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Thomas Korner
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Th. KORNER

ABSTRACT. A simpler proof is given of the existence of a pseudofunction on a

Helson set.

This note is devoted to the bitter sweet task of replacing the contents of sections
1 to 3 of the paper above by a short demonstration of the main result. This is achieved
by a much simpler demonstration of the main combinatorial lemma (Lemma 1 below) without

using Conway'slemma and by passing directly from the result for weak Dirichlet to the

result for weak Kronecker sets.

LEMMA 1, Let ¥(m)= {##Sc{1,2,...,m}}] andset
f(T)=1 i ScT
fS(T) =0 otherwise.

If 1>X>0 write

Ias l: > ag fg(T)=1 forall TEWm), card T = Am}.

B(A , m) = inf{ IV
m

SE¥(m)

Then B(A , m)3co as m >,
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A PSEUDOFUNCTION ON A HELSON SET. II.

Proof. Suppose ) 5 ag fS(T) =1 forall TE¥(m), card T = Am.
SEW(m)
Then if Z(m) is the permutation group on {1 s 2y aan m} it follows that

g; anS(OT) =1 forall T€E€ ¥(m), card T= Am, o€Z(m) and so
¥(m

f_ (oT) = 1 £ 1 T € ¥m), d T = Am. Th
%(m) g\ll(m) ag (o ) c%(m) or a m), car m us

m
(g a. )y =1 forall m=t=Xm where
s: I(m), cardS —s S s,tm

2 ‘ f (
t (t-1) (t-s+1) T 1
m m =
Y o€x(m) T —E N ey [ardT=t, 1=t,s=mj.
E(m) |
Thus, noting that ‘Z ag |__ Z: | a . we see that if
<s<m ‘cardS=Ss

B(A ,m) -L>o wecanfinda B>0 and m(1), m2), ... together with

cxs m(j) such that
()
l st’m(j) lS B

=]

s=1
ﬁj) Am. N ) I I
d . =1 forall m=t=Am. W, since . 1<B
and 2 %, m(j) ¥s,t,m(j) ow, since 2 lag m(j)

it follows that we can find j(k) » e such that as,m(j(k)) >0 and since

|‘>'S’t’m(j) = (m—t(.J ¥® it follows that allowing EE]T +x forsome 1>x>X we have

= -]

Z :ozsxs=1.
S=

oo o0
Thus |<xs =B and 3 cxsxs =1 forall 1=x= A whichis absurd. It follows

that B(A , m) + as m »c and the lemma is proved.

LEMMA 2, Let 1> X >0, m= 1, Then, with the notation of Lemma 1, we can

:

find bpEC [T € ¥(m), card T = AmJ such that

b =1
%\It(m),cardTZ am T
-1
(ii) | b.. f (T)l < B(A,m) for all S€EW¥(m).
|%\P(m),cardT2>\m T'S | ’



Th. KORNER

Proof., Write E = {TG\I/(m) ccard T = )tm} and observe that

= {E : aS fS |E : 2 : |aS |< B(x ,m)j is a convex balanced subset of
SE¥(m)

C(E) which does not contain 1. Thus by the theorem of Hahn-Banach there exists a
KEM(E) such that

@) (w,1) =1

(i) |<u,gdl<B(,m)"" forall ger
and so in particular

@) I<w,ig EX <BO,m™"  foran  sewm).

Writing b, = 4({T}) we have the result.

Next let us establish some notation. L.et D be the direct product of a countable
number of copies of the group {-1 , 1} on 2 elements, We shall write the element
a= (o&1, Ay . DJED I:cxi =+ 1] as §:2ai/31. The dual IAD of D consists of
all strings E = (R 12 Bos - .) with B8.=+1 andonly a finite number of Bi equal

1

to -1. We shall write B8 as . Thus for example

X o
1
:. B2
i=

X5(2/3+2/9)= (=1, 1, =1, 1, 1,...), (=1, =1, 1, 1,...)) = -1,

LEMMA 3, Let 1<n,<n,<...<n 1>X>0. Set

1 2 m+1’
n, .-1
i+1
py= * (52/3j + 50)/2 (where St is the Diract point mass at t€D) and
j=ni
Op= % Py (T € ¥(m)]. Then if, with the notation of Lemma 2, we set
i€T
n = Z : b..C we obtain
Tym) T T
" n
() p)=1 forall 0<rpr<2 |
PN l"Ll n
() lp@) =BG ,m)! forall 2 '<p<2 M+l
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A PSEUDOFUNCTION ON A HELSON SET. 1I.

whilst setting E =supp g4 we have

m
(i) Hm“{‘:';x n, = ey = 20-0).
- 2

R ~ n
Proof. Since oT(r') =N pAr)=1 for O0<r<2 1
i¢T 1t

follows directly from condition (i) of Lemma 2. On the other hand, suppose

condition (i) of Lemma 3

+1 D™

n .
<r<2™ | Then r'=z ; 7.23 where ¥.=0, 1 and
= J J

n

2 1

S(r) = {i :dn, <j<n,, with 2 # 0} €V¥ . Clearly p,(r)=0 if i€S(r),
p.(r)=1 otherwisesothat o, .(r)= I p.(r)=¢f (T) and condition (ii) of Lemma 3
i T igr 1 S(r)
follows directly from condition (ii) of Lemma 2.,
Finally suppose x€CE. Then xE€supp 91 for some T€\I/m ,card T = Am.
automatically X x)=1 if €T, x n (x) =+ 1 in general and so
i i
2 2

| =18 |
|m X n_(x) -1 < 2(1-)).
i

=1 ,
LEMMA 4, Wecanfind 1=k{(1)<k(2)< ... and n(1)<n(2)< ... together
with a closed set E such that E supportis a pseudofunction T with

T(O)=1= IITIIPM and
i) - ey~ 3! I S =]
k(G+1) - k(i X gy =1 <2 = 17,
Proof. By Lemma 1 we can find k(1) < k(2)< ... such that
B(1-2H1) k(+1)-k(G)) < 273, Now choose integers n(1) < n(2)< ... By Lemma 3

we can find measures ”j such that

(i) ;j(r) =1 foranl 0 =< < 2Mk@)
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Th. KORNER

(ii) lﬁj(r) l< 27 foran 2O < < pnk(G+1)

whilst setting Ej = supp ”’j we have

1

@) ) - ko) 22 all =
131 -+ - L - <
! PRy ot CEp

and (@iv) |l x i~ 1||C(E y=0 whenever 0s<i< k() or k(j+1)=<i. Note that (i),
2 J

(ii) and (iv) show that IIujHPM - 1.
3 ~ a N
Now set T;= ;1 Wj. Itis clear that ||TJ.HPM = TJ.(O) =1 and Tj(r) = Tj_H(r')
for all r < k(j). Thus Tj converges weakly to a pseudomesure T with
J
Il = TO) = 1. Since [ T,) 1= TT luy(r) =27  foran 2K(8) o p < K@)
i=1

k(®) k@+1)

[1=<t<j] itfollows that I%(r) | sz‘e forall 27 <r<2 andso T is
a pseudofonction. Using (iv) we see that FJ. =B, +E, +...+ Ej converges (in the
topological sense) to a closed set E,

We want to show that TEPM(E). To this end suppose fEA(D), supp f NE = @.
Then suppfNE 5= ¢ for j sufficiently large and so (since TJ.€M(EJ.))
(Tj,f)= 0 for j sufficiently large. Thus {(T,f> =0 and supp Tc E as
required.

On the other hand, suppose e€E. Then we can write e = e, +e, ...

where e:i c Ej' In particular, using (iv) we obtain xzn(i)(e) = X2n(i)(ej) for all

k(3) < i < k(j+1). Thus by (iii)

| _p kG- o _q -1 |
](k(j+1) - k(3)) 1;}((3) in(i)(e) -1 | = I(k(j+1) - k(3)) g:(]) xzn(j)(ej) | = 2

and the full result is proved.,
In effect we have constructed a Weak Dirichlet set supporting a true non zero

pseudofunction. But any such set can be perturbed to give a Weak Kronecker set
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A PSEUDOFUNCTION ON A HELSON SET. II.

supporting a true non zero pseudofunction. (We shall give a proof of this in the simple

special case given in Lemma 4 but the general proof is hardly more complicated).

LEMMA 5. Suppose E and T are given as in Lemma 4, Suppose further
jo = 1 andan t€C(E) with f(e)=+1 forall e€E isgiven. Then
E,= {eeE : f(e) = 1} and E, = {eeE : fle) = -1} are closed and we can find a
i>j, andan x suchthat writing T'=TIE, + (TIE,) *Bx

E' = E1U(E2+x) we have

1) x i(x) =1 forall i< k(j1) and for all i= k(j1+1)
2

(i) x i(x) = -1 for all k(j1) <i< k(j1+1)
2

so in particular, setting fo IE1 =1, fo |E2+x = -1 we have fo€C(E ') and
-1 kG+1)-1 L
@) llaGr) - kG)) Z;_) X n(i) ~ Megn=2"  Gz1,i445,]
1=k(j
k(j.+1)-1 -]
(a0 MG e1) - k@)™ 3 L X" tllogy=2 "

1=k 1

whilst on the other hand T' is a pseudo function with T'E€PM(E'), T'(0)=1 =HT||PM
and

@) 1Tl 17w +2 o,

Proof. Since E,; and E, are disjoint closed sets we can find g 2€A(D)

with ge(e) =1 if e lies in a neighborhood of E ge(e) =0 if e liesina

e’
neighborhood of E3/2-(-1)e/2 [f=1,2]. Thussince T(r)+0 as r-se it

follows that '}e r)="T lEé‘(r) = ng(r‘) +0 as I oo,

N -j
Choose j; =j, suchthat |Ty(r)|=2 © " forall r>k(j,). Set
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Th. KORNER

X = 2/3“(1). Conditions (i) and (ii) (and so (i)' and (ii)') follow trivially.

Further since & X(1") =1 wehave T{)=T'(r) forall r< k(j1). On the other

~ " "J —
hand if r = k(j;) we know that Sx(r) =+ 1, ITE(P) <2 © [2=1,2] so that
N

HT-T') (r)i< 4.2 so condition (iii) is proved. Finally since

Tl(r), Tz(r)aO as raco itfollowsthat T'(r)»0 as r »oo,

THEOREM. There exists a closed set F < D which is of interpolation for

A(D) but carries a non zero pseudo measures,

Proof. This is an easy consequence of Lemmas 4 and 5. Take E as in Lemma 4,

We can find a sequence of partitions Pn = {En1 y En2’ ceny En2 j . such that Enr
2
, n n
isclosed [1<r=2"], E_NE =6 ll<sr<s<2"], PL_J1 E .=E,
n
Enet 21 YEBnyq2¢ =By D= t=270.

By repeated use of Lemma 5 we can find Q1)< Q(2) < ..., trigonometric poly-

nomials f‘ns € € [:ei =+ 1] and points Xn € D [1=sr=< 2n] such that

185+ -+ € p

2
2n 2" |
setting E = U (E__+x ), z (TIE__)=d we have
n- -, or nr 4= nr X
-n
@ -l <2
ne, &.. C(E m:'+xnr)

@) e, € &enn, IIIIA(D) =

Q(n)
(111)f €, 52...5 (s})=0 forall s=2

3 n
(iv) sz( el 2—1 for all O=p=Q(n), I<t<2

- xnt) = x2p(xn+1 2t~ xnt) =1

v) |Tn(r‘) l< ITn_1(r) l+2™" forall r [n=1] where T =T
(i) T_, E

n satisty the conditions of Lemma 4 for a suitable choice of k(j), n(i).
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A PSEUDOFUNCTION ON A HELSON SET. I1.

Under these conditions it is clear that Tn converges weakly to a pseudofunction
s with |ls||=S(0)=1, and that E, converges topologically to a set F with
SEPM(F). (Use argument of the paragraph before last of Lemma 4). It only remains
to show that F is of interpolation.

To prove this suppose &€ >0 given, f€C(D) and f takes only the values 1

and -1, Thenwecanfindan n=1 suchthat €< 2'“, f is constant on each

E__+X M=r<2"] and f(x+y)=fy) whenever X (x)=1 forall 0 =r<Q(n).
nr ¥ *nr 2P

Set €41 = 15(13nt + xnt) [t<t=<2"]. 1tfollows from (i), (ii), (iii) and (iv)

€ =

that || ¢ IIA(D)=1 and It <e. Thus F is

|
n+1 81...£2n+1 n+1 €(...E C(F)

2n+1

of interpolation.

Remark. The work above was done after but in ignorance of Kaufman's elegant
work reported above. However it may be useful to have a simple version of my original

method to compare with that of Kaufman and the earlier results of Piatecki-Shapiro.

In particular it prompts the following remark. Consider the set
S oS -10000
={§ , €27 M 3 lerls s2 y £P=0,1} < T. By the theorem of Piatecki-
r=1 =
Shapiro E supports a non zero pseudofunction T. But it is clear that given n(0)
-1

1
we can find an n(1) sufficiently large that H(n(1)—n(0))_1 %) - 1HC(E)'
r=n(0 2

Thus perturbing E and T as in Lemmas 4 and 5 we obtain such that

i b-gll. ., <278 foran gec i - )
f€A(T)1:ﬁt|IA(T)=1I glC(E )< or all geC(T) with lgt)l=1 [er]

Such a set is a Helson set and we have another proof of the existence of Helson sets

not of synthesis.
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