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Infinite Dimensional Group Actions 
by 

John N. Mather 

Let N and P be smooth finite dimensional mani

folds. Let <3(N,P) denote the space of smooth mappings 

of N into P. Let ^(N) denote the group of smooth 

diffeomorphisms of N. The orbit structure of the 

action £(N) x £(P) on C-(N,P) given by 

(h,h',f) -» h' f h 1 has certain properties in common with 

the orbit structure of an algebraic action of a real 

algebraic group on a real algebraic manifold, at least 

as far as the orbits of finite codimension in &(N,P) 

are concerned. 

Here, we formulate a precise result of this type. 

Detailed proofs will be given elsewhere. 

First, we formulate a result concerning real alge

braic actions. Let a be an algebraic action of an 

algebraic group G on an algebraic manifold X. By 

this we understand the following: G and X are 

regular algebraic subsets of real number space, and 

the graphs of the mappings G x G -> G:(g,h) -* gh~ 1 

and G x X -> X:(g,x) -* gx are regular algebraic sets. 
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Theorem 1. There is a filtration of X by closed  
semi-algebraic invariant subsets 
X = X Q D X 1 D X 2 D ... Dx f c ] ... D 0 such that 

(1) X i - X l + 1 is regular. 

(2) ( Xi" Xi+i)/ G has a natural structure of  
a real analytic manifold such that the mapping 
x i " X i + 1 ~* ( Xi" Xi +])/ G is a real analytic function. 

(3) cod X ± > i. 
Before sketching the proof, we need a definition 

and a lemma. 
Definition. Let U be a smooth (i.e., C°°) 

manifold, and for each u e u, let V u be a smooth 
submanifold of X (not necessarily closed). We say 
the family { V U ) U € U is smooth if the set 
V = y u x V u C U x X is a smooth manifold, and the 
restriction of *:U x X U to V is a smooth locally 
trivial fibration. 

Lemma 1. There is a filtration of X by closed  
semi-algebraic invariant subsets such that (1) and 
(3) in Theorem 1 hold and the family of orbits 
{Gx:x e X i « X i + 1 ) is smooth. 

It is an exercise in differential topology to 
prove that the Lemma implies Theorem 1. For, it 
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follows from the smoothness of the family that each 
small transversal intersects each nearby orbit exactly 
once, and that the quotient space has the Hausdorff 
property. • 

We deduce Lemma 1 from the following result. 
Lemma 2. Let Y be a closed semi-algebraic subset  

of X. Then there is a closed semi-algebraic invariant  
subset Z of Y such that 

(1) Y - Z is regular. 
(2) Z is nowhere dense in Y. 
(3) (Gx:x € Y - Z} is a smooth family. 

The fact that Z is nowhere dense in Y implies 
dim Z < dim Y. Then Lemma 1 follows by decreasing 
induction. • 

Sketch of the Proof of Lemma 2. Let 
R = t(y,y' ) e Y x Y:3g € G,gy = y') . Embed R n in 
R P n in the standard way. Let Y be the closure of 
Y in RP n. Let R be the closure of R in Y x Y. 
Since R is semi-algebraic, we may find a Whitney 
stratification J of R by semi-algebraic sets such 
that R and R fl (Y x Y) are unions of strata. 
Moreover, we may suppose that the set of non-singular 
points of R forms a stratum. Let * be the 
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restriction to R of the projection of Y x Y on Y. 
Let Z Q be the set of points y e Y such that either 

(a) y is a singular point of Y, or 
(b) y is a critical value of *|U:U -* Y, for 

some stratum U of J. 

By the Tarski-Seidenberg theorem, Z Q is semi-
algebraic. By Sard's theorem it is nowhere dense (a 
semi-algebraic subset of measure 0 is nowhere dense). 
Let Z = Z Q . By Thorn's second isotopy lemma (R, n) 

is locally trivial over Y - Z; moreover, the local 
trivialization can be taken to preserve strata and be 
smooth on strata. 

We have i c " 1 * ( £ s l n g ) = ^ s i n g - P o r > l e t G a c t 

on Y x Y by 

G x Y x Y - > Y x Y: (g,y,y7 ) -> (y,gy' ) . 

This action preserves R9 and hence also preserves 

^Sing- S ± n C e ^ * ( / P8lng^ = ^Sing' W e ° b t a ± n t h a t 

n ( ^ s i n g ) is nowhere dense in Y. It follows that 

*<*sing> C Z. 
Since R\Y - Z is entirely contained in the 

stratum of regular points of R, it follows that 

(R\Y - Z,*) is a locally trivial fibration over 
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Y - Z. This means that (Gx:x e Y - Z} is a locally 
trivial family. • 

Now we consider the action of -£(N) x P) on 

&(N,P) described at the beginning of this section. If 
f e <3(N,P), we have the identification 
T^(N,P) = r(f TP), where T means the smooth sections 
of the vector bundle in parenthesis. Likewise 
T 1 (*(N)) = r(TN) . We let a f:£(N) x £( P) -> &(N,P) be 
defined by 

a f(h,h' ) = h' fh" 1 . 

We consider the Frechet derivative 

d a f i T ^ N ) © T^(P) -* T f£(N,P) . 

We say the orbit through f has finite codimension 
if the image of d a f has finite codimension (note that 
da^ is a linear mapping of real vector spaces). 

At least when (dim N,dim P) is in the nice range 
of dimensions [2], there are many orbits of finite 
codimension, as is indicated by Theorem 2 below. 

Definition. Let U be a smooth manifold. A 
mapping U -> C-(N,P) will be said to be smooth if the 
associated mapping U x N -> P is smooth. We let 
(^(U,(3(N,P)) denote space of smooth mappings of U 
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into <3(N,P). Clearly, £(U,£(N,P)) = C(U x N,P). By 

the C°° topology on £(U,<3( N, P)), we mean the C°° 

topology on £(U x N,P). 

Definition. A subset K of e(N,P) will be said 

to be of infinite codimension if for every smooth 

mapping of a finite dimensional manifold U into 

C-(N,P), there is an arbitrarily close approximation 

in the C°° topology whose image does not intersect K. 

In what follows we let *U denote the set of ele

ments of £(N,P) of finite codimension. 

Theorem 2. 1( is open in &(N,P). If (dim N,dim P) 

is in the nice range of dimensions, the complement of 

U has infinite codimension, and U contains orbits  

of arbitrarily high codimension. 

The first statement is essentially known (cf. 

Baas [ 1 ] ) . We omit the proof of the second, which 

requires lengthy detailed calculations and most of the 

theory of C°° stable mappings. 

A smooth mapping cp:U -> &(N,P) has a Frechet 

derivative dcpu:TUu -> TC-(N,P)cp(u) • We say cp is 

transverse to the orbit through cp(u) if 

im dcpu + im d V u ) = TO(N,P)q)(u) . 
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An invariant subset K of U will be said to be 

pseudo-algebraic if for any f e K and any smooth 

mapping cp:U -» (3(N,P) such that cp(u) = f for some 

u e U and such that cp is transverse to the orbit 
1 

through f, we have that cp (K) is semi-algebraic 

in a neighborhood of u, with respect to a suitable 

smooth coordinate system. In addition, K will be 

said to be of codimension > i, if c p " (K) is of 

codimension > i at u. 

Theorem 3. There exists a filtration 

U = KQ 3 t(1 D ... D t(k D ... by invariant closed  

pseudo-algebraic subsets such that cod > i, 

and for each i an analytic manifold Y i and a  

locally trivial fibration - -* Y i such 

that 

(1) Y ± = CU± - r( ± + 1)/^(N) x £(P) as topological  

spaces, and it is the quotient mapping. 

(2) The analytic structure on Y.̂  is uniquely  

determined by the condition that if cp:U -* U -

is an analytic minimal unfolding of cp(u), in the  

sense defined below, then ( *cp) ~ 1Y^ is an analytic  

submanifold of U, and * c p : ( *cp) ~ 1Y^ -> Y^ is a  

local analytic diffeomorphism at u. 
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Definition. Let U be a finite dimensional 
manifold, and let cp be a smooth mapping of U into 
*U. We say cp is an unfolding of cp(u) if its 
transverse to the orbit through cp(u) at u. We say 
that it is a minimal unfolding if the mapping 

TU U - T C ( N , P ) 9 ( u ) / i m d % ( u ) 

is an isomorphism. 

Since f = cp(u) has finite codimension in 
C(N,P), there is a finite set A C N such that for 
any finite subset S C N such that S fl A = 0, we 
have that f is infinitesimally stable at S. We 
say the unfolding cp is analytic if we can choose 
coordinates about A and fA such that the resulting 
mapping U x N -» P is analytic in U x W for a 
suitable open neighborhood W of A in N. 
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