Astérisque

DAVID WILLIAM MASSER Transcendence and abelian functions

Astérisque, tome 24-25 (1975), p. 177-182 http://www.numdam.org/item?id=AST 1975 24-25 177 0>

© Société mathématique de France, 1975, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque 24-25 (1975)

TRANSCENDENCE AND ABELIAN FUNCTIONS

by

David William MASSER

-:-:-:-

I will first describe the results in the special case of elliptic functions. Let g_2 , g_3 be algebraic numbers with $g_2^3 \neq 27 g_3^2$, and let P(z) be the Weierstrass elliptic function satisfying the differential equation :

$$(\mathfrak{P}'(z))^2 = 4(\mathfrak{P}(z))^3 - g_2 \mathfrak{P}(z) - g_3$$
 . (*)

This function is doubly periodic with a lattice Λ of periods which are also poles. We define an algebraic point of P(z) as a complex number u such that either uis in Λ or P(u) is an algebraic number. The ring \mathbf{E} of complex multiplications of P(z) is the ring of complex numbers σ such that $\sigma \Lambda \subseteq \Lambda$. Clearly $\mathbf{E} \supseteq \mathbf{Z}$, and for general g_2 , g_3 we have $\mathbf{E} = \mathbf{Z}$; otherwise \mathbf{E} is an order of a complex quadratic extension \mathbf{K} of the rational field \mathbf{Q} . It is not hard to prove that the set of algebraic points of P(z) is an \mathbf{E} -module. Accordingly it was conjectured by Coates that algebraic points of P(z) are linearly independent over the field \mathbf{A} of algebraic numbers if and only if they are linearly independent over \mathbf{E} . I have proved this conjecture when ${\rm I\!E} \neq {\rm Z\!\!Z}$, and the following theorem is an essential tool.

THEOREM 1. - Let u_1, \ldots, u_m be algebraic points of P(z) that are linearly independent over $\mathbb{E} (\neq \mathbb{Z})$. Then given $\varepsilon > 0$ there is an effectively computable constant C > 0 depending only on ε , u_1, \ldots, u_m and P(z) such that

$$|\sigma_1 u_1^+ \dots + \sigma_m u_m^-| > C e^{-H}$$

for any algebraic numbers $\sigma_1, \ldots, \sigma_m$ of \mathbb{E} , not all zero, of heights at most H.

With this we can prove the following generalization of the conjecture which incorporates the number 1 into the basic linear form.

THEOREM 2. - Let u_1, \ldots, u_m be algebraic points of P(z) that are linearly independent over \mathbb{E} ($\neq \mathbb{Z}$). Then 1, u_1, \ldots, u_m are linearly independent over \mathbb{A} .

In particular, each u_i and each ratio u_i/u_j is transcendental; in fact these special cases were obtained by Schneider in [2] for general E. The quantitative version of theorem 1 can be used in conjunction with the finite basis theorem of Mordell-Weil to give a new proof of Siegel's theorem for elliptic curves with complex multiplication. For example, if k is a non-zero rational integer, the curves

$$y^2 = x^3 + k$$
 , $y^2 = x^3 + kx$

have only finitely many integral points.

Although this proof does not use the inequality of Thue-Siegel-Roth, it remains ineffective in character because there is no effective way of constructing the basis whose existence is asserted by the result of Mordell-Weil.

ABELIAN FUNCTIONS

To generalize all this to abelian functions we proceed as follows. Let Λ be a lattice in \mathbb{C}^n satisfying certain relations of Riemann. If it is non-degenerate in a certain sense, the field \mathfrak{F} of functions meromorphic on \mathbb{C}^n containing Λ in its lattice of periods is of transcendence degree n over \mathbb{C} . Thus we may write

$$\mathfrak{F} = \mathbb{C}(A_0, A_1, \ldots, A_n)$$

where A_1, \ldots, A_n are algebraically independent and A_o is integral over the ring $\mathbb{C}[A_1, \ldots, A_n]$. We express this dependence by a polynomial relation

$$F(A_0, A_1, ..., A_n) = 0$$

For example, if n = 1 we can take $A_1 = P$, $A_0 = P'$ and F is given by (*). The analogue of the condition that g_2 , g_3 are algebraic numbers is imposed as follows. The partial derivatives $\partial/\partial Z_1$ map 3 to itself, and so we can write

$$G(A_1, \dots, A_n) \partial A_j / \partial Z_i = G_{ij}(A_0, A_1, \dots, A_n) \quad (1 \le i \le n, 0 \le j \le n)$$

after taking a common denominator and clearing this of the function A_0 . We say that 3 is algebraically defined if

a) A_1, \ldots, A_n are holomorphic at the origin <u>0</u> and take algebraic values re,

there,

b) F, G, G_{ij} have algebraic coefficients,
c) If we write B(Z) = G(A₁(Z),..., A_n(Z)) then B(0) ≠ 0.
We call a vector <u>u</u> of Cⁿ an algebraic point of 3 if
d) A₁,...,A_n are holomorphic at <u>u</u> and take algebraic values there,
e) B(u) ≠ 0.

Once again we define \mathbb{E} as the ring of matrices of $\operatorname{GL}_n(\mathbb{C})$ that take the period lattice Λ into itself. It is no longer true that algebraic points form a

D.-W. MASSER

E-module, because of the denominator $B(\underline{Z})$; however, this statement is almost always true. The conjecture extending that of Coates would assert that algebraic points of \mathcal{F} are linearly independent over $M_n(\mathbf{A})$ if and only if they are linearly independent over \mathbf{E} , where $M_n(\mathbf{A})$ denotes the ring of $n \times n$ matrices with algebraic entries.

Our methods only succeed when \mathfrak{F} has complex multiplication of the type discussed by Shimura. This is when \mathbb{E} is isomorphic to an order \mathbb{L} of an algebraic number field \mathbb{F} of degree 2n over \mathbb{Q} . It is convenient to make this isomorphism explicit by diagonalizing \mathbb{E} . There are n monomorphisms $\psi_i : \mathbb{F} \to \mathbb{C}$ ($1 \le i \le n$) such that the diagonal matrix $D(\sigma)$ of \mathbb{E} corresponding to a number σ of \mathbb{L} is given by

$$D(\sigma) = diag (\sigma^{\psi_1}, \dots, \sigma^{\psi_n}).$$

The next result generalizes Theorem 1.

THEOREM 3. - Let $\underline{u}_1, \ldots, \underline{u}_m$ be algebraic points of \mathfrak{F} that are linearly independent over $\mathbb{E} \ (\approx \mathbb{L})$. Then given $\varepsilon > 0$ there is an effectively computable constant C > 0 depending only on ε , $\underline{u}_1, \ldots, \underline{u}_m$, and \mathfrak{F} such that $|D(\sigma_1) \ \underline{u}_1 + \ldots + D(\sigma_m) \ \underline{u}_m| > C \ e^{-H^{\varepsilon}}$

for any algebraic numbers $\sigma_1, \ldots, \sigma_m$ of IL, not all zero, with heights at most H.

This enables us to give a new proof of Siegel's Theorem for any curve whose Jacobian variety has Shimura complex multiplication. An example is

$$ax^{p} + by^{q} + c = 0$$

where a, b, c are nonzero rational integers and p, q are different primes.

Once again the estimates would all become effective if the theorem of Mordell-Weil for abelian varieties could be made effective.

Finally Theorem 2 can be generalized by introducing the vector $\underline{v} = (1, 1, ..., 1)$.

THEOREM 4. - Let $\underline{u}_1, \ldots, \underline{u}_m$ be algebraic points linearly independent over $\mathbb{E} (\approx \mathbb{L})$. Then the vectors $\underline{v}, \underline{u}_1, \ldots, \underline{u}_m$ are linearly independent over the set <u>of non-zero diagonal matrices of</u> $M_n(\mathbb{A})$.

In other words, if R , $S_1^{},\ldots,S_m^{}$ are diagonal matrices of $\,M_n^{}(\!\!\!A\!\!\!A)$, not all zero, the vector

$$\mathbf{R} \mathbf{\underline{v}} + \mathbf{S}_{1} \mathbf{\underline{u}}_{1} + \dots + \mathbf{S}_{m} \mathbf{\underline{u}}_{m}$$

does not vanish. This clearly gives the transcendence of the vectors \underline{u}_i (i. e. the transcendence of at least one of their components); this had been proved for general \mathbb{E} by Lang in [1]. More interestingly, we can separate components by taking the matrix coefficients suitably singular. For example, when m = 1 we can take for algebraic α

$$R = diag(\alpha, 0, ..., 0)$$
 $S_1 = diag(1, 0, ..., 0)$;

this implies the transcendence of the first component of \underline{u}_1 (and so obviously that of each component). Similarly, the choice R = 0 and

$$S_{i} = diag(\alpha_{i}, 0, ..., 0)$$

for algebraic α_i gives the linear independence over A of the first components of $\underline{u}_1, \ldots, \underline{u}_m$.

-:-:-:-

D.-W. MASSER

REFERENCES

- S. LANG. Introduction to Transcendental Numbers. Addison-Wesley, Reading, (1966).
- T. SCHNEIDER. Einführung in die transzendenten Zahlen. Springer-Verlag, Berlin, (1957).

-:-:-:-

David William MASSER University of Nottingham Department of Mathematics University Park NOTTINGHAM NG7 2RD