# David William Masser Transcendence and abelian functions 

Astérisque, tome 24-25 (1975), p. 177-182<br>[http://www.numdam.org/item?id=AST_1975__24-25__177_0](http://www.numdam.org/item?id=AST_1975__24-25__177_0)

© Société mathématique de France, 1975, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

Article numérisé dans le cadre du programme

# TRANSCENDENCE AND ABELIAN FUNCTIONS 

by
David William MASSER
-: -: -:

I will first describe the results in the special case of elliptic functions. Let $g_{2}, g_{3}$ be algebraic numbers with $g_{2}^{3} \neq 27 g_{3}^{2}$, and let $P(z)$ be the Weierstrass elliptic function satisfying the differential equation :

$$
\begin{equation*}
\left(\rho^{\prime}(z)\right)^{2}=4(\rho(z))^{3}-g_{2} \rho(z)-g_{3} \tag{*}
\end{equation*}
$$

This function is doubly periodic with a lattice $\Lambda$ of periods which are also poles. We define an algebraic point of $P(z)$ as a complex number $u$ such that either $u$ is in $\Lambda$ or $P(u)$ is an algebraic number. The ring $\mathbb{E}$ of complex multiplications of $P(z)$ is the ring of complex numbers $\sigma$ such that $\sigma \Lambda \subseteq \Lambda$. Clearly $\mathbb{E} \supseteq \mathbb{Z}$, and for general $g_{2}, g_{3}$ we have $\mathbb{E}=\mathbb{Z}$; otherwise $\mathbb{E}$ is an order of a complex quadratic extension $\mathbb{K}$ of the rational field $\mathbb{Q}$. It is not hard to prove that the set of algebraic points of $P(z)$ is an $\mathbb{E}$-module. Accordingly it was conjectured by Coates that algebraic points of $P(z)$ are linearly independent over the field of algebraic numbers if and only if they are linearly independent over $\mathbb{E}$.

I have proved this conjecture when $\mathbb{E} \neq \mathbb{Z}$, and the following theorem is an essential tool.

THEOREM 1. - Let $u_{1}, \ldots, u_{m}$ be algebraic points of $P(z)$ that are linearly in dependent over $\mathbb{E}(\neq \mathbb{Z})$. Then given $\varepsilon>0$ there is an effectively computable constant $C>0$ depending only on $\varepsilon, u_{1}, \ldots, u_{m}$ and $P(z)$ such that

$$
\left|\sigma_{1} u_{1}+\ldots+\sigma_{m} u_{m}\right|>C e^{-H^{\varepsilon}}
$$

for any algebraic numbers $\sigma_{1}, \ldots, \sigma_{m}$ of $\mathbb{E}$, not all zero, of heights at most $H$.

With this we can prove the following generalization of the conjecture which incorporates the number 1 into the basic linear form.

THEOREM 2. - Let $u_{1}, \ldots, u_{m}$ be algebraic points of $P(z)$ that are linearly independent over $\mathbb{E}(\neq \mathbb{Z})$. Then $1, u_{1}, \ldots, u_{m}$ are linearly independent over $\mathbb{A}$.

In particular, each $u_{i}$ and each ratio $u_{i} / u_{j}$ is transcendental; in fact these special cases were obtained by Schneider in [2] for general $\mathbb{E}$. The quantitative version of theorem $l$ can be used in conjunction with the finite basis theorem of Mordell-Weil to give a new proof of Siegel's theorem for elliptic curves with complex multiplication. For example, if $k$ is a non-zero rational integer, the curves

$$
y^{2}=x^{3}+k \quad, \quad y^{2}=x^{3}+k x
$$

have only finitely many integral points.

Although this proof does not use the inequality of Thue-Siegel-Roth, it remains ineffective in character because there is no effective way of constructing the basis whose existence is asserted by the result of Mordell-Weil.

To generalize all this to abelian functions we proceed as follows. Let $\Lambda$ be a lattice in $\mathbb{C}^{n}$ satisfying certain relations of $R$ iemann. If it is non-degenerate in a certain sense, the field $\mathcal{F}$ of functions meromorphic on $\mathbb{C}^{n}$ containing $\Lambda$ in its lattice of periods is of transcendence degree $n$ over $\mathbb{C}$. Thus we may write

$$
\mathscr{F}=\mathbb{C}\left(A_{0}, A_{1}, \ldots, A_{n}\right)
$$

where $A_{1}, \ldots, A_{n}$ are algebraically independent and $A_{o}$ is integral over the ring $\mathbb{C}\left[A_{1}, \ldots, A_{n}\right]$. We express this dependence by a polynomial relation

$$
F\left(A_{0}, A_{1}, \ldots, A_{n}\right)=0
$$

For example, if $n=1$ we can take $A_{1}=P, A_{o}=P 1$ and $F$ is given by (*). The a nalogue of the condition that $g_{2}, g_{3}$ are algebraic numbers is imposed as follows. The partial derivatives $\partial / \partial Z_{i} \operatorname{map} \mathcal{F}^{F}$ to itself, and so we can write

$$
G\left(A_{1}, \ldots, A_{n}\right) \partial A_{j} / \partial Z_{i}=G_{i j}\left(A_{0}, A_{1}, \ldots, A_{n}\right) \quad(1 \leq i \leq n, 0 \leq j \leq n)
$$

after taking a common denominator and clearing this of the function $A_{0}$. We say that 3 is algebraically defined if
a) $A_{1}, \ldots, A_{n}$ are holomorphic at the origin $\underline{0}$ and take algebraic values there,
b) $F, G, G_{i j}$ have algebraic coefficients,
c) If we write $B(\underline{Z})=G\left(A_{1}(\underline{Z}), \ldots, A_{n}(\underline{Z})\right)$ then $B(\underline{0}) \neq 0$.

We call a vector $\underline{u}$ of $\mathbb{C}^{n}$ an algebraic point of $\mathcal{F}$ if
d) $A_{1}, \ldots, A_{n}$ are holomorphic at $\underline{u}$ and take algebraic values there, e) $B(\underline{u}) \neq 0$.

Once again we define $\mathbb{E}$ as the ring of matrices of $G L_{n}(\mathbb{C})$ that take the period lattice $\Lambda$ into itself. It is no longer true that algebraic points form a

E-module, because of the denominator $B(\underline{Z})$; however, this statement is almost always true. The conjecture extending that of Coates would assert that algebraic points of $\mathcal{F}$ are linearly independent over $M_{n}(\mathbb{A})$ if and only if they are linearly independent over $\mathbb{E}$, where $M_{n}(\mathbb{A})$ denotes the ring of $n \times n$ matrices with algebraic entries.

Our methods only succeed when $\mathcal{F}$ has complex multiplication of the type discussed by Shimura. This is when $\mathbb{E}$ is isomorphic to an order $\mathbb{L}$ of an algebraic number field $\mathbb{F}$ of degree $2 n$ over $\mathbb{Q}$. It is convenient to make this isomorphism explicit by diagonalizing $\mathbb{E}$. There are $n$ monomorphisms $\psi_{i}: \mathbb{F} \rightarrow \mathbb{C}(1 \leq i \leq n)$ such that the diagonal matrix $D(\sigma)$ of $\mathbb{E}$ corresponding to a number $\sigma$ of $I L$ is given by

$$
\mathrm{D}(\sigma)=\operatorname{diag}\left(\sigma^{\psi_{1}}, \ldots, \sigma^{\psi_{\mathrm{n}}}\right)
$$

The next result generalizes Theorem 1 .

THEOREM 3. - Let $\underline{u}_{1}, \ldots, \underline{u}_{m}$ be algebraic points of $\mathfrak{F}$ that are linearly independent over $\mathbb{E}(\approx \mathbb{L})$. Then given $\varepsilon>0$ there is an effectively computable cons tant $C>0$ depending only on $\varepsilon, \underline{u}_{1}, \ldots, \underline{u}_{m}$, and ${ }^{\mathcal{F}}$ such that

$$
\left|\mathrm{D}\left(\sigma_{1}\right) \underline{u}_{1}+\ldots+\mathrm{D}\left(\sigma_{\mathrm{m}}\right) \underline{u}_{\mathrm{m}}\right|>C \mathrm{e}^{-\mathrm{H}^{\varepsilon}}
$$

for any algebraic numbers $\sigma_{1}, \ldots, \sigma_{m}$ of $\mathbb{I}$, not all zero, with heights at most H.

This enables us to give a new proof of Siegel's Theorem for any curve whose Jacobian variety has Shimura complex multiplication. An example is

$$
a x^{p}+b y^{q}+c=0
$$

where $a, b, c$ are nonzero rational integers and $p, q$ are different primes.

Once again the estimates would all become effective if the theorem of MordellWeil for abelian varieties could be made effective.

Finally Theorem 2 can be generalized by introducing the vector $\underline{v}=(1,1, \ldots, 1)$.

THEOREM 4. - Let $\underline{u}_{1}, \ldots, \underline{u}_{m}$ be algebraic points linearly independent over $\mathbb{E}(\approx \mathbb{L})$. Then the vectors $\underline{v}, \underline{u}_{1}, \ldots, \underline{u}_{m}$ are linearly independent over the set of non-zero diagonal matrices of $M_{n}(\mathbb{A})$.

In other words, if $R, S_{1}, \ldots, S_{m}$ are diagonal matrices of $M_{n}(\mathbb{A})$, not all zero, the vector

$$
R \underline{v}+S_{1} \underline{u}_{1}+\ldots+S_{m} \frac{u}{m}
$$

does not vanish. This clearly gives the transcendence of the vectors $\underline{u}_{i}$ (i.e. the transcendence of at least one of their components) ; this had been proved for general $\mathbb{E}$ by Lang in [1]. More interestingly, we can separate components by taking the matrix coefficients suitably singular. For example, when $m=1$ we can take for algebraic $\alpha$

$$
R=\operatorname{diag}(\alpha, 0, \ldots, 0) \quad S_{1}=\operatorname{diag}(1,0, \ldots, 0)
$$

this implies the transcendence of the first component of $\underline{u}_{l}$ (and so obviously that of each component). Similarly, the choice $R=0$ and

$$
S_{i}=\operatorname{diag}\left(\alpha_{i}, 0, \ldots, 0\right)
$$

for algebraic $\alpha_{i}$ gives the linear independence over $\mathbb{A}$ of the first components of $\underline{u}_{1}, \ldots, \underline{u}_{\mathrm{m}}$.

## REFERENCES

[1] S. LANG. - Introduction to Transcendental Numbers. Addison-Wesley, Reading, (1966).
[2] T. SCHNEIDER. - Einführung in die transzendenten Zahlen. Springer Verlag, Berlin, (1957).

David William MASSER<br>University of Nottingham<br>Department of Mathematics<br>University Park<br>NOTTINGHAM NG 7 2RD

-: -: -: -

