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J. E. FRANKE 

§1. Introduction. 

Many people including S. Smale [8] have been interested in the problem 
of finding structurally stable maps and classifying them. M. Shub in [7] 
studied expanding maps and Z. Nitecki in [6] increased the set to 
nonsingular endomorphisms. A singularity is a point where the derivative 
is not an isomorphism. Other mathematicians such as H. Whitney [9, 10, 
11], J. Mather [5], R. Thorn and H. I. Levine [4] have studied maps 
between two manifolds which did have singularities and looked at the 
stability of such maps. In this paper we will use the structural 
stability of Smale because we are looking at maps from one manifold to 
itself. We will allow singularities, in fact, there are always 
singularities for contractions on a compact manifold. 

In the paper M will always be a compact, C°°, connected manifold 
without boundary and d will be a fixed metric on M. An endomorphism 
f: M -> M is a contraction if for some X, 0 < X < 1, d(f(x),f(y)) <_ >d(x,y) 
for all x,y e M. By the compactness of M we see that the set of C 
contractions is an open subset of Cr(M,M), the space of C r maps from M 
to M with the C r topology. 

The endomorphism f is said to be topologically conjugate to another 
endomorphism g is there exists a homeomorphism h of M such that 
h-f = g-h. If f is in Cr(M,M) then it is called Cr-structurally stable 
if there is a neighborhood N of f such that each g in N is topologically 
conjugate to f. 

In [2] L. Block and I studied contracting endomorphisms on the circle 
2 

and showed that the subset of all C -structurally stable contractions 
was open and dense in the C 2 topology. We also gave necessary and 
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sufficient conditions for a C contraction to be C structurally stable. 
The major purpose of the present work is to extend those results to 
two dimensional manifolds. 

Theorem 1. The set of C -structurally stable contractions on any 
compact/ connected, two dimensional, C°° manifold M without boundary is 

r r an open dense subset of all C contractions in the C topology for 
r >_ 12. 

The reason for taking r > 12 is found in the work of H. Whitney 
[9, 10, 11] who showed that for r >_ 12 the set of maps W is Cr(M,M) 
which satisfy the following properties is open and dense in C (M,M): 

A. At each point x and f(x) there are coordinate charts such that 
f has one of the followina normal forms: 

1. regular 1 
x y 

x 

Vi 

2. fold 
y 

x̂  
y 

3. cusp X 
y 

xy - xà 

y 

B. The images of folds intersect only pair-wise and transversally, 
whereas images of folds and cusps do not intersect. 

H. Whitney also showed that f was in W if and only if given a 
neighborhood U of the identity in C°(M,M) there is a neighborhood V of 
f in Cr(M,M) such that if g e V then there are two homeomorphisms hx 

and h 2 in U such that f'hj = h2»g. 
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We will call the maps in W Whitney maps. 
J. Mather [5] extended these results to arbitrary dimensional 

manifolds by showing that there is an open dense set A of C°°(M,M) 
such that if U is a neighborhood of the identity in C°(M,M) and f e A 
then there is a neighborhood U of f in C°°(M,M) such that if g e V then 
there are two homeomorphisms hx and h 2 in U such that f-h: = h2«g. He 
calls such maps topologically stable. 

Using Mather's results we will show the following: 

Theorem 5. On every n-dimensional compact C°° manifold M without boundary  
there is a C°°-structurally stable contraction. 

Let us establish the following notation before we describe the 
C -structurally stable contracting endomorphisms on two dimensional 
manifolds M. We will use for the set of singularities of an 
endomorphism f and x f for the unique fixed point if f is a contraction. 
Two distinct points, x,y e M are said to be coincident under f if there 
exist non-negative integers, i and j, such that f1(x) = f̂  (y). 

Let K be the subset of all Whitney maps f which are contracting 
endomorphisms and which satisfy the following conditions: 

1. The unique fixed point x^ of f is regular and is not coincident 
with any singularity. 

2. A cusp point is not coincident with any other singularity. 

3. For any set of three singularities, there is at most one subset 
of two elements which are coincident. 

144 



CONTRACTING ENDOMORPHISMS 

4. If i < j and they are the smallest integers under which x 
and y, two singularities, are coincident; then 

Dfi(TEf) © DfJ(T Ef) = T . M. x x t i y t f i ( x ) 

If i = 0 one has the added property that 

DfD (T i J e ker Df = T M. y y f x x 

From the possible forms of singularities it is clear that Z f is a 
one-dimensional manifold so that T^If is defined as its tangent space 
at y. 

Theorem 2. K Ls an open dense subset of the C contractions on M. 

Theorem 3. K is_ the set of all Cr-structurally stable contractions on M. 

In the proof of the last theorem, one constructs a stratification 
S of M by using the singularities and distinguishing between cusps and 
folds. One then adds a finite number of images of the singularities 
and finally all the inverse images. These stratifications give 
information about the topological conjugacy classes. 

Theorem 4. If f,g e K are topologically conjugate, then the conjugating  
homeomorphism h i_s a strata preserving map between 5(f) and 5 (g) . 
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§11. Transversality Results 

For definitions and theorems covering transversality theory see 
Abraham and Robbin [1]. In the notation of Levine [4], the one jet 
J1(M,M) can be divided into three regular submanifolds S , S, and S 0 

0 1 <-
which correspond to jets having rank two, one and zero, respectively. 
Every Whitney endomorphism f has the property that its 1-extension 
J1 (f) : M + J1 (M,M) is transverse to Since J1 (f) is basically the r-1 l -1 r-1 derivative of f, it is C and (J (f)) (S}) is a C submanifold 
of M. Note that E f = (J1 (f))-1 (S,), hence the singularity set for any 

r-1 
f in W is a C submanifold. 

This is also the setting for the transversal isotopy theorem (TIT) 
see [1]. This theorem says that given a neighborhood N of the 

r-1 
inclusion map I in C (Ef,M), there is a neighborhood A of f such 
that, if g e A there is an h e N sending Ef to I , In fact, h is a 
section over E f in a total tubular neighborhood of I f whose image is 
r-2 
C flow isotopic to Zf. 

One should be aware of the following two theorems which will be 
used many times in the lemmas of this section: 

[1, pp. 46-47] Openness of Transversal Intersection (OTI): Let A, 
X, and Y be C 1 manifolds with X finite dimensional, W Y is a closed 
C 1 submanifold, K(]x a compact subset of X, and p : A - C1 (X,Y) a C1  

representation. Then the subset A R W £ A defined by 

A V T 7 = {a e A : p (f\ W for x e K) KW r a x 

is open. 
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[1, pp. 47-50] Transversal Density Theorem (TDT): Let A, X, Y 
be C r manifolds, p : A •* C r (X, Y) a C r representation, W (] Y a 
submanifold and ev̂  : A x x Y the evaluation map0 Define A^ £ A by_ 

A w = {a e A:p arfS W}. 

Assume that 

1. X has finite dimension n and W has finite codimension q in Y, 

2. A and X are second countable = 

3„ r ̂  max{0, n-q), 

4. ev (f) W, 
p 

Then A^ i_s residual (and hence dense) in A. 

These basic transversality theorems will be used to prove Lemmas 
1-5: Let W be the set of Whitney contracting endomorphisms. 

Lemma 1; Let K { - {f e «/: The unique fixed point of f, x^, is regular  
and coincident with no singularities}, then K is open and dense in W. 

Proof: (Openness) Let f c < ]. Since x̂  is a regular point and f a 
contraction, there is a compact neighborhood U of x f on which f is a 
diffeomorphism and f(U) Q int Ut Since f(U) is a finite distance from 
3U and U is a finite distance from rf; there is a neighborhood Nj of 
f in W such that if g c N }, then g is a diffeomorphism on U and 
g(U) Q int U. 
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There is a positive integer n such that f11 (M) CI irit: U, since 
f is a contraction. By the noncoincidence between x f and 
singularities, there exists an £ > 0 such that the distance 
between x f and fn(z:f) is greater than e. There is a neighborhood 
N 2 of f in (ll such that, if g e N 2 then d(x ,x̂ i < -| and the 
distance between gn(Eg) and x f is more than -| . Also, 
gn(M) C i n t u< 

To see that IŜ O N 2 is a subset of K? , note that if g e NjO N £ ; 
then gn(I^) £ ^ n t u a n c^ does not contain the fixed point x g. Also 
g maps U diffeomorphically into int U. Thus no higher power of g 
can send an element of gn(Z^) to x^, and there are no coincidences 
between x and elements of Z „ 

g g 
(Density) If there is coincidence between x f and some x in 

E f, then the smallest integers for which this happens are of the 
form 0,j with j > 0« The proof will be by induction on j . Let 
C q = {f e W: x f is regular}; and for each j > 0, C. = (f c 111: x f 

is regular and there are no coincidences between x f and points of 
E^ with integers 0 and j}. Note that the proof of openness also 
shows that each of these sets is open. 

Claim 1; C q is dense in W« 

Proof: Let x f e £ f and take a neighborhood U of x f on which f has 
a normal form. If is a cusp, let h be a diffeomorphism 
which moves x f, and is the identity outside of U. Note that hf has 
the same singularity set as f and each singularity letains its 
type. By taking h close to the identity, hf is in W, and the 
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fixed point of hf is still in U but is not x f. Hence x^f is 
not a cusp. The remaining possibility is that the fixed point is 
a fold. In this case if T I. €> Df (TI.) =f T M, take a C°° 

x f r x f r x f 

vectorfield V, which is (y,-x) in local coordinates at x f. Let 
ĥ  be its time E diffeomorphism* 
By taking e small, ĥ f is a 
small C r perturbation of f and £f 
has the same fixed point and X 
singularity set. It does, 
however, rotate the image of / 

. Thus T l © D(h^f) (TE-) ^ / n f (a) 
= T M. So suppose f satisfies f>sv \e r 
this condition, Now shrink U, / ^v. ^ a / f (y rV. 
if necessary, to the extent that / >̂  
f (U O Ef) O Zlf = x f . Let / f (Zf) 
y e u O z f ; y ̂  xf. Look at —-J 
the arc in U connecting Figure 1 
x f and y and the arc in 
uPlf(£f) connecting x f and f(y). These two arcs form some angle 
at xf. Let v be the unit vector bisecting the angle. Let V be the 
C°° vector field that is constant at v in some neighborhood of x^ and 
zero outside some larger neighborhood. Let h £ be the time e 
diffeomorphism for V. If \. is small enough, there is a neighborhood 
U, of x̂  such that no point in'U.O l£ is fixed under h -f. But 
i f i f e 

since this is a small C r perturbation, the fixed point for ĥ -f 
is in Uj. Thus the fixed point is regular and is dense in W. 
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Claim 2: ijs dense in C Q. 

Proof; Note that f 1(x f)H I f is a finite set because f is locally 
one to one on E f. Thus only a finite number of perturbations will 
be needed. Suppose f(x) = x f with x £ Zf* The perturbation will 
consist of changing f on a compact neighborhood N of x which is 
contained in an open neighborhood where f has a normal form. From 
the normal forms, it is clear that there is only one point in N 
that is coincident with x f. Thus f ON) is a finite distance away 
from x f. Let V be a vectorfield that is zero on a neighborhood 
of f(3N) and h £ its time e diffeomorphism, Then changing f to 
h£•f on N and keeping f on the 
complement of N gives a C r 

perturbation of f. If x is a 
cusp, take a vectorfield V so i ^ n

c^^f^ 
that V(xf) is of unit length 1 J J 

and in the opposite direction / / 
x-^1 L \ V(x.) 

of the cusp. If x is a fold, L X N^ ' r 

take V so that V(xf) is of \ X
N 

unit length and perpendicular \ ^ 
to f(E fHN). Thus, in either 
case, the perturbed function CUSP 
has one less coincidence. 
Hence C, is dense in C . Figure 2 

One is now ready for the induction step, Assume C_, is open 
and dense in Wa Thus if x e I f is such that f1(x) e Z f for 
1 <_ i £ j+1, then f ( x ) is at least as far from x f as f? (If) is. 
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Hence there is an open set N about x, such that f3+^"(N) is at 
least half as far from x f as f-* ( z f ) is. Let A be the union of 
all these open sets. Then E f - A is a compact set on which f 3 +^ 
is locally one to one* Hence f"^+1) (Xf) C\ £ f is a finite set. 
The perturbations of f are like those in the proof that C x is 
dense in C q with the role of x f played by f (x) where f ( x ) = x^. 
This is possible because f3 (f(x)) is equal to x f after such 
perturbations and the orbit of f(x) consists entirely of regular 
pointso Thus each C.. is open and dense in W. Since Kx is the 
intersection of a countable number of open dense sets, it is 
dense. Q.E.D 

One should note that this lemma only uses the C° stability 
of the singularity set. The fact that it is C 1 stable will be 
used in the next lemma. 

Lemma 2; Let K9 = {f e KY : for any x and y e Sf, a coincidence 
between them with integers 0 and j implies that neither x nor y 
is a cusp and Df 3 (T £,.) © T I = T M = Df3 (T Z£) O ker D f}.  • 61 y y f xf x y y f x 
Then K2 i£ open and dense in Kl. 

Proof: (Openness) Let f e K2, then there is a compact neighborhood 
U of Xf and an integer n such that f is diffeomorphism on U, 
f(U) C i n t u/ a n d fn(M) C i n t u» Thus the points of coincidence 
that we are interested in can only happen with j < n. Note that 
f has only a finite number of cusps and their first n images are 
disjoint from Zf. Also note that f^(Z^) is compact and a finite 
distance from the set of cusps. From Whitney's stability theorem 
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(see the introduction) it is clear that if g is close to f then 
g will also have these properties. 

Now f1|Ef e C1(Sf,M), Since f1|Ef is transverse to I on 
Z f, f1|Ef x I is transverse to the diagonal A in M x M. One can 
now apply the Openness of Transversal Intersection Theorem, because 
Z f is compact and A is closeda This theorem says that there are 
neighborhoods Nx of f1 in C1(Zf,M) and N 2 of I in C1(Zf,M) such 
that if <J> x $ £ N 1 x N 2, then 4> is transverse to \\i. If g is a 
small enough perturbation of f, and h is the diffeomorphism close 
to I such that h(Zf) = Z g given by TIT; then g1h e Nx and h e N2« 
Hence gxh is transverse to h. This means that g 1|E g is transverse 
to Z . 

g 
Since Z f is one dimensional, f 1 ^ ) O Z f is zero dimensional 

and, in fact, finite, since Z f is compact. If g is a perturbation 
of f; then, as noted, g1(E ) is transverse to I and the coincidence 

g g 
points can be made arbitrarily close to those for f. So suppose 
x,y e S and g1(y) = xc Then by continuity of the eigen directions, 

g one obtains that Dg1 (T I; ) and ker D g span T M. Hence K2 is y y g x x 
indeed open in Kj. 

(Density) Let C. = {f e ̂ : for any x and y c £ f; a 
coincidence between them with integers 0 and i, i <_ j, implies that 
neither x nor y is a cusp and Df^(T^lf) together with either T xZ f 

or ker D̂ f span T^M}. Note that the openness of in Kx is 
proven above. Also note that C o = Kx, so it is dense in K1. One 
now proceeds by induction on j to show that each is dense in 
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Suppose Cj is dense in K, and let f e C . Let A be an open 
neighborhood of I in Diffr(M) such that, for h e A, hf e C_. . 
Now consider the representation p: A * C2(£f,M) given by 
p(h) = (hf)3*1. This representation is at least C 2, because 
the evaluation ev : A x £_ ~+ M can be thought of as first P f 

sending h to (hf,...,hf) and then evaluating it j+1 times. 
j + l 

Composition on the left is smooth and evaluation is C 2. Since 
the first three conditions stated in the Transversal Density 
Theorem are clearly satisfied, the only one of interest is the 
last. To check the last one, let h e A and y e 1̂ . If 
(hf)3+1(y) { Z^, then ev is transverse to E- at (h,y). So t p r 
suppose (hf)3+1(y) = x e If. If there is an integer i between 
0 and j+1 such that (hf)1(y) = z e Z f, then the inductive 
hypothesis says that D(hf)1

y (T^Ef) together with either T z£ h f 

or ker D hf span T M. Note that E, £ = E- and ker D hf = ker D f• z c z hr r z z 
Thus D (hf ) 3 + 1 (T L ) =. D (hf ) 3*1""1 (T E ), and by the inductive y y t z r 
hypothesis D (hf)3 + 1 - 1(T z£ f) together with either T x£ f or ker D̂ f 
span TXM. So we can suppose that the orbit of y under hf is 
regular between y and x„ Take a smooth vectorfield V that is 
zero outside a small neighborhood of hf (y) and constant on some 
smaller neighborhood. Look at the curve of diffeomorphisms 4>^h 

through h where $ is the flow of V. Now ev acting on the curve t p 
(4>th,y) gives a curve in M at x which corresponds to some element 
in T̂ M. Since the orbit of y is made up of regular points, any 
vector in T̂ M can be realized by an appropriate choice of V. 
Hence ev̂  is transverse to Zf at (h,y)-and therefore it is 
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transverse everywhere. Thus there is an open dense set of 
diffeomorphisms in A, such that if h is one of these, then 
(hf)^+^ is transverse to 1^. In particular, there is one 
arbitrarily close to the identity. Since E^f - £ f, we have been 
successful in perturbing f to an endomcrphism that satisfies 
the first transversality condition. 

Suppose f e C. such that a coincidence between x,y c Zf with 
integers 0 and j+1 implies that Df 3 + 1 (T Ir) © T z£ - T M. Note ^ J ^ y y f x f x 
that such maps are open in C.. if Df -^vT I,) 0 ker D f 4 T M, c j y y f X 1 X 
then the inductive hypothesis says that the orrbit of y between y 
and x consists ot regular points. Let V be the vectorfield which 
is zero outside a small neighborhood of £(y) and is (x,y) - (y,-x) 
in local coordinates at f (y) . D(<|>tt') -)4i(T l^i is basically 

i+1 rotated from Df J (T ££) and ker D <t> f = ker D f, Thus taking y y f x t x ^ 
t small gives a perturbation of f which satisfies the spanning 
condition. Since there are only a finite number of intersections 
of this form and the spanning condition is open, we can do a 
small perturbation and obtain the desired property. 

Let f e Cj and satisfy the two spanning conditions. If y is 
a cusp then Df^ +^ (T̂ E f) = 0, sc y must nut be coincident with 
any singularity. To remove intersections between f-^^y), y t E ̂, 
and a cusp, use perturbations similar to those used in removing 
coincidences between singularities and the fixed point. Thus one 

oc 
sees that each C is open and dense in K . Since K 
K2 is dense in K . Q.E.D 

It should be noted that if f £ K^t then f1, for any i, is 
locally one to one on ; and f ({folds} is an immersion. 
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Lemma 3: Let K3 - if € K2: If x,y,z e £ f, then there do not exist  
integers i,j such that x - f1(y) = f3(z)>. ^ 3 ijs °P e n and dense 
in K,. 

Proof; Let fĈ j = [f e < 2: If x,y,z £ Ef, then 
{x} Pi {f x(y ) } r \ if^(z)} - Order the ordered pairs of 
non-negative integers (i,j), i £ j, by (a,b) < (c,d) if b < d or 
b = d and a ̂  c One now proceeds by induction to show that each 

is open and dense in K2# Note that if i = 0, then = K2-

(Openness) Consider the representation 
p: C2(M,M) x C2(M,M) y C2(M,M) C 2 (Ef x i f x £ f - , M x M x M) 
given by (g,,g2,g3) + (gjfg2.g3)|i;fxrfxEf - u..' w h e r e f e Kij 
and U.. = <f>ifi±j. Here U,. = Z- x v. . where V.. is a small 13 ' J 11 f 11 11 
neighborhood of the diagonal in E f x E f. Note if is small 
enough, there is a neighborhood N of f such that if g e N and 
h: I f -> I^, the map given by TIT, then gXh * gXh: M x M, 
such that if (x,y) £ yn' t n e n gxh(x) = g1h(y) => x = y. This 
follows from the local stability of Whitney maps and Lemma 2. 
Since f e K . , p (id,f1 ,P) tfS AM where AM = { (x,x,x) : x e M} . 13 M M 
Now by the openness of transversal intersection, there is a 
neighborhood N2 \ N z x N3 of (id,f1,fD) in C2(M,M) x C2(M,M) x C2(M,M) 
such that if (g1,g2,g3) e N̂  x N 2 x N 3, then (g1,g2,g3) also misses 
Aw on I- x I_ x £ - u. - Now if g is close enough to f and M f f f 13 * ^ 
h: Z f + E g is given by TIT, then (h,g1h,g3h) e N} x N £ x n3 and 
hence g e K Thus all the are open in K2„ Now since f e K2, 

there is a neighborhood N of f in K2 and an integer n such that 
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if g is in N, then gn(M) is contained in a neighborhood of x g 

that gets mapped dif f eomorphically into itself„ Thus if j n, 
there are clearly no coincidences of the type we are discussing; 
and K. , contains N3 Thus is open in K9. 

(Density) For i - j, by the inductive hypothesis the orbit 
of x between x and f1(x) consists of regular points if x t l̂  
and f̂ (x) e I f 0 Since f̂ : I f + M is transverse to Z^, the 
number of such x^ is finite, and the TIT says that for g close 
to f there are corresponding points ŷ  close to the . Suppose 
there are two points, say and x2, such that fi(x1) - f 1(x 2). 
Change f in a small neighborhood U of x} by composing f with $ t. 
Here <|>t is a small time diffeomorphism coming rrom a vectorfield 
V that is zero outside a small neighborhood ot r(x,). At f(xL), 
V should be in the direction which corresponds to the tangent 
space to H at f1 (x, ) , In other words, Dff v1""1(V) t T . lf. 

r nxj) f1(x1) r 

Note that (f <j> ) 1 (Zf O U) O f1(x2) = 4 . Thus the point in 
Z f O U that goes to E f under the perturbation does not go to 
f 1(x 2). In this way, the number of such intersections can be 
reduced to zero. 

Suppose i + j- Note that f3"1 (If) ff) I f, f1(Ef) fhl £, and 
f3 (Zf) ffS Zf because f E K2. Let {xk}, {ŷ } , and {zm> De the 
finite set of points in £ f that are mapped tc I^ under f3 1, f1, 

"1 "1 i 
and fJ respectively. By the inductive hypothesis, {iJ * a n d 

{f1(y^)} are in one to one correspondence with a nd lŷ i 
i— I 

respectively. Suppose there is an x g such that fJ ix̂ j = ŷ . 
Note that the orbit of ŷ  is regular between ŷ  and fi(y^). 
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Thus one can do a perturbation of f in a neighborhood of so 
that gNy^) i £f * Since g is a small perturbation of f, 
the sets <xk'}, (y£'}, f^'}, and (g j" 1(x k

,)} # {g 1^ 1)}, 
Cĝ CZĵ 1)} are arbitrarily close to the corresponding sets for 
f. Thus if f D _ i(x k) f {y£}, then gj""1(xk

l) 4 ty^); and g has 
at most one less point, namely, x 1 - x , such that 
gJ (xg') i ty^'K In this way one can reduce the number of such 
coincidences to zero. In neighborhoods of y„ where f (y«) = fJ(zm> 
one can do similar perturbations so that t = I~, g3 (z ) = f3 (z ) 

q r m m but no singularity in the neighborhood goes to g (z ). Thus 
K̂.. is dense in K2. Since K3 = O K̂. , the Baire Category Theorem 
says that K is dense in K2. Q.E.D. 

Lemma 4; Let - {f e <3 : if_ x and y, two singularities , are  
coincident and if i and j are the smallest integers under which 
they collide, then Df (T I^) @ DfJ (T Z£) = T - M}. Then K,  i. x x f v v f v 4 

is open and dense in K3 and hence in K2. 

Proof: Let K = {f e K„: If x and y are two singularities and 
f2(x) = f11 (y) , then Df1 (T zf) © Df3 (T I.) = T = , M where i' 

x x r y y r /-1 i \ 
and j 1 are the smallest integers under which x and y are coincident}. 
One can also take i <_ j and order the ordered pairs by (a,b) < (c,d) 
if b < d or b = d and a < c. One now proceeds by induction to 
show that each K, < is open and dense in K" • 

2 
The first step is done because K ~ K , = • So assume 

all K , , are open and dense in K. for (i',j') < The 
13 ^ 

inductive step breaks into two cases: first i - j, and second 
i < j. 
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Case 1; Let i = j. Since the Whitney maps satisfy this 
transversality condition with i = j = 1 (see introduction), 
K,, is open and dense in K„. If i > 1, let 
f e K3 (i',j')<(i,i) 

K̂ , and A be an open neighborhood of the 

identity in Diffr(M), such that if h e A then 
hf e K3 (i',j')<(i,i) Consider the representation 

p: A + C 2(Z f x z f - A,M x M) given by p(h) = ( (hf)1,(hf)1) |Zf x i - A 

where A is the diagonal. The interesting question to check before 
applying the TDT is that ev f^A , where A is the diagonal in 
M x M. Let (x,y) c Z- x z f - A such that (hf) (x) = (hf) (y). 
Let i' be the smallest integer such that (hf) (x) = (hf) (y). 
If i* + i, then D(hf)£ (T z ) OD(hf)J ( T

V V = T i' M s i n c e 

hf e K^t^%. Note also that hf e K3, and thus f1 (x) is regular 
and its orbit is regular. This tells us that the transversality 
property is passed along to give D(hf)^(TxZf) © D(hf)^(T^zf) = T i M. 

Hence evp (n A M at this point. So let us suppose i' = i. If the 
orbit of y does not consist of regular points, let z be the 
singularity. Note that there can be at most one singularity, and 
it must be less than i iterates from y. Let us say that 
(hf)k(y) = z. Then Dfhf) 1^ Z.) = D(hf)1"k(T Z-) and 

D(hf)^"k(T I.) 9 D(hf)*(T Z_) = T . M, since hf e K. . . 

So again ev (f) A ^ . Now suppose the orbit of y is regular. Look 
at the curve of functions <f>th through h, where <j>t is the flow of 
a smooth vectorfield that is zero outside a small neighborhood 
of hf (y) . T (ev ) N sends the curve over to a vector of the J o (h#x#v) 
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form (V,0) and since D C n f ) ^ ^ 1 1 is an isomorphism, one gets 
every such vector, Thus ev^^h Â , and there is an h arbitrarily 
close to the identity that (hf)1 * (hf)1|_ A is transverse 

2» ̂. x 2J ̂  ~~ fa 
to AM- This says that is dense in K2 and in every K^,^t where 
(i',j') < (i,i). 

To see the openness of in K2, consider the representation p: C (M,M) x CZ(M,M) C Z(E F x E f - V ^ M x M) , given by 
(9i/g2) •+ (<3it<3?)\v v r \T ' where V.. is as defined in the 

proof of Lemma 3 and f is in L . f i L n I I K. , . , . Now 
1 1 (i\j')<(i,i) 1 3 

since f e K. , , p (f1, f1) ff\ A on E^ x z^ - V. . . By OTI, there 
is a neighborhood Nj x N of (f1,f1) in C2(M,M) x C2(M,M) such 
that if (gj,g2) e Nx x N 2, then p (gx ,g2) fIS A M on Z f x £ f - V^. 

If g is close enough to f and h: E f •> E^ is the map given by TIT, 
then (g1h,g1h) e Nj x N 2. Also, if (x,y) e and g1h(x) = gXh(y) 
then x = y. Thus K ^ is open in K£, 

Case 2; (Density) In this case i < j. The set of singular 
points {x,_}, such that f3"1(x, ) e I. is finite for 
f e K3 I (i\j')<(i,j) 

K., , ,. In fact the orbit of such an x is 

regular except at fJ~ (x). Note that DfJ" (T E-) © T o . E^ 
x x r fJ"1rv^ 1 

= T . . M and DfJ (T E,.) e ker Df . . = T . . M. Thus 

the normal form for the fold tells one that there are neighborhoods 
N 2 of x and Nx of f3'1(x) such that, if (a,b) e Nj x N £ O E F x i 
then f j" i + 1(b) = f!(a) => b = x and a = fj"1(x). Since the orbit 
of f3 1(x) is made up of regular points, one obtains that 
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f3(b) = fX(a) => b = x and a = f3""1(x). In fact, the OTI tells 

us that if g is in a small neighborhood of f and h: I f + is 

given by TIT, then g3h(b) = g1h(a) => h(b) is the unique point in 

1 On i such that g3 x(h(b)) e Z . Find such neighborhoods in g g 
M x M for each x. and let U be the union. Now consider the k 
representation p: A + C 2 (Tf x z - u,M x M) given by 

h ( (hf ) 1 , (hf ) 3) | r , where A, an open neighborhood of the 
2» £ x £ ̂ "~ u 

identity in DiffR(M), is such that if h c A then hf is close 

enough to f to satisfy the conditions in defining U and 

hf e K~ O K.,.,. The important condition to check 
(i,,j,)<(i,j) 1 3 

before applying TDT is that evp ̂
A

M

a Suppose (x,y) c Ef x Lf - ù 

such that (h£)3'(x) = (hf)3(y). If the orbit of x between x and 

(hf)1^) contains a singularity z, then D (hf ) x (T E f ; = D (hf )
 k C?zzj 

i-k 
where (hf) (x) = z. By the inductive hypothesis 
D(hf)k(T Z-) ©D(hf)3(T Z-) = T - M, Hence ev rïS A m at this 

z z f y y f (hf)
3(y) p M 

point. 

So suppose the orbit of x consists of regular points. If 

there is an integer I between 0 and i such that (hf)J (y) 
i-£ 

= (hf) (x), then the inductive hypothesis says that 
D(hf)j"£(T Ef) ©D(hf)J"

£(TvEf) = T . ? M. But since the y Y * x x r ( h f )3 £ ( y ) 

orbit of x consists of regular points, this is translated to 

(hf)3(y) and eVp ff) A M at this point. 

So suppose the smallest integers under which x and y are 

coincident are i and j. If the orbit of y contains a singularity, 

then one obtains ev (f\ A . , at this point just as when the orbit p M 
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of x contained a singularity. Thus we can assume the orbits of x 

and y are both made up of regular points. Look at the curve <J>th 

of diffeomorphisms through h where <f> is the flow of a vector-

field that is zero outside a small neighborhood of hf(y). 

D(ev ) x sends this curve to a vector of the form (0,V) . p (h,x,y) 

Since (hf)3""1 is regular at hf (y) , one can obtain all such vectors 

in this manner. Hence ev (f\ Aw. Thus TDT says that there exists 
p M 

h arbitrarily close to the identity such that hf is in and that 
K. . is dense in K' IT 3 (i',j')<:(i,j: 

K. ,., and hence in K0. 

(Openness) To see the openness of K^. consider the representation 

p: C2(M,M) x c2(M,M) -> C 2(I f x i - u,M x M) given by 

(g^g2) - (9i^2> Ir .xE-u w h e r e f e *3 
(i',jl)<(i,j) 

K.,., and Ü 
1 "1 

is as above. Since (f ,fJ)rn A m , the OTI says that there is a 

neighborhood N 1 x N £ of (f
1,f3) such that if (g1/g2) e ̂  x N 2, 

then (9lf92) ^ M̂* N o w i f g 1 3 c l o s e e n o u 9 n t o f? then 

(g1h,g3h) c N X x N 2 , where h: Zf E g is given by TIT. By the 

definition of U, the points (x,y) e u O E f x i such that 

gxh(x) = g3h(y) are also coincident in the form g3 Xh(y) = x. 

Hence g e K. ., and K. . is open in 
(i\j')<(i,j) 

/Co... and thus 1 3 
in K2. 

Now Kh - K 
(i,j) 

K^y Thus Kk is dense in K2. To see that 

Kk is open in K2, let f s . There is an integer n such that 

fn(M) is in a neighborhood A of x f on which f is a diffeomorphism. 

Then fn(M) - f n 4 l(M) = F is a fundamental domain of x f. There is 

an integer J such that fJ (F) contains an iterate of every 

singularity. Thus this set expresses all of the different types 
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of intersections between singularities. That is, any intersection 
in f J + N +^(M) of iterates of singularities is an iterate of such 

J J an intersection in f (F), and if the one in f (F) is transverse, 
the one in fJ+n4^"(M) is also transverse. Thus a neighborhood 
of f in Kk is just a finite intersection of neighborhoods of f 
in with j £ J+n+1. Hence is open and dense in < 2. Q.E.D. 

It should be noted that the endomorphisms in have the 
property that if x,y e lf, f^x) = f3 (y) , and x 4 f3"1(y) then 
Df1 (T e Df3 (T IJ = T . M. This is because f1 ' (x) is x x r y y r f i ( x ) 

regular and its orbit is also regular. i1 and j* are the 
smallest integers under which x and y are coincident. This also 
shows that a cusp x is coincident with no other singularity, 
because Df1(T £-) = Q6 x x f 

We are now ready to prove Lemma 5 which can be done with a 
finite number of perturbations. 

Lemma 5; Let Ks = {f e K̂ : for any set of three singularities  
there is at most one subset of two elements which ate coincident). 
5̂ i£ °P e n and dense in K and hence in K2. 

Proof: Order the set of triples {(i,j,kj>£ 7L «& 7L © ffi : 0 <_ i j <_ k) 
by (a,b,c) < (a'fb'jC*) if c < c' or c = c' and b < b'; or c = c 1, 
b = b 1, and a < a1. Let Kf, . . . = {f e K. : if x, y and z are 
different singularities of f and (i'fj'fk1) < (i,j,k) then 
{ f 1 '(x)}n {f3'(y)}O {fk"(Z)} = f } . We will prove by induction 
that each K .. ... is open and dense in K ... . , . M if 
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(i'fj'/k1) < (i,j,k). Note that Lemma 3 shows that K/n ... is 
open and dense in K2, which shows that the first step is finished. 
So suppose (i,j,k) is an arbitrary triple. There are three sets 
{(a^fb^)}, {(c^fd^)}, and t (ê ,f̂ )} of points in I f x I f - A 
which are the points of intersection between f and f 3, f1 and f , 
and fJ and f respectively. Lemma 4 says that each of these sets 
is finite and that the intersections are transverse, except when 
f3'"1(b^) = at, f (d£) = o v or f 3(f £) = e v Thus a small 
perturbation will keep the number of such points the same and 
their position and k iterates arbitrarily close. We will do a 

d 
x 

tf 

If 

bl 

f j _ i(I f) 

fl fUf) 

f(al) 

fk(Ef) 

f j " i + 1 ( i : f ) 

f 3 ( s : f ) fX(Ef) 

After the 
perturbatici 

Figure 3 
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finite number of perturbations to obtain that no a^ is a c^. 
Suppose that some a^ » c^. By the inductive hypothesis, either 

Nb^) + a^ or f k Nd r) + c r and the orbit of a^ is regular. 
Suppose fk"1(dr) + crc If f^~1(b^) = a^, let V be the vector-
field that is zero outside of a small neighborhood of f(â ) and 
V(f(aJ) e Df (T Z-) . Let h = 4 for some small e. Now I at at f e 

consider the perturbation of f which is f outside of a small 
neighborhood of a^ and hf on the neighborhood. 

Note that the perturbed map has f3 (b̂ ) = f1(a^), but 
f̂ (â ) £ fkfE^). There is, however, a singularity very close to 
a^ that does go to f (Ef). In this way, one can decrease the 
number of a^ that equal ĉ . Note that this perturbation also 
works in the case where f k - i(d r) = c^. If f-3~1(b^) + â  and 
f (dr) + c

r ' w e u s e t h e same type of perturbation, except that 
V(f(a«)) is perpendicular to Df^ (T̂  If) . Under this perturbation 
fk(dr) = f3 (bt) , but 
f1(a^) + fk(dr) and neither does 
any point in a neighborhood of 
â  in I f. In this case, we have 
also reduced the number of points 
where a^ = c^. Thus in a finite 
number of steps, we change f so 
that it is in Kf. . , N. Hence 
K,. ... is dense in all other 
K < ± M ' f k - > w i t h < i ' ^ , < k ' > 
< (i,j,k) if i + k. If i = k 
this type of perturbation can 
also be used to reduce the number 
of triple intersections to zero. 

fi(Ef) 

f V f ) 

f DU f) 

Figure 4 
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To see the openness of K,. • U\ , consider the representation 
p: C2(M,M) x C2(M,M) x C2(M,M) C 2 (Zf x Zf x E F - U(i,j / K)' M x M x M) , 
given by restricting (g.,go,g ) to (g ,g ,g )| y 7 x T _„ - Here 

1 2 3 1 2 3 LfX^x^ uijjc 

f e K(i,j,k) a n d 

uijk = • i f L + j * k 

U. = V. , x 1 - if i = j 4= k 13k 11 f J 1 

U... = x V., if i =f ] = k 13k f 3 3 T 

Uijk = ^ x'y' z ) : (x ŷ> ' (x,z), or (y,z) e V^} if i - j = k, 

where was defined in Lemma 3 as an open neighborhood of A in 
E _ x z NOW since (f i,f 3 ,fk) rh A M on x z^. x E_ - U..,, there r r M 1 1 r 13^ 
is a neighborhood N } x N 2 X N 3 such that; if 
(g1,g2,g3) e N 2 X N 2 X N 3, then (gx ,g2,g3) flS A m on zf x z f x z f - u i j k . 
Thus if g is close to f and h: Z f -> Z g is given by TIT, then 

(g1h,gjh,gkh) c N X * N 2 x N 3. Hence (g1h/g3h,gkh) A^, which 
means that there are no triple intersections from E- x z x z = u. . 

r f f f 13k 
But by the definition of Û ĵ f there can be no triple coincidences 
from U. either. Hence K. Jf is open in each K. . . . where 13k 13k r 113 'k1 

(i',j',k') < (i,j,k). 
As in Lemma 4, there is an integer n such that fn(M) - f n + 1(M) 

is a fundamental domain F; and there is an integer J such that 
fJ(F) contains an image of each singularity. Thus if there are no 
triple intersections with k £ n + J, there will be no triple 
coincidences. This finiteness property tells us that K5 is open 
in K. and hence in K . The density of K_ follows from the Baire 
Category Theorem since = 

(i,j,k) 13k Q.E.D. 
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These lemmas combine to give the following theorem: 

Theorem 2; K is an open dense subset of C r contractions on Mo 

§111. Stratifications and Density of Cr-Structurally Stable  Contractions, 

In the first part of this section, subdivisions of M are 
constructed and shown to be stratifications, These stratifications 
are then used to show necessary and sufficient conditions for a 
contraction to be Cr-structurally stable and also to give many 
topological invariants of the topological conjugacy class. The 
last part deals with the problem of generalizing these results to 
higher dimensions. 

Definition; A stratification of M is a finite collection of 
connected disjoint submanifolds without boundary {L̂ } such that 
(1) U L . = M and (2) if LiPl + <j>, then L i 3 L-j a n d 

dim Lj < dim L^. 

When one has a stratification S and an endomorphism f, there 
are three basic operations that can be performed to give different 
subdivisions of Mo In certain cases these subdivisions are 
stratificationso The first new subdivision is indicated by t (S), 

To obtain the stratum of f(S) that contains x, let P be the set 
of all points y such that there is a one to one correspondence 
between f""1(x) 0 L £ a n d f ' V ) ^ ^ ^or each stratum in S. The 
connected component of P that contains x is the desired set. 
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The second operation is indicated by intersection• To find 

the stratum of s Q f(S) which contains a given point x, take the 

connected component of the set of points that belong to exactly 

the same strata as x. The strata of the third subdivision, f 1(S), 

are the connected components of the inverse images of the strata 

in Sc 

Let Sj be the stratification of M using the singularities of 

an endomorphism f in K. as follows: the zero dimensional strata 

are the cusps, the one dimensional strata are the connected 

components of i - {x e If: x is a cusp}, and the two dimensional 

strata are the connected components of M - Z^. From the normal 

forms, it is clear that S is a stratification of Me 

Proposition 1: For f c K, each of the subdivisions of M in the  

following sequence is a stratification: 

s 2 = f(Sl) 

s, = s, n s 
. i 2 

â2n * f(S2n-l> 

S2n^l « £ 2 n n S i -

Proof ; Since S1 is a stratification, one can proceed with the 

inductive step and show that. Ŝ  is a stratification. Suppose i 

is evenr Then the zero dimensional strata of S. are f of the zero 
i 

dimensional strata of S .plus the first coincidences with 
i-l 
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integers j and 0 < j < j » Since there are only a finite number 
of such coincidences, there are only a finite number of zero 
dimensional strata in Sj,. The one dimensional strata are f of 
the one dimensional strata in s^_^' which may be subdivided because 
of a new coincidence between singularities0 There are only a 
finite number of one dimensional strata, and the closure of any 
one of them only adds at most two points which are zero dimensional 
stratao The two dimensional strata are the connected components of 
M minus the one and zero dimensional strata. There are only a 
finite number of such sets and they satisfy the conditions to make 
Ŝ  a stratification. 

So suppose i is odd, then 8̂  - S, ̂  S ^ The zero dimensional 
strata are the zero dimensional strata of S. and £>±_± plus the 
points on Z £ which are images of other singularities under j 
iterates of f where 0 < j <_ 1 ^ — . The set of such coincidences 
is finite, and hence there are only a finite number of zero 
dimensional strata. The one dimensional strata are the one 
dimensional strata for S, and S, . with seme subdivision because 

1 i-l 
of the coincidences. Since there are only a finite number of 
subdivisions, there are only a finite number of one dimensional 
strata and the closure of any one adds at most two zero dimensional 
strata. The two dimensional strata are the connected components 
of M minus the one and zero dimensional strata Just as in the 
case where i was even; there are only a finite number of such 
strata, and they satisfy the necessary conditions to make S a 
stratification„ Q.E.D. 
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It should be noted that this proposition is a simple 
consequence of the lemmas proved in §11 as is the next proposition. 

Proposition 2; If f s K then there is a positive integer N such  
that for any integer n > Nf each subdivision in the following  
sequence is a stratification of M: 

*i - f" 1 ( S2n +l> n S2n +l 

v2 = f"1«-,) fHj 

* n
 = f" ( V i i n V r 

Also, 

UN = UN+1. 

Proof; As in Lemma 4, there is an integer m such that 
fm(M) - fm*^(M) = F, a fundamental domain; and there is an integer 
J such that fJ(F) contains an image of every singularity. So let 
N = m + J. If n > N, the difference between s

2 n + i a n d S2n+3 ^ s 

N in f (M), where S 0 is a refinement of S„ ... The new strata 2n+3 2n+l 
in s

2 n+3 a r e images of strata in s
2 r Vf]/ 

From the normal forms and the fact that M is compact, it is 
clear that f is finite to one. Thus f"̂" of any zero dimensional 
strata is a finite number of points«, There are several local 
pictures that should be studied at this point. First, if x is 
a regular point, f"1 of a neighborhood of f(x) in a neighborhood 
of x has the same subdivisions as the neighborhood of f(x). This 
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is because f is a diffeomorphism in a neighborhood of x. If x is 
a cusp; then, from the normal form, we get the following picture: 

x 

y 

xy - X 3 

y 

y , s f |y = 3x2 

-1 X 

f ( f ( U ) ^ I R 

-1 

' 3 y - 4 X 

3 

-2 

f (Ef) 

2 

o /X>2/3 3 2/3 
y = 3 ( i l = 7173 x 

Figure 5 

Note that in this local picture there are four two dimensional 
strata, four one dimensional strata and one zero dimensional 
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stratum. It is important to see that f is one to one on the 
closure of each of the two dimensional stratum. 

If x is a fold point, then it is either a zero dimensional 
stratum or it is on a one dimensional stratum. If it is on a 
one dimensional stratum and f(x) is also on a one dimensional 
stratum, then f"1 adds nothing to the local picture at x. If 
f(x) is a zero dimensional stratum, then x and some other 
singularity are coincident at f(x). Since this is the first time 
they are coincident, the intersection is transverse. Thus f 1 

introduces a curve transversal to r f at x. Actually, x becomes 
a zero dimensional stratum; and the curves break up into four one 
dimensional strata. In looking at the local picture for an 
arbitrary f(x) would not have to be the coincident point 
between x and some other singularity. The other possibility is 
that f(x) is the inverse image of the point of coincidence 
between x and some other singularity. But the picture at f(x) 
would still be two curves intersecting transversely and hence f ̂  
would introduce the same picture at x. 

If x is a fold which is a zero dimensional stratum, then 
there are two curves passing transversely through x which locally 
form four one dimensional strata. The local picture at f(x) is 
two curves that are tangent at f(x) giving four one dimensional 
strata and one zero dimensional stratunu Now each of the two 
one dimensional strata that are not first images of Z f have two 
inverse images near x# This gives six two dimensional, six one 
dimensional and one zero dimensional strata. 
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Thus f "̂ (f̂ ) hâs a finite number of zero and one dimensional 
strata, and the closure of the one dimensional strata add at most 
two points which are zero dimensional strata, Since the two 
dimensional strata are the connected components of the complement 
of the union of the zero and one dimensional strata, f """Û ) is a 
stratification of M. f ̂ (i^) O tjK is a refinement of f ̂ (ijr̂) , 
which one obtains by adding the zero and one dimensional strata 
of S2n+1 ^ n f n w h o s e images are not strata of S2n+1" T n u s 

each ij>. is a stratification of M. l 
To see that ̂ N = ̂ N=f^ , o n e c a n t i f l i nk °̂  obtaining the by 

N 
adding inverse images to the stratification of f (M) given by 
S2n+1° A point x will be a zero dimensional strata for ̂  if 
f( x) / j 1. i# is a zero dimensional stratum. Let (x) be a zero 
dimensional stratum, Then there is an integer k, 0 < k < N, such 

k N 
that f (x) c f (M) is a zero dimensional stratum of s

2 n r i * Hence 
x is a zero dimensional strata of IJR„ as well as F„ . . The same 

TN N+l argument shows that the one dimensional strata of ^ N
 a n <3 ^N+1 

Q.E.D. are the same» Hence \pN = ̂ NÎ-1* 

Let us improve the notion slightly betore continuing. Let 
f e K and m the smallest integer such that f is a horneomoiphism 
on fm(M) and fm(M) C\lf = Let fm(M) - fmf1(M) - F and J be 
the smallest integer such that f (F) contains an image of each 
singularity* Let N ~ m + J and S(f) - f starting with 

*l = f" ( S 2 N + 3 ) n S2N+3' There aie several important properties 
of S(f) that should be noted0 
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Lemma 6: Let L be a stratum of S (£) outside of fN(M), then f(L) 
is a stratum and f is a covering maj> from L to f (L) 0 

Proof: Since L is outside fN(M), L is a connected component of 
f'̂ fL*) for some stratum L*c From the normal forms, one sees 
that f maps L Locally diffeomorphically into L*; thus f(L) is 
open and connected in L1, If it is also closed in L 1, then 
f(L) = L' ? 

To see that f(Li is closed in L* let x z L 1 O i (L) - f (L) , 
and (ŷ ) be a sequence of points in L such that {.f(ŷ )} -* x. 
Let z be a limit point of ^y^- &y continuity, f(z) = x; but 
z e f 1(L') and not in L. This is impossible, so f(L) = L 1. 

One now wants to show that tne cardinality of f \ card f \ 
is locally constant on L' with f|L. Since f is a local 
diffeomorphism onto L', card f * cannot locally decrease. So 
suppose there is a point x where card f * increases. That is, 
there is a sequence {y.;} •* x such that card f - 1 (x) < card f ̂ "(y^). 
Take neighborhoods of each point of f~1 (x) on which f is a 
diffeomorphism. Outside of these neighborhoods, there is a set of 
points { } such that f (z.) = ŷ . Let b be a limit point of {z^}. 
By continuity, f(b) =• x; but b is not one of the inverse images 
of x, This contradiction shows that f 1 is locally constant on 
L'. Since L' is path connected, each point has the same number 
of inverse images- Hence f is a covering map. Q.ECD0 

One would expect that if two maps in fC were close then the 
stratifications of M that they produce should be close in some 
sense, This is the content of the next proposition# 
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Proposition 3; Let f e K and U be a neighborhood of the identity  
in C°(M,M)„ Then there is a neighborhood N of f in K such that  
if g e N then there exists a homeomorphisrn h e U that sends strata 
of S(f) to those of 5(g)-

Proof; The first step is to construct an open neighborhood of the 
union of the zero and one dimensional strata of S(f). For the zero 
dimensional strata, , pick open sets V\ whose closures are 
disjoint and for which there are diffeomorphisms <|> : V\ -»• R with 
<JK (L̂ ) = 0 which give the normal local picture depending on the 
type of zero dimensional strata. Let U be 4> 1 of the open unit 
disk in R' Since the one dimensional strata are submanifold3, 
they have tubular neighborhoods which can be taken to be disjoint. 
The union of the U\ and the tubular neighborhoods give us an open 
set containing the zero and one dimensional strata of 5(f), The 
open set we want is obtained from this one by shrinking the 
tubular neighborhoods if necessary so that if x is on a one 
dimensional stratum outside of IL then the fiber of the tubular 
neighborhood through x is outside of <j> 1 (B ( ) where B (j) is the 
open ball of radius j centered at the origin in R2. 

Now in each <b,(U.) let (xlM,,,x > be the intersection of ^ l i J n 
the circle of radius j with the images under ^ of the one 
dimensional strata in S(f)a Since we have the normal picture in 
4>̂ (LL) there will be one and only one such point for each one 
dimensional strata whose closure contains tne origin. Let a be 
the minimum distance between the x 's„ Now if 0 < a < a then the 

i 
set of points inside B(j) that are a distance i from the zero and 
one dimensional strata forms a finite number of curves [c, M.,,c }. 

n 
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In fact there are as many such curves as there are x-̂ 's. The set 
of points in B(l) \ B(~) which are a distance a from the one 
dimensional strata is a finite number of curves * • • • f^n* ^ e 

number being twice the number of x^'s. Two of these combine with 
each c i to give n curves. By choosing a small enough the will 
be in the tubular neighborhood of the one dimensional strata and 
will be contained in the image of some section. 

Let {xj,x t̂•••,x l̂ be the intersection of B(j) with the one 
dimensional strata in ^(U^). By choosing a even smaller if 
necessary we can assume that the fiber through xĵ  intersects two 
of the and this part of the fiber stays in B(l) \ B(^). Now 
the part of the fibers through thé x̂ 's connecting the union 
the part of the l^'s from these intersections to the ĉ 's union the 
ĉ 's gives the boundary of an open set containing the origin which 
is homeomorphic to a disk. If we take out the images of the strata 
we get n open sets each homeomorphic to a disk. 

B(l) = • i(u i) 

Figure 6 
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Before continuing with the proof of this proposition let us 
consider the following lemma which establishes some of the 
properties of the maps near f. 

Lemma 7: Let f e K then there îs a neighborhood N of f such that 
i£ g e N then 

1• 5(g) has the same number of zero and one dimensional  
strata as S (f) . 

2. g has the same norma I structures on each u a_s f does. 

3. each $̂  maps the zero and one dimensional strata of S (g) 
in 0\ into the a neighborhood of those for S(f). 

4. outside of $>^ (B (j)i the one dimensional strata of S (g) 

are in the tubular neighborhoods and are images of  
sections» 

Proof; In defining S(f) the smallest integer m such that rm(M) 
contained no singularities and f was a homeomorphism on fm(M) was 
found. Since Z^ was defined by a transversal intersection, and 
Z^ is a finite distance, say t, from fm(M); there is a neighborhood 
N. of f such that if g c N. , then L is within 4- of I" and gm(M) 1 ^ 1 g 2 f 
is within f of fm(M). Thus g m(M )0 1 - 4 * 2 g 

Now since I f is a finite distance from fm(M), f is a local 
diffeomorphism on any open neighborhood of fm(M) that does not 
intersect In fact, by choosing a small open neighborhood of 
fm(M), f is a diffeomorphism= Now by using the openness of 
diffeomorphisms on compact manifolds we see that there is a 
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neighborhood N 2 of f euch that if g e N then g is a diffeomorphism 
on a fixed manifold that contains fItl{M;„ By shrinking N if 
necessary we can :uake sure that gin(M) is contained in the fixed 
manifold. Thus g is a homeomorphi.im on gnt(M) and m satisfies the 
two conditions for every map in h neighborhood of f. 

We now want to make sure m is the smallest integer that will 
work If f m "(M) O ± $ then the interior of f m ^(M) contains 
a singularity x because an intersection of the boundary of f m ^(M) 
and 5. would be transverse- Now by taking a small neighborhood N g 

of f we can guarantee that if g t N 3 then g m ^ (M) contains a fixed 
neighborhood of x and I also has a DOint in this neighborhood. 

9 
Thus m-1 will not. work if f m 1 (M) O £, f (j). So suppose 
fm~ (M) :

t - ^ b u t ^ 1 3 r.ot d homeomorphism on fm~ (M). The only 
way for this to happen is for f to fail to be one to one. In fact f 
must send two interior points to the same point. For suppose the 
intersection is the image of one interior point with a boundary 
point. Then since f is a local diffeomorphism and there are 
interior points m every neighborhood of the boundary points we 
could find two interior points that have the same image. If the 
intersection was between two boundary points, this would be the 
first coincidence between two fold and thus be transversal, Hence 
in this case we can again find two interior points which have the 
same image, Now pick disjoint open sets about each of these points 
whose closures are m the interior of f m 1 ^ M ) . Now there is a 
neighborhood N of f such that if g £ then the two closed 
neighborhoods are in g m *(M> and the images of the two sets 
intersect. Thus m is indeed locally constant, 
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The other number that was used in defining 5(f) was J, the 
smallest integer such that fJ(fm+1(M) - fm(M)) contained an image 
of each singularity. Notice that if g is close to f then z f is 
homeomorphic to Z and the number of zero dimensional strata of 
Z~ and Z are the same because they come from transversal inter-f g 
sections. We can, therefore, also assume they are of the same 
type and pointwise close. Since their images must also be close 
the boundary of fm(M) and gm(M) must be made up of corresponding 
one dimensional strata0 Thus the boundary of each f-3(fm+1(M) - fm(M)) 
corresponds with that of g3 (gm+1(M),gm(M)), Thus all other strata 
have images in the interior of fJ(fm4l(M) - fm(M)). So by C° 
stability the corresponding strata in Z have images in the 
interior of g J(g m + 1(M) - gm(M)}, Also, since J was the smallest 
integer for some strata under f it must also be the smallest for 
the corresponding strata for g. Hence J is also locally constant. 

As we have noticed the subdivision of Z . and Z corresponded 
in both number and type. Since 5(f) and 5(g) are arrived at by 
taking the same number of forward iterates and then all the inverse 
iterates, we see that the number and type of zero and one 
dimensional strata in 5(f) and 5(g) are the same. 

Parts 2 and 3 of this lemma now follow easily from the C° 
stability of the normal forms while 4 is a result of the higher 
stability of the one dimensional strata Q.E.D. 

Now let us return to the proof of Proposition 3. 
To define the homeomorphism h, let h be the identity outside 

of the union of the tubular neighborhoods and the U • On the 
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tubular neighborhoods between two x^, the new one dimensional 
stratum is a section, Thus we can reparameterize the fibers so 
it is the zero sectione This raparameterization can be viewed as 
a homeomorphism of this part of the tubular neighborhood that 
takes the old zero section to the new one0 We can choose the 
reparameterization so that the homeomorphism is the identity 
outside of any fixed open set that contains the two sections and 
the parts of the fibers between them. Defining it this way we 
see that the homeomorphism will extend to the identity» Now since 
in B(l) - B(j) the new zero section is within a of the old, we can 
take the reparameterization to be the identity on each of the l^. 

Let D i be the closed disk in U\ bounded by the C^, the parts of 
the fibers through the x̂ 's connecting the 's and the parts of 
the ̂ 's connecting these intersections and the C^. On outside 
of D̂  union the parts of the tubular neighborhoods where h is 
already defined we defined the map to be the identity. On the 
closed set we use the definition we already have on the fiber 
through x^, and the identity on the £,'s and C^'s, Since the part 
of the stratum connecting x̂  and the origin is homeomorphic to a 
straight line and the part of the stratum for g connecting the 
image of x̂  under the homeomorphism and the zero dimensional 
stratum for g in IK is also homeomorphic to a straight line, we 
send the one to the other. We now fill in the rest any way we want. 
This can be done because we have defined a homeomorphism from the 
boundary of a set that is homeomorphic to a disk to the boundary of 
another set that is homeomorphic to a disk. It is clear that this 
gives us a homeomorphism that sends strata to stratac 
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By taking the diameter of each less than e and the 
arclength of each fiber in the tubulat neighborhoods less than 
e, the homeomorphism will move each point at most e. Thus the 
homeomorphisms can be taken to be in any neighborhood of the 
identity. Q.EoD. 

We are now ready to see the density of Cr-structurally 
stable contractionsc 

r 
Theorem 1i The set of C -structurally stable contractions on 
any compact two dimensional, C°° manifold M without boundary is an 

r r open dense subset of all C contractions in the C topology for 
r > 12. 

Proof; The openness of the set is clear from the definition. 
Density will be shown by proving that every endomorphism f in K 
is C -structurally stable„ If U is a small neighborhood of f 
in K and g e U then g (M) - g (M) ~ G is a fundamental domain 
and g (G) contains an image of each singularity. Here m and J 
are the integers used to define F and S (£). From the last 
proposition there is a homeomorphism h close to the identity which 
sends the strata of S(f) to the strata of S (g). Although h does 
not have to be a topological conjugacy, being close to the identity 
gives it another property that looks like a strata conjugacy. That 
is, if L and f(L) are strata of S(f); then h(L) and h(f(L>) are 
strata of S(g) and gh{L) ~ hf(L) as sets« Thus if L is a point 
stratum, then h is a conjugacy at this point. 
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Let L be a one dimensional strata that is in the boundary of 
N -1 f (M). Define another map from L to h(L) by g *h#fe This can 
be done because f(L) is a stratum of S(f) and g is a diffeomorphism 
from h(L) to hf(L)a Note that this new map is also close to the 
identity and would agree with h on L - L, There is an open 
neighborhood A of L which contains no other one dimensional strata 
and no zero dimensional strata. The closure of A contains L - L 
and also L, but these are the only zero and one dimensional strata 
it contains„ Using h on the boundary of A and the new map on L, 
one can construct a new homeomorphism on A to h(A) that is strata 
preserving. Now construct similar homeomorphisms on corresponding 
neighborhoods of each one dimensional strata in the boundary of 
f (M) Note that the new strata preserving homeomorphism H is a 
conjugacy on the boundary of f (M). Then change H on f~ (F) to 
gXHF 1 where f 1 is taken in fJ(F). Also send x. to x . One 
should note that the new map K is a conjugacy on f (M) . 

To define the conjugacy outside of f (M), we will send the 
strata of S(f) to the strata of S(g) that have already been 
identified by K. To get the desired map, remember that f and g 
are close and are covering maps on a given stratum L. They also 
have their images in f (F) and g (G) for some i < ND Since K is 
close to the identity and sends f (L) to g] (K(L)), there is a 
unique lift close to the identity sending L to K(L). It should 
be noted that this lift is independent of i as long as f 1 (L) Q fN(M), 
because K is a conjugacy on fN(M). Doing this on each stratum 
gives a new map of M that is one to one, onto, close to the 
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identity, and preserves strata. In fact, it is a homeornorphism 
on each stratum and satisfies the appropriate commutative diagram 
to be a topological coniugacy. The only thing that needs to be 
checked is that it is continuous where two different strata come 
together o To see this one should look at the different local 
pictures as in Proposition 2, Since the map is arbitrarily close 
to the identity, it sends local strata to local strata correctly. 
Since f is one to one on the closure of every local stratum, the 
map is indeed continuous and hence a homeomorphism. Q.E.D. 

Although this is the basic result it can also be considered 
as the first part of the next theorem, which gives necessary and 
sufficient conditions for a contraction to be Cr-structuraliy 
stable o 

r 0 
Theorem 3; K. ijs precisely the C -structurally stable contractions  
on M. 
Proof; From the proof of Theorem 1, we know that every endomorphism 

r r in K is C -structurally stable. The C endomorphism of M, which 
are stable using two different hcmeomorphisms, are the Whitney 
endomorphisms. Thus the Cr~structurally stable contractions 
must also be Whitney endomorphismso 

Suppose g is a Cr-strueturally stable contraction on M. Since 
K is dense in the set of contractions^ there is an f e K such that 
f and g are topologically conjugateo if h is a topological 
conjugacy, then h (x) is regular, a fold? or a cusp according to 
whether x is respectively regular, a fold, or a cusp. This is 
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because a topological conjugacy must preserve the number of points 
that go to a given point in a neighborhood of x. If x is regular, 
it is one to one; at a fold/ it is two to one; and at a cusp, 
three to one. The fixed points and all orbits are also preserved 
by he Thus, x and y are coincident under f if h(x) and h(y) are 
coincident under g. This establishes that g satisfies the following 
three conditions: 

L The fixed point of g is regular and is not coincident 
with any singularity. 

2» A cusp point is not coincident with any other singularity. 

3. For any set of three singularities there is at most one 
subset of two elements which are coincident. 

It also shows that the folds for g have the same number and type 
of intersections. Since g is Cr-structurally stable, there is a 
neighborhood of g which also satisfies these conditions. Indeed, 
if g did not satisfy one of the transversality conditions, an 
arbitrarily small perturbation could change the number of inter
sections of a given type, which is a contradiction. Hence g £ K. 

QoE.D. 

Using methods very similar to the ones used in this proof, 
one can prove the following: 

Theorem 4: If f and g are two C -structurally stable contractions  
which are topologically conjugate, then a conjugating homeomorphism 
h i£ strata preserving between S(f) and S(g). 
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Proof; Theorem 3 says that f and g e K and hence S(f) and S (g) 

can be definedo In the proof of the last theorem, it was pointed 
out that h must send singularities to singularities; hence h is a 
homeomorphism from £ f to The zero dimensional strata of Lf 

are cusps and folds which are coincident with other folds. As was 
pointed out in the last theorem, this finite set of special points 
also has to be preserved by h* Since the one dimensional strata 
of S(f) in E f are the connected components of rf minus the finite 
set of special points, h must preserve these strata. Since h 
preserves orbits, h(f1(M)) - g1(M). If f1(M) contains no 
singularities, then neither does g1(M)„ Also if f is one to one 
on f1(M), then g is also one to one on g1(M). Thus if m is the 
smallest integer for which fm(M) - fmf^(M) = F is a fundamental 
domain, then it is also the smallest integer for which 
gm(M) - gm+^* (M) - G is a fundamental domain. The smallest integer 
J such that fJ(F) contains an image of each singularity also holds 
for g and, in fact, h sends fJ(F) to fJ(G). Thus the integers 
used to define S (f) and S(g) are the same. 

The zero and one dimensional strata of S(f) and S (g) are 
obtained from E f and 1^ respectively by taking N iterates and then 
the inverse images. Since h preserves orbits, the images of 
strata in E f must go to images of the corresponding strata in r 
and similarly for all inverse images* It is this orbit preserving 
ability of h that guarantees that the zero and one dimensional 
strata of S(f) go to zero and one dimensional strata of S (g). 

The two dimensional strata are the connected components of the 
complement of the zero and one dimensional strata. Hence h must 
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must preserve these strata also, and h is strata preserving 
between S(f) and 5(g). Q.E.D. 

It should be noted that this theorem and its proof give 
many invariants of the topological conjugacy class of an endo-
morphism in K, some of which are the numbers m, J, and N, and 
the numbers of circles of singularities, of cusps, and folds that 
are coincident with other folds0 Since f is a covering map 
from one stratum to another, its covering number is also an 
invariant. It seems quite reasonable that the topological 
conjugacy classes could be characterized by using these invariants. 

To begin studying the n dimensional case, we shall show that 
there are structurally stable contractions on every n dimensional 
manifold. This will be done for C°° contractions with the help of 
Mather's topological stability of maps. 

Theorem 5; On every n dimensional compact C°° manifold M without  
boundary, there is a Ĉ -structurally stable contraction. 

Proof; Start with a topologically stable map f: M Rn [see 5]. 
Since such maps have many regular values, let y be one of them 
and let x e f ̂ (y)„ Let U be an open neighborhood of x such that 
f is a diffeomorphism on U, and h be a diffeomorphism from R n into 
U sending y to x. By taking h to be a strong contraction, one can 
make sure that hf - g is a contraction. Since y is a regular 
value, x is a regular value as well as the fixed point of g0 

Because g maps U diffeomorphically inside itself and contains the 
first image of every singularity, we see that x is coincident 
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with no singularitieso Also g(M) - g2(M) - G is a fundamental 
domain. There is an integer J such that gJ(G) contains an ru-age 
of every singularity„ Now consider the map gv It has the 
property that g J + 1(M) - (g J + 1) (M) is a fundamental domain and 
contains an image of each of the singularities. Let H be a 
topologically stable map which is close to g J 4 1. Since the 
singularity set for H is close to the one for g , H(M) - H (M) 
is a fundamental domain that contains an image of each singularity. 
In fact, H and any contraction F close to H map U diffeomorphically 
inside itself. Since F(M) - F2(M) as well as H(M) - H2 (M) contain 
the first image of each singularity, H2 (M) and F2(M) are contained 
in the interior of H(M) and F(M) respectively. There also exist 
two homeomorphisms hl and h £ of M such that Fh, = h2H and the 
homeomorphisms are arbitrarily close. Since Hz(M) is contained 
in the interior of H(M), there is an open neighborhood V of H(M) 
in U such that H(V), which is a neighborhood of H2(M), contains no 
first images of singularities. Since h} and h 2 can be made 
arbitrarily close, a simple isotopy in V gives a new homeomorphism 
h 3 of M which is hx outside of V and h0 on H(M)- Change ĥ  on 
H(V) - H 2(M) to be Fh 3H~ 1 where H" 1 is taken in V. Note this 
agrees with h0 on 3H(V). Now iterate this map inwards to x u and 
send x to x . This homeomorphism h. is a conjugacy everywhere 
except on H _ 1 ( H (V)) - V. Since H(V) consists entirely of regular 
values, H on the connected components of H 1 (H (V)) is a covering 
map and F is a covering map from hL of the connected components 
to h£H(V) ~ h^H(V). One can take all of the homeomorphisms close 
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to the identity so that there is a unique lift of h^. Note that 
the lift agrees with h.̂  on the boundaries of the connected 
components of H~*1(H(V)) - V, This is because ĥ  agrees with h 2 

on the boundary of H(V)„ Using these lifts on H ̂ (HCV)) gives 
the topological conjugacy. Hence H is topologically conjugate 
to F and is, in fact, Ĉ -structurally stableo Q.E.D. 

It should be noted that this proof gives sufficient 
conditions for a C°° contraction to be C°°-structurally stable, 

Corollary 1: If_ f i_s a C°° contraction on M which is topologically  
stable and f (M) - f2 (M) is_ a fundamental domain which contains  
no singularities but does have an image of each singularity, 
then f iŝ  C°°-structurally stable. 

These are certainly not all of the structurally stable 
contractions. It is even reasonable to conjecture that the 
structurally stable contractions are dense in the set of all 
contractions as is true in the one and two dimensional casese 
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