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MORSE THEORY ON SINGULAR SPACES 

Fulvio LAZZERI 

Introduction. 

Let X be a space, f : X -» II a map. Denote by X & the set 
ix € X | f(x) — a). Morse theory is concerned with the homotopy type of X^.X^ 
for real numbers a < b when X is a differentiable manifold and f is a proper 
differentiable generic map. 
Here we treat the case that X has isolated singularities. The main applica­
tions are to complex spaces. For example applying this theory we can prove 
that a Stein space X with isolated singularities is homotopically equivalent 
to a CW complex of dimension n = dim^X. Also Lefschetz type theorems are a-
vailable. They depend in general on the kind of singularities of X. 

An example : let X be a complex projective algebraic variety with 
isolated singularities, X q an hyperplane section and let 

<J. : H . ( X O , E ) H.(X,E) 

be the homomorphism induced by the inclusion X^C^X ; in general nothing can 
be said on the tf^. However if the singularities of X are "good" (for example 
if they are of complete intersection type) then the usual Lefschetz theorem 
holds, i.e. tf^ is an isomorphism for i < dim^X^ and surjective for i = dim^X.^. 

In the sequel we give the definitions and we state the theorems. 
Proofs are only sketched ; details will appear in a forthcoming paper in An-
nali Scuola Normale Superiore, Pisa. 

N 
1. Let X be a locally closed set in ]R . Suppose that there exists 

a discrete subset £ C X such that X - £ is a dif f erent iable submanifold of TEp 

of dimension n > 0. For x € X - £ denote by T X ( X ) the tangent space to X at x. 
We shall say that X is a space with isolated singularities iff 

lim sin(T (X),x-y) = 0 
x-*y x 
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for all y € S } where sin(H,v) denotes the sinus between the vector v and the 
N 

linear subspace H in 1 . 

Remarks. 
a) We suppose X embedded in some M for simplicity only ; actu­

ally every construction or result in the sequel will depend only on the stru-
ture given by the sheaf 5^ of germs of differentiable functions on X. 

b) Every analytic space with isolated singularities is a space 
with isolated singularities (see H. Whitney,"Tangents to analytic variety", 
Ann. of Math., 81 (1965), 547). 

N 
From now on X ^ 1 is a space with isolated singularities of dimension n. 

Let Z(X,x) denote the Zariski tangent space of X at x ; namely Z(X,x) 
is the vector subspace of № of all vectors c such that df x(v) = 0 for every 
differentiable function f vanishing on X. 

N 
An n-plane H in 1 is said to be a tangent plane to X at x iff there exists 
a sequence of regular points (x ) in X such that x ~» x and T (X) -> H, the 

v 
N 

latter limit being made in the Gra.ssmanian of n-planes in 3R . The set of all 
tangent planes to X at x will be denoted by T (X) ,* it is easily recognized 
as a closed subset of the Grassmanian of n-planes in Z(X,x). 
Remark that if x is a regular point of X, then Z(X,x) is the usual tangent 
space T (X) and that it is also the single tangent n-plane to X at x. 

Denote by Z'(X,x) the vector space of linear forms on Z(X,x), by 
D(X,x) the set of all 1 € Z'(X,x) identically vanishing on some element of 
T (X) and n(X,x) = Z'(X,x) - D(X,x). 

Proposition 1. 

If X is a real analytic space, then D(X,x) is closed without inte­
rior. Moreover if f can be endowed with a complex analytic structure near x, 
then H(X,x) is connected. 

Both assertions are proved by looking at T^(X). One proves that T^(X) 
is a closed set of Hausdorff dimension less or equal to n-1 ; from that the 
first assertion follows easily. The second is easier, since in that case TX(X.) 
is an analytic space of dimension less or equal to n-2 in the appropriate 
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Gra ssmanian. 

Let f : X-» R be a differentiable function. The differential df x of 

f at a point x is a well defined element of ZT(X,xï. We shall say that f is 

regular at x iff df x£Q(X,x) otherwise x is said to be a critical point 

of f. A critical point x of f will be said non degenerate iff x is a simple 

point of X and (as usualï the Hessian H(f> x is non singular. 

Definition. 

A Morse function on X is a proper differentiable map f : X It with 

only non degenerate critical points. 

It is easy to see that if f is a Morse function, the set of its cri­

tical points is discrete on X. Also the usual density theorems for Morse func­

tions are available in view of proposition 1, if X is a real analytic space. 

N 

2. Let x be an isolated singularity of X IR , f : X -» ]R a dif-

ferentiable function regular at x, f(x) = 0. 

Notations : B ( r ) the open ball of radius e. around x, D(s) = B ( e ) , 

S(e) = D(e) - B(e) , X^ = iy € X | f(y) = . 

Proposition 2. 

There exists r > 0 and a continuous function 'H : R + -» B + so that : 
o 

i) X Q 0 B ( C q ) is a space with isolated singularities, whose only 

singularity is x. 

ii) for 0 < c < e. , S is transversal to X and X . 
' o e o 

iii) for 0 < e < eQ, 0 < TI < T l ( e ) the set M ( e , T l ) = X_^ 0 D ( e ) is a 

smooth compact manifold with boundary whose diffeomorphism class 

depends only on X, x and f j it will be called the vanishing 

manifold of f at x in X and denoted by M(X,x,f). 

ii) and iii) have usual proofs. The proof of i) is just the following lemma 

on angles between linear spaces. 
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Lemma 3, 

N 
Let H Ъе an h-plane, К an hyperplane and v a vector in В . 

Suppose 
sin(v,H) < e , sin(v,K) < e , sin(v,H П к) > *n 

where 0 < < "H. Then 

.in(H.K) < ( 2 e 1 + S 2 ) . ( D 2 - e J ) " 1 / 2 

Proposition 4. 

Let f,g be differentiable functions on X, both regular at x. 
If df^ and dg^ belong to the same connected component of ^(X,x), then the 
vanishing manifolds M(X,x,f) and M(X,x,g) are diffeomorphic. 

3 
The proof is based on the study of the map TU : X * B "* B defined 

by 71 : (x,A.) (11x11*% f(x) + k g(x) ,\) ; lemma 3 gives a uniformity which im­
plies that 7i is of maximal rank on etc.... 

In view of proposition 1, if X carries a complex analytic structure, the 
preceding theorem assures that M(X,x,f) does not depend on f at all. In that 
case we can say some more. Let X c ID . Then ^^(X) is a subset of a complex 
Grassmanian. A holomorphic function g : X ~* IC with g(x) = 0 will be said re­
gular at x € X iff dg^ (the complex differential of g at x) is not identically 
zero on any element of T x(X). 
Let 0 < e « 1 and 0 <,*n <^ 1 and define Mffi(X,x,g) = iy € X | g(y)=*n} n D(e). 
Then M^(X,x,g) is a compact manifold with boundary that does not depend on e , 

'H or g. Moreover the function g = real part of g is a function X -* B which 
is regular at x. 

Proposition 5. 

Mj,(Xx,g) is a deformation retract of M(X,x g). 

The proof is just the construction of a vector field on M(X,x,f) 
whose flow gives the required deformation ; it is constructed with the gradient 

1 2 1 
of the function (g ) where g is the imaginary part of g. 
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3. Let f : X -» H be a Morse function. For a € 3R denote by M the 
a 

set iy € X | f(y) — a). Let x be a singular point of X, f(x) = c ; suppose 
a < c < b and that f (La,bJ) - ix) does not countain singular points of X 
or critical points of f. 
We shall describe the map M ^ ^ M ^ in the homotopical category. First let us 
recall some definition. Let Z be a topological space, Y a subset in Z. In the 
dijoint union of Z with {Y} (a one-point space) identify {Y} with all 
y G Y c Z . The resulting space is denoted by Z/Y. In particular Z x [0, l]/Z x {l) 
is called the cone over Z and denoted by C(Z). Next identify in the dijoint 
union of Z with C(Y) each y £ Y c Z with yx (O) G C(Y) . The resulting space is 
denoted by C(Z,Y). Proposition 6. 

i) There exist a compact set K in f *(a) and a homeomorphism 
M /K -* M that is the identity on M for some 0 < G <^ 1. a! c J a-e 

ii) M^ is a deformation retract of M^. 

iii) K can be chosen homeomorphic with the vanishing manifold M(X,x,f). 

The proofe of i) ii) are similar. Start with the gradient of f on X, nor­
malized so that if tf(t) is an integral of it, then f(tf(t)) = 1. Then multi­
ply by a function equal to 1 on f *([a,b]) and 0 out of f~*(]a-£,b+e[) for 
small r.. The vector field one gets is not defined at x. However studying the 
associated flow, one sees that each integral starting on M can be extended 
to the interval [o,c-a] to obtain a continuous map p : M a*.fo,c-aj -* M^, From 
this it is easy to show ii). Then consider p : M -* M . Define K = p " 1 (x) ; 

c _ a a c c _a 
P c a is a diffeomorphism between M^ - K and M c - ix) and this proves i). 
To prove iii) remark first that for small e, M c D D(G) is the cone over 
M D S(c) and f - 1(c) n D(e) the cone over f (c) 0 S(r) ; this follows from 
the proposition 2 applying standard techniques .Moreover from the description 
above one has that M /f (c) 0 D(c) is homeomorphic with M /M(X,x,f). The 
following lemma shows that M c is homeomorphic with M /f~ (c) 0 D(c) and so 
concludes the proof. 
Lemma 7. 

Let Y be a compact manifold with boundary, H the set 

i(y,t) € C(Y) | y € 3 Y , 1/2 £ t £ 1>. 

- 267 -



L A Z Z E R I 

There exists a homeomorphism between C(Y) andC(Y)/H which is the identity on 
Yxioh 

Remark now that -* Ma/M(X,x,f) is homotopically equivalent to 
M aG^C(M a,M(X,x,f)). Also, if K<=M(X,x,f) i s a deformation retract of M(X,x,f), 
then MaC^.C(Ma? M(X, x, f)) is homotopically equivalent to M^OfC(M^K)t so that 
the former proposition gives the following result 

Theorem 8. 

Let K ^ M(X,x,f) be a deformation retract of M(X,x,f). Then M^U^ 

is homotopically equivalent to M aG^C(M a,K). 

Remark now that if H c M is obtained from a non empty subset K c M 
a a 

by adjoing a cell e^ , then C(M a , H) is obtained from C(M a , K) by adjoing 
a cell e^+i • This proves the following 
Theorem 9. 

Let M(X,x,f) retract with a deformation on a finite spherical com­
plex obtained from a point p by ad joining successively cells e f ^ , . . . , e . 

1 r 
Then M^GpM^ is homotopically equivalent to adjoining successively cells 

, , . . . , e W t o l l . I + 1 ' ' I + 1 a 1 r 

The same remark applied to a Morse function on M(X,x,f) gives the following 

Theorem 10. 

Let op : M(X,x,f) B be a differentiable function with the follo­
wing properties : 

i) cp has critical points p Q, p^, . . . , p r, each non degenerate and not 
in 2M(X,x,f). 

ii) 9M(X,x f) is a fibre of 9 . 

iii) <p(P0) ~ ••• ~ <P(Pr) 

Denote by \^ the index of 9 at p.̂ , i = l,...,r. Then M aC^M^ is homotopically 

equivalent to attaching successively cells A ,...,l^ r^ . to M . A ^ + l A + l a 1 r 
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