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A PSEUDOFUNCTION ON A HELSON SET. I.

Thomas Korner



This paper has been written in such a way that the reader may extract from it
various sub-papers, each complete in itself.

(1) Section 1. Ideas behind the proof. Simple example of their use.

(2) Sections 2, 3. Complete proof of the main theorem with no deviations.

(3) Sections 1, 2, 3.

(4) Section 1, section 9 up to the end of the proof of Theorem 9.3 (1), sections
2 and 3, Theorem 1.1' in section 6, section 8 up to but not including the proof of
Theorem 8.1. This reading gives all the results of general interest.

(5) Sections 1, 2, 3, 4 glance at the results of section 5 but omit the messy proofs,
run rapidly through the rather trivial results of section 6, read the proof of theorem
1.1', read and consider carefully the statements of the results in section 7, read the
proof of Theorem 7.1 and a selection of the proofs in the remainder of the section,
section 8, section 9 omitting details of the proofs from the end of the proof of Theorem
9.3 (1). This reading gives most of the results of specialist interest without involving

the reader in the messiest proofs.



Unless the reader has a special reason for choosing otherwise, selection (4)
offers the best value (possibly reading the proof of Theorem 8.1 or perhaps omitting the
details of section 3). In any case, an attempt has been made (at the occasional cost of
slight repetition) to allow the reader to browse through the paper at will.

Two apologies are necessary. As we mention at the end of section 1 many of the
proofs can be simplified by using the group D *®  pather than T. It is the author's
opinion that the ideas of the paper are more natural in I (even if easier in D°°).
However, it is instructive to rewrite the contents of sections 2 and 3 in terms of D’ .
Certain of the results in section 9 were first obtained in special groups and then repro-
ved for T. Here again the reader may find it pleasanter to work in Doo.

The second apology concerns the inequalities used. Many are much cruder than
they could be, often being in the form "1O1Ox »1 for x1/2". In justification for
this we note that our methods either produce the best quantitative result without any fine
estimates or give a qualitative result with quantitative estimates so bad as to be useless
even when all the immediately obvious refinements have been made. To give an example,
the quantity N(e, K, A) in Lemma 2.1 may readily be bounded by A(K , )\)&-1 .
Improvements in the bounds of A(K , A) will not yield better qualitative or quantita-
tive results. Only by replacing e_1 by (-log e)"1 or some similar improvement

could we obtain genuinely superior results and this I do not know how to do (if indeed

it is possible).



Th. KORNER

§ 1. INTRODUCTION. We follow the notation of [4]. We shall assume a knowledge
of the definitions given there and their simplest consequences. We write T = 5/21(% ,
Xn() =expint for teT and S(T)={tec(T):|tt) =1 forall teT}. we
call a closed set E weak Kronecker (respectively weak Dirichlet) if for any p eM™(E),

€>0, feS(E) we have inf p.{t o Xm(t) - £(t)]» e} =0 (respectively if for any
meZ

p,eM"'(E), € > 0 we have 111;11-1’13 i {t | xm(t) -1y E} =0. Itis clear that a weak
Kronecker set is an independent Helson-1 set and Bjork and Kaufman noticed that by
the theorem of Hahn-Banach any weak Dirichlet set is automatically an N set (thus
clearing up a long standing question). The converse results are also true. If the reader
is unfamiliar with these concepts he should read Lemma 4.1 before proceeding further.

We have written this paper in such a way that Sections § 2 to § 3 form a self

contained proof of

THEOREM 1.1. There exists a weak Kronecker set carrying a non zero pseudo-

function.

Since a Helson set of synthesis cannot carry a true pseudomeasure and since no

measure on a Helson set is a pseudofunction [4] we have

COROLLARY 1.2. (i) (Malliavin) Sets of non synthesis exist ;
(ii) (PiateCki Shapiro) Sets of multiplicity but not of strong
multiplicity exist ;

(iii) Independent N sets need not be of uniqueness.

One way of expressing the theorem is to say that sets which are thin in the sense
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INTRODUCTION

that they are of interpolation may be thick in the sense that they are of multiplicity.

We contrast the beautiful positive result of Varopoulos [1 8].
LEMMA 1.3. No Kronecker set can support a true pseudomeasure.

We defer the discussion of the other results to § 4. The remainder of the present
Section is devoted to heuristic considerations intended to show why we attack the problem
as we do. Except in the case of Lemma 1.11, the proofs we shall offer will be either
non-existent or inadequate. This is because we shall only need Lemma 1.11 in what
follows (and then only for Section 9). I hope nevertheless that the discussion, though
formally unnecessary, will be found helpful if not before then at least after the main
proof has been read.

In a fascinating note [1] Drury introduces the following idea. Suppose E is a
Dirichlet set. Then we can find m(r) » o with [[1 - Kon(r) 1 C(E) € &p > 0. Set
E ={x:]1- Xin(r)®l € €} Then E 2E and E  is a closed Dirichlet set.
Moreover, because E* has a very simple form (E* is "as big as it can be"), E*
has certain nice properties which Drury exploits. In some sense E* is a shadow of
E, but the notion is difficult to formalize, since the shadow is not unique (it depends
on the choice of €& and m(r)).

In studying questions on the union of AAT sets (themselves related to the unsol-

ved question whether a closed countable set is a zA”" set) it is natural to ask whether

we can use the shadow technique to discuss the union of 2 Dirichlet sets E1 , E2

*

(a Dirichlet set is AA' with constant 1 (Lemma 4.2)). If a shadow E, of E,

lies entirely inside or (apart from an arbitrarily small neighbourhood of 0) outside
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Th. KORNER

a shadow Eé; of E1 , the situation is simple to analyze. What happens if the shadows

must intersect on a set E say ?

12
In spite of the vagueness of the description, it turns out to be quite easy to cons-

truct a situation which (in my opinion) corresponds in its essential features with that

described in the question.

LEMMA 1.4. Given 1/10> € >0, we can find closed sets E1, E2, E12<;I,
measures |, € M+(E1), Kye M+(E2), KipE M+(E12) with i Hy =1 Ko =1 Ko I =
1, sequences of integers 0 <N <M, (1)< M, (2)<... and O0<N< M2(1) < M2(2) < ...

such that

(iii) min({p,(m), [k (m)) s e for [m|» N.

This is the first and simplest of a series of similar results, and it is important

to realise what it does and what it does not mean. We have two sets E and E

1 2

which are Dirichlet (condition (i)) but such that if we can get close to 1 on E1 with

a character Xm then we cannot get close to 1 on E2 with the same character
(condition (iii)) at least if [ml » N. We say nothing and can say nothing about the case
| m|¢ N, for example Xo clearlyis 1 bothon E; and E,, andifwe demand

E E2 in a small neighbourhood of O, ;(_m will be closeto 1 onboth E E

17 1, 2

for m small.

On the other hand E tries to imitate both EJ1 and E2. Slightly more

12

precisely, E12 imitates E1 when it is possible to get close to 1 with a character
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Xm ©°0 Ey and imitates E, (with respect to the character X‘m‘) when x_,

is closeto 1 on E, (condition (ii)). We note that although | p.i(m)i large implies

p-12(m) close to pi(m) and so large, it is not true that | p~12(m)| large implies
max(lp,1(m)| s ip,z(m)[) large (consider for example m = M,(r) + M,(r)).

Let us fix our ideas by considering

LEMMA 1.5. If E,, E;,, E;5 and N are as in Lemma 1.4, then

00
i a y. -1 < € implies la > 3 - 23€.
lgN rXrp C(E,UE,VE,,) 2 lay

[o 0] [s0]
Proof. If ) |ar| » 3 then we are home, so we may suppose ) _ |a_| < 3.
r=N =~ T
write A(1) = {r»N:|p;@)| »€}. Then
137 a p@-1€|3a p(o)-1] + la_| | 1t.(0) ]
rer@ 1t I"):N roE r»ZN:,r'fsA.(i) rot

122 3wy -1l +3e

= IJ% a X, - dp;l+ 3¢

¢ Hr*&l Xy = 1 c(e,) * 3¢
< 4e [i=1,2].
Also, noting that A(1)nA(2) =@ we have

) .
2 (un@), e rH12® 1<

< ’r% a, 5*12(1‘) -1+ Irg(ﬂ a, H12(r‘) -1 +1i~eZA:(2) a, ,,.,12(p) -1

< |r>:N a, pqa(0)-1| +|PEZA(1)ar o ()-1] + Lg(z) a, ky(r)-1]
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32 Jagllt ) - by @)+ la_ I 1,(r) = i, (0]
<13 a, ;112(r') - 1] +4€ + 4e+ 3e+ 3€
ryN
= | (:ax Ndpy,| +14¢€
r»N

< “r'»ZN aXp - 1“C(E12) + 14€

€ 15¢ .,
Since lu @] < fliwgh =1, [r@ €llr, =1, it follows that If_;ug » 1-4e,

a |>»1-4¢€ la [>»1-15¢, so a,|»3-23e as stated.
e:_:u(z)l ! ’ I‘EZA:(1)UJ\.(2),P>,N r ’ x;l g

This result is best possible. If E1 ’ E2 are Dirichlet, then, givenany NeZ

and 8§>0, wecanfind 7 | |a [¢3+8 suchthat J - a x (e)=1 foral
ryN r»N

e €E, UE, (see [12] or Lemma 4.1).
Crudely speaking, approximating 1 on E 1 forces us to approximate 1 on

E12. Similarly, approximating 1 on E2 forces us to approximate 1 on E

12°
But, since approximating 1 on E1 is no help in approximating 1 on E2 and
vice versa, by approximating 1 on E,1 and E2 (AZH :arx,r §1 1, AE 25 aXp E’11)

we approximate 2 on E (; 2) and we must approximate -1

on Epp ax,m -1) togetwhatwewant (J_ax = co—r 1).
12 Tyene T vhr B 0E08,

The correct generalization is clear.

LEMMA 1.6 (i) Given &>0, n»1, wecanfindan N and for each

sc{t, 2, ..., n} aclosed set E. and a measure € M+(ES) with g

I
-—
-

S Hg

and for each 1« ig¢n a sequence of integers 0<n < Mi(T) < Mi(2) <... such that
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INTRODUCTION

i) “XM.(J')'1”c(ES)"O as j-oo foreach ieS [;6;45;{1,2,..,11}] ;
1

(i) |ngm)ye implies [ng(m) - }LT(m)I <g forall SecTefl,2,..,n},
[mf>N;

(iil)  |rg,pm)| > max(| p g (m)| , [k p(m)]) - €/8n for all S,Tg{1,2,..,n},
|m|{>N ;

(iv) |;L¢(m)| ¢ €/2 forall |m|>»N.

LEMMA 1.6 (ii) Under the conditions on the first part we have, writing

E= U Eg, that
@4S g{1,2,...,n}

[ee] [o0)
12— apx,-1lse implies > _lanly 2" 1 - B(n)e
r=N r=N

(where B(n) depends only on n).

1 strongly recommend the deduction of Lemma 1.6 (ii) from Lemma 1.6 (i) as an

exercise. The result is again best possible ([1 2] or Lemma 4.1). A more sophisticated

version of Lemma 1.6 (ii) is proved in full as Theorem 7.1 of this paper. However, the

finite version of Lemma 1.6 (i) is even more useful.

LEMMA 1.7 (The Linked Set Lemma). Given 1>€, 7 >0, we can find an
N(e , 11) » 1 with the following property : -
Given 1>8>0 and m » 1 we can find a monotonic increasing function

h:z" o Z+ (such that h(r)> r) with the following properties : -

Given N(&, 1) = 5 M(0) < h(M(0) < M(1) < h(m(1)) < ... < h(M(m)) < M(m+1) such
that M(r+1) is an integral multiple of M(r) [1sr<¢m], we can find finite sets
EgS [-e,e], and measures Ky eM+(ES) with | g =1 [sc¢ {1 92500 ,m}]

such that

11



Th. KORNER

(i)  Mm+D)Eg =0 (i.e. Ege{2rr/Mm+):rez)) [sci,2,...,m]
(W Xy -1 ”C(ES) ¢d foreach ies
@iig) | pg(r)| »7  implies |us(r) - k()| ¢q forall S cTe{1,2,..,m},
M(m+1) - N> |r|» N
@) [hg@h (k@] >q implies | kg @5 min(ig®I, (k@) - 1
[S,TQ {1,2,...,m}, Mm+1) -N>|r|> N]

v) |:L¢(r')| | for all M(m+1) - N> |r|>» N.

Remark. Together (iii) and (iv) show that if “LS(I'), l-lT(r‘)[ > 21( then
[rp() - kg(r)|€27.

REMARKS. (1) We shall exhibit the main idea in the construction of these sets at
the end of this section by proving an analogous result for D* (Lemma 1.12).

(2) In constructing measures or pseudomeasures as limits of finitely
supported measures (W) it is sometimes necessary and usually convenient to choose
supp u,, with M supp by = 0 for some M. In this case ;'n is periodic with period
M and knowledge of ;Ln(m) for k< |ml¢k+M givesus ;Ln(m) for all m. We
frequently make use of this fact without drawing attention to it (e. g. knowing
|;n(m)| ¢1 for |m|¢M/2 we then deduce | pnI] PM €1).

As we noted in the first paragraph of this section, Bjork and Kaufman remarked
independently that if E is a closed set with lim i)up u{x : Xp(x) - 1< 8} ~ Il

p=
forall peM'(E), 8> 0 (i.e.if E is weak Dirichlet), then 1/E lies in the

[o.0) e 0]
uniform closure of B, = {Z a X E:Y " lal« 1} (by Hahn Banach). This leads
r=1 r=1
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us to ask whether 1 liesin {j ar‘xr‘lE : r; |ar! <@} and this in turn prompts the

question : - if lim sup p,{x |)( (x) -1} ¢ } y Mgl for an peM+(E), 3> 0, can
p-’ oo
we say that 1|E lies in the uniform closure of B)\_1 ={: apxrlE la Py }7
r=1

The answer is no.

Consider the set E of Lemma 1.6 (ii). We have

lim suppix : | X (x)-1|s8};- :hmsupp-{ |Xm.(p)(x)—1|<8}
i

p> o© p=0

m
>,;1n Z; (U E s)
i= i€s
1 1
» 1 w@ = 1wl
for p e MT(E), § > 0 whilst 1E ¢Bm , indeedif & >0 then (for € sufficient-
ly small) 1|E¢ B, /(2M-1-8)"

Can this counter example be improved ? We note at once that writing

E'= U Eg we have
card S»q
lim supp.{x |;, (x) -1 ¢ 5}) Z}L(U EQ”%“P—”
p*co i=1 i€ S, card S)q

forall pe MT(E'), & > 0. But what can we say about k = inf{s : 1|E' belongs to
the uniform closure of B/ = {g a x|E': §=:1 |ar| < s}} It is not terribly difficult

to see that k =K(m,q) +o(1) as & »0 for some K(q, m) depending onlyon m
and q. Direct calculation shows K(2,1) =3,K(4,2) =5,K(6,3) = 7. (Thus for example,
taking m=6, q=3, we have ligl-i;lp p{x :|xp(x) - 1= 3}»%”}1-“ for all

peM(E'), &> 0, but, given ¢ >0, we know, provided € is small enough, that

1=Z;apxr(e) for all ee€E' implies E|ar|>,7-*:).

r=
However, the calculations then become complicated (for example K(8,4) = 11+1/7),

13



Th. KORNER

and I am indebted to Conway for the key step in the proof that lim sup{K(m.q) 1 qy Am}
m> o
=0 for 1> A> 0. (The second half of Section § 3 is devoted to this proof.) Knowing

this fact we have directly from Lemma 1.6 (i)

LEMMA 1.8. Given K»>O0, 1> A >0, we can find a closed set E such that

lim sup{x : [xp(x) -1 ¢? P Al foranm pe MT(E), §5>0, yet i: a x.(e) =1
p+ oo r=1

forall eeE implies 3 “la |»K.
(This point will be examined more closely in Section § 7.

More importantly we have, by similar arguments, from Lemma 1.7

LEMMA 1,9. Given 12>€>0, 1>A>0, K»1, wecanfindan N=N(e, K,
A »1 andan m(K,\) »1 such that, given 8 >0, we can find a monotonic increa-
sing function h: g"" > §+ (such that h(r)> r) with the following property : -

Given N(e, K , A) = %M(O) < h(M(0)) < M(1) < h(M(1)) < ... < h(M(m)) < M(m+1)
such that M(r+1) is an integral multiple of M(r) [1 §rg m] , we can find a finite
set Eg[-€,€] such that

i) M(m+1E =0

(ii) sup ;L{e : I)(M(J.)(e) -1 < 8} > Ml for ail peM(E)

1€j€
(i) lvi)(r:-lﬂ)—M(O)/Z @ M(m+1)-M(0)/2 |
et =1 f 11 eE impli > K.
iii rg._r\:/l(o) a x.(e or all e implies I%(O)/z a,

In practice it is often more convenient to use the equivalent

LEMMA 1.9'. As for Lemma 1.9 with condition (ii) replaced by

m m
i i . i N = -\ / R |
(ii') There exist bM(J) >0 with J§=1: bM(J) 1 and J§=1 bM(J)XM(J)

£8+2(1 -7,
14
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(It is not claimed that the smallest possible value of the N(e , K , A) and so on
is the same in the two versions of the Lemma).

Using either version of the lemma we can, for example, improve Lemma 1.8
to give

LEMMA 1.10 (i). Given K> 0, we can find a weak Dirichlet set E such that

(-]

oo
> - a x.(e)=1 forall eeE implies > _la |»K.
= rxr T
In fact with a little more work we can show that

LEMMA 1.10 (ii). Given K >0, we can find a weak Dirichlet set Ec[-€,€]

oo [« <)
such that P_E : arx,r‘(e) =1 forall eeE implies P§_1;|arl yK.

This gives in turn, after a few modifications,

LEMMA 1.10 (iii). There exists a weak Dirichlet set E such that

oo
“2131‘}'11'1“(:(]3)”) forall ) "|a,|< o (i.e. E isnota ZAY  set).
p:

An improved version of this result is proved in full as Theorem 8.1.

It is clear that some sort of connection exists between the question of the existence
of a weak Dirichlet set which is not zA*t and the question of the existence of a weak
Dirichlet set which is not of uniqueness : we therefore turn our attention to this second
question.

We know ([5] p. 53) that a closed set E is of multiplicity if and only if it supports
a non zero pseudofunction. If we want to construct a weak Dirichlet set E and a nonzero

pseudofunction T with E as support, it is natural to attempt to re-interpret Lemma

15
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1.9' in terms of pseudomeasures.

LEMMA 1.9". If E is asin Lemma 1.9', then we can finda T eM(E) = PM(E)

such that

@i") TO)=1=[|T]| PM(E)’ IT()| ¢ K™' for all M(0) < r « M(m+1) - M(0).

5 M(m+1)-M(0) /2 | —
Proof. Since = a x |E: a_ <Kt} is a convex circled
I“=M(O) /2 r’r r .}

setand 1€ Z it follows by the theorem of Hahn-Banach that there exists an S
SePM(E) with |<S,f)l <1=[<S,1}| forall feY . In particular, taking

=1

£=Kx, [M(0)/2 ¢ r ¢ M(m+1) = M(0)/2], we have | é(r)l <K for M(0)/2<rg

M(m+1) -~ M(0)/2, S(0) =1. We remind the reader that S is periodic with period
M(m+1). Since S takes only a finite number of values, we can find an | s| ¢M(0)/2

such that |S(s)| = ISl Set T=x S/ISlp,. Then T(0) =1=|Tlpy, and

PM*

[T(r)| = [S(r - ) /Is] pu € S(r - s) <K~ forall M(0)<r¢Mm+1) - M) as
required.

We obtain immediately
LEMMA 1.11. There exists a weak Dirichlet set E which is of multiplicity.

Proof. Set T, = 80 » &,=1, my=0, MO(1) = 4N(1,2,3/4) (with the notation

+ . .
of Lemma 1.9'). We construct T,€M’, & .>0, m =0, Mp(mr+1) inductively

r+1 -r-2
)

as follows. Suppose Mr(mp+1) » 4N (€ 2770, 1=2

r+1’

By Lemmas 1.9' and 1.9" we can find successively M (0) € Mp(mr+1 )/2,

m .31 Mr'+1(1) a (positive) integral multiple of both &M 4 (0) and Mp(mr,+1),

M1 2, M1 3, ..., My (mr+1) such that Mr+1(s + 1) is a (positive) integral

16
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multiple of M, () [1¢sem  ,-1], e  ,/8>e >0 suchthat M_ .(m e .

-1-4 s . .
<2 , Mr‘+1 (mr+1+1) a (positive)integral multiple of Mr+1 (mr‘+1) such that

r+2 -r-3 . _
277, 1 =2 ), T, €M withsupp T ., =E . €

Mr'+1 (ml:'+1"'1 ) 41\I(Er‘+2 ’

(-e.,q - 8p+1] such that

@) Mr+1(mr+1+1)Er+1 =0 m
r+1

(ii) There exist.. 42>0  with ;j b 4 =1 and

m bMr‘+1 @ J= Mr+1 @

I f; b x R
. L -1 < =

& M, 00 M 0
- ~ -r=1
(i)' T, ,0) = i Ty, ]1PM =1, |TP+1(s)l €2 for all MP+1(0)<Is| <

Mr'+1 (mr+1+1) - M (0).

(Note that we could demand Mm_](s) >» K(r,s)M 11(s) for some K(r,s) chosen in

advance [O\<s\<mr+1, ryi).

_ oy ~ _
S,=T,- By(ii)' s (0=Is_ll,, =1 sobythe

Set Sr+ r+1? o o

—_ *
1_Sr T

weak * compactness of the unit ball in PM(E), Sr has a weak * limit point S

-r-1

with S(0) =1 (so S#£0). Againby (iii)' [S,(s)¢ [T (s) ¢ 2 for all

) - Mr‘+1(0) >/

Mr-+1(0) <|sl < M1 (mp+1+1) -M. (0) and kyr+1. Since Mr+1(mm-1

-r-1

M. (mp+1+1)/2, we have | Sk(s)l €2 for all M= ) &|s| < Mm_z(o), k> r+1

-r-1

and so | S(s)| ¢ 2 forall M_ ,(0)¢ |s| ¢«M_ ,(0). Thus S is a non zero

r+2

pseudofunction.
On the other hand, setting Fn+1 = Fn + En+1 = {x +y:x Fn’ y En+1)’ we

have that Fn+ converges topologically to a closed set E with sup{| X - y| :

1

xeF yeE}(Zen Since suppSnan, we have Supp Sc€E andso E

n’ +1°

supports a non zero pseudofunction.

17
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On the other hand given y €E we can certainly findan x e Fn+ with

1
|x-y|¢2M_(m_ ) <2 andsowith | Fu( NOE an(J.)(y)l <2, 1t follows
that |) an(j)an(j)(y) - <2413 an(j))(,Mn(j)(x) €21 L0 as nac.
Thus E is weak Dirichlet.

Remark. E is a translational set (un ensemble de translation [5] Ch. 1). We
remind the reader of the first example, due to Piatecki Shapiro, of a set of multiplicity

o n
which is not of strict multiplicity. This was the set p = {g €. 270, g e, sn/k
forall n»0, & =0 or e =1} [k> 2] (see [15]). As constructed E¢P and
P ;éE but E and P have certain resemblances.

Having got Lemma 1.11 it is natural to try a similar attack on Theorem 1.1.
Surprisingly only one further difficulty arises. It turns out that we must be able to
bound || Tl M in Lemma 1.9" independently of M(m+1). (We shall draw attention to
the point in the argument where this fact is needed). But (as the reader may have sus-
pected) our derivation of Lemma 1.9" threw away more of our knowledge of E than
necessary. In fact (introducing more notations than we have specifically defined) we

can find ag with ]aslsC(K A) such that z :aSp.S=T has
¢£S§{1,2,..,n}

the property (iii)"™ . In particular

LEMMA 1.9"', We can ensure that T in Lemma 1.9" satisfies
() ITlpy<ck A)
where C onlydependson K and A (and, in particular, C does not depend

on M(m+1)).

We shall restate Lemma 1.9" as Lemma 2.1 (The central Lemma).

18
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As we stated above some of the work simplifies if we work in D%®. We conclude
this section by showing how this happens.The results proved will not be required
again and the reader who is unhappy working in D% may skip the rest of the section
(except for the last paragraph). However the calculations of the first part of Section 3
may be easier to understand in the light of what follows.

I should like to thank Dr. Drury for convincing me that the results of this paper
generalize to, and simplify in, D% . In practice any reader who can make sense out
of the paragraph that follows knows enough to follow the remainder of the section.

Recall first that D% is the product II D2 of countably many copies of the
topological group D2 = {0,1]. The elements of D® are thus sequences (ej)
with € j= 0, 1. The dual of D% consists of sequences ()LJ.) with *= o, 1
and only a finite number of )Lj non zero. We have {(x j) , (Ej)) = ﬁ(q)ej X J

j=
We write in an obvious (but non standard) manner (E,j) = e(é 2 ejB"k),
(7'-3.) = X(é )Ck). Thus for example €(2/3 +2/27) is the sequence (1, 0, 1, O,
0, ...)eD®, x(7) is the sequence (1, 1, 1, 0, 0, ...) eD.  and x(7), e@2/3 +
2/27) = (1" (-1)° (1) = 1.

Let us prove an analogue of L.emma 1.7 (The Linked Set L.emma) for D°°.

Lemma 1.7'. Let Osgsr <r2 <ese <IN be integers. Set

1 m+1

[og

r'k+1-1
k- *

(«( Se(o) + 9 e(2 /35))/2) (when % represents a convolution product and
s=r
k

8x is the Dirac measure at x). Writing P’S = . : SO'k, ES = Supp pg [SS {1 y
2, ..., mj] we have p.SeM+, i "LS" =1 and

r
. 1
@ [xe ™) - 1nC(ES) -0

19



Th. KORNER

Ty i1~
(ii) nx(j)—1l1c(ES)=o for 2 '¢j<2 , i¢s

T'm+1 Tme1™! t
(iii) Let 0gj<2 so that j= 2 [t 2
t=0

Ye=0, 1. Let R={k:y =0 forall r <t<y i Then
B(X@) =1 it ReS

;S(x(j)) =0 otherwise.

Proof. Direct calculation (which the reader should do).

Remark. If in Lemma 1.7 we could take 9 = 1= 0 and restrain ;LS(I") to
take the values O and 1 the conditions (iii), (iv) and (v) would reduce to something
very like (iii) in this lemma.

The fact that condition (iii) of Lemma 1.7' is so much arithmetically simpler than
conditions (iii), (iv) and (v) of Lemma 1.7 (though in fact they represent the same
phenomenon) enables us to obtain a version of Lemma (2.1) (The Central L.emma) very
quickly. Consider the finite space VY of non empty subsets of {1 9 2y eeey m} and
the collection of functions fg : X »+ R given by fS(R) =1 if ScRey fS(R) =0
otherwise [sci{1, 2, ..., m}]. Let K(m,q) = int% Ag 1T Aglg(R) =1 for all

Rey, cardR>q}.

LEMMA 1.12 (a). With the notation above there exist agpe C |[Rey, card R »q|

such that
-1
Y an, =1, |3 an I (R)| «K(m,q)™" for S #@.
R card R>»q RS
(b) . With the notation of (1) and of Lemma 1.7' we have, writing
T = Z : aR“R and E =supp T, that
card R»q

20
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W lx@ ™ - gy =0
(ii) card {1 fk<m: <x(2rl‘),e> # 1} >q

~ ~ r r
i) Tl gy = TO) = 13 K(m, | T(X@) | for 2 '¢j<2 ™

(v) ltly,<«32 lagl =C(m,q), say, where C(m,q)
card RYq

depends onlyon m and (.

Proof. (a) Hahn-Banach (we shall reprove this in Section 3).

(b) Since supp T U supp , = U E,, conditions @{)
card R>q card R>»q
and (ii) follow directly from conditions (i) and (ii) of Lemma 1.7'.
L T ¢
To prove (iii) observe first that if 0 j <2 so that j= E xt 2
t=0

[)'t =0, 1] we have by Lemma 1.7" (iii)

TG =37 ap b =30 ag ig®
q

card RY» card R»q

r
where S={k:)“t=0 for all rk\<t<xk+1}. If O\<;i<21 then S =@ andwe

have
T(X(G) = 3, a =1.
card R)q
I‘1 r‘m+1
If 2 '§j<2 then S #¢@ and by (a) we have

R . 1
TGNl = |3 a, f.(R)| ¢ K(q,m)™" .
* card R»q RS ’
~ rm+1
Since T(x(j)) is periodicin j with period 2 (by (i) this gives (iii).

Finally (iv) follows from the fact that pp \ =1 andso ITl ¢33 lapllrLll, =
2 lagl
Why do we claim that Lemma 1.12 is a version of Lemma 1.9"' ? Choose a

1>A>0., Iweset q=[Am]+1 then Lemma 1.12 (ii) has the form of Lemma 1.9'(ii).
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If we knew that K([Am] , m) 00 as m +o then Lemma 1.12 (iii) would have the
form of Lemma 1.9"(iii) and we would be home. It is this combinatorial fact that we
shall establish in the second part of Section 3.

I must conclude this introduction by expressing my thanks to several people.
To Dr. N. Th. Varopoulos and Dr, S. Drury for their continual advice and encourage-
ment and for suggesting the problems on AAY  which led to this paper ; to professors
J.-P. Kahane and C. McGehee and Dr. J. Stegeman for reading the first draft and
suggesting several improvements in presentation (and to other people whose sugges-
tions have simply been incorporated without acknowledgement) ; and finally to Dr. J.
H. Conway (though there is no possibility that the reader could overlook his contribu-

tion).
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MAL!Y THEOREM

§ 2. THE CONSTRUCTION FOR THE MAIN THEOREM.
The object of this section is to construct a non zero pseudofunction S supported

by a weak Kronecker set. We use the following central lemma which we discussed in

§ 1 and shall prove in § 3.

LEMMA 2.1 (The Central Lemma). Given K>1, 1>X>0, we can find a
C(K,A)»1 andan m(K, A)e __é+ with the following property : -

Given 1>&€ >0 wecanfindan N(e¢, K, A) >1 with the following property :-

Given & >0, we can find a monotonic increasing function h : _Z_"' > é+ (such
that h(r) > r) with the following property : -

Given N(e, K ,A) = % M(0) < h(M(0)) < M(1) < h(M(1)) < M(2) < ... < h(M(m)) < M(m+1)
such that M(r+1) is an integral multiple of M(r) [1¢r<m] we can find a finite
set Ec[-e,e] and TeM(E)=PM(E) such that

(i) M(m+1)E =0

m m

(if) There exist by >0 with g by =1 and | E by*mG) = e
< 8 +2(1-%

(ii)' card {1 srgm: I)(M(r)(x) -1 ¢ 8} »>km forall xe€E

(i) [Tl = T(0) = 1» K [T(r)|

sup
M(m+1)-M(0) > r>M(0)
@iv) || M €C.

Remark 1. Conditions (ii) and (ii)' are, of course, essentially equivalent. We

shall use which ever version is more convenient.

Remark 2. The condition M(r+1) an integral multiple of M(r) is artificial.

23



Th. KORNER

We shall prove a stronger version of the Central Lemma in which the condition is
dropped as Lemma 5.2' (the proof relies on the same ideas but is messier).

Remark 3. Our argument will depend crucially on the order in which we are
allowed to choose our constants and the manner in which they depend on one another.
In particular it is extremely important that, though C dependson K and A, it
does not depend on M(m+1) which can be taken as large as we like without allowing
Tl gy >C-

We shall need to choose a sequence fn of functions in S(g‘) such that
-n-10

sup_ [£ (t) - £ (s)] ¢ 2
|t-5|‘2 2n+2''n n

We shall obtain E and S by constructing inductively a sequence of measure

and the f  are uniformly dense in S(T).

""M supported on finite sets En and taking E to be the topological limit of the

E S to be aweak o(A,PM) limit point of the By

n’
We construct E n’ 8 n subject to the following inductive condition (here

N(e , K, A) is defined as in Lemma 2.1, but for convenience we suppose, as we may,

that N(e , K, A) increases as K increases.)

th

INDUCTIVE CONDITION L(n). At the conclusion of the n step we have a

-4n-8

finite set E_, ameasure p eM(En), 2 > g(n) > 0 and an integer P(n)= 1

such that
® wy© =1
@ Np,lpy€2-27"

n+4 ”

(i) Nem/2, 2™ ly, 1-2") ¢ P@m).

Remark 1. The initial steps of our construction have no particular importance.
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We could for example take E = {0}, Ko the unit mass & o at the origin,

4

2~8 , 1-27%

> €{(0)» 0 arbitrary, P(0)=N(g(0)/2, 2

Remark 2. Conditions (i) and (ii) have no great importance (they ensure that 0
cannot be a weak # limit point of the p_ = and that [lu [l is bounded). On
the other hand (iii) is connected with the most delicate part of our proof. The reader
should thus take especial note of the points where we use (iii) and the points where we

ensure that (iii) will be satisfied at n+1,

LEMMA 2.2. Given E_, Wk, €(n), P(n) satistying the inductive condition

L(n), wecanfind E e(n+1), P(n+1) satisfying condition L(n+1)

n+1’ Pnsr?

such that in addition
(iv) e(n)/8 » e(n+1)

(v)  P(n+1) » 4P(n)

i) |p O <l @0 +2™*  foran  |r|¢P()

(i) [p, @] €2"%  foranl  P()¢|r| ¢P(n+1)

(viii) sup inf  |x-y|ge().
ye En+1 xe E:n

Further,

(ix) There existsa g eA(T), | €01 i A(T) = 1 suchthat g has real

n+1 +1

Fourier coefficients and writing Foi= E 1t [-2&(n+1) , 2€e(n+1)]  we have

n

~n-1
sup |g  (x)-f (%) <2 .
XxeF n+1 n+1

n+1

Proof. Using the result and the notation of the Central Lemma (2. 1) together

with part (iii) of Inductive Condition L(n) we proceed as follows :
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n=4),

Write m = m(2n+4 i (9 “M’ 1-2 We can select P(n) <M(1) <M(2)< ..

. <M(n) <M(n+1) suchthat M(r+1) is an integral multiple of M(r) [1<sr¢m] and

(1 M(De(n) > 2™ () Iy,

n+16

) M(r+1) y 2 Mr) [1<r¢m]

whilst choosing O < &(n+1) < min(e(n)/32, 2'“'16/M(m)) we have

3) M(m+1) > 16M(m) + N(e(n+1)/2,2™ |, c@™ I I, 1-27"7%),1-27")

in such a way that we canfinda T ;€ M(T) with the following properties. If we

write En+1 = supp 'Tn +1 then

(4) n+1 c [-em)/2, e(n)/2]

(5) M(m+1)E:H_1 = 0.
) ‘ m m —n-3
(6) There exist by »0 with ;i‘;bM(j) =1 and “j=z1bM(j)7‘M(j) -1 g2

@) 1T Ipp = Taer©@ = 12" ey ()]

sup |T
M(m+1)-P(n)>r3»P(n) 1

(8) =4y,

sc™

I Th nM n llM’

We put P(n+1) = M(m+1) - P(n).

Let En={e1,e2, ...,ee} (with €1r €y «vvy @

) distinct).

By (1) and (2) we can find distinct e! = 2= ; —Gj-L with v, .€z [1¢uel]

u,j

such that

©) le, - )l < e()/4 [leust]

(10) le, -eyle2™™ 2/l Ny, [1¢uct]

(11) | )(M(J.)(e&) -t ()¢ =5 [1sucl, 1¢j¢m].
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We note that (10) yields

_ -n-8 ;4
(10") | X.(e,) - )‘r(e&)i €2 /1 anM forall |r|<P(m), 1sug?l.
Thus, if we write uljl for that measure with support

E! = {e1', e)s oeuy eé} and p‘r'n({el”)= pn({eu}) [1c¢uct]

we have

(10") { ;L;l - ﬁn(r)] <28 foran  [r|<P().

We remark that

(12) M(m-«-1)el‘1 =0.

Finally we tidy up by noting that (4), the inductive condition o~4n-8 >e(n)> 0 and
the definition of f ~ give ]fn+1(eu) - fn+1(el'1)| < 21 o6 that (11) gives

(1) | Kna) @) = Enpgel 2777

*
—_ 1
E 1_En+En+

B and proceed to demonstrate that
n+1 n+

We set el = u['] * T 1

the E e(n+1), P(n+1) which we have constructed satisfy the conclu-

n+1’ Hnst?

sions of the lemma.

Since E!, EX

ne1 are finite, E

) . , ,
neq s, andsince p! eM(EJn),

*
T eM(En+1)’ we have . €E .. Further, by (3) and (12) we have
M(m+1 )Em+1 = 0. By the choice of €(n+1) we have at once e&(n+1) < p~4n-12,

By (7) we have p.n+1(0) = ur'l(O) T .(0)=1.1=1 and so condition L(n+1)(i=) is

n+1
satisfied. By (7) and (10")

-nN-

e @€ RO T, 0] € (i, 0] + 278 Tl oy,

§2-2"1 for  |r|<P(n).

By (7) and the definition of )
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ey @l ¢ Tt @1 T @] € D 1y, 27074 By, = 27
for P(n) ¢ r ¢« M(m+1) - P(n).

~ -n-1
Thus I}Ln+1 (r)s2-2 . But Mm+1)E_ , =0 and

sup
-P(n) ¢ r ¢« M(m+1)-P(n)
« -n-1 .
so p_ ., hasperiod M(m+1). It follows that || [T I pm€2-2 =1, i.e. con-

dition L(n+1)(ii) is satisfied.

To show that condition L(n+1)(gi) is satisfied, we remark that by (8)

Do g € T T Ty T = Mg g BTy €y C@™ 40 By, 1-27%

whilst by (3) (since M(m) > P(n))
P(n+1) » M(m+1) = M(m) » N(€(n+1)/2,2™ || wn c@™4| ol 1 - 274y 4 _p-n-5),
Thus P(n+1) > N(e(N+1)/2 , 25 I (TN ||M , 1—2‘“‘4) as required, and we have
succeeded in re-establishing the induction.

We turn to the remaining conditions of the lemma. Condition (i_y) follows directly

from the definition of &(n+1), (g) follows from (10") and (7) which together give

@ €l @] T @)

Ui + 2711 oy

8

<lp ] + 27" for all |r|<P(n)

and (2 ) was proved in the paragraph immediately following the definition of Tn+1

The proof of condition (i____x_ ) is slightly more complicated.

m
Set g ;= Z: bM(j)%M(j)' Automatically g, eA(T), | €1 I A(T) = 1
J=1

and g ., has real Fourier coefficients. If x€F_ ,=E_ , + [-2e(n+1) , 2e(n+1)]

=E} + E:+1 +[-2€(n+1) , 2e(n+1)] then by definition we can write x=e'+e +y

where e'€E!, e <E and |y|<€2e(n+1). Thus

n+1
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m
lgn+1 x) - L )] < Ig bM(j)fn+1(e') “ (")

+]f le) -f L (x)]

n+1 n+1

2 *
1M M) e (€)= fo o)
m
100 M) © v e = )]

m
’ Il;\;1 bM(:i)xM(J')(e )%'M(j)(ey) &n 1|

=0+ sup I £

t-s < 4e(n+1)

(t) - (s)|

n+1 n+1

m « , |

ueE! 1¢jsm
(e")]

m n+1
by X rale! 1 - .
MDY YO R O
€0+ p7n=4, on=3  o-n-4 2e(n+1) sup  M(j)
T¢jsm
g2™-1
m
using the fact that 2 bM(j) =1 and that fn+1 varies slowly (this is the point at
J=1
which the condition sup 5o o lfn(t) - fn(s)l «27 10 Ghich we imposed earlier
t-s <2

becomes important ; for any fe€S(T) our construction will eventually give good
approximations but only when, as must happen if €(n) -0, we know that f is almost
constant on every interval of length 4 (n+1), the results numbered (b) and (11') and
the fact that 1 - )(M(j)(y) is small (since we chose e(n+1) € 2_n_16/M(m) y repre-
sents a very small perturbation relative to the wavelengths considered).

(r)] =

Remark 1. Let us see, once again, how we bounded ] Tn+1

[whe1 (O T ()], For |r|<P(n) we used the fact that, since p! . isonly
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a slight perturbation of w1, :Lr'l(r‘) is close to :Ln(r), together with the fact that
I'}n 1 (r)] < I]Trl 1 i pm =1- Onthe other handif r is large (for example comparable
with  M(1)) Wy, is not longer a small perturbation of K, compared with the wave-
lengthof X . We can (at least at first sight) only use the crudest possible estimate
|;;.r'l(r)| ‘<“"L11| ”M = by ”M Since we want II"n+1 (r)] < 2—n-2, this means that we must
ensure |%n+1(p)| <K , where K= 212 Ky "M What about the gap | r| > P(n),

but r not very large compared with P(n) ? It is possible (and in our construction
actually happens) that | ; n(I‘)l is comparable with 1 for some r strictly comparable
with P(n). We cannot, therefore, use a perturbation argument to show l,:.l[l(r')l

small (and in our construction [,,L[’l(r)l is, in fact, close to 1 for some |r| ¢ 2P(n)).
To get |;, n+1 (r)] small, we must therefore take I'}n 1 (r)] small, and with the appa-

ratus at our disposal, the simplest thing to do is to take |T __ .(r)| < k1. (It is

n+1

possible to proceed otherwise, but the most obvious ways simply transfer part of the
difficulty from one section of the proof to another).
We have thus decided to have ITn+1 )] < K for P(n) ¢ r ¢« M(m+1) = P(n).

In order to have E  , closeto E , wealsowant supp T ,< [-en)/2, e(n)/2] .

1
"n—4)

Thus if we are to use Lemma 2.1, we must have P(n) »N(g(n)/2 , on+2 i P’n“ M’ 1-2 ,

i.e. we must have a condition of type (iii). How are we to re-establish such a condition

for n+1 ? We know that || P +1H M \<"p.[',l 11M||Tn+1 I]M= i }Ln” 1l T HM. But (and

this is the important point) is independent of M(m+1) and so of

ITr v
P(n+1) = M(m+1) - P(n). By choosing M(m+1) sufficiently large (iii) is automatically

satisfied.

30



MAIN THEOREM

Remark 2. The chain of ideas that leads to the proof of (ix) runs as follows. We

know that if E1nE2=¢ and E,UVE

1 2 is Kronecker, then, if E E2 are closed

1 ,
and uncountable, E1 + E2 is not Helson. On the other hand if E.1 n E2 =@ and

E,VE is Dirichlet, then, if E1 , E are closed, E1 + E2 is Dirichlet. Thinking

1 2 2

about these 2 results, we are led to consider the following obvious fact. If fe€ S(l),

E and E

1 5 are closed, %M iscloseto £ on E1 and )CM iscloseto 1 on

E then, provided supp E2 is a small neighborhood close to O and f varies

2’
slowly, /‘M is closeto f on E1 +E2. Similarly if )CM is close to f on most

of E then )(M will be close to f onmostof E,+E, andthisis the content

‘| s
of (ix).
We are now in a position to give the

Proof of Theorem 1.1, Construct a sequence (E Potr e(n+1), P(n+1))

n+1’
satisfying the conclusions of Lemma 2.2 [n =0, 1, 2, .. ] Let E be the topolo-
gical limit of the En, i, e. let
E={x:wecanﬁnd x, €E  with x +x as n+ ]},
n n n
(note that E is automatically closed). Conditions (iv) and (vii) of Lemma 2.2 show
that, given y€E wecanfindan x€E_  with |x - y|<2€(n). Condition (ix)
now gives sup |gn(x) - fn(x)l «2™ since the f, are uniformly dense in S(T)
X€E -
this means that inf sup |gn(x) -f(x)|=0 forall feS(T) andso E is weak
neZ xe€E
Kronecker.

On the other hand, since (by the Inductive Condition L(n) (ii)) || T I pm 1S

bounded, the weak ¢ (A , PM) compactness of the unit ball shows that p.n has a
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weak limit point S say (see also Remark 1 following this proof). We investigate the
properties of S.

If feA(T), suppfnE =@, then supp fnE = @ and so (f »R> =0
for all sufficiently large n (recall that T EM(En)). Thus <£,S> =0 and
supp S ¢E. Since (by the Inductive Condition L(n) (i)) f:.n(o) =1 forall n, it
follows that é(O) =1 andin particular S # 0. Using conditions (vi) and (vii) of

Lemma 2.2, we see that | p.q(r‘)| < o1

for all P(n)¢|r|<P(n+1), qyn+l and so
|s()| ¢ 271 soran P(n)<|r|<P(n+1). Since (by (v)) P(n) > as n+ o,
this shows that S(r) »0 as |r|{+o. Thus S is anon zero pseudofunction and
the proof is complete.

Remark 1. A useful remark of Salem (proved in Lemma 4.1) tells us that
I - ;(P“ c(F) Smallimplies - )Cr" A(F) Small. In particular, if T isa
pseudomeasure with [[T{l,, €2 say and supportin [-€,€] with €>0 small,
it follows from the fact that |1 - p ”C([— e, €]) is small for r nearto O that

T(r) is close to T(0). Thus, if o is constructed as in the proof of Lemma 2.2,

+1

we have Tn+1(r') close to 1, ur"(r‘) close to p.n(r') and so p_,.(r) close to

n+1
;Ln(r‘) for |r| not too large. Doing the calculations explicitly (they are simple and
can be simplified still further by taking &(n) »0 very rapidly) we see that :Ln(r)
converges as n s o foreach r. In this way we see that Py S weakly for

some S ePM. Wethus have S as the limit (not a limit point) of the g 0 and avoid
the use of the axiom of choice (nor do we need this axiom anywhere else in this paper.

Remark 2. We note that S is synthesised boundedly by the measures Hn (all

that the theorem says is that S is not synthesisable by measures with support in E).
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There are other criteria of thinness besides interpolation properties. In Section

§ 6 we shall prove (using very minor modifications of the ideas above)

THEOREM 1.1'. Given &(n) +0 n3»1, we can find a weak Kronecker set
E which is not of synthesis together with a sequence of integers Q(n) s such that

E E{x s x =2nr/QMn) < 5(Q(n)) for some 1¢r¢ Q(n)}.

By picking 5(n) + 0 fast enough we can ensure that E is Dirichlet and indeed
satisfies the Salem covering condition (see [4]), and that, given H a continuous
increasing function with H(0) =0, E has Hausdorff H-measure O (cf. also the
Hertz arithmetic condition [5] p. 124, [3]).

We remark that a result of Kahane ([4] p. 97) shows that a Dirichlet set cannot
support a non zero pseudofunction.

We shall also indicate a proof of

THEOREM 1.1"., Given H:R =» B+ continuous increasing with H(0) = 0,
we can find a weak Kronecker set E with Hausdorff H measure O which supports

a non zero pseudofunction.

The proof of Theorem 1. 1" will involve results proved in Section § 5 but the

proof of Theorem 1.1' can, if the reader so wishes, be read now.

§ 3. PROOF OF THE CENTRAL LEMMA. Let myqg»1 Consider the finite
space Y of non empiy subsets of {1 9 25 seey mj and the collection of functions
fS : X +R given by
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tS(R)=1 if ScRey
f5(R) =0 otherwise [sefl, 2, ..., mjl.
Let &(m,q) = {Selp , card S » q}
K(m,q) = inf {% [Agl : T Agtg(R) =1 forall R e@(m,q)} .

If the reader has glanced at the last part of Section 1 he will recall that we redu-
ced the problem of proving a version of Lemma 2.1 for D% to that of showing
K(dmJ,m) > © as ms o forall 1> A> 0. In the first part of this section we
shall show that the proof of LLemma 2.1 for T can also be reduced to the same pro-
blem. The reasoning is parallel to the reasoning for D° but as we promised to
readers unhappy with D® we shall make no use of the proof given for D%. In the
second part we show that indeed K( Dm] , M) » o and so complete the proof of the
result stated in the title of this paper.

First, therefore, we must prove Lemma 1.7 (the Linked Set Lemma). To do this

we require various elementary results on the measure

SZKP/M/card{r HEARS Me/zn}

Fe,m (T Me/2n

where M is a positive integer and 1> € > 0.

LEMMA 3.1. (i) If 1>€>0, M»>1 then p_ , eM([-&,€]), Ip =1
e,M €,M
and M su =0.
PP "L&,M
.. -o=1_-1 ~ )
()1 1>e, >0 and M>»80e 1 then I""a,M(s)l‘("l
-1.-1 -1, -1
for all 40¢ 7( <£s<M-40¢ T( .
({ii) If 1> €, M >0 and we write p for the restriction of
Lebesgue measure to [- €, €] normalized to give lngll=1, then
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l;LE’M(S) - IL (s)] < M for all |s| \<1(M/40.
Gv) If 1> €7> 0 and M(1), M(2) are positive integers
with M(2) > M(1), then
|’1&,M(1)(5) - ;L&-,M(Z)(S)I <7 for |s|g 'V(M/SO .
W) 1>¢€, 'rl >0 and M(1) , M(2) are positive integers with
M(2) a positive integral multiple of M(1) and M(1) » 3200 e ! 1(’2 then

e @@l > mlies Theg ) = b, w1 7.

Proof. (i) Obvious.

(ii) Write 2N+1=Cardjr:|r|<Me/27}, P =[40e"'»~"]. We have
1

R N .
(2N+1)| e, O Lg\l Sonr /M(s) |

N
=Y exp(2mirs/M)|
r=-N

sin ns/M

1
SInNs

41‘;—/]\<(ZN+1)7( forall Pgs<M-P

sin(N+%)2Ks/M l

€

as required.

WD) [ g () - elo)] = |J7‘s e, - | 7s b

< -
xeyiegnm | e T 5]

€ sup |sx-y)
[ x-y|¢27/M

€7 forall |s[¢mM/40
(iv) This follows at once from (iii).
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(v) By (ii) (and the fact that, by (i), e M(s) is periodic in s
t]
with period M) we know that ||"e, M(2)(s)| »M implies s=kM(@)+r with keZ,
|r| \<4Ol'='_1'f(_1 . Inparticular, s = eM(1)+r with keZ, so that

Fe @ = Feu@® o FeunE)= Femp® andby (¥

“I:LE,M(Z)(S) - i;'E,,M“)(S)I = | ;LQ,M(Z)(P) - ;E,M(T)(P)[ < ’!I

(since |r|g40 g 1(_1 < 7(M(1)/80).

We can now give the

Proot of Lemma 1.7. Let N(e,1) = 160,0005‘11(1, h(r) = 128.106(]'_1(_3_]+1)m2r.
We put 0 = B§/10m(i-1),MG)’ 1= *§/10M1-1),M(ir1) L[1€i€m and
o’é = P‘E/Z,M(1)‘ Let us write % for the convolution product. If S c {1 s 2900 ,m},

we write Jo = ¥ 0. « * 0! and take E = supp .
S jes ! ies,0¢i¢m S ¥s

The following facts are obvious
(a) Eg = : supp 0 + . supp o/
ieS 1€S,0€i<m
(b) M() supp O'F,M(i+1) suppo = 0 [1<ism]
M(1) supp agl=0
(c) M(i-1) supp o', M(i-1) supp o ! <[- 8/10, 8/10] [1<ig¢m].
Further, we have ensured that
. . . . . 6,r =3 4. .
(d) M(@i+1) is a multiple of M(i), M(i+1)» 128.10 ([:'r( 1+ 1m'i [1¢ig¢m],
-1,-1
M(0) = 3200 € ’Yl .
From (a), (b) and (d) we have at once Eqs [-&,e] and
(i) M(n+1 )ES =0.
n

Suppose now x€ Eg. Then by (a) x= JZ=O X; where X, < supp Uj it jes,
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xJ.€Supp 03. it j¢s [0=<j=n]. If i€S we have by (b) M(:'L)xj =0 for O0<j<i,

whilst by (c) and (d) M(i)x,€ [-10"9%8 , 10"98] for i+1<j<n. Thus

n n
I)(M(i)(x) -1]= lxM(i)(Jzzp;} xj) -1l= IME)Y X; < b

J=i+1
and we have

(ii) “xM(i)-mC(E = $ whenever i€S.
S

Since the convolution of positive measures is positive uS€M+(E S). Further
Mgl = T Tlloglt 1T loill = 1. We know that
ies i¢S,0¢ism
pg@ = TTo@ TT ol(r) andthat |o,(0) <oyl =1, [o}@) <lloill =1.
ieS igS,0¢ism 1

In particular, therefore, | us(r)l 2 implies | a'J!(r)l ¥ /m forall jeS. Lemma
3.1 (v) now shows that ‘O‘J!(I‘) - O'J.(I")I < 7(/m forall je€S. Thusif ScTgil,2,..

.. ,m} we have

g (@) - @] =TT 0,0 T O(TT ol -TT o)l

ieS ieT,0<i¢n ieT\S ieT\S

SATT o -TT oo

ieT\s ! ieT\S

& card(T~S) sup | ol(r) - o. ()]
ieT~S .

i
(using the fact that |ab - cd| ¢ |a| |b-c| + [c| [a-d]).
Thus in particular
(iii) | i) » 7 implies [ug(®) - k(o) T
whenever S<Tefl, 2, ..., m} and (since |al <7 implies iblylal - 1 automa-
tically)
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(V) |#g qp()] > min({pg @), [k -7
whenever S,Tc{1,2, ..., n}.
Finally, since by Lemma 3.1 (i) |cri(r')| < 11 for M(i)/2 ¢|r| ¢M@E)/2 we have

|/}l¢(p);| = T7 |Zr.'(r)| < 1( for M(0)/2 < |r| ¢ M(n+1) - M(n)/2, so noting that
O<isn 1

~

B & is periodic with period M(n+1) we have
(v) |p¢(r)| <7 for M(0)/2 ¢|r|¢ M(n+1) - M(0)/2.
So much for the construction of our linked sets. Now let us see how to use them.

First we note that Lemma 1.7 can be restated in a more attractive way.

LEMMA 1.7'. Given 1> E,?t >0 we can find an N(g, 1() > 1 with the following
property : -

Given 1> 05>0 and m » 1 we can find a monotonic increasing function
h:2Z"»s2Z" (suchthat h(r)>r) with the following property : -

Given N(e, 1() < % M(0) < h(M(0)) < M(1) < h(M(1)) < ... < h(M(m)) < M(m+1) such
that M(r+1) is an integral multiple of M(r) [1<r¢m] we can find finite sets
Eqc [-£,€] and measures pgeM(Eg) with flugll =1 [s<{l, 2, ..., m}]
such that

(i) M(m+1 )ES =0

(ii) ||7(.M(i) - 1] C(Eg) ¢ 0 foreach ieS

(iii) For each Ng¢|r|<M(m+1) - N there exists a |)\F|\< 1 and an

g#R(r)ci{1, 2, ..., m} such that |ﬁs(r) - A, fR(r)(S)l € 6(m+1)7.

Proof. Define N(e, 1(), h and so on as in Lemma 1.7. We wish to show that
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conditions (iii), (iv) and (v) of that lemma imply condition (iii) of this one. Suppose
therefore that N« |r|<M(m+1) - N.

Let T ={T<_: {1, 2, ..., mj: I;LT(I‘)I >/2rl(car‘d T + 1)} . It T is empty set
A=0. ByLemma1.7if S,Tel’ then SnTel'. Thusif [ is non empty
there exists a unique member R(r) of ) with the smallest number of elements.
Set A, = ;LR(P)(I"). Using (iii) and (iv) of Lemma 1.7 we have the required result.

Once we have reformulated Lemma 1.7 as Lemma 1.7' we are in a position to use

LEMMA 3.2, There exist aTe C [T E¢(m,q)] such that

i) > ap =1

T€&(m,q)
(i) | ap fo(D)] ¢ (K(m,q)™" forall Sey.

Te®(m,q)
Proof. Write f = le Y. Then

TT-= :¢ Aptp + 2 IALI<K(@,m)}
T T ° T ’
{Te (m,q)
is balanced convex subset of C(¥) such that 1 ;é i 1. By Hahn-Banach, therefore,

there exist a teM(¥) with J.1 dt =1 and IJg dti <1 forall gell. In
particular Uztdt‘< (K(m,q))-1 . But this is precisely the desired result.

Remark 1. We use a finite dimensional version of Hahn-Banach (which in parti-
cular does not depend on the Axiom of Choice).

Remark 2. Note that simple considerations of symmetry show that we can take
aTsz and ap = ag whenever card T =card S.

Remark 3. In order to estimate K(m,q) we have dualised our problem but there

is no reason why the ap could not be found directly. A suitably happy guess would
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remove the need for the combinatorial lemmas which conclude this section.

LEMMA 3.3. Let g be chosen as in the conclusion of Lemma 1.7' and ar

as in the conclusion of Lemma 3.2. Then writing C(m,q) = ; |a and
€®(m,q)

ul

=y a ks E=suppS we have
§S¢m,q VY

i) M(m+1)E =0

g -1,
(i) “m .I‘;X'M(p) -1 “ C(E) < Z(m'Q)/m +%
(i)' card {T¢r¢m: I%M(r‘)(x) -1« 5} s (m-q)/m forall xeE
(iii) ' () S(0) = 1
(b) lé(r)l < (K(m, @) + 6(m+1)C(m,q)q for all M(0)/2 ¢|r| ¢ N-M(0)/2

(iv)  |sly € Cm,q).

Proof. If xesupp S then xe ER for some R with card R»q. Thus
by Lemma 1.7 (i) and (ii) M(m+1)x =0 and l;{M(i)(x) -1 ¢% whenever ieR,
so that U‘M(i)(x) -1 g ® foratleast q valuesof 1sig¢m. Thus (i), (ii)
are true and it only remains to verify (iii) and (iv). This is a matter of simple calcu-

lation : -

s(0) =L%(m’q) a p.U(O) =3y, a, =1

2 ) A
IS IUE@(m,q) U PU(P)I
< I%(m,q) agA, fR(r)(UN + 6(m+1)UZe%(m,q) ay
< I?\I,I(K(m,q))'1 + 6(m+1) C(m,q) 7

§ (Km,q)™ ' + 6(m+1)C(m,q)1l
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Isly¢3=  lagllngll = com,a.
Ued(m,q
We now make some slight modifications in the form of Lemma 3.3 to bring it into

line with Lemma 2.1 (the Central Lemma).

LEMMA 3.4. Suppose m,q positive integers with 1> q/m> A>0. Then
given 1> &> 0 wecanfindan N(, m, q) 31 with the following property : -

Given ® > 0 we can find a monotonic increasing function h : VARV A (such
that h(r)> r) with the following property : -

Given NE, m, q) = % M(0) < h(M(0)) < M(1) < h(M(1)) < M(2) < .. .<h(M(m)) < M(m+1)
such that M(r+1) is an integral multiple of M(r) [1<sr¢m] we can find a finite
set Ec[-€,6] and Te M(E) = PM(E) such that

(i) M(m+1)E =0

iy -1
) |im g Xmeey = o) €200 - M) + )
(i)' card{1s¢r¢m: I)(M(r‘)(x) -1/« 8} »Am forall x<E

- -1 1
T =T(0) = 1> (K(m,q) + 1 T
W) [Ty = T(O = 1> (K(m,a) + ) M(m+1)-h/?(lg;»r>/M(0)l )

@iv) ”T]]M £C(m,q).

Proof. Take N = (24(m+1)C(m,q)K(m,q)+1)_2 in Lemma 3.3. then gives

(@ S5(0)=1

(b) Ié(r)l < (K(m,q)+1)‘1 for all M(0)/2 < |r| €« N-M(0)/2.

Let v be that integer for which I%(P)I takes its maximum value in the range
-M(0)/2 ¢ r «M(0)/2. By (a) |§®)| »1. Since é(r) is periodic with period N

we have |S(v)] »[S(r)| forall reZ. Set T =](.__VS/(S(V))_1 . We have at once
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T(O)=1= ||T|py and |T@®)|< (Km,q)+ D™ forall M(O)< |r|<N-M().
Further supp T=supp S =E, [T M€ IIs “M and the lemma follows.
We have now reduced our problem to that of finding a good lower bound on

K(m , q) and this we procede to do

LEMMA 3.5. The general solution of ) Aq tT(S) =1 forall Se&(m,q)
is A= (_1)card T-1(1 + B,) [T€Y¢], where B,,=0 if card U>q but
T Ter U U

otherwise may be chosen freely.

Proof. Observing that

fT(S) =0 for card S <card T
fT(S) =0 for cardS =card T, T#S
fS(S) =1

we see that the matrix (tT(S)) [se®(m,q), TeVy] is "triangular" and so has rank
card (m,q) (the largest possible rank ; the reader may find it instructive to write
out (fT(S)) in full for m=4, q=1, 2, 3, 4). Thus the system of equations

(%) 2 Apt(S) =1 [s€%(m,q)]

has exactly

q
card {T : Tew} - card @(m,q) =3, {T: Te¥ , card T =r}
r=

linearly independent solutions.

On the other hand

card T-1 _ _qycard T-1
2, Ep(S)(-1) (1 +¢é§_c_’r g _s>2:'r:;é¢( 1) @ +%QT By)

TeY
card S

card S r-1 card T-1
= -1 B -1
(1; ( r = ) +1§"ar'd U<q U(U;:Ik{ S( ) )
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cardS—~cardU TS — el ]
=14+ (- 1)cardU B (Z: (- 1)1*((_&1 {eh] . car dU»
T<card Ugsq
=1 for all S< $(m,q).
cardT-1
Thus A = (-1) (1 +§ B, [@B#Ts {1,2, ..., m}] , where B{;=0
UCST

if Card U> q, but otherwise may be chosen freely, is a solution and, by the para-

graph above, is the most general solution.

m q _
LEMMA 3.6 (i). K(m,q)» inf glg(m DDl -1
D;eR, D=1 =0 =

Proof. Let A be given in the form used in the statement of Lemma 3.5. We

T
have
ALl = |1 +g B
{E,..,m}QT;éQf T 77, .. ,mjaTig Uer Y
m
Smbm RS mu
r=1cardT=r UST
»ZI: T+3 3; By
r=1 cardT=r cardT=r UET
LU L m-s
=2 1)+ 22 GZg) Gl
r=1 s=1
where C_=3 B, ,. Simplifying by writing C., =1, and noting
S Grduss,ucfl,2,..,m} U o

that Cs =0 for s>q, we have

m-
{1,E2,..,m}2T;é¢lA 'b Z:IE( )C -

Now using the identity

m-s) _ E (q—s m—q)

q- I‘+J

obtained by equating coefficients of x' - in (1+x)™° = (1+x)q—s(1+x)m_q, we have

g9

q
m—s

35 m-ay( a-s ) ) C
i=0 J Q'I""J
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= qZ; () D,

t=0

_ q-s - -
where Dt-:( )C sothat D =1, D =0 for t>q. Thus

=

|ALl> : 1E(m‘q) D,/ -1 where D_=1. It follows that
i1,;,..,m}2T74¢

K(m,q)y  inf |é:(m'q) Dy -1
—1 DGC =0

= inf Zl:(m‘q)o [ -1

DO=1 ,Dteg r=o0 t=o

as required.

Remark. It may be helpful to write out the formulae in full for a special case such
as m=7, q=3.

At this point the author stuck completely. What follows is due to Dr. J. H. Conway
to whom I should like to offer my most grateful thanks.

Observe first as a trivial consequence of Lemma 3.6 (i)

LEMMA 3.6 (ii). K(m,q)» \/(— inf Z(z( )Dt)z)-1.

D =1 DteR r=0 t=0

Proof. Use Lemma 3.6 (i) and the obvious inequality
n 2. < 2
15Dy 21Xl
i=1 i=1
We are now in a position to use

LEMMA 3.7 (Conway) :

n+r
_ (n+r+1)(n+r+2) . . . (2n+1)
x,, 2,...,x eR, x, 1 F(g (k -3 - (e+N)(r+2). . .(n+0)

Proof. Set yJ.=(—1)Jx:i for Ogj«r, yj=0 if -ngjg¢-1 or r+igj<n+r.
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Then, setting V Z,=2,=Z,_ s We have

n+r
> (M) F(v 3

k=0 j=o0

We wish to minimize
n+r o

f(x1,x , ”"x)“:(:(k_j J .

k=0 j=o0

Observe first that f£(x) »0 as |[x|+o sothat f has a global minimum. If we can
show that f has a unique stationary point x* then this must be that global minimum.
Suppose therefore that w = (w1 » Woy vees wr) is a stationary point for f.
Taking partial derivatives with respect to Xys Xgy eeny X W have (setting wo = 1)

that
n+r

Z(k p)(Z:(k J)W)— [T<psr].

Recalling the formula Z (2)(sljr) = (2n) obtained by equating coefficients of x°
r=o
in  (14x)"(1+x0)" = (1+x)2n we see that
r 2n
2 :(n+p-j) W= [i1«psr].

J
But setting yj=(—1)JwJ. for O<«jsr, y.=0 if 1-ngjg-1 or r+lg jgn+r

this may be rewritten as
vy =0 [1-n <k < 14+r-n].

Combining the conclusions of the last three paragraphs we see that some solution

of on
VY = 0 [1-n <k« 1+r—n]

subject to Yo = 1, y:i =0 for 1-ngjg-1 or r+l1g j<n+r, satisfies

inf f(x) Z(v yk .
k=0

Now the general solution of
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v2n z) = 0 for all k

isa 2n-1th degree polynomial. Thus the system of equations with boundary condi-

tions set up for Yk above has the unique solution

¥y = ¥(K) OD<¢k«r]
where  y() = (- SRR fir) rroe o)

We thus have
nir
inf f(x) =3 (v (k)
k=0

_ (n+r+1)(n+r+2). . . (2n+r)
e )r+2). L (ner)

(the last formula being obtained directly for r =0 and extended by induction on 1)
and the lemma is proved.

Remark. We only need this lemma to show (as Lemma 3.8 below) that K(ap,bp) »w
as p+ow. Butto show this a much weaker and less detailed result would suffice. It
would be very pleasant if such a simpler result could be obtained by more transparent
combinatorial means. However a direct analytic rather than combinatorial proof of the
result may be difficult to find, precisely hecause we use the result to show the failure
of common analytic averaging descriptions(e.g. M(E) = A(E}') to characterize certain

situations (e.g. M(E) = PM(E)).

LEMMA 3.8. If a> b1 are fixed integers, then K(ap , bp) +©@ as p »>®,

Proof. By Lemmas 3.6(ii) and 3.7

((ap+1 Yap+2)... (1ap—bp))

K(ap , bp) > BprT)(Bpr2). .. ap
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(ap+1)(ap+2). . .(ap+k)
> V%ﬁin(?giz)...(ﬁﬂik)) (for (b-a)p » k)

- (g)k/Z as p »o .

Since k was arbitrary K(ap , bp) 0 as p >,

This is the last link in the chain of results we needed. We now have a

Proof of Lemma 2.1. Suppose 1> A>0, K>O0 given. Choosing a> b1
integers with A > b/a, we know by Lemma 3.8 that we can find p »1 an integer
with K(ap , bp) >K+1. Set m=ap, q=Dbp, inLemma 3.4. The conclusions of
Lemma 2.1 can then be read off directly from the conclusions of Lemma 3.4 and we

are done.

§ 4. FURTHER RESULTS.

In this section we discuss the results to be obtained in the remainder of the paper
by modifications of methods used in the first part. Before doing so we assemble some
background results in LLemma 4.1. The reader is warned that we shall feel free to use
these results or their proofs without reference. He should also note that although the
results and proofs are easy they are not trivial. Lemma 4.1(i) goes back at least as

far as Salem and has been used to great effect by Varopoulos. Lemma 4.1(ii) is a simple
example of its use, due to Kahane. Lemma 4. 1(iii) answers a question which remained
open for over 30 years (under only a slightly heavier disguise). The credit for ending

this remarkable situation is due to Bjork and Kaufman (separately).
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LEMMA 4.1.

i) If €>0, neZ and E is a closed set with 1 Xn = 1] €, then

cE) ¢
1/2
I Xy = 1]1A(E)\<2ooe / .
(ii) A Dirichlet set cannot support a non zero pseudo function.

(iii) A closed set E is weak Dirichlet if and only if given €& >0, NeZ,

@ [0 0]
we can find a a ...>»0 with 3 a =1 and I a -1 < E.
N+17 ONt2? A<t o r::M;q rke = M) S

(iii)' Suppose X is a compact Hausdorff space and h L€ C(X) with

[N c(x) €K are given such that lim-)iar)lf jl h -1ldp=0 forall p eM*(X). Then
(e 0]
given €>0 wecanfind a;, a,, ...>0 such that D a =1,
n=1

i E ah - 11 cx) € &

(iv) A closed set E is weak Kronecker if and only if given fe€S(T) and

[0 0] [0 6]
€>0 wecanfind a,»0 with Z:an=1 and |y anxn~f"\<6.

n=—00 N=—
Proof. (i) We may suppose 0<§& <'J-‘. Let Ie :R »IR be given by
Ie(x)=x for -—ESXKE
Ie(x)=2€—x for egxXg2¢€
Ie(x)=—28-x for -2eg¢x<-¢&
I E(x) =0 otherwise.

Consider f e(t) =1 6(sin t/2) [te(-r,n]]. Clearly f ¢ s continuously
A A
differentiable almost everywhere, so that m f E_;(m) = f'E (m) and by Parsefal's formula

00 N 2 ~ 2
2 |t (n)] =“f'“L2\<18.86. Thus

n=-= o

o) ~ ~ -1 ~
n=:-:oo| t.(n)| =|£ (0)] +% n~ |nf_(n)|
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-2 N 2,1/2
<@ T2 Int @

< 100 81 /2 .
Writing f& n(x) =1 esin(nx/ 2) [xe(-m,x]] we have (making the correct iden-
?
tifications) fen=™ foX,€A(T) andso || £ s,n“A(’[‘) = “fe“A(T)‘ In particular

therefore, if E is a closed set such that [|1 - X n“ c(g)S € We have

“ 1- XnHA(E) = “ X,n/z - X_n/ZH A(E) =2 ]] sin nx/2 “A(E)

1/2
= <
2] fe,n"A(E)‘ 200€/“,

(ii) Let T be a pseudo measure on E a Dirichlet set. We can find r(n) »w,
en) -0 with [l x, - 11l c(g) € &n).  With the notation of @)

| T@m) - T(e(n) + m) =2[<T , TWEe |

<20yt ey o acm)

>0 as n-» o,

Thus lim sup |’Ii“(k)| =sup |T(k)|.
k » keZ

(iii) The necessity follows from (iii)' below. To prove sufficiency we note that

©o o
if a >0, > a =1 then Y ax -1l <€ implies
r ’ r=N+1 r r=N+1 PXT C(E)

I xgl\r:m a, (X = Wl o(g) €€ which in turn implies ]‘Irg+1 a_IRe(x . - 1)|HC(E) <ag

@
(use the fact that | Xr‘ =1). Thusif peM'(E) we obtain gﬂ aPJ|Re()(r-1)|dp <
4¢e||k|l, andso, for at least one q»N+1, we have J |Re()(,q - 1)|dpsaelp]
which in turn yield : 1/2 1/2 i
yields p.{x : ]}_q(x) -1]>8e/“}¢8¢ Il (our estimates, as usual,

being on the safe side). Allowing & »0, N s we have the result required.

49



Th. KORNER

00 00
(iii)' Let [ = {Z a, hr-1: E a, = 1, a,y 0}. Then [' is a convex subset
r=1 r=1

of C(E) and so its uniform closure [ is also convex. Hence if O#T the theorem

of Hahn Banach shows that there exists a peM(E) with Ij hdu|»5>0 forall

heT . In particular U(hn-ndu }28>o and so jl hn-ﬂdlulzﬁ for all n. The

contradiction proves the result.

(iv) Proof as for (iii).

Remarks.

(i) Lemma 4.1 (i) illuminates the privileged position of Dirichlet sets as against
weak Dirichl et sets. Dirichlet sets are not simply sets with good uniform approxima-
tion properties but also, owing to the structure of A(T), with good A(T) norm
approximation properties. The same kind of remark applies to Kronecker sets. Since
the moral of this paper is that Kronecker sets are not typical Helson sets and Dirichlet
sets are not typical N sets the point is worth thinking about.

(ii) Our proof of Lemma 4.1 (iii)' uses the Axiom of Choice. One simple conse-
quence of Lemma 4.1 (iii)' is the following (well known in the theory of sup norm
algebras). If h €C(X), i h I cx) € K and h (X)»0 as nsw foreach
xe X then given €& >0 we can find a,» 0 such that é a = 1 and
Hg. ah - 1| c(x) <€ €. Can we avoid appealing to non classical theorems in the proof
of this ?

(iii) For further results on weak Kronecker and weak Dirichlet sets the reader

is refered to [10] and [11] But his time might be better spent reading ﬁ] and [1 8]

which form an elegant commentary on Lemma 4.1 (i).
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Having got these results out of the way we turn to discuss the remainder of this
paper.
In Section § 5 we prove certain technical variations of Lemma 1.7 (the Linked

Set Lemma) of which the following are typical and the most important.

LEMMA 4.2 (The Central Lemma Second Version). Given K> 1, 1> A>0, we
canfinda C(K, A)»1, an m(K, A) €g+ and an NO(K , M) »1 with the following
property : -

Given &>0, 5,)‘ >0, f>1 , 92 >0 and H: R » R a continuous monotonic
increasing function with H(0) = 0, we can find a monotonic increasing function

h:

IN

*ts £+ (such that h(r)> r) with the following property : -

‘ % M(0) < h(M(0)) < M(1) < h(M(1)) <M(2) <... <h(M(m)) <

Given &~ NO(K s Mg
M(m+1) with % M(0) and M(r) integral [1 P RS m+1] , we can find a finite set
E c[-&,¢] such that

i) Mm+1)E=0

m

(ii) There exist bM(J.) >0 with :i:Z1bM(J.) =1 and |3 bM(j)X’M(j) -1} C(E)
<8 +(1-x).

(ii)' card {1 {rg<m: I)(M(r)(x) -1] g 8}>,)\m for all xe E

(iii) [T gy = T(O) = 1> K ()|

sup |
M(m-+1)-M(0)3 ryM(0)
@iv) |t MSC
v) E+ [- P, /(M(m+1)-M(0)), P /(M(m+1)-M(0))] can be covered by intervals

of length Ei\< 2p, such that > H(Qi) <y
LEMMA 1.7' (The Linked Set Lemma Second Version). The condition M(r+1) a
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multiple of M(r) may be dropped in Lemma 1.7 and we can demand taking
is the trapezoidal function with f (=8) = f% %) =o0,
d

1/10>8 > 0 that if g
linear on [-9 —SZJ[-éz R 82], [62 » 0], T (-5,d)

82y = 2y _
fg( ) fS(S) 1, fB

we have

(vi)' f8 ()(_M(P)(e)) =1 if esEg res
fa()(,M(r)(e))=O if ecEg r<¢s [1«r¢m, scit, 2,..,mf]

(In particular the ES are disjoint.)
2

Remark. Condition (vi)' is simply a picturesque way of saying | X’M(r)(e) - 1< 8

forall e€Eg, res, |XM(P)(e)-1|>/8 for all e €Eg, rés.

LEMMA 1.6'. We can ensure that the ES of Lemma 1.6 are so constructed

such that (using the notation

that there exist 1/10> 8(j)> 0, 8(j)»0 as j=soo

of Lemma 1.6)
Sy _ . .
(1) fS(J)(X,Ml(J)(e)) =1 if ee ES ’ i€S
| . =0 if €E ies
8(J)OLM1(J)(Q)) BoeskEs 1t
Oi<is<m, @g#sc{1, 2, ...,m}] .
(In particular the ES are disjoint.)
The proofs (except in the case of Lemma 1.6' where we have not bothered to prove
the slightly easier Lemma 1.6) are simply more complicated versions of the proofs
already given, the basic ideas being the same. In order to simplify the overall argument

of the proof of the existence of a Helson set of non synthesis, we proved the weakest

result necessary ; in what follows we shall be less economical.
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I should advise against spending too much time on Section § 5 which is only
included for the following two reasons. Firstly it is sometimes convenient when trying
to work out a construction to have results like the Central Lemma in their most general
form ; though usually it turns out later that a weaker form will do equally well.
Secondly we start each of the remaining sections by exhibiting a simple technical
variation on the methods used in the first three sections and then pushing it as far as
it will go. For some of the more complex and less interesting refinements we use gene-
ral results obtained in Section § 5 rather than redeveloping the necessary machine-
ry. If the reader finds himself interested in a result or proof which uses a lemma from
Section § 5 he should either take the lemma on trust or work out some substitute for
himself.

With these exceptions the remaining sections are independent of each other (and
to a large extent even of Sections § 1 and § 2).

Section § 6 completes our discussion of the relation between synthesis and
various thinness conditions by proving THEOREMS 1.1' and 1.1" which we quoted
without proof at the end of Section § 2. The proof of THEOREM 1.1" uses Lemma
4.2 (v). We also discuss (without reaching any profound conclusions) the relation
between our results and those of Varopoulos and Kaijser on sets Ec T with
A(E) = V(D®). Sections § 6 and § 9 leave open a number of interesting questions.
(But the interest of Section § 9 lies in what we can answer whilst unfortunately the
main interest of Section § 6 lies in what we fail to answer.)

The remainder of the paper deals with the question with which we started in
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Section § 1. "If we can approximate 1 in measure, how well can we approximate it
in A ?"
+ [e 0] [o 0]
Consider the Banach sub-algebra A" (T) = {E ALKyt D | aPI <o} cA(T).
- r=0 r=0
We call a closed set EcT a zero set (ZA"  set) if there exists a 0 £ feA™
with f(e)=0 forall e€E. If AT(E)=A(E) we say that E isan AA" set

" f“ A+(E)
with constant C = sup (by a well known theorem of Banach C <o0),

odte A(E) TTTA(E)

Clearly Csup || Xr‘l E| AtE) On the other hand, given &> 0, we can find for
rez
each r€Z an X €A with I X, HA(E) <C+ €, XPIE = )(FIE. Thus if

00 [o 0]
t=3 a,X,€A we have tE =G _ aPXP)lE and so

I'=-=o0 I'=—oc0
Itlare) 12 2 Xellare =12 aXelag) € o lonl X, lae)

< €+ 8t

A(E)"
Hence
C = SUP ”Xv lE”A"'(E)
= sup 1nf{:|a : (e) Za )(P(e) for all eeE}
neZ
00
= sup 1nf{z lap| :1= > a, )(P(e) for all ec E}
neZ r'=-n r=-n

[ee]
= lim sup mf{:|a : 1=Z:ar)(r(e) for all eeE}.
r=n

n - o

Note that an AAT set is automatically a ZA™ set.

Varopoulos has noted

LEMMA 4.1 (v). Every Dirichlet set is AAY  with constant 1.
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Proof. Suppose € >0, f€A(T) given. Then we can find an N such that
N ~
> | £(n)| > “f“A(T) - £/2. Further by Lemma 4.1(i) we can finda P> N such
n=-N N
that [IXp = 1l 5g) < 6/2(l|f.|1A(T) +1). Setting g=)__ f(n)x we have

=N n+P
le-tlag) <€ and g eA™t(T).
The remainder of the proof is standard but we give it in full , sincein Section § 7 we
shall repeatedly use results obtained by this kind of argument without going into the
proof in detail. Given € > 0, feA(E) it follows by the results of the first paragraph

that we can find g, € AY(T) such that

” f- g1 IE ”A(E) < 6/2 ’ ” g1” A+(T) < ”t”A(E)

1 - Gprepre v )El o gy € €27, eyl g%(py < €727

Now > g; converges in A(T) normto g, say, where geA™(T),
i=1
Hg"A(T) < £l A(E) + & and £ -glE ||A(E) =0. Thus f=g|E and feA'(E),
It ”A+(E) < HfHA(E) +€&. Since € was arbitrary it follows that |f ”A"’(E) = nf”A(E)

and the lemma is proved.

We also have the following results due to Drury (vi) and myself (vii).

LEMMA 4.1.

(vi) If E is Dirichlet then we can find £ eA+(T) with f(e) =1 if ee<E,
[£(x)] <1 if Xx&E.

(vii) If E,, E, are AAT  sets with constants C,» C, then E,UE, is

AA"  with constant at most C, +C, +C,C,. Inparticular, by (v), the union of n

Dirichlet sets is AA1 with constant at most 2" - 1.
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(vii)' Suppose X is a compact Hausdorff space and Y., Y., are closed

17 72
subsets of X with Y UY,=X. Then, if g, g,<C(X), gjle=1|Yj (=1,2]

we have g, + 85 -—g1g2 =1.

Proof. (vi) See [1] . This result is a considerable refinement of (v).
(vii) Observing that if g A(T), éj(r) =0 for rg¢w then
G = g1 + 32 - g1g2 € A(I)y ”G“A(I) < ” g1 HA(I) +H gz“ A(I) + "g1 HA(I) ng HA(I)

and G(r) =0 for r¢w we see that (vii)' implies (vii).

(vii)' Observe that G =1 - (1—g1)(1—g2).
In Sections § 7 and § 8 we show that the results of Lemma 4.1 are (in some

sense) best possible. The first part of Section § 7 is devoted to the proof of

THEOREM 7.1.

(i) Given C1 , C,>1 wecanfind closed sets E. , E

1 such that E1 n E2

2 2

consists of 1 point, E, is AA"  with constant G [(i=1,2] but E,VE, is
independent with AA%Y constant C+C,+C,Cy.

(ii) Given C,,C, > 1

165 , €>0 we can find disjoint closed sets E, , E, such

1 2

that Ei is AAY  with constant Ci [1 = 1,2] but E1 U E2 is independent with
AAY  constant at least C1 + C2 + C1C2 - E.

(iii) Given &€>0 we can construct n Dirichlet sets E;, E5, ..., E| which

are disjoint (respectively have E;n Ej ={x} [i#1 forsome xeT) such that

n
U Ei is independent with AAY constant 2" -1-¢€ (respectively AAY  constant
i=1

2™ ).
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We use the existence of the "strongly separating" function f6 G) in the new
version of Lemma 1.6 given in Section § 5 and one of the ideas of Drury in his paper
[1] (refered to in Section§ 1) to construct sets E which will have AA"  constant
exactly C.

We shall also prove the following result.

THEOREM 7.2. We can find A(1), \N(2) ¢ g"’ and closed sets E,, E, such

that E1 gl E2 = {x} for some xeT, E1UE)2 is independent, Ej is AAA(j) with
constant 1 [j=1,2] but

||

, =0
E!\(U UM2)u=-N(1)U-A2)u{0} < 5(1)&!\.(2)0-!\.(1)0-]\.(2) U{O?er(e)

for all ee E1 UE has no non-trivial solutions (so in particular E:1 VE is not

2 2

AA(yua2) -

Section § 8 (which, as we have stated before, does not use Section § 7) is

devoted to a proof of
THEOREM 8.1. There exists an independent weak Dirichlet set which is not zA'.

The second part of Section § 7 deals with a question suggested by the discussion
in the two paragraphs preceeding Lemma 1.9. (The question is thus "internally genera-
ted" and the reader may prefer to ignore it.) As a temporary notation call a closed set

E s-Weak Dirichletif, given any ¢ge M+(E), nez, >0, wecanfindan m3xn

with
o {x€E: |1 () - 1| «d}>s]ol [o¢s<1].
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Just as Dirichlet sets differ from weak Dirichlet sets so weak Dirichlet sets differ from
s-Weak Dirichlet sets [0< s < 1:| . The full result we wish to contrast with Lemma 4.1
(iii) is

THEOREM 7.3. Given any 1> s> 0 we can find an independent s-Weak Dirichlet

set E such that, givenany R >0, we canfindan €(R)> O such that for any

g1|am| <R we have || m:)/;1 a Xm ~ 1 cE)” e®).

Moreover Theorem 7.3 is (at least qualitatively) best possible.

LEMMA 7.4. If 13»s>0 and E is an s-Weak Dirichlet set, then, given any
€£>0, we can find an R(¢)> 0 such that lim sup inf{ﬁ > ap X — 11l CE)
m>»n

n - oo
2 laglsR(E®)}<e.

m>n

In the final section, Section § 9, we consider the tilde algebra

A(E) ={teC(E): 3f e A(E) with :l;lp1 12,1 Aqe) < e, - fHC(E) -0}
where, if t e A(E),
| f”K(E) = inf{:;la) ”fn“K(E) : an - f“C(E) -0 as n=>» 03}.
It is easily verified that AE), I K(E)) is a Banach algebra. Beurling raised the

question whether K(E) = A(E). McGehee and Katznelson showed that in fact there
exists a countable E with K(E) # A(E) (they proved rather stronger results which
the reader will find in [7], [8]), but left open the question whether the embedding of
aE), A(E)) in A®E), 1 | K(E)) is always isometric. Varopoulos [19] (or
[13]) showed that this is not so and that there exist closed sets EcT with A(E) not

even closed in (A(E) , |l “K(E))‘ Further E maybe chosen to be of synthesis.

The interest of this last sentence lies in the following well known equivalence
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LEMMA 4.3. The following 3 statements are equivalent for a closed set E & T

of synthesis

G A(E) losed in (A(E), || llxpmy) with Hf"A(E)
1 lS close 1n y A(E) W1 f:x(E) m

(i) If TePM(E), then we canfind W €M(E) with I Ko i pum €K Tl PM?
Ky T weakly.
(iii) 1f TePM(E), thenwe canfind € M(E) with [ "Ln” pm €K T PM?

|an » T weakly.

Proof. The equivalence of (i) and (ii) follows from Hahn-Banach. The equivalence
of (ii) and (iii) follows from the Banach-Steinhaus theorem.
We say that a set E satisfying the conditions of Lemma 4.2 is of bounded or

sequential synthesis with constant K. Varopoulos thus proved

LEMMA 4.4 (Varopoulos). There exist sets which are of synthesis but not of

bounded synthesis.

Two other proofs of this result have since been found, the first by Varopoulos
([20]) and the second by Katznelson and McGehee ([§]). The reader will find further
information well presented in the works cited ([7], [8], [19], [13]).

The definition of K(E) by itself suggests that the method of this paper might be

applicable to the study of tilde algebras. We shall prove the following new results.

THEOREM 9.2. There exists a translational set (ensemble de translation) E

with A(E) not closed in K(E).
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THEOREM 9.3.

(i) There exist closed sets E E, intersecting at a single point such that

1 ?
E1 , E2 are of bounded synthesis with constant 1 yet E1UE2 is not of bounded
synthesis.

(ii) There exist closed sets E, , E, intersecting at a single point such that

A€, I 1 A(Ei)) is isometrically embedded in (A(E,) , || | A(Ei)) [i=1, 2],
and E,UE, is independent yet A(E1UE2) is not closed in (A(E1UE2) , “K(E1UEQ .

In proving his theorem Varopoulos characteristically uses methods which require
great ingenuity in invention but little computationin execution. It would not surprise me
if by increasing the amount of detail a proof of Theorem 9.3 could be extracted from
his first proof of Lemma 4.3 given in [19]. He has pointed out in conversation that a

weaker result can easily be recovered from this proof.

LEMMA 9.1. There exist disjoint closed sets Ei of bounded synthesis with

©o
constant 1 such that () Ei is closed and of synthesis but not of bounded synthesis.
i=0

Indeed I strongly suspect that a result considerably finer than those so far
obtained is true and could be obtained by his methods. I conjecture that there exists a

closed set E with A(E) densein (A(E), || | X@) but A(E) £ A(E).

§ 5. TECHNICAL IMPROVEMENTS.

The first part of this section is devoted to the proof and use of
LEMMA 5.1, Let 1/8>€, M »X>0 be such that n> 128X and
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12 -1 _-1_-2 - -20
Q>10 %" 7 w7, Set Q= flo"anl, @ = [o thj] . Suppose further we
are given 1> ) >0 with H:R»R a continuous monotonic function with H(0) =0,

together with 1/8 > p>0 suchthat 8Q < 12, Qn(4p) < y.

Given Q'> 1012 -1 1(_2 an integer and closed sets E, ,E,c T (not necessa-
rily disjoint), we can find E/,E,cT and linear maps L, : M(Ei) > M(Ei') G=1,2
such that

(1) Q'E}=0

(2) sup inf e, -e!ls e forall o€M(E;)
i i i
ei'e supp LiO' €,esupp o

B (Lo - a)A(r)| <o for all (rl<Qo , TEM(E,)

@) r,oeME), Lol =lol, foral oeM'(E)
(and so in particular (L,;0) A(o) - 6(0) forall ge M(E,)) [i=1,2]

6) Xk = 11€X% , [ X)) =1l » % forall x; with |x -ell¢
for some e!€E.

(6a) I(LZO')A(I')I ¢ qllafly forall Q' -Q>r>Q,, oeME,)

(60) |(@,) @) <[G@|+ qlloll, foran [rf<q

(69) |@L,0) @] < ol +16@)| forall rez, oeMEM2rr/Q: 1¢reQ))

@ 10y, - 1,0) @< [0y~ ) @]+ 1 toran |rl<Q,, o <ME),
fo;lim<t  [=1,2].

(8) {x1 : |x1 - ei|\< p forsome e:€ E'} can be covered by intervals of

1 1

length b <2p with F HE)< y-

Remark. The introduction of the maps Li may obscure a fairly simple situation.
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If the reader is unhappy about their meaning, he should skim through the proof that
follows and the use of Lemma 5.1 in proving Lemma 5.2 considering the effect of

L1 ,L2 on 2 fixed measures 0,:0,- In any case the reader will surely find it
easier to consider the proof that follows as a collection of hints towards constructing

his own proof. (However, the proof is given in full detail.)

Proof. This is a more complicated version of the proof of Lemma 1.7 from which

we borrow the results of Lemma 3.1 together with the notation Fe M-
?

Define L": M(=T) -> M(Z) by

Q
Lo =3 o([(2s-0mQ , s+ /)b, o0 (i=1,2].

s=1

If K isacompactsetin T, write K"= U supp L"o. Itis clear that L"
- o eM(K)

is linear and

@) sup inf |k - k" ¢« ©/Q forall o eM(K)
kesuppo k"esupp L"o

G Lo - o) @) < oty sup, Ix &) -1l <llolrQ,/Q for |rl<Q,

x € T/Q

@" LoeM k"), [Lvofl,, =loll,, foral oeM'(K)

(5)n QKII =0.

For each integral 1< s<Q we can find an integral 1< t(s) € Q' such that

|2ns/Q - 2nt(s)/Q'| € WQ'. Writing U = {27(5/0 :1<s s‘Q} and define

L"' : M(U) » M(T) by

Q
LMo = s; U({zKS/Q})SZKt(S)/Q, .

If KU write K" = U supp L" 0. Itis clear that L'"' is linear and
oeM(K)

(1)m Q'L =0
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@)m sup inf |k - k" ¢« //Q' forall o eM(K)
K"esuppL.'oc kesuppo

@ Lo -0) @ ¢ [olnlrl/Q" foran oeM (k)
@m Lo emtk™), Lol =lofly foral oeM(K)

G ” XQ - 1" C(Kln)‘< T[Q/Q' .
We have now defined 2 'shifting'" operations ; we now define 4 '"convolution"

operations. Write €' = 104/Q1T( so that in particular 0 ¢ €' € £/10, Q1 el >,10471-1,

Q &' < 10'101. Write X' = 10_4‘71/Q so that in particular 0¢ %' = %2/10Q,

0¢%'s €/10, QX > 1041(‘2, Qe ¢ 10'41(. We now define maps L : M(T) » M(T)
[i=0,1], L} :M(T)-MTI) by

1 —
Loo = 0%y ,Q!

1 -
Liog=ox FerQ

Lo = T*pey o -

Ll

5 are linear.

It is immediate that LC", L% s

The definition of L.}

) (a modification of 1! ) is more complex. For every

2

aeT write

G, ={x=a+2rr/Q' t[x-al ¢e', inf [x-2Rt/Q|> 4RA/Q
1€£t€Q

and if o eM(T), write L} for that function C('=I‘) + C given by
L@ - |<t, je>aot

with x(a) = cﬁl"d_(}a x;c Sa' It is clear that LéGeM(’l;) and that L} isa
a

linear map M(T) » M(T). The most important fact about L) 1is that since
lb’(a) = Fer /2,00 * Sal €£16% we have

9 |ILg*o - Lyof<16%]o]
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so, in particular,
x A A
(9) |(Lé o) (r) - (Lé o) (r)| <16 X|lo]l for an rez,

and this enables us to use estimates for I_',

*
5 O'A(r), such as those obtained in Lemma
1.8, to obtain estimates for Lé o (r).

This we proceed to do. Suppose K is a compact set in T. Write

K'= U supp L} 0 [i=0,1,2]. Itis clear that

' seM(K)
@) sup inf |k~ k! ¢ %' for all oeM(K)
kc')e supp Lc')O' koe supp o
2)! sup inf |k-k!|se' forall ogeM(K), j=1,2
J kjesupp LJ!O' kje suppo J
M@ 100 @l lo@llpy, o @lslo@] foran r
A
3)(b) |(Lyo - o) (@) <ol |xs|’L<lpx|- X = 1| <llol] ]
3oy L o) (0) < loflq foran o' - 4ox"1rl'1 yr >,4ox""1l‘1
) () IL10) (@) ¢|o (@) foran r
O Lo -0 @l cllof el
A
33 ) [(Lyo - o) () < loll 'XIS;IZ' [xp) =< ol Irle
and
() L0 eM"(K)), lLiolly = ol foran gseM"(x).
By Lemma 1.8(ii) (which we also used above in proving ‘(3)(')((:)) we have
Oy 1030 O1=lp, @llow)]

<goe "l of
forall Q¢ r<Q-Q, whilsttrivially
A A
(6)3(p) |(L,0) (r) ¢ |o(r)] forall r,

so that, using (9)', we obtain
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(6)3(a) I(LéG)A(I‘)l <@oe o L 1e0)lol
for all Q1 £rg Q_Q1 and
(6} (1) |(L§U)A(P)I <|o(@)| forall .

Next, using Lemma 1.8(iii), we have
A N A
D35 100 @) - L) @] = (ke o= e o )*0) @)
A
\< I( PL&' ,Q - P'E' ’Ql) (P)I "0'“
< 400(Q,/Q +Q,/Q") |0l
so that by (9)'
A '
M1, L1070 - (Ly0) ()] € (400(Q,/Q +Q,/Q") + 16X) [[o]
for all [r|<Q,.
We are now in a position to define Li , Ei' and obtain their properties. Write
L,=LlsL"ecLicL"[E,

L,=L}cL"¢ L"[E,

2
E! = U supp L10‘
o‘eM(E1)
L= U supp L,0O.
2 2
O'GM(EZ)

Observe first that L : M(E1) > M(Ei), L,: M(E2) > M(Eé) being the compositions
of linear mappings are themselves linear. If 0 € M(E‘.1) then by (5)" Q supp L"o =0

so, by the definition of L!, Q supp(L% o L")0 € Q(supp L"0 + supp Fer 0 (the

Q=
notation is slightly abusive). (We used this fact implicitly to give L™ o L{ o L" well
defined.) By (1) Q' supp(L"' ¢ Liec L")o =0 andso Q' supp L,oc

Q' (supp(L"' o Liec L") + supp oy Q') =0. Again L™ (L"0) is indeed well defined
’

and Q' supp L"'(L"0) =0 and so, examining the definition of L.!, we have
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Q' supp(LZ' o LMo L")o = 0. We have thus proved (1). By (2)", (2)™, (2)(') and (2)1'
we have

sup inf le; -/l «WQ+ m/Q" + %' + & <€
ei'esupp Lio’ ;€ suppo

for all oeM(Ei) [i=1,2] so that (2) is proved. Next we note that by (4)", (4)",
o

lLrofl <lofl, irmol < foll, lrjol <ol [i=0,1,2 ;
we shall use these facts repeatedly. For example (3)", (3)"' and (3) { now give

A -

(Lo - 0) (o) sllofl (TQ,/Q" + 71, /Q" +Q &' +Q %) < o

for |r[<Q_, so (3)is proved.
As we remarked above Q supp(L% e L") =0 forall o eM(E1) so by (2)™

and (2)c'>

|)(.Q(x1) - 1< |)(Q(x1) - )CQ(e1)| +| )CQ(e1) -1

3 2

<Qlx, - e | +QR/QN + QX' = Qp + 1077RQ  + %¥2/10 § X

whenever [x1 - e” s p for some e% €E% . Again Q' supp(L"'o L")o =0 for all

0 e M(EZ) so examining the definition of Lj and in particular the form of the measure

r(2)‘[s/Q') we see that el

5 € supp Lé((L“' o LL")0) implies inf |eé—2 Rt/Q) > 4NX/Q.

1stsQ
Thus

inf |x, -2nt/Q > inf |e} - 2nt/Q] -
1€t€Q 1€t€Q

> 4TN/Q - X2/8Q 5 2 TX/Q

and so I)CQ(xz) -1y % for all X, with |x2 - eé] <p forsome e} €E}. Thus

(5) is proved.

From (6)5 we obtain

1 -

l(LZO')A(I‘)I {(80&'- QO1 + 163(,)||(L|n o L")O‘”
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1 1

< (80e' 70 Q7" +16%) o]l
< V(Hcrll for Q' -Q;>r>Qy, o €M(E,)
so that (6a) is verified. Again
[L,0) @) « [ o Lro) (@)
<lo@)] + ol (xQ,/Q + re, /a1
<lo@] + ol g forall [rl<Q,

and (6b) follows. The remaining assertions are also easily verified. We now obtain a

version of the linked set Lemma which is easier to handle than our original one.

LEMMA 5.2. If 1>€, 7>0 and N(,7)= 1600([&“11('1J +1), then, given
1>8>0 and m»1 , we can find a monotonic increasing function h : g"’ +Z such

that 10 r > h(r)y r with the following properties : -

100m,r(-3m g-2m

Given Nl(e, 1() = %M(O)< h(M(0)) < M(1) < ... < h(M(m)) < M(m+1) we can find finite
sets EgcS[-¢€,€] and measures pg eM+(ES) with [pgll =1 [se{1,2,...,mf]
such that

(i) M(m+1)Eg = 0

() LGy =1 it ecEg, pesS

fa()(,M(p)(e)) =0 if eeBg, peS

(D) [ Rge)]> 7 implies | g - wp(e) < 1
forall ScTc{1,2,...,m}, M(m+1) -N>[r|>N

W) hg®@], [Rp@]>7 mpties |ig @) > min(lg )], ko) - 7

[s,Tc{1,2,...,m}, M(m+1)-N> [r|> N]

(v) |;L¢(r'){\<1‘( for all M(m+1) - N> |r| >N
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(Recall that f_ is the trapezoidal function with f 6(' 8) = ¢ 8(<S) =0, f 8(-62) =1,

d
f8 linear on [—8, -52_], [—52,82_], [52, 5], TN [—6, 8.

Proof. In order to prove the result inductively, we replace ) , 11, ¢ in condi-
tion Egc[-£,€] andin the condition (i), (iii), (iv), (v) by &(1 -27™"%),

1((1 -2

(V)m ; thus, for example, (v) becomes

-m—4)’ e(1 - 2704 calling the new conditions so obtained (i) , (iii)_, (@),

) “m-4y

m g« -2

If we take h(r) = 4r, p.¢ = Pe/2,M(1) it is at once clear (using LLemma 3.1) that
?

the (modified) lemma is true for m = 0.

Now suppose that the (modified) Lemma is true for m = n.

Then in particular we can find h: é+ > g+ with

i

.. <h(M(n)) < M(n+1)<h{(M(n+1)) < M(n+2), we can find finite sets

101OOn R—Bn 8-—2:1P »h(r) >

1050(n+1) -3n8—2n .

such that, given M(e,n) = % M(0) < h(M(0)) < M(1) < ...

E‘(Sn)g[:-eﬁ -2 " e(1-2")] and measures ,.L(Sn) §M+(E(Sn)) with ]]p.(n)]l =1

[85{1,2,.. .,mﬂ such that

(n)
1) M(n+1)Eg = O

n

)y Ty Ry =1 it ecel,

fsm-z_n)()cM(P)(e)) =0 if ec€ E(Sn), r¢s

res

@, 1P 02" metes (150 - b Pl « qa-2
for all SQTQ{1,2,...,n}
@), 1w ol min(pP@ 1, (wDe)p - a2

) Iﬁéjn)(r')l < 11(1—2_n) for all M(n+1) - N>r3>»N.

n

We now apply Lemma 5.1.
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since M(n+1) » 1012 [8/(M(n)2"""12)] (2'"‘71{ Y 2((1-2""3)8)2,

-24 -n-7

M(n+2) » 10'2 827 8)? M(n+1) and M(n) € 107°% M+ 1)@ 7). Lemma 5.1

*
shows (setting Q' = M(n+2), Q = M(n+1), Q, = M(n) and writing Q=M (n) =

- 1078 M(n+1)(2-n-7vl)) that, putting e_ Yy E(S"), we can find
se{1,2,...,n}

E(1n+1), Egn”) €T and linear maps L, : MEM) 5 M(Egnﬂ)) (i=1,2] such that

(1) M(n+2)E§n+1) =0

(2) sup inf lei - e/ | 52‘”’7/M(n) for all € M(Egn))
ei'€suppLicr ei€supp o

@) o-o) @2 qlloll toran Irl<Mn), oemEM)
(4) LiO'Q M+(E§n+1)), IlLiol IM = ”g' IM for all g€ M(Ef_n))
(5) o) = 115 (1=27"D)8F, I xgt,) - 115 (1-27%)8

(6a)" 1(Lyo) (@) |« 2™ |lo] |y forall M(n+2)-M"(n) > Ir |5 M (n)

-n-7

(6b)' (L 0o )A(I‘)| < lg(r)| +2 'ZHOHM forall |r|<M (n)

(6¢)" I(L]O‘)A(I‘) < lo(r) | + 2‘"'711 HollM forall r€ez, o€ M(E(n))
@) [(Ly0, - L) @) [ ¢ oy - o ) ) | + 27" for ann

Irle M@), oy eMEM), lloll, <1 [i=1,2].

For each Sg{1,2,...,n} set u(SnH):Lzu(sn), }Lgt{]g”} =L1[.L(Sr,]) and write

ES‘*”: supppg‘”) forall U<{1,2,..., n+1f. The condition E < [—e(1-2"""Ty

?

-Nn-

e(1-2 1)] follows from (2) (observing that 2‘“‘7/M(n) SE 2'“’2). Condition (i)

n+1

follows from (1), (ii)m_1 follows from (ii)n and (2) for 1< r¢<n and from (5) for

*
r = n+1. Condition (v)n+ follows from (6a) and (V)n (note that M(n+1) - N> M (n)

1

and that }I(L?-'-D(P) is periodic in r with period M(n+1).

69



Th. KORNER

There remain the proofs of (iii)m_1 and (iv)n+1 which we shall do by splitting up
into cases. If S c{1,2,... ,n+1}, we shall write s - S\{n+1j . To prove (iii)
“(n+1) -(n+1)
suppose ScTc{l,2,...,n+1} and ]us ()| » n(1-2 ). I |r|¢M (n) then
(6b) and (6¢) show that I}Ln)(r) [ > Iu(n+1)(r‘)l - 2_(n+7)'rl and so |u( )(r) |'> » (- -2y,
, XK Ly, ~(n) ~(n) . .
Since T2 S , (iii)' now shows |;.L (1) - Rop (1) |<11(1 -277). Using (6b) if n+1 € S,

(6c)if n+1 £T and (7)if n+1 € T, n+1 €S, we obtain Iu(sn”)(r)-ufl{‘”)(r)!s

-n-7 -n-1

71(1-2_n) + 112 < 7((1-2 ) as required. If M(n+2) - M*(n) >Ty M*(n), then (6a)

shows that n+1 € S (and so n+1 € T). We now use (6¢) to show that
In(")(r)l > |i1(n+])(r)|- 2‘“'7wl >,(1-2‘")1l so that by (iii) ll—t(n)(r) (“)(r)l (1-2"My

and by (6c) again [H(n+1)(r‘) !»l(n+1)(l‘) | = L (“(n) - P-(SrQ) ()|

-n-7, -n-1

1) - 1) | o b - gl (1227 + 2.2 0 ¢ (1227 )7, Condi-
tion (iii)n+1 follows on observing that I-Lg] +1) has period M(n+2).
If 0,,0,€ M(E(n)), lo, @) | > lo,)| then Ao (r) =o,(r) for some |Alg1

and so, if |r|<M (n), we have IL; (Ao, - 2)A(r‘) |« 2™ Clalllo, Il + [l I (oy

(6b) and (6¢)). In particular I(Li o‘i)A(r) | > I(Li 0'2)A(r) | + 2_n_7(“0']|| + ||o’2| ). Thus,

*
if S,Tg{1,2,...,n+1} and |rl¢M (n), (iv) and (7) imply

R0 D) 1 min( 10wy 1, 10 D) ) = 27076 — 27076y _ (127

-n-1

& min( Ip.S(r) l, Ip.T(r) )+ (1-2 )1‘(. On the other hand, if M(n+1) - M*(n)>, ry M*(n),

(l‘l+1 )(1") |

e min( |P~(n+1)(r‘)| | (n+1)(r‘)|) (1- -n—l)T(

then, by (6a), the relation |u
is trivially satisfied unless n+1 € SNT. Butif n+1 € SNT, then the relation stated

is satisfied because of (6b) and (iv)n. Condition (iv)m_1 is thus proved.

Let us state and prove another easy consequence of Lemma 5.1.
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LEMMA 5.3, Suppose 1) &, ’r(, 350 given together with positive integers N and
k, then there exists an Mo(e, 7(, 5, k , N)> 4N such that, given K> 1> P [> 0 and
a monotonic increasing function H:R* s R™ with H(0)=0 and M">M_, M3»M _M'K'
such that MH(4p) ¢ Y, M'> MoMp‘2 together with finite sets Eg < [-—e(1-2‘k), s(1-2‘k)]
and measure |, € M'(Eg) with HuSH =1 [sci1,2,...,m}] such that
(1)k MEg =0
(iii) |:l ] » (1-2_k) implies Il: (r) - LI g (1—2'k)
I« S 1 s SRR
forall ScTc{1,2,...,m}, M=-N>[r[>N
. " " Ky .
(iv), |LLS(1‘) [, |PLT(1") [ >7(1-27%) implies
~ ) . ~ ~ -k ) .
Itg ap@) I3 min(lug@) [, Ko@) 1) - n(1-279) [s,T<{1,2,...,m}, M-N » |r | > N]
- -k
(V) Iup(r)lsqh-z ) forall M-n 3 |r|» N,
) e , k-1 -k-1
then, for p € {1 s2,...,m} fixed we can find finite sets Eg € [~e(1-2 ), €(1=2 )]

and measures p& € MY (BY) with [[uyll=1 [s<{1,2,...,m}] such that

Wy ME§=0
(1), 4 f8(1_2_k_1)(XM(e')) =1 if e'€EL, re€s
f6(1_2'k'1)(XM(e'))=O if e' €EL, r¢s

(i), | ]i:'s(r)l > M(1-27%"") implies | ft's(r) - ft,'r(r) | ¢ 7((1-2‘1‘) for all

seTe{1,2,...,m}, M' =N |r|[> N
. 0 ! k-1, . ..
(IV)k+1 |HS(I‘) l, |I-lT(r') [y n(1-2 ) implies
~ ] . ~y ~y k-1
IHSOT(P)Izmm(IuS(r)I, e (@) 1) - (-2 ) forall S,Tc{1,2,...,mj,

M'-N3IrlyN

—k-

(Vi |M¢(r‘)|\< 101-2 ") forall M' =N > Ir|>N ,
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(Vi)k+1 | PS(I‘) - I—lS,(I‘) | ¢ "(2-1("1 for all |r|<M"

sup inf le-e'|¢ 822K T\

' t
e €ES e€EIS

(vi) 4

(viii)k_‘_1 U {x : |x-elg K/M' for some e€E'S} can be covered by intervals
res

of length Ejg p with :H(Pj)g y-

Proof. By Lemma 5.1 (and the remark that H(4/p Q) -0 as Q » oo) there exists
an M0 depending only on € ,'rl, D, y» P> 0 such that if M", M', M, ES are as given

in the hypotheses, the following is true, Write F. = U E., F,= U E_. Then we
1 pCS S 2 p€S S

canfind F/cT, M-N»M,»M", and linear maps L, : M(Fi) - M(Fi’) [i =1,2] such
that

(1) M'F! = 0

) sup inf le - e/ | \<X8112_k_4 M !

1
ei€ suppLio ei€supp o

k-4

(3) HHP—Uﬂﬂ|<2 lloll for an Irl¢ M, ceM(F,)

@) 1oeM (F), liLsoll = llofl for an cem™(F))

(5) f8(1_2_k_1)(xM(e'))= 1 if e'€F)
f6(1_2_k_1)()(,M(e'))=0 if e €FY
(6a)  1(L,0) @)« 2¥*lloll foran M' -M >r>M,, o€ MF,)
(60)  1(Lyo) ) s low) | + 2% *1lloll foran r
(6c)  1L,0) @) ¢ lo@) | + 27 *lloll foran r
@) o, -Lo)®Iclo, -0 +25 % foran Irlem,,

(8) {x1 : |x1 - e} | €« K/M' for some e} € FH can be covered by intervals
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of length l?j\< p with :H(%)g Y-

Set "US = L1|.LS if pe S, u'S= LZMS if p¢s, Eé = suppp.'s. Conditions
(i)k+1’ (ii)k+1’ (vi)k+1, (vii)k_H and (Viii)k+1 follow from (1), (5), (3), (2) and (8)
respectively. Since p £ @, condition (v)k+1 follows from (v)k and (6b) for M-N ) r » N
(so by periodicity M'-N» r» M'-M+N) and from (6a) for M'-M+N » r » M=N (note that
M, <€ M-N). To prove (:ii)k+1 , (iv )k+1 we argue by cases. By periodicity it suffices to
consider M!' - M1 > »N.

-k-1) implies

If N¢r<M then by (6b) or (6¢) |LL‘S(r‘) | > 'r((l-2

‘I’
g (r) 1>1(1-27%) and so, it s<cT, lp () - kg () | € 11(1-2""), so that by (6b)

R . e
(if p€s,T), (6c) (if p£S,T) or (7) (if pET, pgsS) Iphr)-ng)lsn(i-2 k=1y,
so (iii)k_'_] istrue. If M, <r<M-M,, thenif p £s, (iii)k_H is vacuously true by

(6a). If pE€ SCT, then pET and (iii)k+1 follows from (iii)k and (6¢c).

Similarly suppose S,T<({1,2,...,m}. If pg£SnT, then (iv)k+1 is vacuously
true for M, < r<M-M, and follows from (iv)k and (6b) or (7) for Nsr« M. If

p € SNT, then (iv)k_'_1 follows from (6¢) and (iv)k.

As an immediate corollary of Lemmas 5.2 and 5.3 we have

LEMMA 5.4.1f 1>, 7>0 and N(e,7)= 1600( [’ 71'11 +1), then given
1> 8, y» P>0, K,m>»1 and H: 5+-> 5+ a monotonic increasing function with
H(0) = 0, we can find a monotonic increasing function h: g' > £+ such that h(r)>r
with the following properties : -

Given 2N(e, q() = % M(0) < h(M(0)) < M(1) < ... < h(M(m)) < M(m+1), we can find

}lS, ES satisfying the conclusions of Lemma 5.2 such that additionally
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(vi) U {x lx-elg K/M(m+1)} can be covered by intervals

¢;4S§{1,2,...,mj
length €,«p with 3 H(E)¢y.

Proof. Fix e, 1'(,6, X, k , m once for all. Let W(n) be the statement. Given
Ko » K, there exists a monotonic increasing function h §+ > g* such that

hn(r) r with the following properties : -
Given 2N(e, Tl) = % M(0) < h(M(0)) < M(1) < ... < h(M(m)) < Mn(m+1), we can find

finite sets Eg S C-e(1-2"7"% R e(1-2'n'4)] and measures
?

+
N eM (Es’n)

P‘S,n
with |lpg [[=1 such that
’

@)

h Mn(m+1)ES,n =0

(i) | f8(1_2_n_4)(xM(p)(e))= 1 it e€Bg , PES

f8(1_2_n_4)()(M(p)(e))=o if e€Eg ., PES

@@ii), | ﬁs,n(r) | > 11(1—2'“'4)

implies I':S,n(r) - ;LT’n(r) | < 1((1—2'“-4)

for all ngg{1,2,...,m}, M (m+1) - N » [r[>N

(iv)n |’:"S,n(r‘) b I;"T,n(P) | » 11(1_2—n-4) implies
I*:’sm;n(f‘)b/ min( Iﬁs’n(r) l lﬁT’n(r‘)!) - q(1-27"%)

ES,Tg{1,2,...,m}, Mn(m+1)-N>/ lr|yN]

)

N |ﬁ¢ n(p)|g(1-2'"‘4)vl for all M_(m+1)-N > [r| N
,

(vi)n If 1¢<pgn, then pgs {x s |x-e |$4K0/Mn(m+1) for some eGES}

can be covered by intervals of length Ei\< p suchthat J H(Pi) = X'/ m.

For n =0 this is a re-statement (with coarser inequalities) of Lemma 5.2. On the

other hand if W(n) is true, we can apply Lemma 5.3, taking k=n+4, 0<K< 1/(8K0),
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-1
Mn(m+1)>,Mo(e ' 8, m, N) and Mn+1(m+1)>/Mn(m+1)Mo(e Lt %, m, NK ', choo-
singa p . ,=p such that Mn+1(m+1)H(4 pn+1)< [/m and K»8K_ . Lemma 5.3
now gives us ES,n+1’ PS,n+1 satisfying W(n+1).

This last assertion is checked as follows. Conditions (i)m_1 , (iii)n+1 , (Vi)n+1 ,

(v)m_1 and that part of (iv)n_H dealing with p = n+1 follow from (1)k+1 (with

(iv )n+ 1

M!' =M _ _(m+1)), (iii)k_'_1 and (viii)k_H of Lemma 5.3. Conditions (ﬁ)n+1’

n+1

for 1< pgn follow from (ii)n and (iv)n together with the observation that, since

(vii) gives  sup sup le —e' | ¢ $2 9273 M (m+1), we have

k+1 n+1
e'€E ecE
S,n+1 S,n
2 ,-n-=-5 2 ,-n-5
) ) . N
sup inf Ix (e)-x (e") ] ¢ &2 M(p)/M_ . (m+1)g <2 and
e'CE oCE M(p) M(p) n+1
S,n S,n

pgs{x :Ix-els 4KO/Mn(m+1) for some e€ES} c p\gs {x tlx-els 4K0/Mn+](m+1)

for some e€ES} for all 1¢ pgn.

Thus by induction W(m) is true. But W(m) is a statement of the conclusion of
the lemma, and so we are through.

The arguments of Section § 3 show us that, using Lemma 5.2 and Lemma 5.4
respectively in place of LLemma 1.7, we get the following 2 improvements on Lemma 2.1

(the Central Lemma).

LEMMA 5.2', Given K>1, 1>A>0 wecanfinda C(K, A)>1, a

B(K, A)>0, an NO(K , A)>»1 andan m(K, A) € £+ with the following property : -

1

Given €,0>0 and Nye 'N o(K , A) an integer, we can find a monotonic

82m

increasing function h: Z" > £+ such that r> h(r)» r with the following property:-
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Given N = % M(0)< h(M(0)) < M(1) < ... <h(M(m)) < M(m+1) we can find a finite
set E c[-¢€ , e] and a measure T € M(E) such that
@) M(m+1)E =0
(ii) fa(xM(P)(e)) takes the value 0 or 1 if e€E, lgrgm
card {1 grgm:f (X M(r)(x)) = 1} > Am for all x€EE

i) il = TO) = 15K | T(r) |

sup
M(m+1)-M(0) >3 M(0)

(iv) HT||M\<C.

LEMMA 5.4', Given K> 1, 1>A>0 wecanfinda C(K, A)»1, an
NO(K , A)>1 andan m(K, )€ £+ with the following property : -

Given €,8>0 and Ne N (K,\) together with K »1, 1%p, y>0
and H a continuous monotonic increasing function H : 5_ > _E_ with H(0)=0, we
can find a monotonic increasing function h: £+ > _Z__+ such that h(r)>r with the
following property : -

Given N = % M(0) < h(M(0)) < M(1) <...< h(M(m)) < M(m+1) we can find a finite set
E c[-e, €] and a measure TEM(E) such that

1) M(m+1)E =0

(ii) fS(X M(r)(e)) takes the value O or 1 if e€E, 1l¢rg¢m

card {1 fr¢m: fg(XM(r)(x)) = 1}>, Am for all x€E

@) [Tl =T = 13K sup IT(@)|
M(m-+1)-M(0)»r>M(0)
(iv) [T |M sC
) {x : le - x| ¢ K/M(m+1) for some eeE} may be covered by intervals of
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length Q¢ p suchthat ) T H(P)< y.

The essential improvement on Lemma 2.1 in Lemma 5.2' lies in the fact that we can
now choose M(r+1) without the restriction M(r) divides M(r+1). This is frequently
very helpful in constructing proofs (it would have simplified the construction of the elil
in the proof of Lemma 2.2 for example). The fact that we can take h linear in Lemma
5,2 like the condition (v) of Lemma 5.4' shows that supp T is in some sense rather
thin, and we shall use these 2 results in Section § 6 ("How Thin Can a Set of Non
Synthesis Be ?").

However, the main purpose of this section is to prove the following result.

LEMMA 5.5, Given €, > 0, we can find an N(e, T() such that, given m€£+,
xel , and F a closed set in L such that GpF # I , Wwe can find a monotonic
increasing function h: £+ - Z+ with h(r)> r having the following property : -

Given Mp(j) [1<psm, 0¢j] with N= M, (0), h(Mp(j))s’ Mp,(j') whenever
Osj<j's 1s«sp, p'sm or Osj=j'y, 1sp<p's m, we can find closed sets

Eq < [x-€,x+e€e] andmeasures i,LS€M+(ES) with “"LS” =1 [s c{1,2,... ,mj]

such that
® Mp(j)(e)) =1 if  e€Eg, pES
fz_j()(Mp(j)(e)) =0 if e€Eg, pg€ S
(ii) I;LS(I‘) [ > 1 implies lﬁs(r‘) - IIT(I‘) | ¢ 1 forall scTef1,2,... ,m},
Irly»N
(iii) IﬁSnT(r) | » max( Iﬁs(r) l, IQT(r) [)-7m forall s,Tc {1,2,...,mj,
Ir[»N
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(iv) |u¢(r)| =1 forall Ir|y N
v) Writing E = U E s we have E independent and
sci1,2,...,m}
GpE NGpF = {0}.
Remark. In the proof of one or two of the less important resultsin Section § 7 we

shall need the following further condition (whose (easy) proof is left to the reader).

i) kM@ + k<27 foran lkl¢j, pgs.

This is in fact a consequence of the method we used to construct the E but the

S

reader may find it easier to incorporate an explicit extra step in the construction.
It is clear that, apart from condition (v), Lemma 5.5 is a direct consequence of

Lemma 5.2 and repeated inductive use of Lemma 5.3 (note that if p' is a translate of

KREM(T) then |,I:L'(r‘) | = h:.(r‘) ). To get (v) we shall use

LEMMA 5.,6. Given 1> 3, 1( >0 and N1, N2 positive integers with

> 12800 [7(‘18“1] together with ¥ >0, k€Z" and F a closed

=2
N15 10777, N,
set with GpF # T, we can find an N3(8 , T(, N2 y f, k, F)y 4N2 such that, given
Ny > NB’ there exists a linear map L : M(T) » M(T) such that

(1) N, supp Lo =0 for all o eM(T)

() inf sup le-e'|¢d forall oc€M(T)
e'€Csupp Lo e€supp o

(3) [ (Lo- O')A(I‘) | < T(HUH for all |r I\<N1, oEM(T)

(4) |(Lo‘)A(r)| < IS’(I‘)I + ’V(HC'H for all r,c€M(T)

(5) (L) (0) | € llofl foran N, -N > Irl»N,, oeM(T)

6)  LoeM™ (1), lLoll=lloll foran ocem*(T)

78



TECHNICAL IMPROVEMENTS

(7) Suppose o€M(T). Then, given X1y Xpy cney xk'€ F,
Yqs ¥ps ++-s ¥ € Supp o with inf lyi - Y I'> Y We have automatically
T¢i<jck

k

k k
- X + 12_1:miyi #0 whenever 1g i§= : |mi l< k.

This result follows at once by combining the three parts of the following lemma.

N positive integers with

LEMMA 5.7(i). Given 1>9, >0 and N 5

'I ’
-2 -1¢-1 .

N13 €107°7, N, »12800 [1( 8~ '] we can find an N3(5 » M, Ny) »4N,  such that,

given N > N3, there exists a linear map L : M(T) » M(T) satisfying conditions (1)

to (6) of Lemma 5.6 ;

(ii) Given 1> 8, ’ll> 0 and N, N,, k_ positive integers with N, 3 10_27(,

N, > 12800 [1{"8“] we can findan N,(§, T Np,k ) »4N, such that, given N, »Nj,

N, amultiple of N,, there existsalinear map L : M({zrrr/N2 :1€rg Nz}) > M(T)

9

such that conditions (1) to (6) of Lemma 5.6 are satisfied and additionally
(8) If 0'€M{2;rr'/N : 1< rg<N } we have I(LO')({ZRS/N })I < llollnk /102N
27 €Ty 4y 1o, 4

for all 1¢g s\<N4 ;

. . e -2
(iii) Given 1> X-o’ S, T()O and N1, N2’ ko positive integers, N1Ss 10 1{,

N, 12800 [ '87'7' ] together with § > y >0, k,k,k€Z', F aclosed set

2

with GpF # T, we can find an N3(8 ,1{, N2, [, xo,k1,ko,k,F)>/4N2 such that,

given N4>, N K

3 and k closed intervals I1 , 12, ...y I each of length [, there
exists a linear map L : M({2rrr/N2 :1&r {Nz}) - M({ZKP/N4 :1srg N4}) satisfying
conditions (1), (2), (6) of Lemma 5.6 for all o‘€M({2K r'/N2 s lgrg NZ}) and conditions

(3), (4), (5) of Lemma 5.6 for all 0'€M({21tr/N2 :1¢rg Nz}) such that
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sup lol(fa-y,a+y])¢ 1/80k  together with
acT

7))y 1t yj€L,nsupp o for some U€M({2r(r/N2 c1grg N2}),

k k
|yi-yi'|\<21(k1/N4, X sXg, ., X, EF then i;xi+i—1 miyi;éo whenever

K
1«2:1 Im, [« [mez].
1=

(8)' 1t oeM({2rr/N, : 1< r¢N,}) and :léif lol(fa -y, ,a+f D¢ 3"k07(/10k

then Zléi“ lLol(fa -y, , a+ro])\<'l(3‘k/80k

ILol(fa -, IDR lol(fa-y, 1)+ 370 /10k.
:glg:r ol(la-y,a+yl) :népz cl(l-y,a+yD+ wl/

Proof.

(i) Consider L, inLemma5.1.

(ii) Set N

- 103 _
3= 10 (k0+ 1)N2 and let Lo —O-*P’S,Nét'

Conditions (1) to (6) follow from L.emma 3. 1. Condition (8) is evident (look at the case o
a point mass).
k
(iii) Set U, ={2rtr‘/N2 P1<rsN,), I= iL_j1 I + [[o , -3*0] s
k
U, =U,0I, F ={in : xi€F} . Since F isclosed, sois F

o 1 =7

can contain no intervals. Thus we can find ]\I3 a multiple of 8N2 such that for

k- Since GpF # T,

Fy
each e€U_ there exists an e'(e) with e'(e)= 27ts(e)/N3 for some s(e)€£ such
that le'(e)-el ¢ 8{0/4, and such that writing J(e) = [e'(e) - 81tk1/N3 s

e'(e) + 8r(k1/N3:| we have that the J(e) are disjoint, J(e)gli it e€L, J(e) NI, = ¢

k
if €I and,it y,;, ¥, ..., ¥, belong to distinct J(e), then iZ=1 m;y; ﬁF‘k

k _
whenever 1¢ 1_21: lmi | ¢ k [mi€; 1.
Set Lo = (o |(U1\Uo))* ks Yo, and let L,o be that measure on
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{2nr~/N4 c 1€ rg N4}n U, Wwith L20'(e'(e)) =o(e) for all 0'€M{27tr'/N2 : 1\<r\<N2) .

It is clear that L =L _+L

;+Ly on M({ZKP/sz 1$T<N,}. Since

|LO'—0‘*}L8K’N4I 4k:1é;}|0‘|([a -y, 2@ +y]) sothat

[(Lo - o * ks f’N4)A(P) l€ 2k :g:l?r lol([a- o2 +fo] ), conditions (3), (4), (5)

follow from Lemma 3.1 (for o€M( {=2R P/N2 1 rg Nz}) such that

:tg)r lol(a -y,a +y1)< ’f(/SOk). Conditions (1), (2), (3) and (8)' are true by inspec-

tio:. Condition (7)' is a direct consequence of the last sentence of the paragraph above.
Prootf of Lemma 5.6, By using (i) of Lemma 5.7 followed by (ii) twice, we can find

P1 , P2 (depending on ® s § N2 and k) with P1 > 10_3 )‘ (provided simply that Mo

is a positive multiple of M', where M' depends only on 8, 1(, N2 and ]*) and a

linear map L : M(T) » M(T) such that the following conditions are satisfied for m = O

(1)m M} supp L o =0 for all o€M(T)

(2)rn inf sup le-e'l¢8(1 _2—m—1)
e'E€supp LmO' eCsupp o

) |(L o - o-)A(r‘) | g '1(1-2_"'_1)”0'“ forall |r|g¢N 1 TEM(T)
@), I o) 1 < low) | + 1((1-2‘"" Mol for ann r,cem(T)
Oy L) @ ¢ 02Nl foran mM_-N,»Irl>N,, oceMT)
©)y, Lpoem (@), I oll=lloll foran cem*(T)
(7) If oEM(T), then sup |L 0'|( -L L a+ X |)gn-2"M)/160k

m = a€T P IS_1j| 1 )

____ I -k ,-10-m _ (P

(8),, znég?r Lol ([ B, a+ P2.1)<113 4 /160k where ky = ()

(9), Wecanfind J (t)= { ) ey Iik} st (p )] some dictionary

[2r n(r+1)"|

ordering of the sets of k elements of the form I Lﬁ— such that, if
2

o s p
T¢ s¢min(m, () and y}, y, ..., y, belong to distinct elements of 3 (s), we
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have for all |y1' -y | < 2n‘qm/Mn, x;€F that :miyi + :xi # 0 whenever

k
137 Im sk Im€z
i=1

By Lemma 5.7(iii) we know that if, for all qm€£+, we can findan L_ : M(T) »

M(l‘) andan M. > M_  such that conditions (1)m to (9)m are satisfied then, for all

q €Z+ provided only Mm

. . .
a1 is a multiple of M_M +1(6, T M s kq . ) for some

+1 m

M! fixed, we can find an L
m m

+1

K M(T) » M(T) such that conditions (1)m+1 to (9)m+1

are satisfied. (We need to be able to choose 9 freely to satisfy the condition written
" N, » 12800 ETI_] 6-1] " in Lemma 5.7(iii) whilst at the same time ensuring that the set

L o will be sufficiently close to L o for (5 )m to imply (9)m+1 by reference to the

m+1

condition (2) of Lemma 5.7(iii).)

Since we know that (1)0 to (9)o can be satisfied, it follows that (1) p. to 9) p

m m
can be satisfied (for all q P € =_Z_’L). An application of Lemma 5.7(i) completes the

m
proof.
Proof of Lemma 5.5. Let P(n) be the statement that we can find a monotonic
increasing function hq : £+ > £+ with hq(r) >r [1¢q¢n] such that writing
(p(aq) , i(q)) for the qth element in the usual dictionary ordering of (p,j) [l¢pg¢m,
0<¢j]  G(a)< jla+1), plq)<P(g+1) if j(q) = j(g+1)), the following statement is true : -
Given N = M(0) < h‘(M(O)) <M(1) < hZ(M“)) <.oo< hn(M(n—1)) <M(n)< hn(M(n))
<M'(n+1) we cantind 27" 8(n)>0 and closed sets E(Sn) c [x—e(1—2_n_4) ,
x+e(1—2_n_4)] and measures p.(Sn)e M+(E(§)) with “P»(Sn)H =1 such that
(1)

. (n)
R f2_j(t)(1—2_n_4)()(M(Zt)(e))=1 it e€Ey’, p(t)ES, 1<¢2t¢n

. . (
fg-J‘(t)(1_2-n-4)()‘M(2t)(e))=0 if eeES“), p(t)s, 1¢2tg¢n
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(ii),, Ip(n)(r) |y 1((1-2’"‘4) implies ||-L(n)(r‘) | - ltr(l?)(r‘) | ¢ 1 (1_2-n-4)

for all SsTg{l,Z,...,m}, M(n+1) -N»r»N

(iii) Ip(S“r),T(r-)I»max(lﬁ(S“)(r)l, lﬁfr")(r)l)-qm-z'“"‘)

for all s,Tg{1,2,...,m} M(n+1) - N» r» N
(iv), Ipéj“)(r)lsr( for all M(n+1)-N [r|» N

) [n] n
(v)n Given X,X,,...,X EF (where u= z) Do Vi Vhseons y‘;€¢§é')s E(S)
~-u .
such that |yi' - yj |>2 for i#j, wehave )} :xi +) :miyi #0 for all

Kk
ly; - il ®), 167 Imilek  [mezl.

-4n-4

(vi), M'(n+1)3(n)q >2 12800, M(n)S(n) ¢ 27414

(Vii)n M'(n+1)e = 0 for all e€E(§) .

It follows from Lemma 5.6 for n odd and from Lemma 5.5 for n even that

P(n+1) is true and that moreover, given E(n) , H(n) as in the statement of P(n),
S S

(n+1)’ P.(Sl,'l+1)

we can find Es as in the statement of P(n+1) with

(viii) (n+1)

inf le -e'| ¢ &§(n)/2 for all e'€Eg
n+1 eeE(n)

(ix) |(p~(n) (n+1)) ) <2 for |rl< M(n).

n+1

Further by Lemma 5.2 P(0) is true.
Thus setting h(r) =h (r) for hn+1(h (oot >rrn (b (...(h,(N)))

we see that given N = M(0) < h(M(0)) <M(1)<h(M(1))< ... we can construct E(n)

p(sn), 8(n) satistying conditions (i) to (ix), [n»2]. It is clear (by (x),, and (xi), )

that E(Sn) converges (topologically) to a closed set ES and pg) converges weakly
toa K EM (ES) with HF—S” = 1. Condition (i) follows from (1)n, (1v)n and (vn)n ;
(iii) from (iii)n ; (iv) from (iv)n (note that we have not claimed that E¢ is of measure

0) ; and (v) from (V)n and (viii)n.
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We conclude the section by obtaining a consequence of Lemma 5.5 which stands in
the same relation to it as Lemma 2.1 stands to Lemma 1.7 or Lemmas 5.2"' and 5.4"' to

Lemmas 5.2 and 5.4.

LEMMA 5.8, Given K> 1, 1>A>0, we canfindan C(K,2A)»1 andan
m(K, A\) € é+ with the following property : -

Given 1> €>0, we canfindan N(e, K, 2\) »1 with the following property :-

Given xeg and F a closed set in I such that GpF # T, we canfind a

+

monotonic increasing function h : é_+ +Z" (suchthat h(r)>r) with the following

property :-

Given M () [l<«pem, 0<j] with 2N(e,K,2)=M,(0), hM (G)<M (')
whenever 0< j<j', 1s<p,p'sm or 1gp<p'sm, we canfind aclosed set
E ¢ [x-€, x+€] and a measure TEM(E) such that

(1) E is the union of a finite collection & of disjoint closed sets such that

for each E'€® we can find a subset 9(E‘)Q{1,2,...,m} with

tz_j(XMp(j)(e)) =1 for all e€E', peEo(E')

tz_j()CMp(j)(e)) =0 for all e€E', p¢o(E')

(ii) card 6(E') » Am

@i) iy, = IT(O)| = 13K lr:ls;ﬁ(o)l%(r)l

Gav) il <c
(v) E is independent, GpE nGpF = {0}.

Consequently
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(i) limsup ofx€E : [x (x)- 1] <3}5(1-Nlloll foran oemM*(E), indeed

I's00
i) lim i_{_lf sup inf O'{XQE : I)(M (P)(x) -1]¢ B_} > (1=-X)
usco c€EMT(E),lloll=1 myp>»1 ryu D

for all & > 0.
(iii)’ int{”E)jM(O) a Xy - ey * E»M(O) la, I<K/2}51/2C.

Remark 1. We could have maintained uniformity with e. g. Lemma 2.1 in the con-
clusions (i) to (ii) by talking about points rather than sets ("For every e€E we can
find a subset 6(e) < {1 22400 ,m} such that card 8(e)y Am and £ _.(X, (.(e))

273MG)
takes the value 1 or O according as j belongs or does not belong to 6(e)").
However, in order to avoid measurability questions the pointwise conditions would have

in any case to be translated back into the equivalent closed set conditions.

Remark 2. We will deduce (iii)' from (iii). If the reader examines our proof of
(iii) he will find that it was obtained (via a simple version of Hahn Banach) from what is
essentially just another form of (iii)'. We leave it to the reader to produce a direct
proof. (In the original versions of the proofs in this paper we obtained results like
(iii)' directly (e. g. Lemma 1.9(iii)), but this complicated the proof of results like (iii)
(in particular Lemma 1.9" (iv)) in which we are, in general, more interested.)

Proof of Lemma 5.8.

(ii)' We have, by (i) and (ii),

m m

€E: X (x)-1]¢0}= €E : | Ax)-1]gd
p_;o-{x Mp(J) x) <0} é;: E:é‘:gc{x xMD(J)(x) <8}
y (1 =ANmo(E")
<)
= (1 = M)mo(E)

so that
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CE: X, . \)-11<d}> (1 -2
e b )= ) 0 -l

provided only j>,jo(8) for some j independent of lloll [8>0, ceM™(E)].

@iv)’ By (iv) and (iii)
v L |
J( T »M(O)ar‘xr Rl |

H E»M(o)a“x“ B 1HC(E) ”
l |

=| aPT(r‘)-1|

T [»M(0)

1 - T
SEPINERIEE]

1 = (K/2)K™ = 1/2

for all F Iar s K/2.
T 1>M(0)

The proof of the main part of Lemma 5.8 follows mutatis mutandis that of Lemma 2.1,
In particular using the arguments and notations of the first part of Section § 3, we see

that Lemma 5.8 follows from Lemma 5.5 and

LEMMA 3.3'", Given m»q3y1 we can find aueg EU€<I>(m,q):| such that

E ; ay = 1 with the following property :-
U€E®(m,q)

Given 1> >0 with K(m,q)- « >1 we can find an 1 0(o&) with the following
property :-
If we take 'lo(a) > 1() 0 in the hypotheses of Lemma 5.5 then, taking the "LS

as in the conclusion of Lemma 5.5, we have, writing T = Z ; a | that
Uy
U€®(m,q)

) 1> (Km,a) - sup T ()
r [>M(0)

Proof. We use the proof of Lemma 3.3 with the condition
"M(0)/2 ¢ r < M(m+1) - M(0)/2" replaced by "M(0)/2 < |r|".
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This concludes a section which contains no really new ideas and from which we
shall only need the statements of the lemmas. (Further, their use can always be avoided
in any specific case by adhoc arguments incorporating perhaps only one part of their
proofs.) By placing all the messy work together, I hope to ensure that the ideas of the
remaining proofs can stand out more clearly. However, before resuming the main lines
of our argument in Section § 7 onwards, we detour slightly to discuss some easy

applications of the results above in constructing Helson sets of non synthesis satisfying

various thinness conditions.

§ 6. HOW THIN CAN A SET OF NON SYNTHESIS BE ?

We arrange the results of this section roughly in order of decreasing interest.
The arguments are of a considerably lower standard of difficulty than those in the rest
of the paper. Lemma 6.2 is independent of Section § 5 and the lemmas which conclude
the section are very simple consequences of results of Varopoulos (and a related result

of Kaijser given as Lemma 6.4).

LEMMA 6.1 (Varopoulos). If K1 , K2 are perfect non empty disjoint sets and

K, UK is Kronecker, then K1+K2 contains a closed set of non synthesis.

17772

We proved our Helson set E of non synthesis by constructing a pseudo function
on it. Is the result affected if we demand E Dirichlet (so that by the result of
Kahane proved in Lemma 4.1, sup |T(n)| =1im sup |T(n)| for all TEPM(E)) ?

n n->00

The answer is no.
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THEOREM 1.1'. Given S(n) >0 |:n > 1] we can find a weak Kronecker set

E which is not of synthesis together with a sequence of integers Q(n) + oo such

that Eg{x: x-277/Q(n)| ¢ 9(Q(n)) for some T¢rg Q(n)}.

As a corollary we obtain

LEMMA 6.2. Given H, a continuous increasing function H,: 5"’ > B+ with
H1(0) =0 and H,: 5+ > 5+ continuous with I—I2(x) »00 as X 00, we can find
a weak Kronecker set E of non synthesis such that

(1) E has Hausdorff H, measure O ;

1
2) E is Dirichlet ;

3) We can find 61-»0, q; » 0o such that HZ(B;I) »q. yet E canbe

i

covered by at most q; intervals of length less than or equal to Si.

(Note that if Hz(x) =log x condition (3) is Salem's condition and implies (2)

( [4] p. 95).)

Proof of Lemma 6.2. This is trivial. Since H1(x), H2(x), x » O+ as x » O+
we can find &(n)> 0 such that

(i) nH (8 (n)/2) < 2"

(ii) nd(n)<2"

(i)  nH,((S(n)/2) ") <27

Constructing E as in Theorem 1.1' we have

. . [2ns 2rr(s+1):l _2n
(i) E can be covered by intervals Is = [G(E » Q) of length QS = o)

such that J _ H, (&)< 27"
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@ gy - o)< 27T

(iii) E can be covered by at most Q(r) intervals I, of length QS such
that H,(eZ')>Q(r).

The result follows.

Theorem 1.1' also shows (as we remarked earlier) how delicately Herz's arithme-
tic condition for synthesis ( I__‘Sj p. 124 and Section 9 of this paper) depends on strictly
arithmetical properties of T.

It would be more interesting to decide whether we could construct a Helson set of
non synthesis inside the K1+K2 (which is automatically Dirichlet) of Lemma 6. 1. I
have not succeeded in doing so, but neither have I found a good reason for supposing
that the method of this paper is inapplicable. (We shall discuss the problem again in the
last part of this section from the statement of Lemma 6.4 onwards. )

Our proof of Theorem 1.1' mimics as far as possible the proof of Theorem 1.1 in
Section § 2. We construct En’ Ky subject to the inductive condition below.
(N(e,K, A), fn are defined as in Section § 2 and we suppose for convenience here

and throughout this section that 1 >8(0) and (n+1)_2 2~n-3 §(n) » §(n+1) 30).

INDUCTIVE CONDITION I.(n). At the conclusion of the nth step we have a finite
set E_, ameasure p.n€M(En) and an integer Q(n)» 1 such that

@ p0)=1

.. - <o _on

@ ik Moy s2-2

(iii)  Qn)E_ =o0.
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LEMMA 6.3. Given E ., B, Q(n) satisfying the inductive condition L(n), we

can find E Q(n+1), P(n+1) satisfying condition L(n+1) such that, in

n+1? Pne1?

addition
@) Ik @ k@] +2™* foran  Irl<qm)
(v) B ) €27* foranl P(n+1)<r¢Qnr1) - P(nt1)
(vi) sup inf  |x-yl<¢ é&%
yE€E x€E
n+1 n
Further
(vii) If F is any closed set with sup inf |x-y | ¢ 8(Q(n+1)) then we can
YEF x€E |
%H)-P(nﬂ) Q(n+1)=-P(n+1)
find f= a_ X a_ >0 a, =1 such
r=P(n+1) A r=P(n+1) r
-n
that |If - fn+1||C(F)\< 2™,

Proof. Write €(n) = ‘5(Q(n))(2"'n+8 |||-'.n||M N(2'48(Q(n)),2n+5”Pcn“M, 1_2-n-5))-1 .
The work of this paragraph is somewhat simplified by using Lemma 5.2' but we could
have copied the first two paragraphs of the proof of Lemma 2.2 directly. Let

E = {e] 1€55. .0 s€ } (with €185, ,ee distinct). We can find e/ linearly indepen-

4
dent over Q with Iei’ -e | ¢ €(n)/2. By Kronecker's theorem there exists an M

(e,) ] ¢ 276 By the continuity of Fapr 1 there

such that  sup IXM(ei) -f .y

P 1
1€1ig n+

exists a Qeg’“ and e! distinct with |ei' - e'i'|\< e(n)/2 (and so |ei -ef | ¢ €(n)),

-n-b
Qe!=0 and sup X (e.)-f .(e)lg2™™ (and so  sup X (e)) -
i 1<ig P MYTi n+1717 Y leig @ M+QYi

' -n-5 v far . . . ,
R CHIRS for all t€Z). Set E!= {ei : 1<i< 0} and write w! for that
measure with support E! and P‘r'n(ei') = }Ln(ei ). By Lemma5.2' wecanfind m»1

and NE™48(Q(n)), 2“+5|lun||M, 127175 _ p(n) < M(1) < M(2) <. .. <M(m) <M(m+1) = Q(n+1)
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—_- *
and T _,EM ( [—2’"'58(Q(n)), 2 n 5S(Q(n)):[) with support E_ ; such that M(5)
is congruent to P modulo Q and M(m+1) is congruent to zero modulo Q

[1<jsm] whilst

X *
(@  MmDE, ;=0
1 -n-3
Mg~ Ve, )
o -t =152 sup Ty
n+1'"PM = “ntl MM Mm+1)-P(n)>r>P(n) ™!
*

s .
The arguments of Lemma 2.2 now show that writing En+1 = En + En+1 ’

= 1 i
Popq = By * Tpyq the conclusions of the lemma hold.

Proof of Theorem 1.1'. Construct a sequence (E , Q(n+1), P(n+1))

B

n+1? "n+1

satisfying the conclusions of Lemma 6.3 [n= 0,1,2,.. .]. Let E bethe topologi-
cal limitof the E_, and S a (in fact the) weak limit point of the TR As in the
proof of Theorem 1.1 0 #£ SEPM(E), E¢ {x : |x - 21mr/Q(n) | € §(Q(n)) for some

1srs Q(n)} and E is weak Kronecker,indeed given f€S(T) and €>0 we can find
an n»1 anda gE€A(T) with ”g“A(T) =1 and supp é = {r : é(-—r) # O} c

{r‘ : P(n+1) = M(n+1) > 1> M(n+1)}, vet |lg - f”C(E) < €. Thus for any measure oEM(E)

P(n+1)-M(n+1) P(n+1)-M(n+1)
we have lim inf {U(g-t)dc g = a X, |ar | < 1}: 0.
n->00 r=M(n+1) r=M(n+1)
Taking g = x-k this yields
N P(n+1)-M(n+1) . P(n+1)-M(n+1)
lim inf inf{lo(k) - Y. a, o(r)l: a,l<1}=0
n>0o r=M(n+1) r=M(N+1)
so lim sup sup {l o) : P(n+1)-M(n+1)> 1> M(n+1)} »lo(k)| forall k whence
n-+00
lim sup sup {|0'(r') | : P(n+1)-M(n+1) > 1 » M(n+1)} bY HO-HPM' But conditions (iv) and (v)
n»co
show that

91



Th. KORNER

lim sup sup {l S(r)!| : P(n+1) = M(n+1) » 1> M(n+1)} =0
n+00
so S is a true pseudomeasure. Since a Helson set of synthesis cannot support a
true pseudomeasure (the dual (A(E))' of A(E) is the set of synthesisable pseudo-

measures, if E is Helson (A(E))' = (C(E))' = M(E)), we are done.

Next we prove

THEOREM 1.1". Given H: 5"’ > 5+ continuous increasing with H(0) = 0,
we can find a weak Kronecker set E with Hausdorff H measure O which supports

a non zero pseudofunction.

The reader may recall a remark of Salem which says that if pPEM(E) where E

is independent then if ||:(r‘) | tendsto O as r -» oo it does so slower than any power

of r. We remark that even for S, the pseudofunction constructed in Theorem 1.1,

although an explicit lower bound can be put on the rate at which é(r) tends to O,

the speed of convergence so given is extremely slow (by comparison for example with

(log log ... log n)-1 ). It is doubtful whether the direct methods of this paper can give

rapid convergence but similar methods also fail to give rapid convergence in many situa-
tions where such convergence is known to exist. Thus nothing in this paper constitutes
evidence against such statements as "Given Ch > 0 such that Cnn—“ +00 as n-00

for any « we can find a weak Kronecker set E and an 0 # SEPM(E) such that

| S(n) < c, forall n".

The proof of Theorem 1.1" follows that of Theorem 1.1 (to which the reader is asked

to refer) using Lemma 5.2"' in place of Lemma 2.1.
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We construct En’ [ subject to the Inductive Condition I.(n) of Section § 2

with N(e,K, A) = € 'N_(K, }) (in the notation of Lemma 5.4).

LEMMA 2.2", As for Lemma 2.2 with the additional condition
(x) If F is as in (ix) then there exist intervals I, of length ei < €(n)

such that ) _H(P;)<2™" and UL 2F.

=4y get

Proof. Write m = m(2n+4]|l*n”M, 1-2
K = 16(No(2n+5||p-n|[MC(2n+4||p.n||M, 12774 127"5)"1 By [ emma 5.4' we can
select P(n) <M(1)<M(2) <...<M(m)<M(m+1) suchthat M(r+1) is an integral
multiple of M(r) [1sr¢<m] and
(1) M(De() >2™1¢ Pl [l
(2) M(r‘+1)>,2n+16 M(r) l¢rs<m]

whilst, putting €(n+1) = K/M(m+1), we have
0 < €(n+1) < min(e(n)/32 , o~n-16 M(m))
(so that we have statement (3) : -
M(m+1) > 16M(m) + (e(n+1)/2)" 'N_@™ | ||, @™ ||, , 12774, (1-277-5))
o n'M n'M
in such a way that we can find a Tn+1€M(I) with the following properties. If we write

*

E

e =supp T, then statements (4) to (8) of the proof of Lemma 2.2 apply and

additionally we have (using Lemma 5.2'(v)) the statement
*
(8a) E 1+ [-e(n+1) , €(n+1)] can be covered by intervals of length ?i < €(n)
-n-1
such that 3, H( Ei) €2 /card E,.

The remainder of the proof follows the proof of Lemma 2.2 (from statement (8)

*
onwards) word for word. Since by (8a) Bt [-e(n+1) , en+1)] + e/ can be covered
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by intervals of length ei < €(n) such that EH(Ei)\< 2—n—1/ card E!, it follows that
E 4= E:+1 + [-eln+1) , ene)] + E) can be similarly covered with J H(P,)« 21
Condition (ix) of L(n+1) now follows.
Proof of Theorem 1.1". As for Theorem 1.1, Since EC E + (-e(n) , e(n)]
it follows from condition (ix) of I.(n) that, for all n, E can be covered by intervals
of length ei with ) H( gi)‘< 27", It follows that E has Hausdorff H measure O.
There is another thinness condition due to Carleson.
Carleson's Condition. A closed set E is said to satisfy Carleson's condition if
it is of (Lebesgue) measure O and the complement of E (which is automatically of the
form L(j Ii where the Ii are disjoint open intervals (called the complementary

i=1
00
intervals) of length Ei say) satisfies :,;1‘9,1 log 1/ ei <.

We make the obvious remark :

LEMMA 6.4. Suppose E is the topological limit of sets

E = {xm, Xops = xnn} with lxrn - X | ¢ inf |xt - Xgp /4 = o say for
1€t<s<n
all 1«¥r<sn<m and inf Ix_ -x_ | <98 . Then, if E is of Lebesgue
1€r¢p-1 0 m n

measure O and ) | 6n log(1/ 6n) < oo it follows that E satisfies Carleson's

condition.

L . _ . . .
Proof. This is trivial. Let J 1= T, Jn be an interval (xsn , xnn) with

_ o _ T — .

|xSn xnnl = inf lxr'n xnnl and J =J! + B ¥n > [n] . It is clear that
I<r¢n-1

there exists an injective map h: £+ > £+ with Jﬂ(i)g Ii' Thus

Y0P log 1/8 < 70, -2y, Noe(1/(6 +2y,)
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-1
<2 Zﬁn(loggn +log 2) < 0o

and the result is proved.

THEOREM 1.1, In Theorem 1.1' (and so in Lemma 6.2) we may demand that

E satisfies the Carleson Condition.
To prove this we need.

LEMMA 6.3"'. As for Lemma 6.3 with the additional condition
(viii) It E_ .0 S(x, QM) ={x}+{yys ¥p, .-+, ¥} for some xCE_ with

k
Y1< ¥y <... <y, and |yi - x1¢8(Q(n)), then i;;(yiﬂ-yi)log(1/(yi+1-yi)) <

-n
27" /card E .

Proof. We follow the proof of Lemma 6.3 and 2.2, By the argument of the second
paragraph of Lemma 5.2 there exists a constant Do >1 suchthatif D D0 and
Mo(l), Mo(2), ceey Mo(m0+1) is a sequence of integers with Mo(1) >D,

Mo(j+1)>, DoMo(j), then (writing En = {e1 1 €55 veny ee} with the e, distinct) we can
3 1 1 | -
find e, with Mo(mo+1)eu =0 such that

@, e, -eyl<16D7 ¢ d(Qn)/4

(10)0 I?’MO(J)(e:‘) - fn+1(el;) I < 2_n_5 [1 fu<s Q 9 1¢ J <£m ] .

Introducing the notation of Lemma 5.2' we see that, setting

n+16 n+5 -n-4 n+5 -n-4
B, = 2™ max(D Bl [l , -2, N @Mk [y, 1-27)

m = m(2"+5||HHHM , 1-271-4
and choosing O < g(n+1) ¢ S(Q(n))/ 4 such that
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n-2

4m g(n+1)log 2 B < 2777% /card E

and finally setting
-1 n+5 -n-4
P(n) = (Le(n+1)]™" + NSl [y, , 1-27"7%)
we can choose P(n) =M(0)<M(1)<...<M(m+1)=Q(n+1) together with

Tn+1€M ([ce(n+1), €(n+1)]) and distinct e! such that the following is true : -

9 e, —epl€ 2™ '0/Pm)« S(@n))/4

(10) |XM(j)(el'l)-f (el;)lgz'“‘5 [isuct, ’I\<j\<mo:|

n+1

(10a)  BM(3) ¢ M(3) € 2 BM(j)

* *
(4) M(m+1)En+1 =0 where E ,1=supp T _,
! 3 x I n-3
6) m~ Xogroy = 1 * <27
2 e~ Ve, )
- +4
@) Al =T 0y = 132" | | sup IT_ ()]
n+1'"'M n+1 n M M(m+1)-P(n)» r» P(n) n+1

n+4 -n-4
@ s c@™ e [y, 1-27"
*
The arguments of Lemma 2.2 now show that, writing En+1 = Er'I + En+1 ’
- 1 1 ' i : -
P‘n+1 =W > Tn+1 (where h? En are defined exactly as in Lemma 2,2), the conclu

sions of the lemma (with the possible exception of (viii)) hold.
*
To prove (viii) we note that writing E 1= {y1 » Vs eeee yk} with
-g(n+1) < Y1<¥p <¥3 <<y < e(n+1) we have
k k
1;)(yi+1 - y;Noe(Wy; ; - yi))\<i=Z1)(yi+1 - y; log(M(m+1)/27)
< 2e(n+1)log(M(m+1)/2)
< 21—:(n+1)10g(2mBr0n P(n))

< 2e(n+ Nog(2™BY ((e(n+1)™" + 1))
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< 2e(n+1)((m+1)log 2 B_ -2 log g(n+1))
-n
< 27" /card E,-
Condition (viii) now follows by inspection.
Proof of Theorem 1.1" ., As for Theorem 1.1'. The fact that E satisfies the
Carleson condition follows from conditions (viii) and (vi) of Lemma 6.3'. These imply

that we can write En={x1, Xop aees xs}, E 1 ={xa, Xhy eens xt'} [1¢s<t] in

n
such a way that  sup |xi' -x; l< 0(Q(n)) ¢« sup Ixi - x; /2" and
1€igs 1si<jgs

t
sup  inf |x1' -x!'| < 51 with 3 %i 1og5'i'1\< 27" An application of Lemma 6.4
s<igt 1¢j<i J i=s+1

gives the required result.
I do not know whether we can demand that the E in Theorem 1. 1" satisfy

Carleson's condition. I suspect that such a result, even if true, would require a new

idea for its proof.

In so far as the resultsabove deal with sets of non synthesis rather than independent
Helson sets of non synthesis, they can be obtained in a very much simpler manner using

Lemma 6.1 (the result of Varopoulos). Compare L.emma 6.2 with the following result :

LEMMA 6.5. Given H a continuous increasing function H : P_2+ > B"’ with

H(O)=0 and &(n)>0, we canfind K a perfect Kronecker set such that writing

K0=K+K we have

1) Kg{x : {é—('t%y -X I|< 2(Q(n)) for some r'} for some Q(n) » oo

(ii) The complementary intervals of Ii of Ko have length Ei with
> H(?i) <00,
In particular by L.emma 6.1 there exists a Dirichlet set E of non synthesis with the
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properties (i) and (ii). If we take H(x) = x log x~! we obtain E satisfying the

Carleson condition.

Proof. We shall construct K directly. But (under the non restrictive condition
H concave) it would suffice to construct a perfect set E with properties (i) and (ii)
and remark that every perfect set has a perfect Kronecker subset. Choose h: §+ > §+

such that h(r)<r and h takes every value on £+ infinitely often. Choose X11

with Q(1)x,, =0 for some Q(1)ez*. set A =H( l2x, )+ HE@r - |2x 1). By the
continuity of H we canfind €(1)> O such that if ly1 -x, | <€(1), then

H( |2y1 |) + H(2m - |2y1 NeA+(1- 2_1). We shall construct inductively a sequence
of sets E_= {xm, Xopr +os xnn} together with e€(n)> 0, Q(n)€Z in such a way
that

(1)n lxrn-xsn|>, 16e(n)  for 1§ r<s<n

»*
(i), 1 IyF - X, | ¢ en) [1<rg¢n] then, writing {y1, R

*
{yp +Ygt 1€sr<s« n}, we know that the complementary intervals of {y1 » Yoreee ,yn}

. -n
have length Bkn with 3 HE ) <A + (1-27).

Suppose therefore that we have constructed E_, g(n), Q(n) satisfying (i)n

. . , . , ) . .
and (11)n. We can find  x}_, x5, ..., X/ (linearly) independent (over 2) with

[ : ' 1
lxr'n X | < €(n)/16. We can find x'.q,, Suchthat x X

1n’ xén’ ceey y X!

'

nn’ “n+1n
: oyl 1 !

are independent lxt‘](n) n=Xhe1nl €€®)/16 and (n+1)H 2 Ixh(n) n~Xe1nl) €

2™n-5 . By Kronecker's theorem there exists an integer N(n+1)>» 8Q(n) such that

; vy L ) -n-5 - . .
! S:DnH IXN(n +1)(xrn) fn+1(xr~n) | <2 . By the continuity of the functions involved

we can find an O<e'(n+1)<s(n)/216, a Q(n+1)€Z with Q(n+1) >8(n+1) and
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: _ x! 1 -

X1n+e1? X2 ng1r oo Xn+1 n+1 with |X1,, n+1 "~ Xp n| < €'(n+1), Q(n+1)xr n+1 0
such that

. _ , . <

W), 1 |xr nel = Xs ned | > 16e'(n+1) for 1<r<s<n+l

. -n-4 '

(11);1_H n HQK)<2 whenever O0<K < |xh(n) nel =™ et nad [+ 2€'(n+1)

-n-4
(iii) sup X (v.)-f .(y.)l<2
n+1 lerent N(n+1)"r n+1Vr
whenever sup ly -x ¢ €'(n+1).
lsr¢n+1 r T n+1

We note

1 - ] - 1

(lv)n+1 1<SUP lxr n xr' n+1 Ise (n)/2, Ixh(n) n xn+1 n+1 lce (n)/2

Sr<n
vy .

and that (11)n+1 gives

. _ , "

(11)n+1 1t Iyr S ¢ €' (n+1) [1er¢n+1] then, writing eks for the

X
lengths of the complementary intervals of {yl s Yo oees ys} [1¢s¢n+1], we have
n
ZH(ek n+1) < ZH(P]{ n) + E H( I(yr‘ + yn+1) - (yr' * yh(n)) 1)+ HE Iyn+1 ~ Yh(n) 1)

SA +(1-2""% (n+1H(E2K)

=A+(1-2""1

(using (ii)n).
We complete the inductive step by setting En+1 = {x1 » X535 eees xn+1} and
e(n+1) = min(e' (n+1), 8(Q(n+1)))/8.

Since sup inf  |x - y| ¢ e(n) <e(n-1)/4 we see that E_ converges
X€E_ . yE€E_

topologically to a closed set K. Condition (iii)n+1 ensures that K is Kronecker.

The choice of &(n+1) ¢ 3(Q(n+1))/ 8 together with the remark that {x . % l¢d/2

2fr

for some r} + {x s |x - Tl<5/2 for some r}g{x : 2nr

X-TISB for some r}

ensures that condition (i) of the lemma holds. Finally condition (ii) of the lemma follows
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from (ii)n using precesely the same trivial argument as we used for Lemma 6.4. This
concludes the proof.

Taking K1 ’ K2 perfect non empty disjoint closed subsets of K we have by
Lemma 6.1 that K_+K

17K5 contains a closed set E of non synthesis such that (since

Kog E)

(i) E S{X : lé"(%r) -x|< d(Q(n)) for some r}

(ii) The complementary intervals I, of E have length Ei with
> H(Qi) <oo.

Again we have the two celebrated results of Malliavin and Rudin respectively which
say that any closed set which is of strong multiplicity contains a subset of non synthesis
ﬁ4] and that there exist closed independent sets of strong multiplicity. (Moreover
Rudin sets may be obtained, modifying either the original proof [16]or that in [10)]
with any given Hausdorff H-measure.) Combining the two results we obtain an indepen-
dent closed set of non synthesis with (for some given H : 5+ > 5+ , monotonic,
H(0) = 0) Hausdorff H-measure O,

At this stage I asked myself whether we can construct, for example, weak Kronec-
ker sets of non synthesis with some fixed Hausdorff H-measure. However, as the reader
may already have realized, the question is essentially trivial. It is not difficult to

extract (from Sections § 2, § 3 and § 4 for (i), from Section § 5 of [10] for (ii);

(iii) is a result of Wik [21]given a very elegant proof by Kaufman in [9].)

LEMMA 6.6 (i). Let H:R" »R" be a continuous increasing function with

H(0) =0. Given K a closed set such that GpK # T and
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0< P1(1)< P2(1 )< P2(2) < P3(1) < P3(2)< P3(3)< P4(1)< ... integers, we can find a
closed set E with Hausdorff H-measure O, carrying a true pseudofunction and

such that GpEN GpK = {0}, and lim ian Ifr -Xp () |[dp=0 forall peM*(E).
n->00 n

(ii) Let H and Pn(r) be asin (i), a«»0. Given E a closed set such
that GpE # T, we can find a closed set K with Hausdorff H-measure o« such

that GPENGpK ={0} and lLmint |lf -X

)=0 forall r=1.
n->00

Pn(r‘) C(K
(iii) (Wik) Kronecker sets of Hausdorff H-measure o exist.
(iv) There exists a weak Kronecker set L. with Hausdorff H-measure «

carrying a non zero pseudofunction.

Proof. (i) and (ii) are left as exercises to the reader (because the results are not
terribly interesting and the proofs introduce no new ideas and not because the proofs are
particularly simple).

(iii) is, as stated above, proved elsewhere,

(iv) Using either (i) and (iii) or (ii) and Theorem 1.1, we can find 0< P1(1)<
P2(1) < P2(2) < ... and independent closed sets E and K such that
GpE N GpK = {O}, E carries a pseudofunction, E has Hausdorff H-dimension O,

K has Hausdorff H-dimension «, 1lim inf |f_r -Xp (r) ldp =0 forall peM'(E),
n-»00 n

”fr - XPn(r‘)”C(K) 0. Setting L =EUK, we see that it has the required properties

(for example lillzotnf J ‘fr' - )(Pn(r) ldpu =0 for all p€M+(L), so L is weak

Kronecker).

If we recast the problem to avoid such a trivial solution we obtain
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LEMMA 6.6 (v). There exists a weak Kronecker set E and a pseudofunction

TEPM(E) such that E has Hausdorff H-measure o« andsupp T =E.

But the proof simply involves a more detailed investigation of the proof of Theorem
1.1" and the results used in obtaining it. (Note, however, that though it is possible to
obtain Lemma 6.6 (v) by following Theorem 1. 1" step by step, it is simpler to construct
pseudofunctions T1, T2, ... with ”TiHPM <1, Hausdortf H-measure of
E,=supp T; equal to zero, such that E;n Ej =@ for i#j, and E the topologi~
cal limit of rLI_) Ei is weak Kronecker and has Hausdorff H-measure «. Setting

i=1
T = E 2-1Ti we have supp T=E and T a pseudofunction).

It is much more interesting to recall the extraordinary result of Kaijser [6]

(the notation is standard ; see e. g. [20]).

LEMMA 6.7 (Kaijser). There exists an 1> a >0 such that if E E

1 are

2

perfect non empty disjoint sets and E1UE2 is Helson B > «, then the map

T: A(EI1 + E2) -»V(E1,E2) given by

(=]

oo .
T() ax.|E@+Ey) =) ax [E@x |E,

=—00 '==c0

is well defined and gives a topological isomorphism.

What is remarkable about this result is that o« may be chosen lessthan 1 yet
cannot be taken arbitrarily close to zero for any one of the following 3 reasons (I have

placed them in what seems to me increasing order of finality).

LEMMA 6.8. (i) We can find E1, E2 non empty disjoint perfect sets such that
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E1 E2 is Helson with constant 1/\/—5 but there exist x1,x3€E1, x2,x4€E2 such

that x, + X3 =X, + X, (sothat T in Lemma 6.7 is not well defined).

(ii) (Varopoulos) We can find E 17 E2 non empty disjoint perfect sets such that

E,VE, isHelsonbut E 6 +E, =T (so A(E1+E2) = A(T) # V(E1 ,E2)).
(iii) We can find E1 ,E)2 non empty disjoint perfect sets such that E1 UE:2 is
Helson with constant 1/2, E,VE, independent, yet there exist o‘i€M+(Ei) [i=1,2]

such that (0'1 x0,)(r)»0 as |r |+ (so by duality considerations

A(E1+E2) # V(E1,E2)).

Proof. (i) Take X, = m(1/6 +V3), x, = n(2/6 +V3), Xy = n(3/6 +\3),
X, = n(4/6 +V 3). It is easy to construct E1 R E2 disjoint such that X4 ,x3€E1,
X,,X,E€E, such that for each IAl=1, q,r integerswith 0s<q<3 and 1g7r
and for each L closed with {x1,x2,x3,x4} nL =4, LCE,UE, we have
lim inf(/|x

pco

same Helson constant as {Xx,,X,,X,5,X,}, i.e. E,UCE has Helson constant 1/\/5.
1772773774 1 2

nprq " fr'”C(L) + [xnp+q(\/'§) - A)=0. It is clear that E,UE, has the

But x1+x3=x2+x4.

(ii) We shall give a version of this result in Lemma 6. 10.

(iii) We may indeed take E1 ,E2 Kronecker. The result is then a version of
Theorem 7 of [10] .

Suppose E1, E2 are non empty disjoint perfect subsets. If 121UE2 is Kronec-
ker, then Varopoulos has shown that E:1 + E2 is of synthesis and so (under the natural
identification) F ¢ E +E, 1is of synthesis for V(E1 ,E2) if and only if it is of
synthesis for A(T) ( [20]).
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On the other hand, if E1 UE2 is Helson-1 and E1 is of non synthesis, then
the equivalence fails (consider F = E, +e, with e2€E:2). (Though, of course, it
remains true that F is of synthesis for V(E1 ,E2) whenever it is of synthesis for
A(I). What has happened is that E1 + E2 is not of synthesis, so that the dual of

A'(E 1—t—Ez) is (making the correct identification) strictly included in PM(E 1+132)).

It might be easier to construct a Helson set of non synthesis inside E.+E

172

(supposed of synthesis) where E E2 are perfect and disjoint, if we relax the condi-

1?
tion E1UE2 Kronecker and replace it by E 1lJE2 Helson ) (with g as in
Kaijser's theorem. See e. g. Lemma 6.1.)

This question has an equivalent and more fundamental re-statement. Does

°° , D°°) have associated sets of interpolation which are not of non synthesis ? If

V(D
the answer is not trivial or obtained by some simple variation of the methods above
which I have overlooked, then it may be rather deep. Let us report some unpublished
work of Varopoulos : - every countable independent set in D xD” is Kronecker for
V(D”,D) (a Kronecker set for V being a closed set E ¢D”xD” such that, if

f€S(E), there exist un,vn€S(D°°) with ||un® v - £]| + 0). This should be

C(E)
contrasted with the existence of independent countable Dirichlet non Kronecker sets in
T, and gives rise to the unanswered question : - does there exist an independent closed

setin D XD’ which is not of interpolation (or indeed merely not of interpolation with

constant 1) ? (Recall the existence of an independent Dirichlet non Helson set in T .)

The generalizations to locally compact Abelian groups rather than tensor algebras

are however immediate.

104



SET OF NON SYNTHESIS

LEMMA 6.9.

="

i) D_ =

p Z contains a Helson-1 set which supports a true pseudofunction ;

11p

(ii) I G is a non discrete locally compact Abelian group, then G contains
a Helson-1 set which supports a true pseudomeasure ;
(iii) If G 1is a non discrete locally compact Abelian group, then G contains

an independent Dirichlet non Helson set.

Remark 1. It is clear that no reasonable analogue of (iii) exists if G is discrete

but on the other hand we have not given (ii) in its strongest possible form for the non

discrete case.

Remark 2. In (iii) the definition of independence must be appropriate (see e. g.

[13]x1m, 3.6).

Proof. (i) This is proved step by step as in the case of T (apart from certain
simplifications described at the end of Section 1).

(ii) Use the structure theorems. Note that it suffices to prove the result for any
closed subgroup F of G. The resultis true for F = R (by the result for ;l‘),
for F = Dp (by (i)), for F compact and the closure of a subgroup generated by an
element of infinite order (proof as for I) or for F = ]_I'__%(p(i)) where p(i) "o
very rapidly (proof as in (i) or as for T). Since G must contain a closed subgroup
F  with one of these properties, the full result is proved.

(iii) Similar but simpler considerations allow us to extend the proof of Theorem 9

of [10:[ in the same way.
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In order to remind the reader of the kind of thing which can be done (admittedly on
a very small scale) when we consider the sum of 2 sets, here is a minor improvement

of the result of Varopoulos given as Lemma 6.5 (ii).

LEMMA 6.10. There exist 2 disjoint Kronecker sets E., E with

17 72

E,c- (r/40,n/40]U [19n/40,21r/40] U [29%/40,317/40] = L,

E, < (2r /40,181 /40] U (221 /40,287 /401U [321 /40,381 /40] =L, so that E UE,

2

has Helson constant at least o« = (1/276) and measures ’c1€M+(E1), ”C2€M+(E2)

such that ‘t1 * ‘t2 is a strictly positive infinitely differentiable function.

Proof. (For the constant 1/276 see [11] Lemma 1.13; that « >0 is a conse-
quence of the fact that E1nE2 =@ .) We modify LLemma 3.4 [10] to which the reader is
referred for details. Throughout p is Haar measure and L1 is L1(u). Since
int L1 + int L2 =T, we canfind h1 )’ 84 infinitely differentiable positive functions
such that h, * g1(x)>,5 for all x€T for some % > 0, supp h,cL,, suppg,cL,
and “h1“L1 = Hg1”L1 =1.

As an inductive hypothesis suppose now we have found hn’ g, non negative

1

infinitely differentiable functions such that h_x gn(x)>, 3@ +2™ for all x€T .

Then, taking o . =A :BZKI‘ /N gn(2rtr/N) where A />0 is such that

llo Il =llg |l we have [lo . * k - g * k| >0 as N> forall keC(T)
nN n L1 nN C(I) =

and so H(o’nN * k)(p) - (g * k)(p)”C(’;‘) = H%N * k(p) - g% k(p)”C(__T) +0 as N a»o

for all k€Cp(I). In particular therefore we can find an N such that

o . *h (P) _ * h (D)H €824 forall o< p<n. By the continuity of
nN n &n n C(T)

h hg), .., hﬁl")

h? we can find Xqs Xp9 ooy Xy linearly independent with
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x €int supp g if gn(ZM‘/N) #0 and  sup |xr - 2rr/N| so small that writing
1< r¢N

(p) < -n-4
o = AN > er‘ gn(ZI\'I"/N) we have H(o‘nN - o’n) xh HC(I)\ 52 and so

(p) (p) -n-3 '
H(o’n * hn) - (gn * hn) HC(E)« %2 for all Og pgn. By Kronecker's theorem

there exists a Q(n) such that sup D(Q(n)(xr‘) - fn(xr) I < 274 and by the conti-

1€ rsN
nuity of )(Q(n)’fn and hgp) we can find an €, 0 such that
sup sup )hﬁlp )x) - hgp)(y) I« §2714, llo_lly;»  whilst writing
Ix-y Is2g, Os<psn
I =[x -e ,x +e ] wehave |[X -t | <23 and, for every r such
r r n’ “r"*n Q(n) " "n'C(L,) ’

that gn(2rrr'/N) #0, I, cint supp g [1¢r¢N].  Pick K~ aninfinitely differentia-

ble positive function with supp Kn c [-en, en] y -[Kn(x)dx = 1. Setting

810, ¥ Kn we have €,,1 non negative infinitely differentiable and
(A)n, 1 supp g, € Supp g
. ¥ -n-3
f -f <2
(B)n,1 QISZ ”XQ n”C(supp gn+1)
(p) (p) (p) (p)
(C)n,1 ||(gn+1 * hn) - (gn * hn) |’C(I)< l|(gn+1*hn) - (Gn*hn) ”C(I)
+ 923

: () _,.(p) -n-3
< ”GnHM”Kn*hn -h! HC(Z) +92
< 2-n-2
< for all O<pgn.

™), lfgn+1|lL1 = HgnHL1

Similarly we can find hm_ non negative infinitely differentiable with

1

(A)n,Z supp h . < supp h

®n,2 Qierzlfz g - f"”C(S'Jpp by )¢ o
(C)n,2 H(gn+1 * hn+1)(p) - (gn+1 x hn)(p)HC(I) <8273
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®), , Ih

il =gl

and so

®), g, *n

n

at P = G )Pl 2772

(whence, in particular, h 4 * gn_H(x) > §>(2_1 + 2-n—1) and the induction may be

restarted).
Now hnp. , gnp, are positive measures with thp| ]M = Hgnp.HM = 1. Thus they
have weak limit points %,, T, say with %, %, € M(T), H'C1HM,H‘I'2||M= 1. By

(A) (B, ; suppz, cl;, supp % isKronecker [i=1,2]. By(D), h g

n,i’ n,1i n

converges in the space of infinitely differentiable functions under the usual topology

(k, »0 if and only if ||k£1p)”c(—r) 50) to F say. By the inductive hypothesis

F(x) » 3/2 for all x&€T. Thus %1 * ”62 =F is an infinitely differentiable strictly
positive function.

Let us also prove

LEMMA 6.11. There exist disjoint Kronecker sets K1 , K such that K]UK2

2

is a perfect weak Kronecker set and K1 + K2 contains a weak Kronecker set of non

synthesis.

Proof. We proceed by means of an inductive construction on the lines of our proof
of Theorem 1.1' to which we ask the reader to refer ; for convenience we take

f e(n) as given there, and 6(n) also satisfying the conditions imposed.

2n = f2n+1 !

Suppose that at the nth step we have disjoint finite sets Ln, Kn, En with

inf | X~y |>,2_2 + 2"

x€Ln ) YEK,
integer Q(n)» 1 obeying inductive condition IL.(n) and condition

and L +K 2 E , ameasure p € M(En) and an
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(iii) Q(n)(Ln UK )=0.

K E Q(n+1) satisfying the inductive

n

We claim that we can find L el

n+1? n+1? Tn+l?

hypothesis just stated (but with n replaced by n+1), the conditions of Lerma 6.3,
and the additional conditions

(vii)' Condition (vii) holds with E . replacedby L . . UK 15

(viii) If n is even, then,given any closed set F with sup inf |x-y|¢ &(Q(n+1)),
yEF x€Kn+1

, ) , -n .
we can find an P(n+1)< R € Q(n+1)-P(n+1) such that ”XR - fn“C(F) <27, 1f n is

odd, the same relation holds with Kn+1 replaced by Ln 1t

The proof is very easy. We take the case n even. Suppose En = {e1, ceny ed

with the e distinct. Each e, =X, + Yy with xueLn, yu€Kn. We can find

e

1 n" " n " i " _ n 1
successively xY, ¥y, X3, ¥, ... independent such that the e/ = xyty, are

1 "o " o_ ; . . —
independent and |xu b'e |yu Yy |< €(n)/4. Again, if L, {x] R ,xe, v ,xv},

ul’

— 1 1" " n
Kn —{y1, ceay ye, ceey yw} we can choose successively x0+1, x9+2, ceay xV and

y'.e'+1,, ceey y;'v such that the x'1', ey x;;, y'l', ey y&, are independent ; moreover,

we can find M1, M2, R such that

() s IXM1(e§') -t g 2n-6

() max( sup Xy ) =gy ()1 sup IRy () - g () 1)< 276
By the continuity of XM1 , XMZ, XR' f ., there existsa Q'(n+1)€£+ and X!,y
distinct such that

V) Ix) = %1 I<en)/4, ly! -yl eln)/4

@) Q'(n+1)XL'I=Q‘(n+1)yl'j=o

iti Vo fxt s 1¢ — iy . . = .
and so, writing L! {xu : 1g u\<v}, L {yu :1g usw}, E! = {xl']+yl'1 : lsus P}
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and p! for that measure with support E}! and p} ({xl'J + yl‘l}) = P’n({xu + yu}), we

have
¥ -n-5
(a') ||)“rc:>'(n+1)+r\/11 - tn+1”C(Er'])‘< 2

' ' -n-5
®7 g enyian, = aileqy <27

< 2—n-5

(p! )2 ”x\I‘Q‘(n+1)+M2 - 13n+1HC(Km_1)
By the arguments of Lemma 5.2' (or by convolving 2 measures of the kind constructed
in Lemma 5.2 in which case we must replace (1-2"“'4) in (b) by (1-2'“’3 ), or by
any argument the reader constructs for himself based on Lemma 5.2' perhaps modifying
the values of N(2_45(Q(n)), 2n+5|||4n”M, 1-2_n_4)), we can find m »1 and
NS @), 2™l lly, 127" = P(n) < M(1) <My @) < L < M (m) <My(1) <
M2(2) <...< M2(m) < Mz(m+1) =Q(n+1) and Tn+1€M( [—2-n_5 S(Q(n)),z-n—SB(Q(n))l )
with support E:+1 say such that M1(j) is congruent to  M,, Mz(j) is congruent

to M2 and Q(n+1) is congruent to zero, all modulo Q'(n+1) (1« j¢m] whilst

*

(a) M(m+1)En+] =0
® I e ol <2
o7 M0 T TCE )T
Tl =T, 0) = 152" ||| T .
(c) n+1"'PM n+1 ) 2 n'M Q(n+1)-sl:';l(prl)>,r‘>,P(n) n+1(P)
*

L =
The arguments of Lemma 2.2 now show that, writing Em_1 = En + En+1 ’

*
= 1 = ! i
R Tm_1 s L = Ln +E v the conclusions stated at the end of the last

n+1 n+1’

paragraph but one hold (set R = Mz).

To prove the lemma we construct a sequence (E Porqr Q(n+1), P(n+1),

n+1?
L ,q» Ky,q) asabove n=0,1,2,...J. Let E, L, K be the topological
limits of the En 17 Ln 17 Kn 1 and S a (in fact the) weak limit point of the (o
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Since inf ||7‘R -f +0 as n-»>o, wehave L Kronecker. Similarly K
REZ

is Kronecker whilst by the arguments used in the proof of Theorem 1.1 LUK and E are

2n+1“C(L)

Helson but 0 # SEPM(E), S¢M(E), sothat E is not of synthesis.

Remark. A more spectacular way of stating Lemma 6.11 (in view of the remarks
following Lemma 6.8) is the following. Either the sum of 2 disjoint independent Kronecker
sets can be of non synthesis, or synthesis fails for tensor algebras. However, even
if it were true that the sum of 2 Kronecker sets is of synthesis, a proof is unknown and
probably very difficult. The best result known (an improvement by Drury of a result of
Varopoulos) is that the sum of 2 closed subsets of a Kronecker set is always of synthe-
sis 2]).

This concludes a section dealing more with what we cannot do than with what we can
do. If we knew how to combine any 2 of the various constructions for thin sets (probabi-

listic, Baire category, tensor algebraic and direct) we might be able to go much further.

§ 7. THE UNION OF AAT SETS.
Recall that, if AcZ, we write A A(I) for the Banach subspace of A(T)
of A(T) given by AA(I) = {f€A(;[_‘) :f(r)=0 for rﬁA} ([4] p. 150). We say that

aclosed set E is AA if there is a non zero

A i AE)=A,(E) and ZA

A

f€A \(T) with f(e)=0 forall e€cE. If A=Z", A+(I) =A_+T) isa Banach

algebra, we write AA+, ZAY  for AAZ+, ZAZ+. The reader is asked to re-read

Lemma 4.1 as background. This section is devoted to the proof of the following theorems.
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THEOREM 7.1,
(i) Given C1,C221 we can find closed sets E], E2 such that E10E2

consists of 1 point, Ei is AAT with associated constant Ci |:i = 1,2] , but

E,UE, is independent with AA"  constant at least (so exactly) C,+C

1 +C1C2.

2
(ii) Given C] , C2 >1, €>0 we can find disjoint closed sets E1 y E2 such

that E is AA%' with associated constant at most Ci G= 1,2], but E1UE‘.2 is

independent with AAT  with associated constant at least C1 + C2 + C1C2 - E.

(iii) Given €>0, n2»1, we canconstruct n Dirichlet sets E,E,, ...
.., E  which are disjoint (respectively have E; ﬂEj ={x} [i#j] forsome x€T)
n
such that U E:i is independent with AAT  constant 2"-1-¢ (respectively AAY

i=1

constant 2"-1).

THEOREM 7.2. We can find A(1), A(2) c g““\ {0} together with E E, closed

1 ?
sets with E1 OEZ = {x} for some xe:'__r such that E1 U E2 is an independent set
having the following properties : Ei is AA Adi) (indeed ||fH AA(i)(Ei) = ||f|| A(Ei)

for all f€A(E,;)) fi=1,2] yet E,UE, isnoteven ZAA(UUA(Z)U-A(I)U-AQ)U{O}

THEOREM 7.3. Givenany 1> s3>0 we can find an independent closed set E

such that
lim supo{xQE : |)Cm(x) -1 <$}>,S||0'|i

m-oo

for all ocEM'(E), ®> 0 with the following property : - Given any R> 0 we can find

oo (o)
an €(R,s)> 0 such that for any mz=1 Iam | ¢ R we have HmZ:]amxm - IHC(E:) > €(R,s).
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Moreover, we can also find an n(R)G:é+ such that [E |
m

Hgn:b,n(R) ®m¥m - 1||C(E) » &(R,s).

|am |¢sR implies
yn(R)

LEMMA 7.4. Given 1»s>0 and €>0, we canfindan R(eg,s)>0 with the
following property : - If E is a closed set such that
lim sup o {XGE : |Xm(x) -1 65}>/ slloll

m-pc0

for all o€M(E), > 0, then

lim sup inf {{[f"a_x_ - o) : Z= 1oy s Rée,s)}<e.

p»> myp myp
LEMMA 7.5. Givenany 1>s3>»0, wecanfinda Ac Z" and an independent

closedset E andforeach ry1 an g(r,s) such that

lim sup o {er s X ) - 1l¢ 3}), sllol|
maco , mEA
r
for all oceM'(E), ©>o0, yet, writing A(r) ={;ni :m€AU —A}\{O}, we have
=

I a_Xx -1 > € for all la_|<oo.
r‘EA(p) m”m = C(E) gf\(r) m

For completeness we rephrase the result of Bjork and Kaufman given in Lemma 4.1.

LEMMA 7.6. If Ac £+ and E is closed such that
lim sup cr{x(—ZE : |Xm(x) -1 |\<5} = |loll

maco , mEA
for all oceM'(E), > 0, then

lim sup inf {|| a_x_ -1 : la_|<1}=o0.
pa©,pEA {ngp m*m C(E) %:p m }

It is an extremely instructive exercise to restate and prove the results for general
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collections of functions. For example :

LEMMA 7.4', If 1»s>0 and €>0 are given, we can find an R(g,s)> 0
with the following property : - If X is a compact Hausdorff space and gm€C(X) is

such that “gm”C(X) €1

limsupo{x: lg (x) -1 |\<3}>/S||G I

Mmoo

for all 0'€M+(X), > 0 then

hg‘*iup o lls?u% m(2),..,m(s)yp m(1)m(2). . .m(s)®m(1)%m(2)" * *m(s) ~ 1||C(X)

24 2ym(2), .. m(s)yp | M(IME). . m(s) Jorie, < e

LEMMA 7.5'. If 1> s30 we can find a compact Hausdorff space X and a

sequence gm€C(X) with Hgm“C(X)\<1 such that

lim supcr{x: lgm(x)- 1] =0} y sllol|
maoo

for all 0'€M+(X), but

s Tty m2), .. (e “M(ImE). . m(&Em(1)m(2)"* Em(s) = i) > €(@)> 0

qys»1

for all q;s» ) Iammm(z)mm(s)uoo la» 1].

Since Lemma 7.5"' is a consequence of Lemma 7.5 we leave it as a recommended
exercise for the reatier to find the shortest and most illuminating direct proof. The gist

of the matter is contained in the simpler version (with q = 1).

LEMMA 7.5". Let p3»2 be apositive integer. Let X be the finite discrete
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topological space {0, 1, ..., p}. Let gFGC(X) be given by gr(s) =1 for r#s,
g (r) = -1 [1¢«r<p]. Then
sup cr{s : Igp(s) -1 ;‘éOj>/(P/P+1)“0'||

1<r¢p
for all oeM'(X), yet

I~ ae. - 1HC(X)= max (137 ag(s)-11)

1€r¢p O¢s¢p I€Ergp

=max (|} a,-1/, max [} ar-1-2as|)
<rsp

1€ s¢<p 1<rgp

> 1/(p-1)

for all F: Iarl<oo.
<T¢p

Proof of Lemmas 7.4' and 7.4. (Lemma 7.4 is, of course, a special case of Lemma

7.4'.) Let us introduce the following temporary notations :

%710 25 Fime).. m(eyop P, w1 (2) Ente)

with 35— lam(])m(Z)...m(s)I <ooj, if Gey.p we write
IG lp = inf{z z Iam(1)m(2).. .m(s) I:

G=21o  Pm(1),mE), ..., m(sn(1¥m(2) *Em(s) }

syl

We split the proof into a series of simple observations.

LEMMA 7.4",
(i) Given 1»s>0, 7,>0, we can find N(r(1 ,S) with the following
property : - Given g, as inLemma 7.4', p>»1 and 1(2 >0, we can find, for

each o-€M+(X), Closed sets E,, E,, ..., Ey andintegers p< m(1)<m(2) <...<m(N)
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n
such that o( U Er)>/(1—“h)“0'|| and g ”C(E) T, foreach 1<¢r¢N,
r=1

m(r) ~

(ii) There exist integers 1< q(1)<q(2) <... such that given 1> 0, we can
find an M(Tl) with the following property : - Suppose g€C(X), ”gHC(X) € 1. Then
we can find X1(r), X2(r) closed with X1(r‘) U Xz(r) =X such that

llg" - 1”C(X2(r))‘< 274 forall O¢ng q(r) and, for every oeM'(x),

q(n)

card{n>/1 : JX (n) 3m) Zgr do->/7(”0'”j SM(T().

=1
(iii) Given g, as in Lemma 7.4', p>»1 and 1“ >0, we can find, for each

+ . N(7,s)
oEM (X), a G0_€3-p with |G0_|p<2 - 1 such that |Go_-1|dcr<27h.

(iv) Lemma 7.4' holds.

Remark. Although this is not strictly relevant we note that (ii) also gives
card{ny 1: IImJ ! qz(n))g" do [>21lloll
i dm) 2 1721

(n
and/or J q—(—)-q::)g do ¢ {x:g(x)— 1} 2'(“0‘”}\<M(11)

q(n)
In other words, considered as a vector in the Argand diagram Jal—) E g do

points, most of the time, in the same direction (and/or tends to zero fairly rapidly).

Proof. (i) This is obvious. Suppose we have constructed closed sets E1 ’ E2, .

.., E.  andintegers p¢m(1)<m(2)<...<m(k). Given 113>O, we can find

k

E!

K
l+q Closed suchthat E} , N E‘,j =¢ [1<j¢k] but o(E}, 1) >»o(EN iL=J1 E;) -3

g + .
Writing Olr1 = o | Ek 1 So that 0’k+1€M (X), we know by hypothesis, that there

exists an m(k+1)> m(k) and an E, .1 closed such that Hgm(k+1) - 1”C(E €7,

k+1)
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)» sllo (This last statement gives at once

and o-k+1(E k+1”'

k+1

ket 1 k k k
(U E)> 0 Biepy) + (U By)> slloy, 411+ (U B> s - ol + (1-s)e (U E).)

We now restart the induction.

If Eo, EI1 y eeey En are defined in this way, we obtain

In particular, choosing

N N o
c(.U1Ei)>, G 1: s(1-)""" -ylloll = (1 =75 - (1
i= r=

s = 7(1/2 and N = N(‘ll,s) = [(log2113—2)/log(1—s)] + 2 we have the required result,

2
-8r —4},

glx)-1]¢2
28(1'-1)2+2r

(ii) This is also trivial. Set X2(r') = {x :

, a(r) = ’ M(‘l) =2( [7{_1:[+ 1) (note

2
X1(r') ={x : lgx)-11> 2-8r _4}

that X1(r*) c X1(r-1)). Then for all o €M'(X) we have (writing Xy = X)

Bl [T 5 -5 B2 o [yl

itdx (n) 1T =7 | Iy X, (=X, (1) 190 £
=§§: ‘ o P‘d
t=1 n=t JX (t-1)\X (t) CTWE & 1%

d 2
¢ T 061X (t»+; jxl(t_”\X](t) T ageio)

¢ T2 (0 (X, (t=1) - o (X, @)

-+
1]
-

= Joll :
vro loll e AT
n=t+1 x€X , (t- 1)\x (t) A I-elx
= 2|lo I« M) Il
and the result follows.
(iif) Choose 0<T,<T7, 2~ (N(y, s)4) M, » 1 such that 2™ Mo+ Mo

M,> M(],) + M_+ 1 and 0<7(3<T(2/(M12M1+4)

. By(i)wecanfind pgm(1)<m(2)<..
N

o< m(N(q,s)) such that cs'(lr‘L;J1 Er)>’ 4 '72)”0'” and ”gm(r) - 1”C(Er) €75 for all

1< r< N(ﬂ1 ,s). By (ii) we can find q(1), q(2), ..., q(I\I(‘fl1 ,S)) such that writing
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“dx: |t -q(r)-4 -
XP-{x. Igm(r)(x)- 11>2 forall O<t¢q(r)}, Y, =XNX,

(@) M <alr) <M,

alr)
(b) Jx a—-); gm(r,”dcr 1l

(c) Y UX =X, Y 2E [1sr¢n].

N4,
Now set G_ =1- 11?1 S) - —(1[7)- g :n(r‘))'

. _ . N(1,,s) _{ .
(iv) Let T, _{Gey.p Gl «2 S, T, = ftec(x) : ‘“c(x) 41 }
Suppose I’1 ﬂI‘z =@ . Then, since 1‘1 , I’2 are convex, there exists a separating
hyperplane. Since T, is balanced and {J(f-1)du : f€T, }:{A : A< 4 7]1”3-1”} this
shows the existence of a oc€M(X) with Jl do =1, U(G-Udc })41'(1 lloll  for all
. |j | R
Gey.p. In particular 27(1||G|| >’JIG0- - 1|d|crl>/| (Gc' 1)do |>41h|lcr|| which is
) . - N@,,s)
absurd. Thus I,nT, #@ , i.e. thereexistsa G€ y.p with |G 'p €2

and |G - 1|| )6 4"{1 . Setting R(eg,s) = 2N(Yl1/4,s) we have the required result.

Cc(X
Why should we be interested in these results ? I think that they are important
because they illuminate the conditions necessary to obtain good approximations to 1.
Theorems 7.1 and 7.2, and Lemmas 7.4' and 7.5 show the difference between vector
spaces of functions and algebras of functions, whilst Lemmas 7.4' and 7.6 show the diffe-
rence between Weak Dirichlet and s-Weak Dirichlet [1>s»0] for vector spaces of
functions. Lemma 7.4' and Lemma 7.6 show the difference between Weak Dirichlet and
s-Weak Dirichlet [1>s>»0] for algebras of functions. If the reader re-reads the
introduction, he will see that I believe (or at least believed) that these differences are

the fundamental reason why the methods of this paper work. In fact, it was Lemma 1.5
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and Lemma 7.5" (with p = 2) which furnished the thread of Ariadne for this investigation.

We now start the proof of Theorem 7.1. We use the following construction :

LEMMA 7.7. We can find E(0) = {x}, E(S,t) closed disjoint sets
[sclr:1¢rg 2t+1}, 1¢t], together with measures Pg ¢ € M (E(S,t)), ||P~S t” =1
’ ’

[scir: ¢ rs2t+1}, 1<t] and a sequence of integers P(u,r,t) [O<ugt-1,

1srg 2t+1+1, 1«t] suchthat 10+ uy + 1+t € Plug,ry,t,) <P(uy,r,,t,)) whenever

O<u1<u2, r,=r,, t1=t2 or r,<r,, t1=t2 or t1<'t2 with the following

properties : -

@) E(t) =U 41 E(S,t) tends topologically to {x} as t»co,
Scir:isrs<27 }

oo
(ii) {x}UU E(t) is independent.
t=1
Suppose e€E(S,t) [Sc {1,2,...,2""}, 1], ocuck-1, 1ere2®!, et

(iii) If k>t we have

-20(k+4)

IXP(u,r‘,k)(e) -1]s2 if u=0

-1]»2 otherwise

iv) I t=k we have

-20(k+4)
IxP(u,r,k)(e) -1]¢2 f ugt, 1+ LZTHG S

lXP(u r k)(e) -1y 27k otherwise.
1 ’
Further

-20(k+) 4 Lo

(v) lXP(u,r,k)(x) -1l<2
X x)-11> 2 k-4 otherwise
P(u,r,k) :
. ~ -10t-10 . . - - -10t-10
(vi) “'LS,t(V) [»2 implies |I—"S’t(V) - P~T’t(v) | <2
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forall scTcl,2,...,2"Y, vypo,2%. 1)

Wid) |hgqp () Izmin(lkg (1, Iy @)])-271010

1

forall s,tc{l,2, ..., 2%}, v>P@O,2""1, 1)

(vidi) ng (W 1¢27'% goran vy P©,2" 41, 1) [t 1]
’

(ix) Ihe ) 1€271910 yhenever jv = P(u,r,k)| ¢« kx and
S,t

k-4

IxP(u,r,k)(e) -1132 for ec€csS.

Remark. It is only notational quirks which separate conditions (iii) and (v) and

which put P(O,2t+1+1 , t) apparently on the same footing as P(u,r,t) with

1¢rg2tt,

THEOREM 7.1'., Suppose C1 R C2 >1 and n>»2 an integer given. Choose
p1(1)\<‘ p1(2) € aeey p2(1)\< p2(2) < ... positive integers such that 13> pi(t)2-t and
|;)i(t)2"t decreases to Ci_1 as toow i=1,2]. Construct E(0), E(S,t) as
in Lemma 7.7.

(i) Write

. _ oot t
Ej =U{E(S,t) : card S = pi(t), S ¢ {G-12" + k : k<2t

t

t t
E o= U{E(SUI‘,t) tcard S = p1(t), card T = pz(t), S g{k s 1€k<2 J, T c_:{z +k 1 1€k<2 Jj

o]

Ej =\ Byt UE() [1=1,2]
©o
E,=UE,, UE(0).
t=1
Then E,,E, UE,, satisfy the conclusions of Theorem 7.1 i).

(ii) Provided only N3» N1(e) for some N, depending only on €, it follows

1

that E E2N UE satisfy the conclusions of Theorem 7.1 (ii).

1N’ 12N
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(iii) Write
th=U{E(S,t):¢ #Sg{rzt'": 1¢ r{j}} (t>n]

(=]
F.=U F, UE(Q) (¢ j¢n].

J tn jt
Then, provided only N2> Nz(s) for some N2 depending only on €> 0, it follows
that F,\, Fory oovs Fry (respectively F., Fyy oney Fn) satisfy the conclusions

of Theorem 7.1 (iii).

Proof. The proof of parts (i) and (ii) splits as follows : -

Part A : We show that Ej UE 12 is AA%  with constant at most Cj‘ To do
this it suffices to show that, given any weé and €>0, we canfinda geA(’g)
with ”g”A(;I‘)‘< Ci+e é(v):O for v¢w and |lg - 1|'A(EJ. UEn)"e (cf. the
proof of Lemma 4.1 (i)).

Recall that fS is the trapezoidal function of height 1 with vertices at

=5, -52, 82, d. Thus ”fE,“A‘<1+48 (for 0< & < 1/4) and so Hf5 oerA =

”f”A =1+48 (here gof(y)=g(f(y)) for all y€z). Choose k » 1 in such a way

—k+4
that 2 < e/(C1+C2) and wg k. Set 8y,r = f2—k+4 o XP(u,r,k)
Oeusk-1, Tere2¥],
jgzk o, Jl< 2K (22
Writing G .= g we see that {|G_ .||<€27°(1427"7°) and
U,J = J_1)2k+1 u,r U,J
> x
A G (e)= 22 if e€E.\ U E(S,t)
u=0 Y Y4 ° I ctex

k t
k-u . )
uz= A, Gu,j(e) = uE_ A, 2 pj(u) if e€Ej NE(S,t), 1<tsk.

k-2

But 2K» 2k—1pj(1) »27%p,(2)> ... pyl) »c&."z“, so that we can find

k k
Ay sr Ap oy eeeg Ay >0 wit ; . —k I -
0,j* 1,5’ 'K, j > ith 2 AU,J<Cj2 y Au,j Gu,j(e) =1 for all
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k k
E. . i .= . . . . .
e€ JUE12 Setting GJ u2= ;)‘u,g Gu,J we have ||GJ|]A< lga)‘u,JHGu,J”A <

(1 + 27k=2y 1,27,

Now let us examine g . again. We know that £, (m)] g 8% 22 (in fact the
’

)

actual numerical bounds are even more irrelevant than usual). Thus

> lg, (m)l<) i (m) | ¢ 272K-8 Also, writing
—4Kk-16 u,r —4Kk=16 2_k_4
m<2 P(u,r,k) m<?2

U, = {eeE : gu,r(e) = 1} y V.= {e€E i g ,r(e) = O} , Wwe have

-5(k+4) -2k-8

[[x so that |[x <2

-1 -1
,=5k-20 c(u ) ,=5k-20 A(U,)

P(u,r,k) P(u,r,k)

(see e. g. the proof of Lemma 4.1 (ii)).
Now ”f”A(E) (1 +2_k-2)(“f||A(U )+2”f”A(V )) (for suppose e, €A(T),

e1lur=tlur, e2IVP=fIVr, then (e1gu'P+e2(1-gu’r))|E=f |E and

”e1gu,r + e2(1—gu,1")llA(I)\< ”e1||A(I)”gu,r“A(I) + HeZHA(I)“ + ”gu,r‘HA(I)))'

Thus writing h we have at once

u,r = x25k+20 €u,r

P(u,r,k)

-k-2
”hu,r - gu,rHA(E)\< (1+2 )(“hl.l,r - gu,r‘”A(Ur) + 2”hu’r‘ - gu,I‘HA(VP))

<(1427%2)(|]1 }+0)

- )‘251<+20P(u ’ P,k)l |A(UP)| Igu ,r] |A(1‘

< 2—2](—7 .

Set eu,r = m:>w u, I‘(m)X . By the estimate of the second sentence of the paragraph
(and the fact that P(u,r,k)yk + 10) we have |6 |l <lle. [, I
u,r u,r
2
Set L, ;= . . Euyr,
r=G-1)2"+1

u,r 9u,r“A(I) N

272k=8. rhus |

-2k-6
u,r -gu,r‘”A(E:)‘<2 .

L : We have at once ||L.—1||

= |-G
b=g "ud u, e i AEUE ) Ii-gll

<
A(Ej UE,,)

-k

2 c; ¢ /4, ”LjHA(I )€Cy+e (by the same calculations as for HGj“A(I) and
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Lj(m) =0 forall mg¢w). Since €>0 and w€Z were arbitrary, we have shown

that E;i UE,, has AAY  constant at most C; [=1,2].

Part B : We show that, given € >0, we can find an No(e) such that

E N YEoy VE has AA%Y constant at least C,;+C,+C.C, - € forall N>/N°(€).

N 12N 172

Fixing N at some arbitrary positive value, we make the following observations.

By Lemma 7.7 (vi), (vii), (viii) and (ix), writing Q(N) = P(O,2N+1 ,N), we can find

disjoint subsets A(S) g{v(—:g vy Q(N)} @#S ;{1 22, veey 2N+1} =U say] such
that
It |¢273N-4 g U AR Q
@ kg NO) if vg sl R)  [v>Qm)]
(b) I;'-S’N(v) - LT'N(v) 1¢2N% 4 ve U AR) [0#S,TcUl.

TNS2R#A

write  Z(j) = {S fg-12N + 1¢ k\<j2N} :card S =py()}  [i=1,2]

£(1,2) = {SUT : S€Z(1), TEZ(2)] andput AG)= {v: w)> 273N gor

g N
sez(1 = d Z(j [1=1,2],

some )jA Ky Szgz(j)pS’N/car )

AL,2) = {v: lpg (W I> 2-3N-% ¢or some SED(1,2)\ (A(1) UA(2))}

W, = s /card Z(1,2). The following facts are evident
12 & 1,2) S,N
’

(a) Ilj-j(v)l\<2'3N'4 it veE AG), lfx12(v)l\<2‘3N‘4
it v& A(1,2)UAMNUAR)  [v»Q(n)]
< 23N-4

®) by - p )| it veAG)

(c) l—lj€M+(Ej), W ,EMY(E ) 5 llujH =1, llep,ll=1.
(@) I;j(V) ¢ pp@2™, Iftm(v) I« py(Mpg (@) 27N [v 2 (0, 2N*1 4 1,M)].

Now suppose vE) 0) a, xv(e) =1 for all e€E UEZN UE12N'
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If Z Iav | > C1 + C2 + C1C2 then we have done, so suppose the contrary.

By (c) and (d) we have

) 1= B g 11 ) | la | 11,
() &(j) ay k() I < ‘%(N) ay k4v) +V), 00, vEA) a, | 1)

l ,a |2~3N-4
%N v oM %N

- %(N) la 127N ¢ (e, + ey v N [ 0,2]

whilst similarly

[1- |« (c,+c,+CC p—3N-4
(®12) x%\(uzwm)uf\(z) 2y ka6 (€ +Cp+CCy)

Further (b) gives

¢ - A _ A
) 30y 2 PO T I B2 I e i)
€ (€, +Cy+C Cy N

so, combining (e1), (e2), (e12) and (f12), we get

- -3N=2
(e12)l |1 +‘%“ 2) a, 9.12(v)|\< (C1 +C2+C1C2)2 .
?

Applying (d) to (e,), (e,), (e;,)" we get

-Ny-1 -N
%A(j) la, | =(p,(N)277)"" 3 (py(N)277) la |

VEA(])
-N,-1 -
> M o ey |k
> (b (1\1)2“")1 5y )|
V€AJ)
» (p (N2 - |
>(p(N) -1 %\Ja P-(V))

>,(pj(N>2'N) (1= (Cpeyrc,C2 N

and

=2Ny-1 -3N-2
N e O e ]
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Thus
:Q la 1> 2Np7T(N) + 2p5 () + (@Np] N3 TN = (C#C,+C,CR2 N 2)
vy Q(N

=06(N) say. By this argument we have shown that ) avxv(e) =1

for all e(—ZE“\I UEZN UE12N implies § N |aV |>» 6(N), i.e. we have shown that
+ ,
E.N UEZN UE,,y has AA™ constant at least ©(N). Since 6(N) » C,+Cy+C,Cy,

part B is proved.

Proof of (i) and (ii). Using the fact that if E cF with E,F closed then, if

F is AAT with constant C3 then E is AA%Y with constant C 4< C3, we see

from Part B that the AA1 constant A\, of E;UE, UE,, is atleast

C,+C

1 +C, +CC,. Butby Part A the AAY  constant A, of E

1 is at most - C1 and

+ . .
the AA” constant A, of E, isatmost C,. Since 7\12< )\1+7\2+ )\1)\2

(Lemma 4.1 (iv)), it follows that A1 =Cy, 7\2 =C,, 7\12 =C,+C, +CC,.

Proof of (iii). This also splits into 2 parts but the proofs are so much simpler that

we have not bothered to separate them formally. First we note that

“X -20(k+4)

P(0,j2

<2 +0 as k -+ so that Fj is Dirichlet

- 1]l
k. n’k) C(F

[(1¢ j<n]. (Thus in particular remembering I.emma 4.1 (ii) and (iv) we know that Fj

n
is AAY with constant 1 and U Fj has AA*" constant at most 2" - 1).
i=1
On the other hand, fixing N temporarily, we can make (as in Part B) the follo-

N+1+1 , N),

wing observations. By Lemma 7.7 (vi), (vii) and (viii), writing Q(N)=P(0 , 2

we can find disjoint subsets A(S) g{ve_Z__ , VY Q(N)J [Qf £S5 = { 2N-n’ 2.2N-n’ o
N-n

ey N2 J =U say] such that

(a) IﬁS,N(v) ¢ 273N-4 if v g s;UR;é;zi AR)
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SN-4 e ve U AR) .

®) e )= R () €2
SN TN SnT2R#P

n
Now suppose a X (e)=1 forall e€UF,_. .
V%» ™ vV j=1 N

¥ Y la |2

then we have done, so suppose not.
v
v Q(n)

By (a) we have
(c)g l1 'S§T%¢ V;A(T) av;s(") M] - ‘%(N)av;*s(") \
+\%{A(T):SQT;£¢} |

for- Do s I3 1 12787

_ |av |2-3N-4
v»giN)

a, | lhg()|

<

By (b) this gives

@. I1- CIRIE he() |
s é‘;T;éyj %A(T) A Bt S5 %A(T) o #sV)

la_ | Ipa(v) - R
P #M%xm a | IRg(v) = k()]

< lav |2-3N—4 N |av |2-3N—3
vy E)(N) v Q(N)

lavb—BN-z < (2n - 1)2-3N-2
vy Q(N)

<
< 27N [64scul.
Considering the (d)S as inequations in ; a, |.LT(V) we may solve them step by
VEA(T)
step (first consider (d)S with card S =1, thenwith card S =2, and so on)to
obtain

~ . _=2N
)y I1- \%A(T) a, kpv)l¢n2 4T cU].

Since |H-T(V) | € HP'T” = 1 this gives
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' la_ |y 1-2"2N
© \%&(T) v

whence

la|> la, |y 2% - 1)(1 - n272N),
T ' Gt feaem v T
n

We have thus shown that U FjN has AAY constant at least (2"-1)(1-n2
j=1

—2N) _ o(N)

say. Since O(N)+ (2"-1) as N »o, (iii) is proved.

Remark 1. We draw the reader's attention to the fact that in Theorem 7.1 (i) we
construct sets with any given AAYT constant C» 1. Theorem 7.1 (ii) could thus be

(uselessly) sharpened by replacing "at most Ci" by "exactly Ci" .

Remark 2. Although Theorem 7.1 (iii) gives all we need from the point of view of
the rest of the paper (i. e. "gets the biggest AAT  constant from the fewest well
behaved sets") it is clear that,combining the methods of (i) and (ii) with that of (iii) we

can get the following improvement on (iii) : -

THEOREM 7.1 (iv). Given n>1, Cy»Cyyeeey C 21, €>0, wecanfind
closed sets E,, E,, ..., E such that EiﬂEj={xJ [i#3j] for some x€T

n
(respectively E; OEJ. =@ for i#j) suchthat U E; is independent, Ei has
i=1

n
AAT constant Ci D¢ig n] , yet U Ei has constant E Ci + Cicj + oeee
i=1 1;3

+C.,C

162 .-

) +
c, (respectively AA™ constant at least ) C; + I;jcicj +...+C.Cye

.. Cn—e).

We now show that the sets described in Lemma 7.7 can in fact be constructed using

Lemma 5.5. The reader will see firstly that the ideas used are simple and secondly that
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by removing some of the conditions (e. g. independence) we can get much simpler proofs.

Proof of Lemma 7.7. Choose x€2n (=) . Our construction is inductive. Suppose

th

that at the n'"" stage we have constructed 2”7y e(n)> 0, E(S,t) closed disjoint sets

together with measure g (€M'(E(S,t)), kg =1 [Sclr: 1¢re2™}] foran
’ ?

1<t<n. Suppose further we have constructed a sequence of integers P(u,r,t,n)

t+1_'_1

(1cugt-1, 1srg2 , 1<t] such that 10 +u; +r, +t, <Pu,r,,t,n)

<P(u2,r2,t2,n)
whenever Og« U;<uy, Ty=ry, t1=t2 or r,<r,, t1=t2 or t1<t2 with the

following properties (we write E(t) = E(S,t)): -

U
psch,2, ... 2!
n
(ii)n {x}U U E(t) is independent.
t=1

Suppose e€E(S,t) [Sg{l,Z,...,2t+1j nyt»1], Ogugk-1, 1srs‘2k+1,

1<tsn.
(iii)n If k>t we have

-20(k+4)

X - i =
l P(u’l,,k,n)(e) 1]<2 if u=0
IXP(U ek n)(e) —1ly27k otherwise.
? ’ ?
(iv)n If t=k we have
x _ -20(k+4) . _ [r-1]
| P(u’r’k’n)(e) 1]€2 if u=t, 1+ L—2k_u €s
k-4 .
X -
| P(u,r,k,n)(e) 112 otherwise.
Further, if |x-el<e(n), nyk
-20(k+4) . _
(V)n l')(P(u,r‘,k,n)(e) -1l<2 if u=0
—k-4 otherwise.

l.)‘P(u,lr',k,n)(e) -1h2

Whilst for all k
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-20(k+4) # uco

*
X -
(v)k | P(u,r,k,n)(x) 1le2
W:’(u,r,k,n)(x) -1 |>2'k'4 otherwise.

Finally (iv), (vii), (viii) of Lemma 7.7 hold under the additional condition nyt » 1.

Applying Lemma 5.5 we can find integers P(u,r,k,n+1) with disjoint closed sets
E(S,n+1) ¢ [x-e(n) , x+e(n)] (with E(Mm+1)NE({)=¢ for n>t>1, xZE(n+1)),

+ . _
measures us’m_]eM (E(S,n+1) with ”“S,n+1”‘1 such that

n+1
(ii) x{U U E(t) is independent
n+1 { } t=1

(a) P(u,r,t,n) = P(u,r,t,n+1) for I1sugt-1, 1<r<2t+1+1, 1<t<n
n+1 ’
(b) P(u,r,t,n+1) = P(u,2k_tr,k,n) for some k>t
n+1
(C)n+1 P(u1,r1,t1,n+1) < P(u2,r2,t2,n+1) whenever O<u; < u,, r,=r,or
r<ry, 1:1=t2 or t1<t2
(iii)! , Suppose e€E(S,n+1) [Sc 1,2,...,2™1 ], ocuck-1, 1¢rg2¥t,
1Kt, k»n+1 then
-20(k+4) .
x - =
| P(u,r‘,k,n+1)(e) 11¢2 if u=0
lxp(u r.K.n +1)(e) - 1]y27k4 otherwise.
* ’ ?
(iv)r'1+1 If t>k, we have
-20(k+4) ) ‘ r-1
IXP(u’r’k’nH)(e) -1l¢2 it u¢t, 1+ [zk—_t]e S
k-4 otherwise.

IxP(u,r,k,n+1)(e) -11»2

Strictly speaking Lemma 5.5 does not imply (ix) directly but the reader can either
verify that the proof of Lemma 5.5 given can also be made to give (ix) or make some other
simple modification of our construction.

Further, (iv), (vii), (viii) and (ix) of Lemma 7.7 hold for t = n+1.
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Observe now that (iii—)n, (b)n+1 and (iﬁ)r'1+1 give (iii)n+1, (iv)n, (b)n+1 and

(iv )r'H_ , eive @iv)

et and (v) , With (b)n+1 give (v)

el From (V)n+1 and continuity
*
it follows that (V)n+1 will hold, provided only we take (as we immediately do)
€(n+1) - €(n)/2 sufficiently small. We can restart the induction. (Incidentally we remark
that to start the induction at the Oth stage it suffices to note that, since x¢g2nQ,
*
lim sup |1 - xn(x) | =2, liminf |1 - xn(x) |=0 and it follows that (v)_, the only non
n-c n-co (o]

vacuous condition when n =0, can be satisfied by a suitable choice of P(u,r,k,0).)

t+1+1] the conditions of

Setting P(u,r,t) = P(u,r,t,t) [I<us¢t-1, 1<r¢2
Theorem 7.1 can be read off from the corresponding inductive conditions (with n suf-
ficiently large).

We now turn to Theorem 7.2. To prove the full result we shall require arguments
similar to those of Theorem 7.1, together with a very simple version (LLemma 7.9) of an
argument which we shall use again in the last part of this section and in Sections § 8

and § 9. However, the reader may well be satisfied with the following simpler result

(in which case he may resume reading after the conclusion of the proof of Theorem 7.2).

LEMMA 7.8. Given K>1, we can find closed disjoint sets l’«‘1 ’ F2 and subsets

A1), M) Z'\{0} suchthat F, is AA with constant 1 [i=1,2], FUF,

A@)

is independent, but [ar |<K implies
r&ﬁ)m\@)

123 0.
I I;AU)UA(Z) %r Xp ”C(F1UF2) >

Proof. Consider the statement of Lemma 5.5. Take F =, 1= 10_2K, choose

€>0, x€T arbitrarily and set m=2, Let F1 =E F2 = E1UE12. Take

"’
A@{) = {Mi(j}a-s : Isl¢s, j>1OK} G=1,2]. Then by condition (i) er' - 1“C(F‘i) +0
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as r+o, rc€A(i) and so, by the arguments of Lemma 4.1 (i), F, is AA Ai) with

constant 1.
iy . . -9K
On the other hand, by condition (i) again “Xr - 1”C(F )< 2 so that
i
Iui(r) -1] 21/10K, |/.t12(r) -1]€1/10K for all reA(i) [=1,2] whilstby
conditions (iv), (ix) and (v) |p(r)1<1/10K for all r€A(2), Ip,(r)l¢1/10K for

all r€A(1). Thus

- »
3l :E(nuA(z)a“X“”C(FPFz)

+ U“ - r%A(UUA(Z)aPXP)duZ }+ U“ '1%(1)UA(2)arxr)d“12 ’

> |1- p - B () 1+ | 1- b (r)- p(r) |-
> |1 Ig(])ar u 1(1:') I+ |1 I%(z)ap “2(P) + rg\“)ar u1(r) gA(Z)aruz(r)
275 la 1/10k

5(1 B gA(l)uA(Z) AXp) g ‘

=1-2/5=3/5>0.
and the proof is complete.

Theorem 7.2 is stronger than L.emma 7.8 not so much because we replace K by

o, but because we claim not merely that no relation of the form 1 - a xr(e)=0
r;(A NHua) ¥

for all e€E 1LJE can hold, but that no non trivial relation of the form

2
arxr(e) =0 forall e€E, UE, can hold. The reader may
TE{0j UA(T)UA(2)U-A(1)U-A(2)

convince himself that the proof of Theorem 7.2 will require a new idea by seeing how the

proof of Lemma 7.8 breaks down for with Iar -a _|

gA(1)UA(2)U-A(1)U-A(2) ®rXr -r

é\g&(numz)u{oj ®rXr

The new idea is, however, not very difficult.

small, although it worked for with a o = 1.

LEMMA 7.9. Suppose ¢€>0, 5> 0, R>1 and N a positive integer are given.

Then we can find  x(,%,R)>0, x(e,8,R)EZ*, and, given XE€T together with some
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k
1> 0, closed disjoint intervals I1 ’ 12, ceey Ik say with U Ii c [x-e, x+e] such
i21
N i
that for all R>» PE_ :N a.y d we have

@) sup inf || a Xn, -l <
kyir1 XEC IEN ) < 1

(ii) sup || Z : a,x ”C(I )zx(s,?),R).
kyiy1l pr=-

Proof. By translation, if necessary, we may suppose x = 0. Consider

N
T= {rz—-:N a X, | l-e,el: R>J lar Iy B}. By elementary results on trigonometric
polynomials OZT. But I is a compact subset of C([-g,e]) (because, for instance,
I is a bounded subset of a finite dimensional subspace). Thus
inf {“fHC(E) : f€I‘} y 2x(g, 9,R) for some (e, d,R)> 0. Now we can find a finite set

of points X, X5, ..., X, say with xi€(-e,e) [(1<i<k] such that

inf |t - X, |\<(RN)-1 x(g, d,R) for all t€ [-g,e]. Under these circumstances
k»iy1

N
inf |Z , ax(t)- Z : ax ()« X la IN sup Ix;-tl<x(e,d,R)
kyi»1 pr=-N r=-N kyiy1
N
whenever rz— N |ar |¢R. It follows that

(ii)’ sup ! ax (x.)|»x(e,d,R)
K>i1 r;—N rori T

forall R» : Ia > d. Now choose f> 0 so small that

r=-N
§ € min(  min Ixi-x. l, min Ixi-e l, min Ix +e|)/4 and also RNy < 1/2.
K>i> j>1 I7 krint K»ix1

Setting L, = [xi -§s X+ Y] we have at once that the I, aredisjointand I, ¢ [-g,€l.

Since x,€I, (ii)' gives (ii) whilst we obtain (i) from the observation that

|a IN sup Ixi-tl <7
r=-N t€I

N N
@)  sup ‘Z L AXp(t) =3 : a X (x;
r==-N r=-N

t€Ii
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N
forall R») , Iar,l.
N

Using this simple fact, we can now give the

Proof of Theorem 7.2. Choose x¢21t§__2. By Kronecker's theorem we can find
1¢P, ,0(0) < P2,0(O) < P1’0(1)< Pz’o(l) < P1’0(2) <..... integers such that
-r . 4
prj(r)(x) -1]<2 G=12;r»0]. Set F10=F2,0 ={x}, €0)=1/(2 Pz’o(o)).
We shall obtain E1 R E2 as the union of sets FIr’ F2r [r» 0] constructed induc-

tively as follows : -

th

Suppose that at the beginning of the n+1 step we have constructed closed

disjoint sets F, o, Fy ., Fp . [1«r¢<n], integers
4 >
1< P1,n(0) <P2’n(0) <P1,n(1)<P2,n(1)< P1,n(2)< ... and g(n)> 0 such that

writing Q(n) = P, n(n) we have
’

n
. n .
@), F = L_J (F1,PUF2,r-) is independent
Gi)  lIx -1l ¢27" (G=1,2; r=0]
P. C F‘ ? ’
n Jon(r) ( J,I‘)

(i) e(n)Q(n) < 274

By Lemma 7.9 we can find 1>x(n)> O and closed disjoint intervals

Q(n) -1

I, 5 ceuy X such that for all n=} la_|=n
2,n ? “k(n),n ==o(n) T

Q(n)
. . N <
(iv), k(ns)l;liw ;e[ji: Hr:Z_;Q(n) a X, llc(Ii’n)< %(n)/10

I1,n’

Q(n)

sup || a x|l »x(n) .
k(n)>ix1 I§Q(n) rer C(Ii,n)

™),
Using Lemma 5.5 repeatedly (with 1= %x(n)/100, m =2, taking F to be successively
(n) (n) (n)
F20 FUOUG, FHPUG UG, ... € [x-€, x+e] to be successively
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I I

cee acti -
1,n’ 12,n’ 3,n’ , and extracting coarser and coarser sub-sequences of P1 ,n(P)’

P2,n(r))’ we can find G, =G, ,UG; UG, ., with G, ., G-, G, 5 disjoint

from each other, G nS Im’ a sequence of integers

. +
1< P1,n+1(0)< P2,n+1(0)< P1,n+1(1)< «.... and measures “inj EM (Ginj)’
+
e sngll = 10 Bin12 € MG, lluj 10!l = 1 such that
k(n) k(n)

Whyy  Hweset Fy pq=Y Ginpr Fa ngq = U Gypp USiq1)
then F‘n+1 is independent

(u)m_1 Pj,n+1(r) = Pj’n”(s(j,r)) for some s(j,r)=r, further s(j,r)=r
for O<rg¢n+tl .

(i) Il x -1 <277 K(n)/(100n) for all r = n+1

n+1 Pj,n+1(P) C(Fj,n+1)
(v1)n_|_1 Iuim(e Pz'n+1(r)+s) | ¢x(n)/(10n) forall [sl¢r, r=n+l, ©=+1
Ip,inz(e P1’n+1(r)+s) |[¢%x(n)/(10n) forall Isl¢r, r=n+l1, ©-= +1.

We note that as an immediate consequence of (ii):;_'_1 we have

(vii )n+ 1

Iui nel j(e Pj’m_](r)) -1, Iy net 12© Pj,n+1(r‘))-1 | ¢ x(n)/(10n)
forall r=n+l, ©=+1 [j=1,2; lcick(n)l.

Condition (11)m_1 holds (because of (1)n, the first part of (11)n_'_1 and (11)1,l+1 for
r = n+1 ; because of (i)n, the second part of (ii)r'1+1 and (iii)n for O< r¢n).
Thus setting e(n+1) = Z-n_s/Q(n+1) (so that (iii)n_!_1 is satisfied) we may restart the

induction.

Since F, UF nS [ x-e(n) , x+e(n)] and e€(n) >0 we see that

©0 oo
E.= UF , E,= UF are closed. Since the F. are disjoint for r =1
1 =0 1,r 2 =0 2,r i,r
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we have E,;NE, = {x} By condition (i)n E,UE, is independent. By condition

. . oy _ _

(ii) , and the fact that (by the second part of condition (111)n+1) Pj,m(n) = Pj,m(m) = Pj(m)
say forall n=m we have || xPj(m)+s - Xs”C(EJ.) + 0 and so, writing

Aj) = {Pj(m)+s : |sl¢m, m 20}, Ej is (by the arguments of Lemma 4.1 (i)) an AAA(j)
set with constant 1 [j=1,2].

On the other hand E1UE2 cannot be a ZA set with

T

T = A(1)UAQU-A(1) U-A(2) U{0}. For suppose «> 3y . lar [>0. Then we can find
rel’

an n suchthat n> g IaP [> n~?t, By (v)n we can find an k(n)» i » 1
Irl«Q(n)

such that || a_x. |l =x (n).
gr{lr'kQ(n) e C(I n)

To simplify the notation, we shall write »x =x(n), Q=Q(n), G-= Gy I=IL,

By=Hing G=1,2], n 12 = Hijq1p- BY (V) wecanfinda X such that

Il g o a X, A“C(I)‘ < %/10 (and automatically |X [»9%/10).

We now argue as in Lemma 7.8

3IIE X plle(gy = 3(IIr- g’ ho aXplle(g) - Illg’ ho e T Mieqy

=3(/Ia -%_, g P ||C(G)- %/10)

>

T J- d A -

U {;€A(1),IPI>Q Xl ’+ U( ge/\(z), Ir|>Qa1“xr)d“2
jou - - 3%/10
i U fTTiA(1)UA(2), r>Q al‘xr)d“m{ /
|

I A o
> A - A -
| EGZA(!), IrI>QaP#1(P) A Eezx(z), Ir |>Qar k2]

A -
. ;ezm) |ZF€A(2)3 “2(I‘)| Zga x/(10n) - 3%/10

X |- 5x/10 = 2%/5 > 0.
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Hence ||Z E ”C(E UE ) Hz ;a X ”C(E)>O and the proof is complete.
r

The proof of Theorem 7.3 requires a result similar to, but more delicate than,

Lemma 7.9.

—~
LEMMA 7.10 (i) Suppose I is a closed interval, then AT(I) = AY(1) ;
(i) If I is a closed interval (with non empty interior)than I isnota ZzA"

set

(iii) Suppose € >0 given. Then, forall R> 0, we canfind 1> »x(g,R)> 0
with the following property. Suppose N = 1 given, then we can find a positive integer

k(e,R,N) anda [(e,k,N)> 0 such that, given xE€T together with some 7> 0,
k
5y ey I, saywith U I c [x-€, x+€],
i=1
N
inf |Ii [> T having the following property. If Iar <R then
k>»iyl :_

we can find disjoint intervals I1 s I

(1) sup inf [l(1 -:a Xp) = Moy € 1
1

kyix1 X€C
N
(2) sup |1 - E :arxrll = x(g,R).
kyix1 r=

Remark. The important thing here is that » does not depend on N and r(

does not depend on  x.

Proof. (i) We follow word for word the standard proof ( D], p. 46) that A(I) = A(I).
Note first that, if PF (1) ={T" : (T", £)= (T,f) for all f€A™(I) and some TEPF(E)},
PMT(1) = {T+: (T, =(T,t) forall fcA*(I) and some TePM(E)j, then A*(D)

is the dual of PF'(I) and PM'(I) isthe dualof AY(1). I feA*(1), then

“f||~ HuHPM+(I) = Ht||r\(./) zl;% lu(-n)|
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for all p€E€M(I) and so for all pEM(I) APF'(1). By the theorem of Hahn-Banach
applied to the dual of PF'(I) the linear continuous functional on M(I) NPFT (1)

wos <Eu =Jf du
can be extended to a continuous linear functional on PF+(I), i.e. to a member of A+(I),
and so there exists an f0€A+(I) with (f,u)> = <fo, p> forall peEM(I)NPFT(I). In
particular, by the lemma of Riemann-Lebesgue jf du = Ifod” for all absolutely conti-

nuous measureson I andso f= fo€A+(I).

oo
(ii) This is an immediate consequence of Jensen's inequality (if f(z)=1-) a
r=1

ZI‘
r

(oo
for [zl¢1 and ) IaI1 <o then, writing p for Haar measure on T
r=1 -

0 = log £(0) ¢ j log |£(e1®) | du
ocT

. . i0
and so in particular {eeg: f(e! ) = 0_} = {eeg t 1= E . arxr(e) = 0} must have Haar
measure 0) but we may obtain the result by weaker means.
+ oo
Suppose I a ZA" set, then we can find g Iar >0 with a x.(e)=0

for all e€I. By multiplying by XX if necessary, we may suppose a, = 1. Choose

-n?

m oo
Xy Xy, «.., X such that iL—J1 (xi +I)=T. Writing £, = r§—0 a X —r(xi)xr we have

o
-+ _ _ _ .
£,€AT and f(e) = rgo ax,(e-x)=0 forall e€x;+ [1¢i¢m] .

Setting g=f1 f2 ... f wehave g€EA, gl(e)=0 for all e€T and

g(0) = 1 which, by the uniqueness of Fourier representations, is impossible.

(iii) By translation we may suppose X =0 (thus, in particular, reducing the
(<]
definition of y to a triviality). We remark first that inf {H 1- r§= : a X r'HC(I) :

0
21 Iar | < R} > 2n(R) for some xn(R)>0. For suppose not. Then, since
&=
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oo oo
lIx . - a_x_ || =11 - a x| we have x .€A1(I) (indeed
-1 g r*r''C(I) 5 r*r''C(1)’ -1
(o]
||x_1|] ’+‘(")< R) and so by (i) x_1€A+(I) and x_1(e) = Z arxr(e) for all e€I
A (E r=0

0 0 oo
and some :L_; lar | < o (indeed E—O lar |€R). Thus 1- E ar‘xr(e) =0 for al

e€l and I isa zA% set, contradicting (ii). The first sentence of this paragrap
is thus true.
Now we can find a finite set of points X1y X3y eeey X SAY such that

inf |t-x, < (RN)""%(R) forall t€ [-e,e]. Automatically
Kkyi1

N N
) sup |1-Y "a x (x.)l =2%(R) for la_ ¢ R
K»ix1 =1 rt :Z; r

whilst choosing

0<y<min( min [x.-x. |, min |x.-€l, min |xi+s| , T/RN)/4
kyi>j>1 kyix1 kyix1

we have, on setting I, = G- v xj+)‘] that the I, are disjoint, I, c [-¢,e] and
-3 ol 1 lag IN sup Iyt
(i - ax)-(0- a_x. (x < a_ |Nsup |x.-t| <.
g ‘= r'r 2 C(Ii) = rer i 1
Conditions (1) and (2) follow at once from (1)' and (2)'.

We shall also need the following complicated statement of a trivial fact :

LEMMA 7.10 (iv). Let E E, be closed setsand 1> s»0.

1’

Suppose A(p,t), A(t) are infinite subsets of Z* with A(p,t) < A(t)
[1¢psm, 1€tek]. If

lim inf sup inf o {x€EI1 : Ixr(x) -1l¢ cx}), s
usco GEM (E1)||cr||=1 1¢€t<k rEA(t),r>u

and

lim . inf sup inf o {x€E2 P CY R N aJ y S
usco GEM (E2)||0'||=1 1¢ps¢m rEA(p,t),r2u
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for all o> 0, then

lim inf sup inf o {x€E1UE2 : Ixr(x)-1 lca}ss
use GEM(E,UE,), lloll=1 1stck, 1¢p¢m r€A(p,t),r>u

for all «>O0.

Proof. This consists simply in interpreting the statements. Suppose €>0 given.
We can find a u(')(e) such that

inf o, {xe:E:1 : Ixr(x) -1lg cxj > (s-z-:)B1

+inf sup
o, eM"(E,),llo =8, 1¢t<k reA(,t),r>u

inf o, {x€E2: b(r‘(x) -1l< cxj > (s-€)8,

+inf sup
0,EM (Ez)’”0'2“=52 I<p<m r€A(p,t),ryu

so that in particular, if 0'€M+(E1UE2), then taking o, =0 |E,, 0,=0 -0,

i =1,2] we know that there exists a 1¢p¢m anda I<t<k such that

inf 0'{x€E1 : Ixr(x)- 1|\<onj>,(s-e)|cr|(E1)
r€A(t1),r>/u
o
inf o {x€E2\ E,: lxp(x) -1 Isa};. (s-e) lol(ExN E,).

r'€A(t1,p1),I‘>,uo

Since A(t1) :_).A(t1 ,p1) is infinite, we have at once

inf o {X€EE UE, : Ix.(x)-1l¢a}y (s-€)lc|(E,UE,)
r‘€A(t1,p1),r>,u { 1772 r } 1 2

&)
and the required answer follows.

We now embark on the proof of Theorem 7.3. Since this is closely related to the
proof of Theorem 8.1 and since we present the 2 proofs independently, each could be

treated as heuristic for the other. To separate the various stages of the construction,

we split it up into parts correspording to the statement of the following lemma.

LEMMA 7.11 (i). Suppose we are given 1>s)0, K>1. Then we can find an
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1= g(s,K)> O together with an m(s,K) =1 with the following property : -
Given b > 0, we canfind an N(6 ,K,s) » 1 with the following property : -

Given x€T, F aclosedsetin T such that GpF;éI and A(1), A2), ..

.., AK) infinite subsets of g*’, we can find A(p,t) [1¢<p<¢m(s,n)] infinite subsets

of A(t) [1st<k] together with E c [x-d , x+d] a closed independent set with

GpENGPF = {0} such that

(1) 1lim . inf sup inf c{er : lxr(x)-1 | € cx}>, s
uso oEM (E),||o'“=1 1¢p«m r€A(p,t),r>u

for all o« >0, I¢t<k.

(2) int {l| ax. -1l :F la_ <K}y €.
{P)N rer CE) " fpn T b

LEMMA 7.11 (ii). Suppose we are given 1>s»0, n»>1, €>0. Then we can

find an (s,n,f)> 0 with the following property : -

Given Q wecanfinda Q'(Q,s,n,)>0 with the following property : -

Given x€T, F aclosedsetin T such that GpF#T and A1), AQ2), ...
(s psk']

.., A(k) infinite subsets of g"’, we canfinda k'»> 1 and A(p,t)

infinite subsets of A(t) [1€t<k] together with E ¢ [x-, x+£] an independent clo-

sed set with GpE N GpF = {0} such that

(1) 1lim o Anf sup inf o {er : Ixr(x)-1 l¢a}>s
useo o€EMT(E),lloll=1 1¢pgk' rea(p,t),ryu

forall «>0, Itk

Q'-1 o
2) it laP| <n, 1% |ar|s %(s,n) then |l _Ear‘XI‘HC(E)E %(s,n)

r=

2')1f < -
(2") EZQ'laPR n, then |1 Ir;zQ' arxr”C(E)Z x(s,n).
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LEMMA 7.11 (iii). Suppose we are given 1>s»0, n>1, €>0. Then we can find
a n(n,s,C) with the following property : -

Given Q wecanfinda Q"(Q,s,n,f) with the following property : -

Given x€T, F aclosedsetin T suchthat GpF # T and A1), A(2), ..
.., A(k) infinite subsets of __Z_+ wecanfinda k"» 1 and A(p,t) [1¢<psk"]
infinite subsets of A(t) [1€t<k] together with E c [x-L, x+{] an independent

closed set with GpE N GpF = {0} such that

(1) lim , int sup inf o {x€E : Ix (x)-1l<a}ys
uscc CEM (E),||cr||=1 1¢<psk" re€A(p,t),rru

forall o>0, I1<t<k

(o]
2y ® Iar|\<n then Hl-garxr”C(E))/u(s,n,c)

ryl

(2)' 1t g@' la,l<n then ”1'%@. axplleg) > (s, 0).

LEMMA 7.11 (iv). Given any 1>s>0, we can construct an E satisfying the

conclusions of Theorem 7.3.

Proof of (i). This is essentially a restatement of L.emma 5.8. To reduce confusion
we label the quantities in the statement of Lemma 5.8 by a superscripted star (so e. g.
C(K,\A) becomes C*(K,z\ ).

Set €(s,K) = 1/(2c*(2K,s)), m(s,K) = m*(2K,s) and N(,K,s)= N*(S ,2K,s).
Since A(1), A(2), ..., A(k) are infinite, we can select the M:(j) so that
Alp,t) = {j : M;(j)eA(t)} is infinite for all 1¢p¢m, 1<t<k. Taking E = E*,
T= T*, we have the required construction ( (1) follows from (ii)' and (2) from

(i)').
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Proof of (ii). We use Lemma 7. 10 (again adopting the convention of starring
* *
quantities appearing in the Lemma quoted). Set 2(s,n,f)= x (£,n)e(s,n/x (£,n)),
* * * *
w=k (L,4n/x (s,n,£),Q) and Q' =N()’ (¢,n,Q),4n/x (s,n,€)s) (where N,¢
are as in part (i) of this lemma and 1 = 1 (s,n)). We know that we can find disjoint

intervals I,, L, ..., I, € [x-L , x+L] such that |1i|>,)*(c n,Q) and if

Q
= laglen
=

Q
@ st 0= anx) - Al i)
®) 1= 32 a x lq ) ® 4x(5,m,0)
b sup [I1- a_X_l-¢ »x(s,n,t).
wiyn E r*r' C(I;) T

Using part (1) we can construct sucessively closed independent sets E1 , E2, ooy Ew

with E; ¢, and infinite subsets A' (p1, Pys «vvs Py t) cA'(p1, Pys =+es Pj_qs t)

[1ctsk, 1< p;¢ m] (where A'(t)= A(t), m=m"(s,4n/e(s,n))) such that

(c;) GPE,NGP(FU U E)—{O} so Gp(FU U E)#T
1€j<i 1€ j<i

(1); lim sup inf o{er Ixr(x)—1 l¢a}rs
uso EM (E ),||0'||— 1<p;«m P€A'(p1,p2,..p ,t),r>u

forall «>0, 1¢p;¢m [1¢jgi-1]1, 1<t<k.
(2); int {II g); Xy - 1”C(Ei) : Y la l¢n/x (s,n,2)}
> int {Il > : ax, - g ) 22 1o, l¢n/x(s,n,8)} = els,4n/x(s,n, L)),
r>Q’' i

From (2)i we have at once that if |X |> %(s,n,C) then (on multiplying (2 )i through

by A) we have

@y inf {Hg' axp =Ml 2 lag len) > x(s,m,0).

Write E = U1E Combining (a) and (2 )'i', and setting
i=
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Q oo
A = rz— X a X px;) for some x,€L, we have that for all ; Iar |¢n and

IaP |¢ %(s,n, L) we know sup |, I)Bn(s n,) and so

= n»ixl
-3 ax Ny = sup -3 a x|l
(2) I-Eax = sup -;ax
£= r'r C(E) Wi £ rr C(Ei)
I - ool ™ |
= sup 1- a.Xn a
wyixyl C(E) ' T
>

sup (12,11 %.arxr”c(ei)" x(s,n,2)

wxyix1

= 3%u(s,n,C) - x(s,n, L) - x(s,n, &)

I

%(s,n,Z)
as required.

If we set k'=m", A(1+(p;=1)+ (py-1)m +...+ (pw-l)mw_1) = A'(P4,P5s - 4Py, st)
[1ctgk, 1< pi\<m] then condition (1) follows from Lemma 7. 10 (iv) and (1)1. That E
is independent and GpF NGpE = {0} follows from (c); and the independence of Ej;.

Condition (2)' follows on considering (2)i for any fixed i.

Proof of (iii). Choose v an integer with (v-1)xa(s,n,€) =n+1 (taking = as in
part (ii)). Set Q(0)=Q, Q)=Q'(Qr-1),s,n,) [Isr¢v], Q"(Q,s,n,l)=Q().
Using part (ii) we can construct successively closed independent sets E1 R E2’ ooy Ev

with E; ¢ [(x-¢ , x+€] and infinite subsets A' (PysPyseee +P;5t) cA' (PP - - sP;_1st)

[« tek, 1<pj<kj for some kJ! fixed] (where A'(t)= A(t)) such that

(c) GpE; NGp(FU U’ E;)={0} so Gp(FU U E)# T
1«j<1 J I«j<r
(1); lim inf o {x€E;: llga}ys

sup
usee CEM (E ), llorll=1 1¢p;<k! T€A'(p,P,,..P;,t),r>u
forall «>0, 1<p;<k O<ici-1], 1<t<k.
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Q;-1

(2) ”:a XP 1”C(E ) : 'a \< n, g |arl\< x(s,n,t)} > x(s,n,C).

i-1
v
Now suppose Z ) Iar «n. Then Z : g ; l( n and so we can find 1€<j€V
=
Q.-1
such that Y97 Iar | £ #(s,n,). But then we may use (2);j to obtain (on setting
=

v
i=1

j=1

) inf {Hgarxr' 1||C(E):I§ la,l¢n}» x(s,n,Z).

If we set k" =k} k) ... k",, A(1+(p1-1)+ (p2+1)ka Feeot (pv-1)k% k) ... k! 1 t)

= APy, Py, -..s Pyt) [1€t<k, 1¢pj¢m] then condition (1) follows from Lemma
7.10 (iv) and (1)i. That E is independent and GpF N GpE = {0} follows from (c)i
and the independence of E,. Condition (2)' follows on considering (2)i for any fixed
i.

Proof of (iv). Choose xg& 2rQ. By Dirichlet's theorem we can find A(0) ¢ g*'

an infinite set such that sup | x l._‘(x) -1 1|20 as n»w. By part (iii) we
r€A(0),ryn

can construct inductively x(n), €(n)> 0, N(n), M(n), Q(n), m(n) positive integers,
E(n) a closed independent set and A(n, 1), A(n,2), ..., A(n,m(n)) infinite subsets of

n
g"’ such that writing F(n) = U E(r) we have
- r=0

(a) E(n) c [x - &(n-1), x + &(n-1)]

n

(b)

n

(c), lim inf o{y€F(n): Ix (y)-1l¢a}> s
usoo G€M+(F(n)),||c||—1 1<p\<m(n) r€A(n,p),r>u

GpE(n) N GpF(n-1) = {0}

for all «>O.

(We obtain (c)n from (c)n_1, condition 1 of part (iii) and Lemma 7.10 (iv)).
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@, ® Y_la,l¢n then [ -g aXplle @@y > )

r=1

(@) 1 %Q(n) la,l¢n then [[1- %Q(n) aer,”C(E(n)) > n(n) .

The conditions which follow define M(n), N(n) and ¢(n). By (c)n and the fact

that the A(w , v) are infinite, we can find 2" ¢ M(n) <N(n) such that

(e)n + int inf O‘{yeF(n) | x (y)—1 |<2-n_1} > S.
oeM*(F(n)), lloll=1 1sp\<m(n) r€ A(n,p),r>u
We choose €(n-1)/2» £(n)> 0 such that
®, C@N@e¢2™
so that, in particular, if F cF(n)+ [£(n), -C€(n)], then
. -n
e)! inf sup of{y€F : Ix (y)-11<27"} 3 s
n seM'(F),lloll=1 N(n)yr>M(n) r
[oo]
We claim that E = U E(n) satisfies the conditions of Theorem 7.3 with
n=0

e(R,s) = »([R]+ 1). Observe first that by condition (a)n and the restriction

€(n)<s(n-1)/2 we have E closed, whilst by (b)rl (and the restriction E(n)

independent) we have E independent. That lim sup O'{y : lxm(y)-1 | ¢ Sj > slloll
maoo

forall > 0, o€M'(E) follows directly from (e)r'l. Finally, using (d)n and (d)r'1 y

(o]
we have forall 3 la I<R ¢ [R] +1 that

'=—00

HIE arxp-1||C(E)— ”}:‘_, aX =l g Ri+1) Z*([RI+ 1> 0

and, similarly,
1l = x =1l 2 x(Rl+1)> 0
R R T CE) = s gy e @RIy
as required.
The proof of Lemma 7.5 follows the pattern of the proofs above very closely. As
usual, we split the demonstration into several parts.
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LEMMA 7.12. (i) Suppose 1>e>0 and N a positive integer given. Then we
N
canfinda p(g,N)> 1 such that for any x€T we have ||Z a X ”C([x—s x+e])
N=-—
N
whenever Iar I'» p(g,N).

r=-N
(ii) Suppose 1>€>0 and N a positive integer given. Then we can find a
" -
1> %(g,N)> O such that for any x€T we have 1 a_x “C(E( e, x+€]) > % (g,N)
<lelkn ©
forall a€c [i« Irl¢N].

(iii) Suppose 1>¢€>0, 1>0, p>1 and N a positive integer given. Then
there exist ,’(e,'rl,p,N)> 0 and k(e n,p,N)eg"' such that, given x€T, we can
find closed disjoint intervals I, L,, ..., I < [x-€e, x+e]=1 with lIiI »§ such

N

that forall p=3 " la,l
=N

(1) sup inf || a Xn -l <
k»i»1 XEC rz;-N c() 1

N
(2) sup ” Z a X “C(Il) = H EN al"xI‘HC(I) - "( .

k»i>1 r=-

(iv) Suppose we are given 1>s>0, %>0 and w€§+. Then we can find an
L 1 (s,K,w)> 0 and an integer m(s,*,w) with the following property : -

Given y>0, x€T, F aclosedsetin T such that GpF # T and
A1), A@2), ..., A(Q") infinite subsets of Z*, we canfind A(p,t) [1<p<m(s,K,w)]
infinite subsets of A(t) [1«t€q'] together with E c I:x-a' , x+3‘:| an independent
closed set with GpE N GpF = {0} such that, writing A(w) = {iniw : ,€A(p,1)

i=

for some 1<p<m, 1<t«q', 1<v\<w},

(1)  lim i inf  o{x€E:|x Ax)-1 !\<<x}
use CEM (E) llor=1 1<p<m(s K,w) r€A(p,t),r>u

forall «>0, 1<t«q’
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- > (s, x,w) for all la l<eo.
(2) Hrg*(w) CI x| 1(s,x,w) fora %*(w) a,

(v) Suppose we aregiven 1> £> 0, n and Q positive integers. Then we can
find a xo(C ,n,Q)> 0 with the following property : -

Given x€T, F aclosedsetin T suchthat GpF # T and A1), AQ2),..
.., A(qQ) infinite subsets of g+, wecanfinda q"3» 1 and A(p,t) [1¢p<q"]
infinite subsets of A(t) [I<t<q] together with E c [x- , x+£] an independent

closed set such that

(1) inf cr{x€E : Ixr(x)-l l¢a}2s

lim . inf sup
uso cEMT(E), lloll=1 1¢pg¢q" re€A(p,t),r>u

forall «>0, 1st<q

(2) H EG:A**(“) aI.Xr - 1”C(E) = no(c ’n’Q)

n
where A**(n) = {) B+j: ,€A(p,t) for some 1<p«¢q", 1¢t€q and I<ven.
i=1

(vi) Givenany 1>s»0 we can construct an E satisfying the conclusions of

Lemma 7.5.

Proof. We remark first that, by translation, we can and will take x=0 in the

proof of (i), (ii), (iii) and (iv).

N N

Proof of (i). Consider T = {Z ax,l1: 3 la | = 1} where I= [-g,€].
r=-N r=-N

This is a compact subset of (C(I), || “C(I)) (because, for example, I is a bounded

subset of a finite dimensional subspace of C(I).) Further OZI (because, for example,

the elements of T can take the value O at most 2N+1 points). Thus

inf {HfHC(I) : ferj >0>0 forsome 0> 0 and, setting p(e,R) = 4571, we have the
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required result.

Proof of (ii). Set T, {« a

N X 1) I1: IaP | ¢ p(e,N)}

1€ Irl¢N

where I= [-g,€]. As above, I‘1 is compact and OZT, so there exists a

1> »(g,N)>0 with {]lll :fe€r,} = x(eg,N). Since, if f= ax -1)]|E
’ { c() i} ’ TIrkn 7T
with la_|>p(g,N). Part (i) gives |[f] » 1> K(g,N), we have the required
<rkn T C(n)
result. N
Proof of (iii). f p =), la,l, then
r=-N
N N N
127 ax 0 -2_ ax (2«37 la llrlly-zls pNIy-zl<1/8
r=-N r=-N r=-N

whenever |y-z|<1/(8pN). Set Q= [16rnpN] +4, then, taking y = /2Q and
Ii to be those intervals [27r/Q - 7/4Q , 2rr/Q + 1/4Q] which lie entirely within
1= [-e, €] we have the required resuilt.

Remark. Parts (i), (ii), (iii) taken together correspond to Lemma 7.9 in the proof
of Theorem 7.2 and Lemma 7. 10 (iii) in the proof of Theorem 7.3. To prove part (iv)
which corresponds to the main part of the proof of Theorem 7.2 and to the main part of
the proof of Lemma 7.11 (i) (itself the main step in the proof of Theorem 7.3) we require
calculations along the lines of Section § 3. Note, however, that the case r =1 can
be handled directly in the manner of Theorem 7.2 which indeed gives the required result
with s=1/2, A=A(1)UA(2). TItis very possible that the reader will be satisfied by
re-reading the proof of Theorem 7.2 and ignoring the details that follow. We adopt the

notation of Section § 3 until further notice.

LEMMA 7.13. (i) Let m,q,w be integers such that myq+w-1 and q) w-1.

Then the system of equations
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A= (s € (m,q)]

A_.=0 for card Ty w

has no solution.

Proof. Call the system of equations (*¥). By Lemma 3.5 the general solution of (*)

is given by

Ap= (-ncard T-1¢y -;a};;gr B, B#T<{,2,...,m]

where B,.=0 if card U> q, but otherwise may be chosen freely subject to

U

A =0 for card T = w,

i. e. subject to

0=1+ BU for card T=w.
UcT

(Here and in what follows the condition T,U,V ¢ {1 325000 ,mj and so on is implied).
Call the 2 conditions on the BU (**). Then, writing = for the permutation

group on {1 s2,...,m}, we know that, if the B, satisfy (**), then so do the By

for all fixed o€= (here oU = {cu :u€U}). Thus, by the linearity of the conditions

(**) it follows that C BV/ card {V : card V = card Uj =A

card V=card U

say

U< card U

also satisfies (**). We have thus shown that (¥) has a solution if and only if

O=>\p for myp>q

S
s
0—1+t§=1:(t)}\t for mysyw
has a solution. In other words, (*) has a solution if and only if

q
0=1 +{::(ts))‘t [mysyw]

for the uxv matrix with (s,t)th element

has a solution. But writing K
u,v

th . ,th

(M*V=S) [ogs, t¢v], we have (on subtracting the i row from the i+1"' row for

t
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i=v-1, v-2, ..., 1 and using Pascal's triangle) that det Ku v = det K

’ u,v-1 (if

the reader writes out the case v=4, u=1 say, the result will be obvious), and

so by induction det Ku,v = det Ku,1 =1. Thus det Km-q-l g1 = 1#0 and the set
of equations
q
0=g (AR (m> s »m-q]
=1
has a unique solution which is, obviously, >\1 = X2 =...=A q= 0. Thus the set of
equations
q
0=1+) (f))tt (my s» w]
t=

has no solutions, and so, retracing the argument,(*) cannot hold.

LEMMA 7.13. (ii) If m, q, w are given as in (i), then there exists a
7(m,q,w)> O such that, if IeS’T—1 [, lsS,T sy forall @ #s,T g{1,2,...,m} ,

then the system of inequations

IS;#j ES,TAT + gl‘;éﬂi SS,TAT -1l¢r [s€®(m,q)]

AT=O for card T=w

has no solutions.
(iii) ¥ m, q, w are given as in (i), then there exists a 7(m,q,w)> 0 such

that, given a collection of functions fg | : g {1 »2, «.., m} >C  (from the set of
s =

subsets of {1, 2, ..., m} to C) with [} -1]lg T if S2T#¢,

s, ks, k

Ix T otherwise for some )LS k€(_: , then
Lko=

Sup T2 AL £ (T) =115 7
Seé(mQQ)’CaI‘dTSW T'k S’k

for all choices of AT
?

LEC.
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Proof of (ii). We use the fact that if a finite set of linear equations has no solution,
then neither does any (sufficiently mildly) perturbed set. (This is obvious geometrically :
- if an affine subspace of Bn (i. e. a "plane") does not contain a point, then this
situation persists under mild perturbation.) Alternatively, the algebraic proof of (i)
will also show (ii).

Proof of (iii). This is a restatement of (ii).

Proof of (iv). If (iv) is true for » = 1, then a scaling argument shows that it is
true for all x> O (with 7(s,x,w)==x7(s,1,w), m(s,x,w) =m(s,1,w) and
E,A(p,t) the same for all values of x). We therefore set » =1, m=m(s,1,w) and
prove the result for this case.

Choose m, q in such a waythat gq/mys, m>»g+w-1 and q>» w-1 (thisis
certainly true if we put q =m-w and choose m sufficiently large). Take b =y'=0
such that ny'¢ 7'2—20(m+8) (where 7t = 7(m(s,1,w),q,w) with the notation of
Lemma 7.13).

By Lemma 5.5 we can find integers N = n, Mp(j) >N [i¢<psm, 0<j] closed
sets E c [x-)' ', x+y'] and measures uS€M+(ES) with ”""S” =1

[sci{1,2,...,m}] such that

(i) IXM (j)(e)-1 | < 1_2-20(m+8)

-20(m+8) -20(m+8)

(ii) Ius(r) = 72 implies Ius(r) - k() ¢ T2

(1) |Rg,pm) > max( () , pp) ) - 727200m(,W)8)

foral s,Tcl1,2,...,mj, Iri=N

-20(m(s,w)+8)

(iv) |u¢(r)|<rz forall |r| =N

*
(v) Writing E = U Eg wehave E  independent and
sec{1,2,...,m}
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*
GpE NGpF = 0
(vi) Foreach 1¢pg«m, 1<¢tg<q' wehave A(p,t)= {Mp(j)eA(t) :j= 1}
infinite.

The essential content of (i), (ii), (iii), (iv) and the condition y'e 72'20(m+8)

from our point of view is

+. -~
(o) &7 el )+ M) - M) = € o)., o=

where 1<p(1)¢p(2)g...¢pu)¢m, 1svsw, € p=1 if S2T, €
b4

otherwise.
Now writing E = U{ES : S€c1>(q,m)) (so that all the conditions of Lemma 7.12 (iv)
- except perhaps (2) - are satisfied, for example (1) follows from condition (i) on the list

in the paragraph above), we have for all S€&(m,q)

-1 = 9 -1
J(%A*(w) a X, - Ndug gA*(w) a ug(r)
S TS Ap b

cardT>w v=-n T,v °S,T

+ . q
memivx is the sum of all those a, with r€x U A(p,t)+v and

where A
T, pET t=1

v
ISS,T - &g 1 l¢7. By Lemma 7.13 (iii) we have, therefore

| R
-1
sea(m,q) j;A*( ) X T DMg T

and so (since IIuSH =1)

i e~ oy =7

forall ) Iar | <00 . Setting 1l(s,w) = T we have the result.

Remark. From now on the proof is plain sailing. Parts (v) and (vi) correspond
almost exactly to parts (iii) and (iv) of Lemma 7.11 and to the remainder of the proof

of Theorem 7.2.
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Proof of (v). Using the notation of parts (i), (ii), (iii), (v), set
» =»(L,n,Q)="(s,x(£,Q)/8,n)/8 andput k=k(,x /4, p,Q),n). By (iii)

we can find disjoint intervals I1 , 12, eeey Ikg_: [x-t , x+¢] such that for all

5 la, |
p = a
r=—qQ T

Q
()" sup inf || ax._ -l <% (L,Q)/8
k>ir1 AEC Lo e~ Mew)

. Q Q
(2) sup I3 ar'xPHC([.)ZHEQ arxr“C( [x-C,x+2]) % (Z,Q)/8.
h

kr»i»1 1r==Q
Using (iv) we can construct, successively, closed independent sets E1 , E2, ey Ek
with E;cl and infinite subsets A’(p1 1Pyyeee ,pi,t) c A'(p1 N OYRRRTT ,t)

[1stsk, 1¢ pj sm] (where A'(t) = A(t), ‘m = m(s, x(£,Q)/8,n)) such that

(3); GpE; NGP(FU U E.)={0} (so Gp(FU U E)#T)
1¢j<i J i<jgi =

(4),

X inf o{eri: Ixr(x)-1 | ¢ a}=s

lim + inf sup
us0 o€EM (Ei),||o'|(=1 T¢p;<m r€A'(p1,p2,...,pi,t),r>u

for all «> 0, 1spj\<m [1¢jgi=1], 1<t<k.

(5) [ ge/&*(n,i) a X, - *(C ’Q)/SHC(Ei) = 8x_ forall ng*(n,i) | a, | < o
n

where A*(n,i) = {: Bj +u: ej ey A(pl, Pys vy D5 t), 1<u<Q} .
=

We are particularly interested in the consequences of (S)i.

k
Set E=UE,;, q"= mk, A(1+(p1-1) + (p2-1)m Fouot (pk-1)mk) =
i=1
A'(p1, Pyy veey pk,t) D¢ tsk, 1(pi\<m] (so that condition (1) of part (v) follows

at once by repeated use of Lemma 7. 10 (iv) and (4)i)’ Suppose F Iar |<eo,
r|€A**(n)

It ; 'ar | =2 p, then, setting 6 = p/? : Iarl (so that lea_|=p),
< IrkQ <r$n isrkQ T

we have that, since 6 =1
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o ey ek Moy = IS oo = ey

< “ Eej\*-x—(n) arXp = 1|IC(E)

and since o3 Iarl +1)=p
< kQ

O eriry e ™ Vet ) = *E9)-

On the other hand, if Iarl £ P , then automatically
T<IrkN

”geA**(n) arXp ~ 1”(:( [x-t,x+£]) = K(Z,Q).
n

'n
T if that b_lgp, |l b > Ne;
hus, if we can prove tha rg—:n | I‘|<p Hgn I‘XI‘HC([X-C,X+C:|) %(C,5)

and b_l<ow (where A*(n)= A*¥*{n)\ {_r' t1s g Q} ) together imply
rie A*(n) r

Il b_x_|| > % , we shall have proved condition (2) of (v).
Fr 2 a**(nyufoy T T C(BY T To

Let us therefore suppose that br are given in accordance with the hypotheses of
* *x
the last sentence. By (1) and (2) we canfind an 1<i¢<k and a A€EC such that

Q
A = x(Z,Q) - 2x(Z,Q)/8 = 3K(£,Q)/4 and ||y, -]

=~

Since

b_Xx <2 .
o 'r C(Ii) o

A'w) g A"(n,1), (5); gives

' - -1
) H%-:‘:A*(n)b“xl‘ xIIC(Ei) = 8x A(x(£,Q)/8) =32x,

SO

Q
5)n b > b.x. - Al - b, x. -\
) |||r T A**(n)u{o} "XFHC(Ei) - “%r%A*(n) rXr = 2Ty LZ_Q rXr ”C(Ei)

>32% - =N
o o o

and we have proved condition (2) of (v). Since the fact that E is independent and
GpF N GpE = [0} are immediate consequences of (3)i and the independence of the Ei’

we have completed the proof of (v).
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Proof of (vi). This follows the proof of L.emma 7.1 (iv) almost word for word.
Choose x & 2rQ and write E(0) = {x}, K(0)=Z(0)=1. By Dirichlet's theorem
we can find A(1,0) €zt  an infinite set such that sup Ixr(x) -1/30 as n+o,
reA(1,0)
By part (v) we can construct inductively x(n), £(n)>0, N(n), M(n), m(n) positive

integers, E(n) a closed independent set and A(n,1), A(n,2), ..., A(n,m(n))

n
infinite subsets of g+ such that, writing F(n)= U E(r), we have

r=0
(a)n E(n) ¢ [x-¢(n-1), x+&(n-1)]
(b)rl GpE(n) N GpF(n-1) = {0}
( 1 inf inf €F(n): Ix_(y)-11 >
C)n u-inoo G€M+(}:‘(n)),”o”=1 1« s\:llr‘:l(n) P€At2,p),r>/?1{y » Xr y-tleat =

for all «>0.

(We obtain (c)n from (c)n_1 , condition (1) from part (v) and Lemma 7.10 (iv)).
n
(d)n Writing A**(n) = {: Pi +u: (?i € A(p,n) for some 1¢ps<m(n),
i=

1€ ug«N(n-1 we have 1- a = n(n) for all a_|< o,
(n-1)} | 2 areio) X plle @y = 0 T preia e <

The conditions that follow define M(n), N(n), Z(n). By (c)n and the fact that the
A(n,r) are infinite, we can find N(n) + 2™ < M(n)< N(n) such that

(e)

X nf o{yeF(n) : Ix, (-11<2™"} = s.

inf sup i
oceM'(F(n)),lloll=1 1¢p<m(n) reAa(n,p)

We choose €(n-1)/2 = €(n)> 0 such that
0, CmN@) ¢ 2™

so that, in particular, if F cF(n)+ [&(n), -&(n)], then

)n cr{yeF: lxr(y)-1|<2'n}>/s.

inf sup
o , lloll=1 N(n)>r>M(n
eM'(F), lloll=1 N(n)>r>M(n)

(e ]
We claim that E = U E(n) satisfies the conditions of Lemma 7.5, if we put
n=0
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A= 81 U{N(n) =r =M(n) : r€A(p,n) for some 1< p<m(n)}, e(n,s)==x(n). Observe
n=
first that by condition (a)n and the restriction £(n)¢ £(n-1)/2 we have E closed,
whilst by (b)n (and the restriction E(n) independent) we have E independent.
That limsup o{y: Ix (y)-11I¢ %} = slloll for §> 0, oceM'(E) follows directly
maoo

from (e)r'l. Finally, using (d)n and the observation that (in the notation of Lemma 7.5)

A(n) € A*¥*¥(n), we have

I W%A(n) arxrllc(E) >l - ":’_(;'A(n) a XplloE@)) = %M = en,s)> 0

for all ) la . < as required.
rEA**(n)

This completes the section. The author hopes that, although the results in it are
separately not immensely interesting, together they will be found to give rather exact
information about how the structure of A A(E) can depend on A and in particular

about the relations between the cases A = Z , A= Z+ and A arbitrary.

§ 8. N SETS AND ZERO SETS.
The object of this section is to prove the existence of weak Dirichlet sets (i.e.
N sets) which are not zero sets for A+(1‘). We shall prove two versions of the result,

a strong one : -

THEOREM 8.1. There exists an independent weak Dirichlet set which is not zA*

and a weak one : -
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THEOREM 8.1', There exists a weak Dirichlet set which is not ZA+.

Our proof of Theorem 8.1' is technically much neater than that of Theorem 8.1,
and depends only on the first 3 sections (indeed almost entirely on those parts of the
first 3 sections needed to prove Lemma 1.11) and the very simple remarks placed under

the heading of Lemma 7.10 (i), (ii), (iii). The version of Lemma 7. 10 we shall need is

LEMMA 8.2. (i) Forall €>0, R>0 thereexistsa 1= xo(e,R)> 0 such

that -
llg axp = (e, &) = %(&sR)

oo
for all E |ar I¢R.

Proof. This can be proved as a direct consequence of Lemma 7. 10 (iii) or, more
neatly, by repeating and simplifying the argument used there,

We shall, therefore, prove Theorem 8.1' first. Then we shall briefly discuss the
relation of the result and the proof to the results of the first 3 sections, and finally
prove Theorem 8.1. The proof of Theorem 8. 1 uses some of the results of the first part
of this section together with some of the results of Section § 5. The inductive construc-
tion required is quite complicated. However, although a knowledge of the contents of
Section § 7 would be helpful, it is not needed. It would, perhaps, also be helpful if
the reader briefly tries to prove the results himself, using the existence of a weak
Dirichlet set supporting a true pseudofunction. In this way he will see that a new idea is

required (the more so as we know the existence of weak Kronecker and thus both weak
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Dirichlet and ZA+ sets which support a true pseudofunction). However, the new idea
is very simple and the reader, particularly if he has read Section § 7, may already

have seen it.

LEMMA 8.3. Suppose E is a closed set with the following properties : -
Given n=1 we canfind %(n)> 0, a positive integer m(n) with m(n)x(n)=4n
and a sequence of integers 0 = N(0,n) <N(1,n)<...<N(m(n),n) with the following

properties : -

N(j,n)
Given O< jg¢m(n)-1 and } lar|\< n, we can find TE(A(E))' (. e.
r=

T inthe dual of A(E)) with

@ rllpys2
- N(,n)
(ii) I<T , 1 -E aXp> | = n(n)

(iii) Iﬁ‘(r) | ¢ #(n)/4n for all r = N(j+1,n).

Then, under these conditions, E cannot be a zA*t set,

oo
Proof. Suppose E isa zAT set. Then we can find 0O< E la - [<e such
r=0
(o]
that E arxr(e)= 0O forall eCE. Let s be the.smallest t such that at;éO. We
r=0

o -1 hnd -1
have, on multiplying by ag X_g» 1- r§= ) (-ap_sas )xr(e) =0 forall e€E. So

without loss of generality we may assume a, = 1.

oo

(e o)
Consider now some P§_1 |a . |<e, There exists an n=1 with PZ_1: Iar ¢ n.
Using the notation of the theorem we have
m(n)-1 N(j+1,n)
la . l< n

7o rN@Gnm1 T

and so there existsa O< k< m(n)-1 with
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N(k+1,n)
la, | ¢ n/m(n) < x(n)/4.
r=N(k,n)+1

But we know that we can find a TEPM(E) with

@ Tllpy € 2
N(k,n)
(ii) KT, 1=-5" arxr>1 = %(n)
r=1
(iii) |’i‘(r) | ¢« x(n)/4n forall r = N(k+1,n)

and so, in particular with

| a3 = T 1y e Y- v K |
(T, 1- a_x = [KT,1- a_x - (T,a_ X - T,a_X.
E rr IE mr EN(k,n)H rr rgl\l(k+1,n)+1 r r)
@ -3 el - la_ | 1T() |
> - a T - a T(r
" g(k, a1 T PMO Rk t,n)r T

> x (n) - 2x(n)/4 - nx(n)/4n

> n(n)/4.

©o

Since TE(A(E))', we have (1-) a X I,) |E £0 and, since the a, were arbitrary,
r=

we have shown that E cannot be a zero set for A+.

Remark. It is very important that T belongs not merely to PM(E) but to the
subset (A(E))' the dual of A(E). Forif SEPM(E)\(A(E))', then we know that
there exist f€A with f(e)=0 for e€E, yet <(f,S)> =0 (this being another way
of saying that (A(E))' is the set of synthesisable pseudomeasures), and the last
sentence of the proof above would not necessarily apply with S in placeof T. We
shall return to this point in the remark following the proof of Theorem 8.1'.

We now commence the series of lemmas which will put us in a position to use

Lemma 8.3.
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LEMMA 8.2. (ii) Given 1> €>f> 0 and M a positive integer, we can find
an N o({ , M) such that for all P > 2N0(C ,M) we know that the set
E(x,€g,P) = {ZRI‘/P :2nr/P € [x-g, x+e]} has the following property : -
Given y€ [x-€, x+e] wecanfinda peEMT(E(x,e,P)), | ”M =1 such that
(1) I;:(r)-gy(r)l st forall |r|sM

2) I;t(r) ls ¢ for all No(c , M)s rg P-No(c , M).

LEMMA 8.2, (iii) Given 1> €>€> 0 and m a positive integer, we can find a
sequence of integers O = N1(0,C)< N1(1 , )< ... < N1(m,C) with the following
property : -

f P= 2N1(m,C), then the set E(x,€,P) = {2rr/P : 2nr/P€ [x-€ , x+e]} has
the following property : -~

Given y€ [x-€, x+e] and O¢ jg¢m-1, we canfinda pweEM'(E(x,e,P)),
llelly =1 such that

() e -5 ()l<E  forall Irl<NG,E)

) Iﬁ(r) I« € forall N, (£,j+1) < r< P-N,(L,j+1).

Proof of (ii). This is an immediate consequence of Lemma 3.1. Set
NO(C ,M) = [16OC_2(M+1)] +1, If P= 2N](C ,M), then we can certainly find a
wEE(x,€,P) suchthat y€ [w-C/4(m+1), w+l/4(m+1)]c [x-€ , X+€].
Set u = “§/4(m+1),P * 5W (in the notation of LLemma 3.1). By Lemma 3.1 (i)

LEMT(E(x,€,P)), llell=1. Since suppu c [w-€/4(M+1), w+l/4(M+1)], we have
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Ix () = xp(v) 1< Irl ly-vl¢ Irl £/2(M+1)s € forall |r|¢<M andso
DEMORENCOIRE- forall Irl<M

whilst by Lemma 1.8 (ii)
@) |p@)|< L forall 40.(E/4(M+1)) ¢\ r¢ P-d0.(E/(M+1) ']

and so in particular

(2) I;(r) ls € for all NO(C ,M)s rg P-NO(C ,M).

Remark. As usual, the fact that P may be chosen freely will play an important

role in what follows.

Proof of (iii). Setting N1(O,C) =0, NT(I‘, g)= No(N1(r-1 ,CH1, L) for
1< r¢<m, we obtain (iii) as an immediate consequence of (ii).
Combining L.emmas 8.2 (i) and (iii) we obtain a finite version of the hypotheses of

Lemma 8.3.

LEMMA 8.2, (iv) Given 1>€>0 and n=1 wecanfind x(g,n)>0, a
positive integer m(g,n) with m(g,n)x(g,n) = 4n and a sequence of integers
0 =N(0,€g,n)<N(1,€,n)< ... <N(m(g,n),e,n) with the following properties : -
Choose P = 2N(m(e,n),e,n), x€T and set E(x,¢,P)= {ZKI‘/P :
N(',e,n)
2rr/P € [x-€, x+e:|}. Then, given O¢ j< m(g,n)-1 and Iar l¢n, we can
=
finda pEM'(E(x,e,P)) such that
@l =1

N("e’n)
W@ e, -3 el 2K(en)

r=1

(iii) Ip(r)| < K(g,n)/4n for all N(j+1,€,n)< r< P-N(j+1,€,n).
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o
Proof. (We remind the reader of the convention 2 a,= 0.) With the notation of
I'=

(i) set n(g,n) = xo(e,n)/B. Take ¢ = min(e/2 , %x(g,n)/4n), m(e,n)=4n( [n(e,n)-1]+1)

and (with the notation of (iii)) N(j, &,n) = N1(j, ) for O« j<m(g,n).

Suppose now P = 2N(m(e,n),e,n), x€T, O< js m(g,n)-1, la_l<n
= —

e}

chosen. By (i) and compactness, we canfinda y € [x-€, x+e] with

|N(j,€,l’l) | . X | N(jyeyn) S |
|P=1 arxr(y) -1 I)Bu(e,n), i. e. with |<1§1: ax,=-1, y>|23x(e,n).

By (iii) we can find a [.L€M+(E(X,E,P)) such that

@ ey, =1
(iii) lp’(r) ¢ &n(g,n)/4n for all N(j+1,€,n)s r< P-N(j+1,€,n)
(i)' |;l.(1") - g y(r) |« &sn(e,n)/4n for all |r |< N(j+1,€,n).

Using (ii)' we have, at once,

.. N(j’sin) N(j,e,l’l) N(.’Ern) ~ ~
@) 1O - ez apxr-h%y”-g oy, l1A()-5 ()]

> 3xn(g,n) - nx(g,n)/4n

v

2xn(e,n)
as required.

At this point the proofs of Theorems 8.1 and 8.1' diverge. We want to obtain,from
the measures of Lemma 8.2 (iv) with support contained in a finite set,the pseudomeasures
of Lemma 8.3 with support contained in a weak Dirichlet set. In the proof of Theorem 8.1

we shall attack this problem directly, but the fact that we do not require independence
enables us to use a slicker but very much more indirect method in the proof of Theorem
8.1'. The purpose of the next 3 lemmas (Lemmas 8.4, 8.5 and 8.6 (i)) may not become

clear until the proof of the fourth (Lemma 8.6 (ii)), containing the proof of Theorem 8.1'")
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has been read.

LEMMA 8.4. We can find a monotonic increasing function h: g+ > 25+ (such
that h(r)> 2r) and a monotonic decreasing function L £+ > F=2+ with the following
property : -

Suppose we choose 0 < P(0) < h(P(0)) < M (1)< P(1)< h(P(1))< M (2) < P(2) < h(P(2))
< M*(B) L integers such that M*(r) is an integral multiple of P(r-1) and
P(r) an integral multiple of M*(r) (1« r]. Then we can find a closed countable set
E with O as unique accumulation point, having the following properties (for all
n=1): -

@), lixg M*(n) = 1”C(E)< 2" for all 0< s M(n) < P(n)

(b)n We can find a positive integer m(n) with m(n) X1(P(n—1)) =>4n and a
sequence of integers 0 =N(0,n)<N(1,n)<.....<N(m(n),n)<h(P(n-1))/2 such that,

N(,n)
given O<j¢m(n)-1 and } IaI1 l¢n, wecanfinda p€EM'(E) such that
r=

@, el =1

- N(,n)
@), I<u, 1-5 a x> |= 2%, (P(n-1))

n

(iii) | lp) | < » 1(P(n=1))/4n for all N(j+1,n)< r< M*(n) - N(j+1,n)
and so, in particular,

(iii)r'] I;z(r) P3 x1(P(n-1))/4n for all h(P(n-1))/2 € r< M*(n)-h(P(n-1))/2.

Proof. Set &(r) = 2-P—4/r , h(r) = 2N(m(e(r),r), e(r), r)+2r +2 and
7!1(1') =% (e(r),r) (in the notation of Lemma 8.2 (iv)). We shall construct E inducti-

vely. At the beginning of the nth step we have a sequence of integers
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0< P(0) < h(P(0)) < M¥(1) < P(1) < h(P(1))< ... <P(n-1) and a finite set E(n-1)
satisfying conditions (a)q and (b)q for n-1=q= 1 and additionally having
M*¥(n-1)E(n-1) = 0. (Of course, if n =1, then we cantake E(0)=0 and have the
conditions vacuously satisfied). Choose for M¥*(n) any integral multiple of P(n-1)
having M¥*(n) = h(P(n-1)) and set (again in the notation of Lemma 8.2 (iv))

F(n) = E(0, &(P(n-1)),M(n)), E(n)=E(@m-1)UF(n) (so E(n) is finite). We note that
(c), Em\E(n-1)cF(n)c E27"3/P(n-1),27"3 /P(n-1)1e L2772, 23]

. -n
In particular, therefore, || Xp = 1“C(F(n)) <2 for all |r |¢ P(n-1) and so (a)CI
is true for E(n) and 1< g< n-1. On the other hand, the definitionsof &(r), h(r)
and n1(r) in terms of quantities defined in Lemma 8.4 (iv) imply that (b)n is true
for F(n) and sofor E(n). Finally, if P(n) is chosen to be a positive integral

multiple of M¥(n), then, since M¥*(n)E(n) =0, condition (a)n follows at once for

E(n) (indeed ”st*(n) - 1”C(E(n)) =0 for all s€__Z_).

Set E = SOE(n). Using (c)n and the finiteness of E(n), we have E closed
n=
and countable with O as unique limit point. Since (a)Cl is true for all E(n), (a)q
is true for E [<ql] Since E(n)cE, the fact that (b )n is true for E(n)
implies the truth of (© )n for E [1¢<n] and E satisties the conditions of the Lemma.
Lemma 8.4 parodies, in some sense, half of the conditions of Lemma 8.2 with E

Dirichlet. In Lemma 8.5 (ii) we imitate the other half and in Lemma 8.6 we combine the

two halves. But first we require a version of the Central Lemma.

LEMMA 8.5, (i) Given K> 1, 1>X>0 wecanfindan 1> eo(K,A)>O and
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an m(K,\ )€£+ with the following property : -

Suppose P a positive integer and 1> (, €,> 0 given with Pe1 =1, then
M(0) = 1+ [PC -1 581(K,C )] has the following property : -

Given o> O, we can find a monotonic increasing function h: g+ > g" (such
that h(r)> r) with the following property : -

Given M(0) < h(M(0))< M(1) < h(M(1))< M(2) < ... < h(M(m)) < M(m+1) such that
M(r+1) is an integral multiple of M(r) (1« r¢ m] we can find a finite set
Ec [—el , 51] and TEM(E) = PM(E) such that

(i) M(m+1)E = 0

m
(ii) ”m-1 I; xM(I‘) - 1”C(E) < 8

(iii) IITHPM - T(O)=12K | T(x) |

sup
M(m-+1)-M(0)=r=M(0)

iv) [T@r)-1lsC forall Irl<P.

Remark 1. If we used Lemma 5.2' instead of Lemma 2.1 in the proof below, we
could drop the condition M(r+1) a multiple of M(r).

Remark 2. Looking at the first sentence of the proof of Lemma 1.7 we see that we
can take N(g,K,1) = ([-€" ']+ )N,(K,A) (.e. N(e,K,x)=¢€ 'Ny(K,1)) inthe
statement of Lemma 2.1. If we choose not to use this fact then, a priori, all we know is
that the M(0O) of Lemma 8.5 (i)dependson P, £, K and ). However, the resul-
ting weaker statement remains strong enough to prove Lemma 8.5 (ii) and this is all we

need.

Proof. Set e (K,)) = (200(C(K,A +1)}N,y(K,A }+1))"' and take m(K,A) as in
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Lemma 2.1, Suppose P, C, € M(0) taken as indicated. Take € = £/(20C(K,X)P)
and choose h asinLemma2.1. We have N(g,K,\)=( [8-1] +1N,(K,)) €
(20C(K,)\)PC_1+1)N2(K,A)\< EO(K,A)_1PC_1/1O $€M(0)/2  so that by Lemma 2.1 it
follows that, given M(0)< h(M(0))< M(1) < h(M(1)) <M(2)< ... <h(M(m))<M(m+1) we can
find a finite set E ¢ [-€, €] l:—:-:1 , e1j and TEM(E) = PM(E) such that

1) M(m+1)E = 0

m
@ ™ 57 e = ey < 8

i) il = TO)=12K sup | T(r) |
M(m-+1)-M(n)=r=M(m)
() il <can)
whence
(v) IT@)-1]¢ Irlly, sup 11 - x,(x)1
X€E
< |r'|”T||M )sclé:;])3 Ix |
= Irle ”T”M
=¢lrl/2oPp ¢ € for all rl¢P

and we have shown that E has all the required properties.

Remark. Here the important thing is not (as in the construction of a pseudofunction
on a Helson set) that the mass of T is bounded independently of M(m+1), but that the
mass is bounded independently of the interval [—-e N e:[ in which the supportof T is
made to lie. In particular, by taking € small, we can make T behave like a point

mass at the origin,at least with respect to characters ¥ with long wavelength (i.e.

r
for r not too large). This control is vital in what follows.,

We now prove a version of Lemma 1. 11 incorporating this element of control (and,
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as promised,imitating half of the conditions of Lemma 8.2 with E weak Dirichlet).

LEMMA 8.5. (ii) Given 7(n) 0, we can find a monotonic increasing function
h: g"’ > §+ (such that h(r)> r) and a function p: g+ > g"’ with the following
property : -

Suppose we choose 0 < P(0) < h(P(0)) < M(1) = M(1,0) < h(M(1,0)) < M(1, 1)< h(M(1, 1))
< voe <M(1,p(1)+1) = P(1) < h(P(1)) < M(2) = M(2,0) < h(M(2,0)) <M(2,1) < ... <h(M(2,p(2)))
<M(2,p(2}+1) = P(2) < h(P(2)) < M(3) = M(3,0)< ... integers such that M(r,0) = M(r)>
h(P(r-1)) and M(r,0) = M(r) is an integral multiple of P(r-1), M(r,s)> h(M(r,s-1))
and M(r,s) is an integral multiple of M(r,s-1), P(r)=M(r,p(r)+1) [1¢ s¢ p(ok1,
1< rJ . Then we can find a closed set E with the following properties (for all
n=1):-

_; b(n) -n

@), llpn) L2 XMn,s) - e gys 2

(b)n There exists a Tn€PF(E) N(A(E))' (the set of synthesisable pseudo-
functions on E) such that

@, T )=l lloy =1

(ii)n |’}‘n(r) -1l¢ 7(n) for all |rl< P(n)

(iii)n |Tn(r) | < 7(n) for all v |> M(n+1).

Proof. Without loss of generality suppose T decreasing. By Lemma 8.5 (i)
we can find for each n a p(n)€§+ (such that h(r)> r) with the following property:-
Suppose we choose O0<P(n-1)< hn(P(n—1)) < M(n) = M(n,0) < hn(M(n,O)) <M(n, 1)<

hn(M(n, 1)) <M(n-2) <... <M(n,p(n)+1) = P(n) < hn(P(n)) <M*(n+1) such that M(n,r+1)
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is an integral multiple of M(n,r) and M¥(n+1) an integral multiple of P(n)
[0<r¢ p(n)]. Then we can find a finite set E(n) < [-Z_n"s/P(n-1 )] and

un€M(E(n)) = PM(E(n)) such that
(1)rl M(n+1)E(n) =0

p(n)
(2)n ”li’(l'l)”1 Z : XM(n r)” 1ll¢ 2-n-6
r= ’

3 e oy, =8 0) = 12 2™ (ny! g (r)|
G Ballpy = #4©) 7(n) M*(n+1)-Ms(:'Jll))2r'2M(n) #nlr)
(4)n I;zn(r) -1l¢ 2'"'6r(n) for all |rl¢ P(n-1).

Set h(n)=2 max hr(n). Then, if P(r), M(r), M(r,s) are chosen in
n+1=r=1 ‘

accordance with the hypotheses of the lemma with M(r) = 2M*(r), they automatically
satisfy the hypotheses of the paragraph above (with, for example, P(r-1)= r-1 so that
M*(r) = M(r) > h(P(r-1))/2 = hr(P(r-1)) as required). We may therefore choose E(n),
K, as above. Note that 3 )Ifl gives at once

3) 2™ (n)!

h sup ln (1.

b [l =p (0)=1=
n PM n M(n+1)=r=M(n)
It is clear that E(n+1) +...+ E(n+r) converges topologically to a closed set

F(n) ¢ [—2‘"’4/P(n) , 2_n_4/P(n)] and (using (4)n and (B)r’l) that p % ...*p

n+ n+r

converges weakly to a pseudomeasure T , having properties (i)n, (ii)n and (iii)n.
T, has support in F(n)c F(0) =E say and supp By < F(n-1)c E, so

TnGPF(E) N(A(E))'. By (:i)n M(n,sXE(1) + E(2) +...+ E(n-1)) = 0, and by the fact
that F(n)c [—2'“"4/P(n) , 2'“'4/P(n):l we have |[x P(n) ~ 1“C(F(n)) =0 so (a)n

follows at once from (2 )n and we are done.

We are now in a position to marry the 2 halves of Lemma 8.4 and Lemma 8.5.
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LEMMA 8.6. (i) We can find x(n)> O, positive integers m(n), p(n) with
M(n)»x(n) = 4n, a sequence of integers 0 < P(0)< M(1) =M(1,0)<M(1,1)<M(1,2)<..
o <M(1,p(TH1) = P(1) <M(2) = M(2,0) < M(2,1) < ... <M(2,p(2H+1)<P(2)< ..., aclosed

set E and a closed countable set E2 with O as unique accumulation point with

1
the following properties (for all n=1) : -

_1 b(n) -
@, liptn) 2 XM(n,s) ~ ‘”c(E1)“2 " forall 1¢s<p(n)

(b)n1 There exists a Tn€PF‘(E1) ﬁ(A(ET))' such that

Wy T =l llpy =1

(i), I:l“n(r) - 1| € K(n)/4n for all |rl¢P(n-1)
(iit) I'Ar n(r‘) |€ K(n)/4n for all  |r|> M(n+1)
@ Iy, s) = ey <2 for all 1< s« p(n)

(b)n2 There exist positive integers 0 = N(0,n) <N(1,n)< ... < N(m(n),n)< P(n)

N(,n)

such that, given 0< j<m(n)-1 and J lar l¢n, we can find a u€M+(E2) such
r=1

that

N(j,n)
(ii)r12 [ <{p, 1 -é arxr>| = 2x(n)
=

(1'_ii)n2 IZL(P)L< %x(n)/4n for all P(n-1)< r< M(n+1).

Proof. This follows at once from Lemmas 8.4 and 8.5 (ii). (Take x(n)=x 1(P(n-1))
as in Lemma 8.4, m(n) as in Lemma 8.4, take 7(n)=x(n)/4n in applying Lemma
8.5 (ii) (since P(n-1) depends only on 7(n-1) this is not circular), take p(n) as

in Lemma 8.5 (ii), choose M¥*(m+1) = 2M(m+1) in.applying Lemma 8.4 (so that (ii)[']
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of Lemma 8.4 yields (iii) h2 above), and observe that certain of the sM*(n) of Lemma
8.4 (a)n coincide with the M(n,s) of Lemma 8.5 (ii) (a) ,, eiving (a)n1 and (a)nz.)
LEMMA 8.6. (ii) If E,, E, arein (i), then E = E, +E, is weak Dirichlet

but nota ZAY.

Proof. If e,€E;, e,€E,, thenby (a)m and (a)n2

1

_q b _q b(n) ot
| p(n) S;1:><,\,,(n,s)(e,+e2)- 11 < Ip(n) sgﬁ,xM(n,s)- 1 e2™

so for all oceMt(E)

. -1 p(n) -n+1
1<lsn<fp(n) JIXM(n,s) - 1ldo < jlp(n) g Xpi(n,s) = 1140 € 2 llo]].

Thus E is weak Dirichlet. (Alternatively we could use the fact that if F and F

1 2

are weak Dirichlet, so is 13‘1+l=‘2 ; the proof of this is easy.)

N(i,n)
On the other hand suppose 0<¢ j< m(n)-1 and i’ Iar l¢n. By (b) L2 We can
r=
find a u€M+(E2) satisfying (i)nZ’ (ii)n2, (iii)nz. Set T=p* L Using (i)m,
(i) L, and (iii)m, we obtain

W Illpyg Il o = 14 2 |

N(j,n) N(j,n) N(j,n) - “
(ﬁ)|<T,1->_-_"; arxn>|21<u,1-£; RIS ni WIMOREC]
= r= =

N('y ) ~
azx(n)-f_,ln la, Hlslloy 11 - T ()|

r=1
= 2%(n) - 2n%(n)/4n = % (n)
@) 1TE) lemin(IT () oy, 1e@ Tl € x@)/4 foran  Irl= P).
Thus the conditions of Lemma 8.3 hold and E is not a zero set for AY.

Remark. The above proof of Theorem 8.1' shows strong connections between the

170



N SETS AND ZERO SETS

existence of a weak Dirichlet set which supports a true pseudofunction and the existence
of a weak Dirichlet set which is not a ZA¥ set. However, it does so at the expense,
at least in this presentation, of obscuring the motivation of the proof. The proof may be
expressed differently and in a natural manner in terms of measures only (and indeed was
first so obtained, though in a cruder way ; we remind the reader of the discussion in the

introduction running from Lemma 1.9 to Lemma 1.11). Lemma 8.3 is replaced by

LEMMA 8.3'. As for Lemma 8.3 but with the penultimate sentence reading : -

N(j,n)
Given O0<j<m(n)-1, le |apl<n and Q, we canfind oEM(E) with
r=1

(i) ”"'”PM< 2

» N(j,n)
(i) <o ,1 -1; a x> I2x%(n)
(iii) lo(r)| < » (n)/4n for all Q = r = N(j+1,n).
(e o] ) oo
Proof. Since : laP |<o wecanfinda Q with lar |<%(n)/8.
r= r=

The proof now runs as for Lemma 8.3 until the 3rd sentence of the 2nd paragraph which
now reads : -
But we know that we can find a oE€EM(E) with

@ lollpy, <2

NG, n)
W <o, 1277 ax = xn)

r=1

(iii) |;'(r') | %(n)/4n for all Q = r = N(j+1,n).

By the arguments of Lemma 8.3

oo

[ee] Q ~
Ko, 1-r§arxr>|2 <o, T-IEanI,)I-r%H la | lofr) |
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= x(n)/4 - llollppx(n)/16 = x(n)/16 > 0

o
so 1- 2 :arxr is not identically O on E and the proof of Lemma 8.3' is complete.
=

The proof of Lemma 8.6 (ii) (and so of Theorem 8. 1') goes through as before with
the pseudomeasure T replaced by the measure o=pu * Bop1 ¥ By * o0 * K nem
for m large enough.

The reader may feel that we have replaced one proof by an almost equivalent one.
In reply I would remark that such a procedure is not always possible so trivially
(consider Theorem 1.1). By giving the two proofs we have shown that the problem of the
existence of a weak Dirichlet non ZA%Y set lies on the borderline between those
problems only involving measures (e. g. those concerning the union of Helson sets and
the existence of independent Helson sets) and those appropriately treated using pseudo-
functions (e. g. those concerning the existence of E with A(E) not closed in A/(\I_E’ )
(for an illuminating example, see Varopoulos' proof in [19]), and the existence of Helson
sets not of synthesis). Possibly the force of this remark may appear greater after our
proof of Theorem 8.1, but since many readers will skip this we have placed the remark
here.

We conclude this section with the

Proof of Theorem 8.1. Choose x¢& 21r9 . We construct inductively the following
objects :

(a)n g(n+1)> 0

(b)n P(n), M(n) positive integers with P(n) = 4M(n), N(n) = P(n) - M(n)

(c)n »(n)>0, m(n) a non negative integer with m(n)x(n) = 4n

(d)n A sequence of integers 0 = N(0,n)<N(1,n)< ... < N(m(n),n)< M(n)< N(n)
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(e)n A finite set E(n) with P(n)E(n)=0

such that x(r) decreases and M(n+1) > P(n), satisfying the following conditions :

(1)n Foreach 1<r<n we know that
(1) For each r<k<¢<n wehavean A independent of n such that
nr rk
. . N(j,r‘) . .

(1) Given O<ij< m(r)-1, s§=1 IaS l¢r we can find B EMEMD))  with
. -n

Do €2 =27 e dhys AL

B N@,r) | -n

() e < s 1- sg ax Dz x@)1+27"
(i) e B (8) 1< w(r)(1-2"")/4r for all N(k) = r = N(j+1 , r)

(2)n Taking eo(K,A) as in Lemma 8.5 (i) we have M(n)e(n+1) = 1,
N(n)= 1+ [M(n)2n'"8n()c(n))"1eo(2n'"8n(n(n))"1 , 1-2'“'1)'1] .

To start the induction we set €(1)=1/10, P(0)= 16, Q(0)=2, M(0)=1,

x(0) = 1/10, m(0)=0, E(0)=@. The n'!

step is as follows. By Lemma 8.5' (and
Dirichlet's Theorem applied to {x} to give (4)n), we can find €(n+1)/4 > €' (n+1)> 0,
P'(n)> M'(n)> P(n) with M'(n) an integral multiple of P(n), N'(n) of M'(n), a

set OEF(n+1) c [-e(n+1)/2 , e(n+1)/2] and a Tn+1€M(F(n+1)) such that

(3), P'(nF(n+1) =0
(4)n We can find q(n+1) an integer and P(n)<M(n, 1)< M(n,2)< ... <M(n,q(n+1))

<M'(n) such that

lla(n+1)! q(n+1)x -1l c27™1 oq | (x)=-1]s2™
g M(n,s) = Me@Ene)) S XM(n, s) <

for all 1< s<q(n+1)

G), It qllppg = Ty 1(0) = 12 2 n(x(n)) o e (o) 1T ()]

©), 1T 4(s)-11€2™"8% (n)/n
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-2'2—n-8

(7)n M!'(n)e'(n+1)< 10 min % (n)/n

(8), P(n) - N(n) = 12800 2™ &' (n+1)"'n/n(n)]
(conditions (7) and (8) ~will be used when we apply Lemma 5.6).

Set E'(n+1) = E(n) + F(n+1). We note that

(9), E'(n+1) < E(n) + [-e(n+1)/2, eln+1)/2].

I Ec(E'(n+1)U x )+ [-€'(n+1), €' (n+1)] then, by (e),, (4), and (7)

we have

q(n+1)
(10),  llatmery™ ét:f xM(n’s)-1||C(E)<2'“+2.

With the notation of the inductive condition set p U * T

nrn+tl Fnrn n+1°

Conditions (1) (5) ,, and (6)n give

nrn’

(1) 2 - 2—]1, ““

nr n+l ||"ln):'n+1”PM‘< A

”M‘”Tnﬂ”M rn

nr n+l

N(,r) - .-n-2
Gi) e I<"nr et V- S; asxs>|2 x(m)(1+27" = 2 )

(iii) I L

hr ned 1(s) | ¢ % (@)(1-2"" + 27™2)/ar  for anl P(n)-N(n)=r=N(j+1,r).

nrn+
By Lemma 5.6 (using (7)n, (8)n) we can find an €"(n+1) < €'(n+1)/8 such that,
provided only we take P(n+1) large enough, we can find a linear map L. : M(I) +> M(T)

such that for all GGMQ)

(1 1)n P(n+1) supp Lo=0

(12) inf sup le -e'|g€'(n+1)/8

n e'E€suppL. n® eCsupp o
(13), o -0Vl e2™Cumlloll/s  foran IrleMm )
(14), (Lo )A(I‘) | € |2r(r') | + 278 )llsll/8  toranm
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(15), 1 o) @ 1<2 8 x)lloll/8 foran P(n+1)-P'(n) + N(n) = r =
P'(n)-N(n)

a6y, I oll, = Il
. . -n

(17),  Given 1< € <n, Yir Y31 =++s ¥, € supp o, with |yi - ; =2

for i#3j, we have, for all lyi - % | < €"(n+1), lwo l¢n, O# Iwi l¢n integers,

e

Z :u)ixi+ u)ox;éO.

1=
By Lemma 8.2 (iv) we can find 0< %(n+1)< %(n), m(n+1) a positive integer with

m(n+1) (n+1) = 4(n+1), and a sequence of integers 0 = N(0,n+1) < N(1,n+1)< N(2,n+1)

<...<N(m(n+1),n+1) such that, provided only we take P(n+1) large enough, we

have
N(j,n+1)

(18)l'l+1 n+1 n+1 Given 0O« J< m(n+1)—1, S; IaS |< l'l+1, we can find a
Bt net ne1 € M{2re/P(ne1) ¢ |x - 2n0/P(n+1) | ¢ e(n+1)/8))  with

i n+1

(1)n+1 n+1 n+1 H"l'n+1 n+1 n+1”PM =1¢2-2 ’

||”’n+1 n+1 n+1”M =Antlne1 S
(d,n+1)
cs -n-1
()01 net net I<"‘n+1 ntlnet? T £~ asxs>| = x(n+1)(142 )

~ -n-1

(ln)n+1 n+1 n+1 l“n+1 n+1 n+1(5) | ¢ % (n+1)(1-2 )/4(n+1)
for all  P(n+1)-N(j+1,n+1) = r = N(G+1 , n+1).

Select M(n+1) so that

(19) ., M(n+1) = N(m(n+1) , n+1) + Pn) + 64( [(e"(n+1))""] + 8).

Then, provided only that P(n+1) is large enough, we have P(n+1)= 4M(n+1) and

(20)n+1 N(n+1) = P(n+1) - M(n+1)

2 1+ M+ 122 (e 1) (1)) (e @O 1) 1)), 1227121,
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Each of the last 3 paragraphs is true subject only to P(n+1) being taken large
enough. We take P(n+1) to be sufficiently large in the sense of the last 3 paragraphs
and choose &(n+2) = €"(n+1)/4, so that

(21 )n+1 e(n+2) ¢ €(n+1)/32 .

We set E*(n+1) =U {supp L o 0'€M(E'(n+1))} , E**(n+1) = {2rr/P(n+1) :
|x - 2rr/P(n+1) | < e(n+1)} and E(n+1) = E¥(n+1) U E**(n+1). Checking through

(a)

n+1’

(b)

n+1’

(c)

i1’ (d)m_1 , (e)n+1 we see that the quantities have the right form,

Using (20)n+1 we see that (2 )n+1 is satisfied, and all that remains is to check (1 )n+1 .

Note first that (18) To obtain (1) with

n+1 n+1 ne1 SVES (1)n+1 n+1 n+1° n+1r k

r<k¢<n+l weset p L We obtain (i) from (i)

nt1 rk- “nel ¥nr ke n+1rk nrk’

(14) ,, and (16)n. We obtain (ii) from (ii) and (13)n. We obtain (iii)n+1

n+1r k nrk rk

from (iii) (Note that the conditions with k = n+1 are not

ke (15), and (19)

n+1°
found under (i)n, but in the paragraph after (10)n). Before restarting the induction we

observe

(22) E**(n+1) c [x - e(n+1) , x + &(n+1)]

(23),; E(m+1) < Em)+ [Beln+1)/4, 3en+1)/4].
We can now begin the next inductive step,
Let E be the topological limit of the E(n). By (23)n 1 and (21)m_1

E c E(n) + [~e(n+1), e(n+1)] so by (10)n we have, for all n,

q(n+1)

lla(n+1)™"! g XM(n,s) = 1HC(E) < 2702

so that E is weak Dirichlet. Using (23)n 427 (17)rl and the definition of &(n+2)

together with (22)n+1 , we see that E is independent. (For suppose x 0=X1s Xgs «o
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e

...y X, €E distinct and m x_ =0, Then, provided only n is so large that
’ g T

e

e
n= ¢ +Z(:) lmr|+1 and inflxi—lez €(n-2),2
r= :

(22) ,,, find y,€E*(n) [l«i¢<n]l with |yi~yj|2 2" for 1¢i<j¢b and

-n-8
, We can, by (23)n+1 and

Iyi - X |¢ €"(n+1). Using (17)n we have atonce m_=m,=m, =...= m, = 0).
We claim also that E isnota ZAT set. To show this we use the ideas of

Lemma 8.3 and the remark following Lemma 8.6 (ii) (including Lemma 8.3'). Suppose
N@,r)

r=1, O¢js<m(r)1 and Z IaS |¢ r fixed once and for all. Fix k=r
S=

temporarily and consider the Bork given in (i)n rk for n= k. We have

€ Ap  So that (un - k) has a weak * limit point u_, € M(T). Since

[ K

Hork € E(n), we have [T kGZM(E). Further, using (1)n ~k We have

@ i oy €20l g€ A,

N(j,r)
(8) l<urk, 1-ﬁ% asxs>I2x(r)

(3;‘)1,k Iﬁr k(s) [ < % (r)/4r for all  N(k) = r = N(j+1,r).

Since N(k)sw as k> Lemma8.3' showsthat E isnota ZA" set and
Theorem 8.1 is proved by construction.

Remark 1. Let us see how the proof works with pseudomeasures. Consider the
K. €iven above with k allowed to vary. Since ”“r' k“PM‘s 2 the (“r k) has a
weak limit point S €PM. Since pu, k € M(E), we have Sre(A(E))' (i.e. we once
again emphasize the fact that S is synthesisable on E) and using (“)rk , (B)r'k’
(}‘) . We have

@ lis,ll«2
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N(j,r)
(B) |(Sr, 1-; asxs>|2 n(r)
) Iér(s) | ¢ x(k)/4k forall s =N(j+1, r) S,.EPF(E)

and we can apply L.emma 8.3.

Remark 2. As usual it is easy to see that by being a little more precise we could
ensure p o M, @ Dw, U > Sr as k + o (inthe weak * topology)

instead of using general considerations to prove the existence of limit points.

§ 9. TILDE ALGEBRAS.

Varopoulos has shown

LEMMA 9.1. (i) There exist disjoint closed sets Ei of bounded synthesis with

oo
constant 1 suchthat (U E. 1is closed and of synthesis but not of bounded synthesis.
i=0

(In fact he stated a slightly weaker result [19]

LEMMA 9.1'. (i) There exists a closed set E of synthesis but not of bounded

synthesis.

However it is not difficult to extract from his proof a demonstration of the stronger
result ; in the tradition of the cited author we leave this as an exercise).

We shall give a proof of Lemma 9.1' based on different and rather more direct
techniques. If the reader only wants to see the ideas on which this section is based and
is prepared to take various obvious or easily believed results (which we prove in Lemmas

9.5 and 9.6) on trust he should skip at once to the proof of Lemma 9.1 (which is found
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after Lemma 9.6) and read it through quickly.

We shall then obtain

LEMMA 9.2. There exists a translational set F with A(F) not closed in

The interest of this result lies in the fact that every symmetric set (ensemble
symétrique, see [5], Chapter 1) with constant of dissection a Pisot number is by a result
of Meyer necessarily of bounded synthesis (see reference to question 1 in the Appendix).
It is unknown whether every symmetric set is of synthesis and possible that some might
be of synthesis but not of bounded synthesis.

We conclude the section with our main result on bounded synthesis. We prove :

THEOREM 9.3. (i) There exist sets E., E, of bounded synthesis with constant

1772

1 suchthat E; NE, = {0} yet E,UE, is not of synthesis,
by proving the stronger result :

THEOREM 9.3. (ii) Given €(n)+ 0 we canfind Q(n)+» o~ and sets E,, E,
of bounded synthesis with constant 1 such that card E1 ﬂEz =1, E1U E2 is
o  Q(n)
independent, E,UE,c N U [2rr/Q(n) - e(Q(n)) , 2rr/Q(n) + e(Q(n))] et

n=1 r=1
E1L_JE2 is not of bounded synthesis.

We shall also obtain in passing

LEMMA 9.1, (ii) Given €(n)>0 we canfind Q(n)+~ and disjoint closed

oo
sets E; of bounded synthesis with constant 1 such that E; is closed,
i=0
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oo o Q(n)
independent with U Ei c N U [@Rrr/Qn)en) , 2nr/Q(n)+e(n)] and of synthesis
i=0 n=1 r=1

but not of bounded synthesis.

Observe that we have also obtained

LEMMA 9.1'. (ii) There exists an independent set which is of synthesis but not

of bounded synthesis.

Proof. This follows at once from Lemma 9.1 (ii) or more instructively from

Theorem 9.3 (i) and Lemma 9.4 (ii) below.

LEMMA 9.4. (i) Suppose xEE a closed set and EN (x-€& , x+€) is of synthesis
forall €>0. Then E is of synthesis.
(ii) 1If E,, E, are sets of synthesis with E, NE, = {x} . Then E |UE, is of

synthesis.

(iii) I E,, E, are closed disjoint sets then A(E UE,) = {e:¢ IEie:K(Ei)} .

17 72

(iv) Suppose E,, E, are disjoint closed sets which are of synthesis (respec-
tively bounded synthesis). Then E1UE2 is of synthesis (respectively bounded synthe-
sis).

(v) 1 E, isof synthesisand E;»E_= {0} topologically as i+ then

oo
) Ei is of synthesis .
i=0

Proof. (i) Let TEPM(E). Let h_ be the trapezoidal function which is 0
outside [x-1/n,x+1/n), 1 on [x -1/n3 , X + 1/n3:] , linear on

3 .
-1/n,x-1/m’], x+ 1/1'13 , X = 1/n] . Since ||hnT||$3”TH we may suppose
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extracting a subsequence, that h T - a8x weakly. But (1—hn)T€PM(E\ x - 1/n3 ,
X + 1/n3)) so we can find a net ({”Exn)}oceA(n) y >-n) of measures with

(o]
n . e
“(cx) > T(1 - hn) weakly. Now define a new net ({ug} €A * >) where A=Z"x r];I']A(n)

and writing « = («(0), «f1), ...) we have “gﬁ = “&0((((,‘(()3)))) and «> B if and only if
«(0) = B(0) and ofi) > B(i) [= 1]. We claim that u§+ a8xo » T weakly. For
suppose fEA(T), €>0 given. Thenforeach i=1 we canfind B(i)€EA(i) such
that | <(1-h))T - u(oi(),f>|< €/2 forall o > B [e€A@l)]. Further by the definition
of a wecanfinda B(0)€Z' such that I(hnT - asx ,E> < €/2 forall o= B0)
lacz™]. Thus ](ug+a8xo-T , Bl= |<£‘0§8«)()o))+a xo-T , £

«(x(0)) - (1-ho((0))T s D+ |<a30 = hoc(O)T’f>|<€ for all o > B.

(ii) The proof runs as for (i).

(iii) Since E,, E, are closed and disjoint we can find an h€EA(T) with h=1
in a neighbourhood of E1 , h=0 in a neighbourhood of E2. Now suppose
~ ~ . (n) n .
f,€A(E,), 1,EA(E,). Then we cantind g"€A(T), Hgi”A(T) < ”ti”A(Ei) such
(n) . (n) _ . .(n) (n)
that |lg; lEi-tiIIC(E.)-m as nsw [i=1,21. set g™ =ht]"+ (1-n);
' () (n)

. n n

and define fEC(E) by tlE;=f,. Then g™ea(r), [k™I AT) €

“h“A(T)|It1”K(E1) +(1+ Hh”A(T))”tZHK(Ez) and ||g(n) - f”C(E) 2 0. Thus

fe A(E:1 UE2) as required.

(iv) By (iii) it suffices to prove the result for synthesis. Suppose TEPM(E 1LJE:2).

Take h asin (ii). Then hT€PM(E1), (1—h)T€PM(E2). (For suppose f€A(T),
supp f ﬂE1 =@. Then, using the fact that h is zero in a neighbourhood of E2,
supp fh N (E1UE2) =@ and <hT,f) = {(T,hf> =0. Thus supp hT ¢ E, and
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similarly supp(1-h)T € E,). It follows that we can find nets ({u(; )} car
({p%)j gep » %) Wwith u(;)eM(E1), ;1.(§)€M(E), u((:) »hT, u(;) > (1-h)T. Write
(«,8)>(a',B') ifandonlyif o>a', B >B8' [x,a'€A; B,8'€B]. Then
({”fx]) + ”(2)} ,>) isanetandif fEA(T) we have @(0:) + ﬂ(g) L E) = <u(;) + u(g) ,
hf + (1-h)t D = <u(o:) ,ht) + <u(f) , (1-n)E> = (hu(o:) 1)+ ((1—h)u(§) L £

= <u(°:) , 0+ <u(§) , 82 = <(hT , £2+ {(1-h)T , £> = {(T,ht> + (T , (1-h)f> = {T,E.

M, @ 5

Thus ”cx + U 8 and we have the required result.

(v) This follows from (1) and (iv).

Remark. I strongly advise the reader to run through the proof of Lemma 9.4 (i)
in the particular case when E N (x-8 , x+8) is of bounded synthesis. (In our cons-
truction for Theorem 9.3 (ii) this is indeed the case). The nets (u(:) , >“) may then
be replaced by sequences (u (n)) but none the less (since E = E UE, is not of bounded
synthesis) there exists a pseudomeasure on E obtainable only by the use of nets. The
proof that E is of synthesis consists in constructing such nets.

Let us prove some further useful results in the same spirit (Lemma 9.4 (viii) is

one of the folklore versions of a famous result of Herz [3])

LEMMA 9.4.(vi) Suppose integers 1< q(1)<q(2)<... and closed sets
-(4q(nh3) -(4q(n}1)q . : _ . el |~
E, c [x+2 , X+2 ] given with B, = sup {| |f”A(En) : ”f”A(En)‘ 1,

©o
f€A(En)} +0, Then setting E ={xjU U En we have A(E) not closed
n=1

(vii) Given 1> 08>0, B=1, Q€Z" wecanfindan €(B,Q,)>0 such that

if F C{ZNI‘/Q :1<r¢Q} and EcF+ [-e,e] is closed the relations

ax =0, |a B 1
ORI LR =R R
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(viii) (Herz) We can find g, >0 with the following property : -
Suppose E is a closed set such that we can find Q(n) » ~ with
Ec ['SQ(n) , eQ(n)]+ {thr'/Q(n) : 2nr/Q(n)EE , rez] . Then E is of bounded

synthesis.

Proof (vi). Let hn be the trapezoidal function which is O outside

5—(4q(n)+3)

-(aln1)y g oy

[x+2_(4Q(n)+2) s x+3.2-(4q(n)+3 )_-_I and linear

(x + , X42

on [xr2~@amk3) oy o-(ank2)] g G3.2-@a)3) o o-(alnl 1)y oy

know that th” A(T)‘ 2. By the definition of Bn we can find an fn€A(T) such

that anlEn“A(E yZ B, - 1 yet there exist gMeA(T) with Hg’r‘fHA(T)m and

m

m
g 1E, - £ IE_| o

c(E)"O as m>ow. Set F_ 2f h IE, G —gnhnlE.
Clearty F eA®), IIF llyg) = IIF, 1B Ly =132, 1B Mg )= 3B > as
n n
m m 1 m
n >, On the other hand Gn€A(E), ”Gn“A(E)\<”th”A(E)”gnIEHA(E)(
al

m
” 5 hn”A(T)”g A(T) <1 and ”G -F ”C(E) ”gn |E ’E ||C(E ) Thus

HFnHK(E) < 1 and so sup {HFHA(E) : “F”K(E)< 1} = o0 as required.

(vii) Take €(B,Q,5)=07"B"*5%10"". since |kIE| <
A(E)

lle IF + [~e,e]ll for all fE€A(T) we may suppose E =F + [-¢g,¢e].

A(F+ [-¢,€])
Let h _ be the trapezoidal function which is 0 outside (x-2¢, x4+2€), 1 on
(x-€ , x+€) and linear on (x-2¢ , x-€),(x+€e , x+2€). Given f€A(E), 1>0 wecan

find for each x€F an £ E€A(T) with £ |x+ [-€,e] =flx+ [~€,e] and

“fx”A(T)< It Ix+ [-¢, €] ”A(x+ [ce,e]) ™Set = )%: htf . Then g |[E=f and

”g“A(T)< )%? “ hx”A(T)”fX”A(T) <2 xz llfx“A(T)‘ 2Q xsel:lg* IIfx”A(T)' Thus

“f”A(E)‘ 20 supllt | x+ [-¢, €] ”A( x+ e, 1) In particular taking I;Q ax, asgiven
<
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and writing g = ; aXg |E we have
reQ

lellagey < 22 0 1132 axg xe Lenellly e, e e

=2 - -
Q sup ||(S‘Q axg = 2oax N xs e, el e o)
<20 s 2o la Il g = x S0x) Ix+ [—e,e]||A(x+ [-e,el)

=207 lagl ||(><s - 11 [-e, el “A( [-e,€)
<20Bllix, - D1 Eee, Qellly Lae,0e])
<9

using the formula of Lemma 4.1 (i).

(viii) We define a number B(n) as follows. Suppose F g{2nr'/n :1¢r¢n} and
Xc {r :0<re¢ n—1j is such that A(F) is spanned by {Xr |7 r€X} . For each

fCA(F) B(F,X,f):inf{% LNE ; bx,|F=1}. Since A(F) is finite dimen-
S s€G

sional B(F,X) = sup {B(F,X,t) : |f||A(F) < 1} <. Thus B(n)= sup(sup B(F,X))< «,
F X

We claim that the lemma is true provided only we take € = eB(n}4 , n, 27M/2.

For suppose TEPM(E) where E satisfies the hypotheses above. Set
F = FQMn)=EN {ZKP/Q(n) t1€r< Q(n)} . Take a basis X (1) IFn » Xo(2) IFn, ..
“eer Xofr) |Fn for F_ ca(MN<a2)<...<ar)<Q(n)]. Set
r r
Sn( :Z= a, xa(t) IFn) =T( t§= a xa(t)). Then Sn is a continuous linear map

S, A(Fn)-HC, i.e. (since F_ is finite) Sn€M(Fn). It follows that S can be
extended to a measure pu_ = with (un,f) = (S ,f IFn> for all fEC(T).

Now we wish to estimate <“n’xm> for |ml<¢Q(n). By the definition of
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r
B(Q(n)) we cantind aj, a,, ..., a, Wwith ;; la, l< B(Q() + 1 and
=

r r
X |F = 22X () IF. By (vii) lx, - oy IE - [ e DA, e e
r
< 27) oo 1<T,x, 0= < ox = |<T,xm—t‘=;1“octxt>l< 2’Q(“)IIT|IPM.
Since ;tn(m) is periodic with period Q(n) we have

sup | ml <« sup [Tm)l+ 27wl € (eI, so

e 115, =
nPM g meQ 1€msQ

lim sup “”n”PM = ”T”PM‘ On the other hand fixing m and letting n + » we obtain
n->o00

| T(m) - un(m) l< Z-Q(n)HT”PM 0. Thus p »T weaklyand T is synthesised

boundedly with constant 1 by measures unePM(E). The lemma is proved.

Remark. We have already remarked when considering Theorem 1.1' how delicate
Herz's result is. Our construction for Theorem 9.3 will give further evidence of this.
It is therefore profitable to look carefully at proofs of this result to see why we might
expect such a delicate balance between the hypotheses and the conclusion. In the proof
above for example we used the fact that F was finite to define an €(n) such that for
a certain class of f€A(F) all extensions g€EA(F + [-e(n), e(n)]) satistying certain
conditions are close in A(F + [-e(n) , €(n)]) norm. We used it again to see that any
Sne(A(F))' is in fact a measure. The fact that F_~ was an arithmetical progression

enabled us to bound by the supremum of | pn(m) | for m closeto O

e lpong
(in fact Im|=< Q/2). Finally without the condition F‘n < E the fact that the “n

synthesised T would not have shown that T was synthesised by measures on E.

Another version of Herz's result is

LEMMA 9.4, (xi) (Herz) Suppose E is a closed set such that there exist

Q(n) sco with inf |27r/Q(n) - e |< 27/Q(n) if and only if 27/Q(n)€EE. Then E
eCE
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is of synthesis and for any given TEPM(E) we can find u.n€M(Eﬂ{21'rr-/Q(n) :

=r=Qm)}) with p >T, l lloy =< ITl,.

Proof. See [5] pp. 122-124 for a demonstration.
Having collected together these results for later use we are now in a position to
start proving the results announced at the beginning of this section.

To prove Lemma 9.1' all we shall need is the following refinement of Lemma 1.11.

LEMMA 9.5. (i) Given €> 0, there exists a closedset E c [-g,e] and a
sequence 3 < M(1)<M(2)< ...<M(r)< ... ofintegers with M(r+1) and integral
r
multiple of 2M(r) and M(r+1)= 33 M(r) such that

(@) liminf ||x -1ldp =0 for all peM'(E).
M(r)
r'so0
(b) E carries a true pseudomeasure S, synthesisableon E (i.e. SE(A(E))').

(ii) We can choose E in (i) such that additionally

(c) E is of synthesis.

Proof. The proof of Lemma 1.11 consisted precisely of constructing a set E with
the property (a) (i.e. E weak Dirichlet) and (b) (from which we deduced E not of
uniqueness). We use the note at the end of the first paragraph of the proof to get
M(r+1) = 33 I‘M(r'). Toget Ec [-g,e] we replace the quantities in the first sentence

of the proof given in Section § 1by T_= 5, g = €/10, Mo(1) = 4N(sl,2,2'1).

(o]

(i) Let F satisfy (a), Fe [e/2, /2], M(t)= 100" '. Set

© *
F=uU {27s/M(r) : inf  [x-27s/M(r)|< 27/M(r)} . F is countable and its limit
r=t xCE
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points are precisely the points of F. Thus F UF* is closed and, if uEM(F UF¥*),
then, for each >0 we canfind pu ]€M+(F), u2€M+(F*) with supp p, finite,
and u3€M+(F*) with ”“3”M <mn suchthat pu =pu 1 FHy+ u3 . Since every point
of F* has the form e =2ms/M(k) and thus satisfies lXM(r)(e) -1| =0 forall r
sufficiently large, and since supp i, is finite we have Ji Xm(r) = ! |d/.l.2 =0 for all

r sufficiently large. Hence

h?.’lol;lf j'xM(I‘)- 1ldp < li?_icnf {SIXM(I‘)_1 ld[.l.1 + j'XM(r,)—] Idl-lz + SlXM(I‘)-I IdﬂB}

I'yoo

and since 7, p were arbitrary E = FUF* satisfies (a). Since Ec F, (b) is

trivial and (c) itself follows from Lemma 9.4 (iv) (Herz's condition).

Proof of Lemma 9.1'. By Lemma 9.4 (vi) (and the fact that A is a translational
invariant algebra) and Lemma 9.4 (v) it suffices to show that, given €>0, K>1 we can

find a closed Fc [-€ €] of synthesis with sup ||t|| / ||f||~ = K.
’ odea(r) AFY TTARF)

Take E and S asin Lemma 9.5 (ii) with E c [-¢/2 , €/2]. We may suppose
without of loss of generality that S(0)= 1= ”S”PM' (If not, use the existence of a

k€EZ with é(k):”sHPM and consider x_kS/HS”PM). Since é(n)-»O as |nl+ o

1

there exists a k_ with Isk)| = K~' foranl |kl|= k . Choose an r, such

-1 i .
that M(ro) > 100 max(e  , Kk o)’ Set x = r'§=r': 7/M(r). Automatically xM(r)(x) > -1
o

as 1 » o,
Now by the proof of the lemma of Kaufman and Bjork (Lemma 4.1 (iii)) applied to

o
E we can find for each r a(P) , a(r) y ++. 20 with Y a(sr) =1 and
s=T

©o
r
] s—Zr a(s )XM(s) - 1”C(E) + 0. By the last sentence of the last paragraph
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(o)
(r) it - -
I SZ=P: ag’ Xpm(s) + 1”C(E+x) +0 and so writing f(e)=1 for e€E, f(e)=-1 for

(=)
e€CE+x we have sup | 2 ;a(r') X (e)- t(e)l-» 0. We deduce at once that
eCF s=r s "M(s)

t€A(EU(E+x)), f€C(E U(E+x)), E , (E+x) are closed disjoint

iz @@= "
sets.

Set F =EU(E+x). Since EN(E+x)=@ and E, E+x are closed we know
that fEA(F). We wish to estimate Hf” A(F)* To this end consider the pseudomeasure
T=8S - Sx* S. We have at once <{f,T) = {f, s-Sx*s> =¢1,8> + (-1, -SX* s>
=¢1,8> +< 1,S) =2. On the other hand if Iklsko then I:r(k)|=
1500 -8 00 St | = 1501 11-8 001 = 180111 - x, 601 < hex | 1800 | =
2k Ix IISHPM_ 2k~ whilst if |k |> k, we have ITK) < 1SK) |+ |§x(k)l IS(K) |
< 2K_1 . But since S€A(E)' (and so by translation 5x * SEA(E+x)') it follows by

arguments similar to Lemma 9.4 (iv) that TEA(EU(E+x))'. Thus el A(F)

= | (£, T )V||T||PM > K and we are done.

Remark. Suppose E is a Helson set. Then F=EU(y+E) is also Helson (if we
demand E N(x+E) =@ this is trivial) and so, even if F supports a true pseudo-
function, we have A(F)=C(F)= /'3:( F). The argument above works because S is
synthesisable on F.

The set E which we constructed in Lemma 9.5 and with which we worked above is
not of translation because we had to adjoin points to make it of synthesis. However if
we drop the condition E of synthesis we can certainly take E a translational set.

Under these circumstances F =E U(x+E) becomes a translational set with

llell,
A(F) o
O;éfeA(E) I

Using this hint we can construct a translational set with
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el

sup — 2 =00, Letus give yet another form of Lemma 1.11.
o#eA(F) lltlly

LEMMA 9.5'. There exists a translational set E together with sequences
0=q(1)<q(2)< ... and 3<M(O)<M2)<...<Mr)< ... ofintegers with
r
M(r+1) integral multiple of 2M(r) and M(r+1)= 33 M(r) and a sequence (ar) of

positive numbers such that

q(s+1) q(s+1) _s
(a) r=q(s)+1 al" = 1) |l §(5H1 aPXr - 1||C(E) =2 [S = 1]

(b) E carries a true pseudofunction synthesisable on S.

Proof. The set E constructed in Lemma 1.11 is indeed a translational set. By
the note at the end of the first paragraph of the proof we can certainly find M(r+1)
r
> 33 M(r) with 1lim inf IIXM(r) -1|ldu =0 for all u€M+(E). But by the arguments
00

of Lemma 4.1 (iii) given a setanda q(s)= 0 we can always find q(s+1) and

q(s+1) ; o |l q(s+1) I
a , a sy seey @ =0, a_ = wi E : a_x -1
a(s)+17 “q(sh2 q(s+1) skt T f=gts)y T M(r)” ""C(E)
< 275, The lemma is proved.

Proof of Lemma 9.2. Take E, q(s), M(r), a, asinLemma 9.5'. As in the
proof of Lemma 9.1' we may take S(0) = ”S”PM =1. Now take A(1), A(2), ...

infinite subsets of Z' with AG) N AG)=@ for i#j and r=i+2 for all
q(s+1)

reA(i). Set x; = sgA(i) ng:(s}ﬂ 7/M(r). Since 1; Ixils 1%"' T/Mr)< m

* oo
the set E = {12_1 X € = 0 or g = 1} is a well defined translational set and
so F =E + E* is a translational set.

Now if q(s}+1 < r < q(s+1), sE€EA(j) we have
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oo oo E.
| x ( ex.)-1]= |1 (x xNt-1l< B-Q(S). In particular writing
M(r) ‘= T i1 M(r)* i
[e)
F‘j1=E+{i§=1 gx; =0 or g=1, ej=0}

(=]

Fj2 =E + {i§=1 X &= 0 or € = 1, Ej = 1} and taking fj(e) =1 for e€1-'«‘j1 Y
fle)=-1 f EF h ‘Q(ZSH) (e) - £e) |= 379()
(e)=- or e . we have sup a_x e)-fle)l=<3 +0 as
J J2 e€F 'r=q(sk+1 T M(r) J

s+, SEAG). Thus fEA(F), ||fJ.||K(F)s1, 1€C(F), Fj, and F, are

j1
disjoint closed sets, fjeA(E).

We now wish to estimate HfJ” AF.)" In order to do this, consider the pseudo-
]

measure T =S - 3x * SEPM(F). Since [x.l|< > m/M(r) < B_Zj we have at
J r=j+2

once |TK)| = Isk)||1- xk(x) |< 3"2J lkl< 37 foran |kl=<3) whilst

ITK) = Isk) | + ISX &)l Isk)l=< I T,upj |s(k)|. Since S is synthesisable on
J k |=3

E, T is synthesisable on E U(xj+E) cF. Thus

(T, 2 5

lle: Iy ey = =
A " irll,, el

= — x as Jj > o, It follows
max(3™, sup.|SKx)|)
lk|=37

that, as stated, A(F) is not closed in (K(E) , Il ”K(F))‘
To illustrate further the kind of proof we shall use we give a proof of Lemma 9.1.

Since we shall obtain much stronger results later the reader should not bother with the

details of the proof of Lemma 9.6.

LEMMA 9.6. Suppose we are given w€T, 0,e,m >0 a sequence ¢g(r)> 0
decreasing with €(r) » » and integers 3 < P(1)< P(2)< ... suchthat 3P(k)
is a factor of P(k+1). Then we can find a sequence q(1)< q(2)< ... of integers,

a translational set E, points x,y€T and a pseudomeasure T synthesisable on
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E such that
@ = § -Tx SyIIPMs n/2, T(0)=1
(i) (E)U(+E) c [w-8, w+8]
([ii) (+E) N(y+E) =6
(iv) Writing f(t)=1 for tE€x+E, f(t)=-1 for t€y+E we have f€A(E),
HtHK(E)S 1 (and so trivially ”f“K(E) =1).

(v) Ec ['EP(q(n)) , eP(q(n))J +{21m/P(q(n)) : 27/P(q(n))EE, rez}

Before constructing such a set let us see how by using this result we can prove

Lemma 9.1.

LEMMA 9.7. Suppose g > 0 chosen as in Lemma 9.4 (viii). With the notation
of Lemma 9.6 x+E , y+E are of isometric synthesis but writing F = (x+E)U(y+E)

fEA(F), Hf” A(F) > ‘n"1 and so is a translational set of bounded synthesis but with

constant greater than nl.

Proof. That x+E , y+E are of isometric synthesis follows from condition (v)
and Lemma 9.4 (viii). That (x+E)U(y+E) is of bounded synthesis then follows from
condition (iii) and Lemma 9.4 (iv). To show Ht”A(E) > n_1 we argue as in Lemma 9.1'

and Lemma 9.2 that since S = T Bx - Tx SyeA(F)' we have
KT, S o 2 _ -1
Hf”A(F) = “—S'I—]—— = o n .
PM

Proof of Lemma 9.1. By condition (ii) of Lemma 9.6 and the conclusions of Lemma

9.7 we canfind sets F ¢ [2-(4n+3 ) , 2-(4n+1)] suchthat F_  is the union of 2
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disjoint sets ofi sometric synthesis F__, F

al but sup {

n2 Hf”A(Fn) : ”fHK(Fn) =1,

o
fea(F ) = 2"s>®. Thus E= U F_ U {0} is the closed union of disjoint sets of
n="1

isometric synthesis {0}, Foir Foor Fops Fooy Fapr-n (so by Lemma 9.4 (v) of

synthesis) but (by Lemma 9.4 (vi)) not of bounded synthesis.

It remeins to show how to construct the set E of Lemma 9.6.

Proof of Lemma 9.6. Suppose & > 377, By considering only {P(I‘) tr = 2n+2}

we may suppose 32n+10 a factor of P(r). Then if E_, X5, ¥

° satisfy conditions

(i), (ii), (iii), (v), (v) with w replacedby O and O replaced by &/2 it would
follow that (setting k = [wB_(m'é)/Zn-l) E=E_+ 2mk/3MO o Xgr Y=V,
satisfy the original conditions (i), (ii), (iii),(iv), (v). we may therefore suppose w =0
(we can then take y = 0).

Our proof now runs much as Lemma 1.11. We construct inductively Tn, En’
q(n), X E)n such that

i)  P@m)E =0 , E cb(1-27")/2

@) T EME))

i) T (0)=1=lrll,,

@) -1« 8 Ny =00 -27"/2
n

(v) Plx =0 , Ix|= (1-2"M%/2

(vi) 8 Plan) = 2‘2“"°ep(q(n))8.

By Lemmas 1.9 and 1.9' we can find an m(n+1), a q(n+1)> gq(n) and

Qm) =M_ 0 <M (<M (2)<...<M  (mn+1)+1) = P(n+1) together with a

n+1 n+1 n+1

measure S such that
n+1

192



TILDE ALGEBRAS

(vii) Mn+1(m(n+1)+1) = P(q(n+1))

i) IS ()l<n/8  foran Q)< lul < R(ns1) - Qn)
@) M,,(=2"" T om)

(x) Mn+1(r) is a factor of Mn+1(r‘+1)

(xi) M (o1) = 108 -7 M () lo<r=m(n+1)]

(xii) R(n+1)supp Spe1=0

(xiii) supp S, < Sn/S

(xiv) IISn+1HPM = Sn+1(o)
) ey i 1l o4
XV m(n+1 X - < .
r=1 Mn+1(r) C(supp Sn+1)
Set
m(n+1)
(a) X, =r§1 11'/Mn+1(r‘)+x
() E 1 =Ep+supp S,
() Tn+1 = Tn * Sn+1 .

Conditions (i), (ii), (iii), (v) of the induction are satisfied more or less trivially
(using (xiii), (xiv), (xv) and (x)). To check (iv) we consider the value of

'/i‘n+1(u) - (Sx * T )A(u) in the 2 cases |ul=Q(n), P(n+1)/2= |ul> Q(n).
n+1

n+1

I |ul< Q(n) then (using (ix) and (a))

IT - (T %8 )V @lslls,, by IT = «5 Ywl
n+1 n+1
<lls, 4 lloy 1T @ - (T %6 )l
n
n
<

]'}n(u) - (Tn * sxn)A () |+ n2714

A

n(1-270=1y /5
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I |P@m+1)| =|ul >Q(n) then (using (viii))

T @) = (T x8y YW= 2lls,,, loplIT ol = m/4 < m(1-27"" 12,

Thus (iv) is satisfied and taking Sm_] to satisfy (vi) the induction may continue.
We note that by (b) (vi) and (xiii)

(xvi) E_ ;< [—ep( q(n))/z » Epy q(n))/zjl + {2mr/P(q(n))EE rez}

n+1’

whilst for the same reasons (and by condition (ii))

(wvil) B cE B o+ [epniq)y/2 €p(q(n-1)y 2]

Gvitd) 1t 1€AT), il =1, =0 for r=>q(m) = Pan)

then  [ll| < [lell 2722 | =< [lell 427202
C(En+1 ) C(E'n) C(En+1+xn+1 ) C(En-"xn)
Finally we note from (x), (xi), (a) and (xv)
m(n+1)
(xix) ||m(n+1)_1 X - 1“ <=3
E Mn+1(r) C(En+1)
(xx)  m 1)“mz("“) I 273
XX m(n+ X -1 < .
r=1 Mn+1(p) C(En+1+xn+1)

Now let E Dbe the topological limit of the En and let X, >X (note that

|xn - X l<2™™. By(@)and(v) E,x+Ec[-8,8]. Let T be a weak limit point
of the T. From (ii) TE(A(E))', from (iii) T(©O)=1= HTHPM, from (iv)

llr - T *Sx”PM < n/2. From (xvi) and (xvii) E ¢ EE-P(q(n)) s eP(q(n))]+ {27r/P(a(n)) :
2nr/ P(q(n))€E} . Finally using (xix), (xx) and (xviii) we see that E N (E+x)=@ and
that writing f|E =1, f|E+x=-1 we have f€C(E U(E+x)) and

m(n) -
”m(n)-1 g XMn(r) - f”C(EU(E+x)) <250 as ns>o so fEA(EU(E+X)),

The reader may have wondered if the proof of Lemma 9.1 given above could not be
modified to give Theorem 9.3 (i). His suspicions Wwould be justified, and originally
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I intended to present a proof of Theorem 9.3 (i) rather than Lemma 9. 1. However as
written it turned out to depend on manipulations which though based on principles simpler
than those needed in Theorem 9.3 (ii) are just as delicate. Possibly the reader may find

a simpler presentation. Mine depended on

LEMMA 9.4. (x) We can find e1(n) >0, ez(n) » 0 with the following property.
Suppose E is a closed set such that we can find x_ 0, Q(n) » ©» with the following
properties

@@ e)= |xnl = g,(n)/2

(b) If e€E theneither lel<ey(n) or le- x, - 27r/Q(n) |< &,(n)

for some r€Z.

Lemma 9.4 (x) and the results we shall give below show that although Herz's
criterion is already so fine that no useful deep generalization (except to Pisot numbers)
is available, there are a large number of ad hoc modifications which may be used to help

construct particular thin sets. Let us give as an example.

LEMMA 9.7. (i) Given E a closed set with GpE #T, §,e>0, Q€Z+,
and F _c_{21rr/Q : 1SI‘SQJ we can find a closed independent set F* with
F*c F+ [~¢,6] and GpF* NGpE = {0} such that given pu€M(F) we can find a
L*EM(E) such that

(@) oy = lellpyg o lexlly = Telly,

(b) p*(r)+»0 as |r|sow
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© lp@-p*@)I<dlllly  for  Iris Q.
Moreover given a closed interval 1 with int INF* £@ we can find a 0'€M+(I NF*)

with o(r)»0 as |r|sw.

(ii) Given E an independent closed set and €> 0 we canfind E¥* an
independent closed set with E ¢ E*¥ ¢ E+ [—e,e:l and E* of isometric synthesis.

(iii) There exists an independent closed set E* of isometric synthesis such that
given I a closed interval with Int I NE* #£@ we canfind O # ceMT(I NE*) with

lo(r)|+0 as |r|s .

Proof (i). By Lemma 5.6 we can construct inductively, N €2
Eng{21rr/Nn t1<r=< Nn} » €,>0 andamapping L_: M(En-1) > M(En) such that

E =F, g = €/4

(1) e plloy s lbllsy, e plly=liell,  foran  weme )

- -n
2) I(Lnu)(r')ls 2 H“”M forall N__,-N_,< Ir|< N, -N

n-1’
ueM(En_1), n=2,

(3) 1L - 1) () < 2727788

for all Ir |< nN(O), LEME _,)
@ lp Y (o)< lp()l+ 2 "ully, foran r, peME__,)
(5)a) supp L pc suppp + E—en_1/2 , en_1/2] forall peM(E,_,)
(5)b) E cE__,+ e, _,/2,¢ /2]

6) € <e_ ./4

n n-1
(7) 1f Xy X3, «+v, X €F  are distinct, y, ¥, ..., Y, €E + [—en,en]

s - , )
Iyi—yjlz €., for i#j, then Znx, +Znly, =0, Elnil,Elnj|Sn imply

_:
]
=]

[\S)
[
]

=n%=né=...=n‘ =0.
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Clearly En » F* topologically where F* is a closed independent set with
F*c F+ [-e,e), GPF* NGpE =6.

Again if p€M(E) then LL. 4Ly - L 0 converges weakly to a measure
p* = Ly with properties (a), (b), (c). Finally note that if IntI N\ F* we can find X€E
with x + [-e(n), e(n)]c I. Setting O =Lyl g ce- Ln+18x we see that o
converges to OZA0EM(F*NI) with c;(r) 20 as |r|seo.

Remark. The reader can easily construct a rather simpler proof using the ideas of

[10] section § 7.

(ii) By Lemma 9.4 (ix) for conditions (1), (2), (3) and the result just proved for
(4), (5) and (6) we can construct inductively Q(n), &(n), K(n), F(n), F*(n) such that
writing E*(n-1) = F*(1)UF*(2)U. . .UF*(n-1)UE

(1) &)< e'(n) < min(e(n-1), €'(n-1)-e(n-1)/(2"Qn-1)), &(1) < /4

(2) F(n)c (E*(n-1) + [-&(n),e(n)]) N {27r/Q(n) : 1 < r < Q(n)}

(3) ¥ TEPME*(n-1)+ [-e'(n), €'(n)]) and HT”PMS n then we can find
peMF®) with lullg, < lItllpy,, Ikl < K@) suchthat |T@)-p@)ls2™ for
all |r|=n.

(4) I peM(FE(®m)) and |l ||M < K(n) then we can find p*EM(F*(n)) such that

n

Hn*”PMS ||u||PM and |I:*(I‘)—IZ(I‘)|S 27" forall |rlsn

(5) Frn)g F(n-1)+ [Emriyend) gl hre(ne) ]

(6) E*(n) is independent and closed.

Clearly E*(n) tends to a topological limit E* say with EcE* c E+ [-g,e],
E* independent. Since E* c E + [-€'(n), €'(n)] conditions (3) and (4) show that E

is of isometric synthesis.
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(iii) Set E ={em} and perform the construction of (ii). Note that by (i) we may
take the F(n) of local strong multiplicity and so have E¥* of local strong multiplicity
as desired. The reader faced with result (ii) above may reasonably feel that we have
simply drowned a set E in a much larger set E* which bears no relationto E at
all. The point, after all, of the classical Herz theorem is that given any closed set E
we can find E*¥2 E of isometric synthesis such that E¥* contains only countable many
points not contained in E. But we are not seeking illuminating results but simply tools
for particular constructions. In this case we obtain the result of Lemma 9.7 (iii) which
is new (even if not deep). The reader unconvinced of the utility of ad hoc adaptations of
Herz's theorem should try and use the standard tools to obtain (iii).

However the use of such adaptations does depend on establishing a strong enough

connection between E and E¥*. For our purposes the following results suffice.

LEMMA 9.8 (i). Suppose M(1)<M2)<M@B3)< ..., q(1)<q(2)< ... increasing
sequences of positive integers and a sequence ¢€(r) > 0 given with M(r+1) a multiple

101Or
M(r). Suppose E a closed set with GpE # T, F

of M(r) and M(r+1)= 10
afiniteset Q=1 with Fc {217r/Q : rez} and 8, € > 0 given. Then we can find
h: 2" +Z" strictly increasing such that given Q < p(0) < h(p(0)) < p(1) < h(p(1)) <
p(2)< ... can find a closed independent set F* c F + [-e,€] such that
GpF* N GpE = {0} andgiven pEM(F) we canfinda up*EM(E) with

@ Tl = el Tl = lsll,

®)  la*w) -p@)ls Slull, for Irl<q.

Further we have
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© Iy = D%l pey = €0)/(10°M(r) for al q(s)srsa(s+i)-1,

h(p(t)) < s < p(t+1)-1.

(ii) Suppose M(j), a(j), €(j), €>0, E givenasin (i) such that
”xM(q(s))'1 ”C(E) < €(q(s))/4 whenever s is a multiple of 6. Suppose further e(j)
satisfies the conditions of Lemma 9.4 (viii). Then we can find p(0) < p(O:45 < p(1) <
p(N+5 < p(2)< ... with p(r) amultiple of 6 and a closed independent set
E c E¥c [—e, €] which is of isometric synthesis and such that for each e€E* and
each p(t) < s < p(th3 we have either

(i) |xM(r,)(e) -=1%I=< e(r)/(103M(r')) for all q(s) < r < gq(s+1)-1

or

(ii) le-e'l= e(r)/(103M(r)) for some e'€E andall q(s)=< r < q(s+1)-1.

(o]
Moreover if Ec U [x + 2-4n—7/ 4 , x+2~4n-3 / Z}U{x} we can ensure that
n=1"

oo
E*¥c U Il:x+2"4n_3 , x+2_4n_1_] .

n=1

Proof (i). We shall leave the details of the construction of h to the reader.
We construct inductively finite sets E < {2mr/M(q(n)) : r€Z} and 8n > 0 in the
following manner (taking E,=F, g = €/4). By Lemma 5.6 we can find h'(q(n))
1 ] - 3 3 .
and E! ;< {27r/M(h'(q(n)): r€Z} together with a mapping L! : ME_) > M(E]! ;)

such that
(1) e lloy = lellpy, il < lkll, foran weme )
@ @y - p) )] <2288 foran  |r|< M(p(n)
() Er‘lg Eq+ (- E’n—1/2 ’ 8n—1/2:|

) §;< 8n-1/8’ M(h'(a(n)))8) = 100
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(5) 1t X, X5, «ovy X €E  are distinct, y,, y2, ..., Yy,€E} + [—en,en],
lyi-yjlz g,_q for i#j then Zn;x; + Znjly, =0, ElniI,EIni'ISn imply

— = _— | - | - —_ | B
n,=n,=...=n, =n;=n, —...—nm—O.

1 — 1
Now choose p(n+1) > h'(p(n)), set En+1 = En+1 +x where

p(n+1)-1  q(s+1)-1

Do) =)

S _1
7(1-(-1)")/2M(r), set Lot =Ll q# Sx' choose

8n+1 = min(&(p(n)), 8;1)/(1010M(p(n+1)))2 and restart the induction.

On taking F* to be the topological limit of the En and u* to be the topologi-
cal limit of the En and p* to be the weak limit of LnLn—1 e L1u the results

desired may be read off as in Lemma 9.7 (i).

(ii) Assume without loss of generality that €(n+1) < €(n)/200. Using Lemma
9.4 (viii) and the result just proved we can construct inductively p(n), F(n), K(n)= 1,
F*(n) and A(n)c Z* suchthat A(n) contains arbitrariy long sequences such that
writing E*(n-1) = F¥(1) UF*(2)U...UF*(n-1) UE we have p{(n)> p(n-1h-5,
p(n) +r € A(n-1) for 6=r =0, p(n) amultiple of 6

(1)  F(n) e (E¥(n-1) + [-e(p(n))/4 , e(p(n))/4]) Nf2mr/M(p(n)) : rez]

(2) 1 TEPME*(n-1)+ [-e(p(n)) , e(p(n))])

and ”T”PM <n thenwecanfinda p€ M(F(n)) with ”””M < K(n), ”“”PM < ||T||PM

n

such that |T(r)-p()l< 2™ forall |rl=<n.

3) 1 peM(F(n)) and ”"‘”M < K(n) then we can find p*EM(F*(n)) such that

H“*“PMS””HPM and I;t*(r)—ﬁ(r)ISZ'n forall Irl<n

(4) F*(n) cF(n) + [-e(p(n))/2 , e(p(n))/21

oo
@4y ¥ Ec{xu [x+2'4r'7/ 4 xp2m4r-3 /27 then we can ensure
=

1
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(o]
F*(n)g U I:x+2-4r-3 , x+2-4r-17
r=1

(3) A(n) c A(n-1)is such that A(n) contains arbitrarily long sequences and
I X M(r) ~ ('I)SHC(F(n)) < e(r')/(103M(r)) for all q(s) < r < q(s+1)-1, s€A(n).

The required results now follow as in Lemma 9.7 (ii).

Remark. We note in passing the corollary that given E Dirichlet and independent
we can find E*=2 E independent Dirichlet and of isometric synthesis. This should be
compared with Theorem 1.1'. Note that if E*2E and E¥* is Helsonthenif E
supports a pseudomeasure E¥* cannot be of synthesis. Thus every Helson set of

synthesis is of resolution and no similar embedding process is possible.

To apply Lemma 9.8 we need a complementary Lemma.

LEMMA 9.9. (i) Suppose M(1)< M2)<M@3)< ..., q(1)<q(2)< ... increasing

sequences of positive integers with q(r) - q(r-1) +«» and a sequence €(r)> 0 given

10r
with M(r+1) a multiple of M(r) and M(r+1)= 1010 M(r). Suppose E a closed

set with GpE # T, x€EE given together with an integer k > 2. Then we can find
h:2" >z strictly increasing such that given 3 < p(0) < h(p(0)) < p(1) < h(p(1))< ...

we can find a closed independent set F < x + [2-41(_7/ 4 , 2~4k=3 / 2] with

GpF N GpE = {0} suchthat F = F‘1 UF2 where F1 , F‘2 are closed and disjoint
having the following properties
3
1 —~1 < 1
M gV = se)/(0°me)

(2) Thereexist £(1)<8(2)< ... such that
q(&(2t))-1

ll(ate(2t))-1-a(e(2t-1))"" - -
(atEO-1-a@E-T ) X = ey < 2
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ll(a(e2t))-1-a@(2t-1)))"" z@ft”' 1| 27t
d d Qt-er M@ T ey =2

r=q

(3) There exist T:i pseudomeasures on Fj [=1,2] such that

(ii) Suppose M(1)<M(2)< ... givenasin (i). Then given x£€2rQ we can

-4k(n)-4-7/8 ) xa2~e(n)=4-3/27

find an x, k(n) strictly increasing, Fis Fop € [x+2~

together with an increasing sequence of positive integers q(1)< q(2)< ... such that

(o]
writing F = {xjU U (F1nUF2n) we have F independent and
n=1
(1) HxM(q(s))_1||C(F)S €(q(s))/4 whenever s is a multiple of 6

(2) Foreach n we canfind a sequence £(t) » » such that

@(t}1)-1

ey 1)-1-a@e)" 3 ey~ e, )= 2
T=q(e(t)) r n
q@(th1)=1

-1 -1
lla(ect)+1)-1-aect))) gmt» xM(r)+1||C(F2n)sz )

-t

(3) There exist T; EPM(F, ) such that HTm-TZnIIs 2", T, (0)=T, (0)=

[T = =1.

1n PM 2n PM

Proof (i). This is along the same lines as those given earlier so we merely sketch
it. We construct inductively 7(n) > 0, measures Sip? Sy With supp S, =E, ,
supp S, =E, , aninteger p(n) with (p(n))(EmU E2n) =0 such that

B, UE, < x+ 2-41<-13/3 N [_2-41(-20(1_2-1() , 2-41(-20(1_2-1{)]

(To start the induction we could take Sim = Som = 82 7/Q for a suitable Q and m).

Now by Lemma 5.6 we can certainly find 7'(n+1)> 0 and h'(p(n)) and
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S!

1n’ S5

5 With supp S} =E} , supp S5, =Eoy q(’ (p(n)))(E]'rl UEén) =0 such that

Ep e By + Cn@), n] Bf UEy,  xed 810 L0007 12),

2—4k-20(1_2-k—1 /21, ”si ,-k-1 /2)’

Sr'zn“PM =801 -

(0) = S (0) =1= ”S1n PM = ”Szn pm» and further given x;, x5, ..., X €E
distinct, y;, ¥y, e, Y €E' + Fnt(n+1), n'(n+1)J, Zyy 2y .., Zp€EY - with
Iyi - Y; [, Izi - 24 |= 4n(n) for i#j we know that Tk;x; + Tkly; + Tkiz, = 0,

Tl +Zlk | + Tl l<sn implies k =k,=...=k =kj=...=k =kij=...=
k;l =0.
Next using qualitative improvement of Lemma 1.9 found in Section § 5 we know that

given any a(n+1)> 0 we canfind £(2n)>8(2n-1)= h'(p(n))+ 3 and a measure

o, such that
(i) M(a(®(2n}+1)) suppo . =0
(ii) |<;n+1(u) < /8 for all M(q(€(2n)}+1)) - M(h' (p(n)}1) = u = M(h' (p(n)+1))
1) [l(a@(@n)) - q(e(zn-n-n)"g(:e(;z")'” Xpey - Wl =277
r=q(8(2n-1))
(iv) suppo < [-x(n+1), x(n+1)].
Choose x(n+1) =< 27 19k=10 (1 11).  set Vo= L Lem-1) 7/M(r) and
r=q(é(2n-1))
Sine1=Sinr Sanet = Shnet * Sy . Set n(n+1) = 7n"(n+1)e(q(e(2n)))/

1
" (220720\(q(@(n)))) and

choose p(n+1) = q(l(2n)}+1. (With a little work this gives the definition of h). We
check as in Lemma 9.6 that the induction can be restarted.

It is trivial that F., = F

n 1 F.

2n > F2 topologically and Sln > T1 ’ SZn > T2

weakly where F , F T , T, satisfy the conclusions of the lemma.

27 2
(ii) Choose =xg2mQ with |xM(r)(x)- 1|< e(r)/4 for all r. By repeated
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use of (1) we can define A(n) ¢ Z+, 1“1(n) c Z+, 1‘2(n) cZ" and F F

n’ 2n
closed sets such that
(1) A(n) contains arbitrarily long sequences, A(n)c I‘2(n).

@ F [ —4k(n+1)-4—7/8,x+2—4k(n+1)—4-3/2]

1Y Fan € Lx+2

where k(n+1)> k(n) and we can find q(6n+6)ET(n) such that
M(a(6n+6))%(e(a(6n+6)))~ " = 2K+ 1),

G) KUFUF,U...UF is independent.

2n+1
4) We can find finite sequences {q(f'(t)), q(@(t))+1, ..., q(B(t}H)}g A(n)
such that A'(n+1) = A(n)\tG {q(B(t)), q@(t))1, ..., Cl(@(t}ﬂ)} contains arbitrarily
=1

long sequences and

u o §2 e, )=
(R D-1-a®ON" 3 Xane) = e, )= 2
! _q dE(t)1) I -t
(@R D-1-a@ON" T o Xy e, ) = 2
(5) There exist Tjn€PM(F jn) such that
I 1 = Tanllon = 27 T10(0) = 75,0 = I1T gy = 175 llpyy = 1.

(6) We can find I‘1(n+1) c I‘1(n)\ {q(6n+6)} such that A(n+1) = I‘1(n+1)ﬁA‘ (n+1)

< €&(s) whenever

contains arbitrarily long sequences and le M(s) ~ 1“C(F- UF )=
2n+1

Tn+1
s€r, (n+1).
We can restart the induction. The stated results are easily read off. (Actually not

all the q(n) are explicitly defined but the reader can easily correct this).

Combining Lemmas 9.8 and 9.9 we get

LEMMA 9.10. Suppose €(n)+>0 given. We can find closed sets E1 y E2 with
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E, NE, = {x} such that E,UE, is independent, together with a sequence of integers
3 < k(1) < k(2)< ... having the following properties

(@) E,UE,c {xjU U [x k@3 mak(r)-1 _1}
r=1

(b)  Writing Ej =E;N [x+2"“‘(")'3 , x-2‘4"(‘“)":| G=1,2]

s j+1 ~
we know that writing |EJ.n =1 wenhave f LEA(E, UE, ) [Ie]| K, UE, )~ 1.

. . -N
(c)  There exist Tjn€PM(EJ.n) with HT1n - TanPMS 2

llspg = 1T =1

T 1n(0) = T3 (0) = 1T [l =

n 2n“PM

(d) E,, E, are of isometric synthesis

17 72

() Wecanfind Q(s) > with HXM(Q(S))_”lC(E]UEz)S e(M(Q(s))).

rroof. Choose M(r) as in the statements of Lemmas 9.8, 9.9. Construct x,

(e o]
F. , k(n) and so on as in Lemma 9.9 (ii). Set F:i = U anU {x}. Using condition
i=1

n’

(1) of Lemma 9.9 (ii) we may apply Lemma 9.8 (ii) to obtain E.2F E,2F

1 1? 2 2

satisfying (a), (e) and (d). But combining Lemma 9.9 (ii) condition (2) with Lemma 9.8 (ii)
conditions (i) and (ii) we see that we can also satisfy (b). That condition (c) holds is

trivial.

Proof of Theorem 9.3. We claim that E1 » By in Lemma 9. 10 have the properties
stated in the conclusions of the Theorem. This is obvious except possibly for the state-
ment EIUE2 not of bounded synthesis. To show this we observe

Ejn = EJ' N I:x+2'k(n)-3 , x+2_k(n)_ 1:] is of bounded synthesis. (In fact looking at the

construction we see that Ejn is of isometric synthesis. This proves Lemma 9.1").

(T, =T, ,f >

Thus T, € (A(E,)) and [t || >__In_2n°n" 5 o0 yging
jn in n A(E1nUE2n) Ir. -1, ||

1n~ " 2n''pMm
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Lemma 9.4 (v) we see that E1UEI2 is not of bounded synthesis. This concludes the

proof, the section and the paper.

I should like, as so many have done before me, to pay tribute to Madame Dumas
for her excellent typing and for her invariable helpfulness. The errors that remain are

my own.
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APPENDIX. The state of play.
The object of this appendix is to summarize the work contained in [A4], [A5],
(A6], [A7], [A8]. In the last part we give some open questions. Where necessary for
completeness the work of others has been quoted, but this should not mislead the reader
into thinking that this is a general survey of results on thin sets, let alone of any wider
field. If he wants a fair, balanced and complete picture of work on thin sets he should

consult [A1], [A2], [A3], [A9] and [A10]; we shall give him nothing of the sort.

A.1 DEFINITIONS. We work on the circle group T =R/2 7Z unless otherwise stated.

xn(t) = exp int e T]
oo oo
A(T) = {rz =-:m aXp: IEIOO Iar |< oo}. This is a Banach algebra under the norm

oo
3= axll=3= lal

P=—00 I'==00

AT(T) = {feA(T) :f(n)=0 Vn< o} a subalgebra of A(T)

A \(T) = {feA(T) :f(n)=0 V¥ng A] a subspace but not necessarily a subalgebra
of A(T)

s(r) = {tec(n): Ix®)| =1 Vter}

If Ec T (notnecessarily closed) then

E isan N ° set if we can find AcZ infinite such that |sin rt |<
— reA

Yt€E.

E isan R set if we can find apz o, GreT such that lim sup |ar |>0,

©o 900

E a P(sin rt + Gr) converges VtEE.
r=

(oo}
E isan Nset ifwecanfind a,=0 suchthat j ~a =o, 3 arlsinrt|<oo
r=1
tcE.
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We write PM(T) for the dual of A(T). Since A(T)2C%(T) the members of
PM(T) have a well defined support. If E is closed then we write PM(E) = {SQPM(T) :
supp Sc E} . We say that

E is without true pseudomeasure (WT) if PM(E) = M(E).

E is of synthesis (S) if every SEPM(E) is the weak limit of u.o‘eM(E).

E is of bounded synthesis (BS) with constant at most C if every SEPM(E)

is the weak limit of a bounded sequence uneM(E) with ””n”PM < C.

E is of resolution (RE) if every closed subset of E is of synthesis.

E is of uniqueness (U) if there exists no non zero SEPM(E) with

<S’Xr> +0 as |rl+eo.
E is of uniqueness in the broad sense (Uo) if there exists no non zero uEM(E)

with <u,xp>-o as |r|+o,

Continuing to confine ourselves to closed sets E we say that

E is Kronecker (K) if inf ||f-xp||
rcZ

E is Dirichlet (D) if liminfl|1 - x_|[| =0
‘I‘i-)OO r C(E)

E is Weak Kronecker (WK) (respectively Weak Dirichlet) if given peEMT(E),

cE) = 0 Vf€S(E)

€> 0 we can find E1 cE closed with |u I(E\E1)< € and E, Kronecker (respec-

1

tively Dirichlet)

E is Helson if C(E)=A(E).

llelle &)

The Helson constant s of a Helsonset E is givenby s = nf
o#tec(e) litl]

A(E)
(some authors, more sensibly, use s-1 ). We use the definition

S = inf lim sup |u(n) | which is not known to be equivalent numerically
REM(E),llll=1  neeo
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(except, of course, for s = 1) for all Helson sets but may be made so for the sets we
construct (see [A3] §7) and is more easily handled.
E is a Helson-1 QH‘) (resnectively a Helson-s set) if it is a Helson set with

constant 1 (respectively a constant s).

Turning now to the algebra A+(T), suppose E is again a closed set

E is AAT if A(E)=AT(E)
”fHA+(E)
0#EA(E) lltlly (i)
E is peak set (P) if we canfindan O # teAt(T) with f(e)=1 forall e€E,

An AAY set E has AAY constant C =

[f(t)|< 1 forall t¢€E.

E is an exact zero set (EZ) if we canfind an 0 # f€AT(T) with f(e)=0

for all e€E, |f(t)l<1 forall t¢£E.

E is azero set (Z) if we can find an O # fcAT(T) with f(e)=0 forall eCE.

Finally miscellaneous notations.

A set E (closed or not) is said to be independent if it is independent over Q
@i. e. if Xyy «+.y X € E  are distinct then émjxj =0, m, € Z implies
m,=m,=...=m =0).

If E is closed and countable we write E(1) for the set of limit points of E
(clearly closed), E(A”) = E(A X1 for A an ordinal, E(“) = N E>L for p a

A<p
limit ordinal.

A.2, RESULTS. Each result is labelled by a number which in turn gives a reference
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in A3. First we give a table of results on closed sets. It should be read as follows
“every set in the right hand column is (Y) (respectively need not be (N)) a set in

the upper row". Except for the result labelled by an asterisk the addition of the condition

"independent" makes no difference. The notations FU, CU refer to stability under

finite union and under closed countable union.
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We give some further results on closed sets.

SUM QUESTIONS (I-E1 +E, = {e1 +e,:e€E, , e2€E2} ).

(31) The sum of 2 Kronecker sets can be the whole of T even if one is fixed
arbitrarily (it must however be uncountable).

(32) Forevery 1> s=0 thereexistsan E with Helson constant at least s
and GpE =T.

(33) There exists a non Dirichlet set every proper closed subset of which is
Kronecker.

(34) There exists a Dirichlet non Kronecker set every proper closed subset of
which is Kronecker.

(35) Forevery 1= s>0 there exists an independent Helson set E of constant
s, a p €M (E) with p(ENN)>0 whenever N isopenand E NN 4@ such
that every closed subset of E with positive g measure has Helson constant s.

(36) Forevery 1>s>0 there gxists a Helson set of constants such that every
closed subset of E has higher Helson constant.

(37) Given 1> s=0 we can find an independent weak Dirichlet set with Helson

constant greater than s.

RESULTS ON AA'

(38) The conditions AA(1)(E1) = C(E1), AA(Z)(E2) = C(E2) do not imply
AA(1) UA(2)EqUER) = C(EUE,).
(39) If lim inf card {A N [—n,n]}/n =0 then we can find a Kronecker set E

nN9co
with A, (E)# C(E).
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(40) If A is an arithmetical progression then A(E)=C(E) implies A A(E) =C(E).
. . . . 2
(41) Write, in an obvious notation, AA(T )= {Z 8 Xpg * 8pg =0 V(r‘,s)QfA}.
f A isahalfplaneof 27, Ec T’ then A(T?)E)=C(E) implies A (T?)E)=
C(E).

(42) This result is best possible.

RESULTS ON CLLOSED COUNTABLE SETS.

(43) There exist countable independent Dirichlet sets which are not Kronecker.

(44) Every countable closed set is AAT  with constant 1.

(45) The independent union of disjoint Kronecker sets need not be Dirichlet even if
one is fixed arbitrarily.

(46) 1 E(n) =@ and E is independent, then E is the union of a finite
number of Kronecker sets. This result is false for general E with E(w+1) =@.

(47) 1£ g™ _ @ then E is peak.

(48) 1f E(w+n) =@ then E is an exact zero.

(49) There exists an E independent with E(wH) =@ such that

f€A(El;[r)WS(E) (inf {Ht - E_ooal‘xp(l")”C(E) : p(r) € Z}) =1 for every gx lar |< oo,

MISCELLANEOUS.

(50) If Ec T isclosedof measure O then we can find a,+0 and
1<q(1)< q(i+1< q(2)< q(2+1< q(3)< ... such that given any f€EA(D) (the uniform
algebra of functions analytic on the interior of the unit disk D, continuous on D) we

[~ <]
can find p(r) withvalue q(r) or q(rx1 and a x( € A(D)
I,; r”p(r)
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= |
a_x E=t|E.
E r”p(r)

(51) There exists a (not closed) independent R set which is not an N set.

REMARK. Whenever the statement of a result can be extended to a locally compact
Abelian group of an appropriate type without becoming trivially false its proof will also

extend without difficulty.

A.3. REFERENCES AND REMARKS.

(0) Obvious.

(1) Salem proved that every N set is weak Dirichlet (see e. g. Lemma 1.7 [A4]
or Chapter XIII [a9]). pBjork and Kaufman proved independently that every weak Dirichlet
setisan N set (seee.g. Lemma4.2 [A7] or [A9], Chapter XIII). If E is an
R set then automatically there exists a sequence m(j) »~ with xm(j)(e) -+ 1 for all
e€E and thus by Lebesgue's dominated convergence theorem E is weak Dirichlet.
(Recall that all our sets are closed).

(2) Every Helson 1 set is the translate of a weak Kronecker set, every translate
of a weak Kronecker set is Helson 1, every independent Helson 1 set is weak
Kronecker and every weak Kronecker set is an independent telson 1 set. (Lemma 1.4

[A5] and Lemma 1.7 [A4]; similar results were obtained independently by Lafontaine).
Note that since the translate of a Dirichlet set is Dirichlet (evident) every Helson-1 set
is weak Dirichlet.

(3) See [A3] p. 139.
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(4) There exist 2 disjoint Kronecker sets whose union E is independent and
carries a positive measure g with lim sup |p(n)l= %, Hﬂ H =1, Clearly E is
n»co

without true pseudomeasure (since it is the union of 2 disjoint sets without true pseudo-
measure) but cannot be a weak Dirichlet set. (Theorem 7 §7 [A4]).

We note also the following results.

(4a) The union of n independent Kronecker sets has Helson constant at least
1/n. (Varopoulos [A9] Chapter X §1).

(4b) There exist n independent Kronecker sets (one of which may be fixed in
advance whose union has Helson constant 1/n (Theorem7 § 7 [A5] for a partial

result, Theorem 4 § 8 [A4] for the full result).

(5) Varopoulos ( [A9] Chapter X, Lemma 2.9).

6) Consider a sequence {xo} =Eg, E;, E,;,... of disjoint Kronecker sets
(o]
with En - Eo topologically and E = U EI1 independent. Automatically E is of
r=o
resolution and if E is AAY then E is an exact zero (see [,AS] ). However we can

construct E suchthat E is not a zero set for A+(T) (proof in [AS—_l , a weaker

result is given as Theorem 8 7 [A4]). Note also
(6a) We can construct E sothat E is peak but not AAT  [as].

(6b) We can construct E sothat E is Dirichlet but not Helson (Lemma 8.6
[A5]).

7) Malliavin [A3] Chapter V § 8.

(8) By Theorem 1.1' [A7] given 1= 10n €(n)> 0 we can find m(n) »

andan E c : mLSn) (2mr/m(n)-e(m(n)) , 27r/m(nk+e(m(n))] such that E is weak
n=1 r=1
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Kronecker but not of synthesis. Provided only we demand that ne(n) + 0 we know that

o m(n)
E is Dirichlet. Again we canfind E*c N U {I= RBmr/m(n)-e(m(n)),2nr/m(n}+
n=1 r=1 e(m(n))] :
ENI# ¢} such that EUE?¥* is independent and of bounded synthesis with constant

1 (Lemma 9.9 [A7]) but not of resolution (since E is not of synthesis).

©) The independent union E of 2 sets of bounded synthesis with constant 1
intersecting at one point only (so that E is readily seen to be of synthesis) need not be
of bounded synthesis (Theorem 9.3 (ii) [A7]). The first example of a set of synthesis not

of bounded synthesis is due to Varopoulos (Chapter XII [A9:| ).

(10) By Lemma 9.7 [A7] there exist independent closed sets E locally of strong

multiplicity (so not Uo) which are of bounded synthesis with constant 1.
(11) This a result of Bary ([A1] Volume 2, p. 355).

(12) By Theorem 1.1 [A6]there exists a weak Kronecker set carrying a true

pseudomeasure (i.e. which is not a U set).

(13) Suppose E;, Ey,... areclosed U  setsand E= UE, is closed
i=1

but not Uo. Then we can find p€M(E) with p(n)+0 as n-+~. Now we can find

E, such that | (Ek) > 0 and we can find a sequence of f €C°°(T) such that

Hfu plE|ls0. But C*(T)2A(T) sothat lim jfx du =0 for each fixed n and
r oo
It follows that (pIE ) (r)-0 as rs

thus 1lim supj X du
[P ] 200 Ey

contrary to the hypothesis.

(14)  Varopoulos ( [A9] Chap. V).
(15) Easy. For this and other results, see e. g. [A3] p. 139.
(16) Use successive approximation. Or see e. g. [A9]Chap. I.

(17) Wik. Seee. g. [A9]Chap. II.
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(18) Vvaropoulos [A9]Chap. X.
(19) Theorem 3 § 3 [A4].

(20) By work of Varopoulos [A11]extending work of Drury we know that the

union of 2 Helson setsis Helson : we know that the independent union of a Helson s and

22
a Helson t set is Helson with constant at least .,;.E,Z We have examples ( I:A4]

t7+s
Lemma 7.12)for all 1=t, s> 0 of independent disjoint Helson s and Helsont sets

whose union has Helson constant tt+_s—s
(21) Kahane. See e. g. Lemma 4.1 (ii) [A7].
(22) Theorem 9 § 8 [A4] or use (6b).
(23) varopoulos. See e. g. Lemma 4.1 (iii) [A7].

(24) Drury ; an improvement of his method due to Varopoulos is given in [A6] ,

where we use it to prove that the finite union of Dirichlet sets is peak.
(25) Lemma 4.3 [A4].
(26) Theorem 6 § 10 [A5].
(27) ‘I'heorem 8.1 [A7].

(28) Easy. For this and other results see [A2].

. + .
(29) The union of AAT sets with constants C1 ,C2 isan AA' set with constant

at most C,+C,+C,C, and this value can be attained for all C,,C,1 (§7 of [A7], [A6])
(30) [as].
(31) Lemma 3.4 [A4], Lemma 8.4 [A5]. First proved by Varopoulos.

(32) Lemma7.10 [A4].
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(33) Theorem 2 § 3 [A4].
(34) Corollary 5.1 § 5 [A4].
(35) Theorem 1 § 3 [A5].
(36) Lemma 4.7 [A5].

(37) Lemma7.11 [A4].

(38) ‘Theorem 7.2 [A7]-

(39) ‘theorem 3 § 7 [A5]-

(40) Easy consequence of (20).

(41) Bernard ; see e. g. Chap. II [A9]. Thisisa generalization of Wik 's result
(17).

(42) Hedberg ; an improvement of his result due to Katznelson forms Theorem 2
§5 [As].

(43) Theorem4 § 5 [A4].

(44) p. 148 [A2].

(45) Theorem 1 § 3 [A4]. First proved by Bernard and Varopoulos.

(46) Salinger C.R.A.S.P. 272, p. 786. Similarly if E(n) =@ then E isthe

union of a finite number of Dirichlet sets.

(47) Use the remarks following (46) and (24).

(48) [as].
(49) [A8].
(50) [As8].

(51) Theorem 5 §9 [A5].
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A.4. OPEN QUESTIONS.

The following is a list of problems on thin sets. An attempt has been made to grade
them according to interest and "estimated difficulty". Thus (A) represents a problem which
is believed to be both very important and very difficult, (B) a problem which may well be
important and might be difficult, grades (C) and (D) are given to problems which either

seem to be within the range of present techniques or, although likely to be difficult are
not considered likely to prove important.

(1) (A) Is every symmetric set of constant ratio of dissection of synthesis ?

(2) (B) Is every symmetric set of synthesis ? of bounded synthesis ?
(For the best results known on these 2 questions see [A10] ).

(3) (A) Is the union of 2 (respectively the closed countable union of) sets of synthe-

sis of synthesis ?

(4) (B) Is the union of 2 (respectively the closed countable union of) sets of resolu-

tion of resolution ?

(53) (A)If E is a closed set such that non real analytic functions operate on

A(E)is E necessarily Helson ?
(6) (B) Is every zero set an exact zero set ?
(7) (B) Is every closed countable set an exact zero set ?

(8) (C) Is every zero set (respectively exact zero set, AA' set, AAY set with

constant 1) a peak set ?
(9) (B) Is every AA™ set an exact zero set ?
(10) (C) Is the union of 2 peak sets necessarily peak ?

(11) (C) Suppose E is a closed set such that we can find n(1)< n(2)< ...
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with xn(r)(e) > 1 forall e€E. Is E necessarily azeroset ? Can E carrya
non zero pseudo function ?

(12) (D) Is every N o set (respectively R set) a set of uniqueness ? An AAT
set ? A peak set ? An exact zero set ? A zero set ?

(13) (B) Is every set of resolution necessarily of bounded synthesis ?

(14) (C) Does there exist a closed set E with A(E) densein (A(E), I ”A(E))
but A(E) £A(E) ?

(15) (B) Is the basis conjecture always true for A(E) ?

(16) (B) Is the sum of 2 Kronecker sets (respectively 2 sets of synthesis) always
of synthesis ?

(17) (C) Is every set of synthesis Ditkin ? Is any uncountable closed set Ditkin ?

(For a short discussion see the appendix "Note sur des recherches récentes et en
cours" [A3]).

(18) (D) Find inf {Helson constant E,UE, : E; has Helson constant °‘i} .
Find inf {Helson constant E1UE2 : Ei has Helson constant % GpEiﬁGpEi = {O}} .

lim sup/|p(n) |

sup |u(n) |, hy(E) = inf
peM(E), llull=1 Inlseo

(19) (C) Write h1(E) = inf
peM(E), llu ll=1

and c(a) = inf hz(E). Can c(x) belessthan 1 ?
h1(E)=<x

(20) (A) Characterize countable Helson sets by their arithmetical properties.

(21) (B) 1Is the Kahane-Salem necessary "Maille condition" (see [A2] pp.30-34)
also sufficient for a closed countable set t o be Helson ?

The last two questions concern the tensor algebras V(D) , V(T) (seee. g.
[A2] Chap vim).

(22) (C) 1s every set of interpolation for V of synthesis ?
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(23) (C) 1Is every closed independent set of interpolation for V ?
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