known to require at least O(n/(log n)) pebbles.

Returning now to Turing machines, we note that each

computation history can be regarded as a straight-line program.

The difficulty, however, is that this graph may depend on the

input and therefore cannot be determined beforehand. As is

shown in [10], this can be overcome and it is possible to

simulate any time f(n) TM by a space f(n)/log(f(n)) TM. The

trick is to split up the computation into "large" blocks so

that the graph of a computation is sufficiently "small". This

ensures that the overheads of guessing the correct graph and

the correct pebbling strategy add up to no more than a lower

order term as compared with the space required to store the

"contents of the pebbles".

The relation (X^) follows from the above. The relation

(Y^), which can be re-interpreted as a nonlinear bound on the

complexity of context-sensitive recognition, can be deduced

by a diagonalization argument.

We conclude by mentioning that analogous results do

exist for more restricted models. For one such model it has

been shown that(x) is false [6]. Another example is the one-tape

JIM for which it is known that TIME (f (n)) c SPACE (/f (n)) [9] . However,

one-tape machines are very restrictive in the sense that it

can be easily shown that some problems (e.g. palindrome

261

Z. G. VALIANT

2 recognition) that require 0(n) time on them can be computed

much more efficiently (i.e. 0(n)) on other models [11]. Since

this has not been demonstrated for multi-tape TM's, even

such apparently weak results as (X 1) and (Y 1) are of new

significance.

References

[1] Aho, A.V., J.E. Hopcroft, and J.D. Ullman. The

Design and Analysis of Computer Algorithms,

Addison-Wesley, 1974.

[2] Book, R.V. Comparing complexity classes. JCSS 9_

(1974) 213-229.

[3] Borodin, A. Some remarks on time-space and size-depth

Manuscript (1975).

[4] Cook, S.A. The Complexity of theorem-proving procedures.

Proc. 3rd ACM Symp. on Theory of Computing (1971)

151-158.

[5] Cook, S.A. An observation on time-storage tradeoff.

Proc. 5th ACM Symp. on Theory of Computing (1973)

29-33.

[6] Cook, S.A. and R. Sethi. Storage requirements for

deterministic polynomial time recognizable

languages. Proc. 6th ACM Symp. on Theory of

Computing (1974) 33-39.

[7] Even, S. and R.E. Tarjan. A combinatorial problem that

is complete in polynomial space. Proc. 7th ACM

Symp. on Theory of Computing (1975) 66-71.

[8] Hennie, F.C. and R.E. Stearns. Two tape simulations

of multi-tape machines. JACM 13 (1966) 533-546.

262

TIME VERSUS SPACE

[9] Hopcroft, J.E. and J.D. Ullman. Relations between

tape and time complexities. JACM 15 (1968) 414-427.

[10] Hopcroft, J.E., W.J. Paul and L.G. Valiant. On time

versus space and related problems. Proc. 16th

IEEE Symp. on Foundations of Computer Science

(1975) 57-64.

[11] Hopcroft, J.E. and J.D. Ullman. Formal Languages

and their Relation to Automata. Addison-Wesley,

(1969).

[12] Jones, N.D. and W.T. Laaser. Complete problems for

deterministic polynomial time. Proc. 6th ACM

Symp. on Theory of Computing (1974) 40-46.

[13] Karp, R.M. Reducibility among combinatorial problems.

In Miller, R.E. and J.W. Thatcher (eds.). Complexity

of Computer Computations, Plenum Press (1972).

[14] Landweber, P.S. Three theorems on phrase structure

grammars of type 1. Inf. and Control 6 (1963)

131-137.

[15] Meyer, A.R. and L. Stockmeyer. The equivalence problem

for regular expressions with squaring requires

exponential space. Proc. 13th IEEE Symp. on

Switching and Automata Theory (1972) 125-129.

[16] Paterson, M.S. and C.E. Hewitt. Comparative schema¬

tology. Proc. of Project MAC Conf. on Concurrent

Syst. and Parallel Compt. (1970) 119-127.

[17] Paterson, M.S. and L.G. Valiant. Circuit size is

nonlinear in depth. TCS (to appear).

263

L. G. VALIANT

[18] Paul, W.J., R.E. Tarjan and J.R. Celoni. Space

bounds for a game on graphs. Proc. 8th ACM

Symp. on Theory of Computing (1976).

[19] Stearns, R.E., J. Hartmanis, and P.M. Lewis.

Hierarchies of memory limited computations.

Proc. of 6th IEEE Symp. of Switching and Automata

Theory (1965) 191-202.

[20] Stockmeyer, L. and A.R. Meyer. Word problems requiring

exponential time. Proc. 5th ACM Symp. on Theory

of Computing (1973) 1-9.

[21] Valiant, L.G. Universal Circuits. Proc. 8th ACM

Symp. on Theory of Computing (1976).

264

