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A PSEUDOFUNCTION ON A HELSON SET. I I . 

Thomas Korner 
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Th. K O R N E R 

ABSTRACT. A simpler proof is given of the existence of a pseudofunction on a 

Helson set. 

This note is devoted to the bitter sweet task of replacing the contents of sections 

1 to 3 of the paper above by a short démonstration of the main resuit. This is achieved 

by a much simpler démonstration of the main combinatorial lemma (Lemma 1 below) without 

using Conway's lemma and by passing directly from the resuit for weak Dirichlet to the 

resuit for weak Kronecker sets. 

LEMMA 1. Let ^(m) = { j J / S ç ( l , 2, , . , ,m ] j and set 

f s ( T ) = 1 if S e T 

f S ( T ) = 0 otherwise. 

If 1 > X > 0 write 

B(X , m) = inf j T^J | a 0 | : a c f c ( T ) = 1 for ail T£^(m) , card T > A m i . 
l Së^(m) S Sêtym) b S J 

Then B(X , m) + oo as m + o o . 
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A PSEUDOFUNCTION O N A HELSON SET. II. 

Proof. Suppose 3 ) a G f c ( T ) = 1 for aU TG^(m), card T > Xm. 
Scfym) S S 

Then if £(m) is the permutation group on { l , 2, . . . m] it follows that 

} ' a c L ( a T ) = 1 for ail T G >Km), card T > Xm, crGZ:(m) and so 
S£tym) S b 

Y~2 T2 a Q L ( a T ) = r; 1 for ail T G >Km), card T > Xm. Thus 
aëStm) HG^Km) ^ & aëXdn) 

m  
) ]( y ) a Q )r c = 1 for ail m > t > Xm where 
s=T SG>Km), cardS =s ^ s , I , m 

r s > t ^ & E L ^ = L ^ . . . ^ [ c a r d T = t, , * . . . * « ] . 

oGt(m) 
Thus, noting that > ; > ; a Q < > ; I a Q | , we see that if 

1<s<m 1 card S = s & ^ 

B(X , m) - 7 ^ 0 0 we can find a B > 0 and m(l), m(2), . . . together with 

a s,m(j) s u c h t h a t 

Mi) 
g l a s M j ) ^ B 

m(j) 
and T j a /.* y , / . x = 1 for ail m > t > Xm. Now, since J~2 & <B | ^ s,m(j) s,t,m(j) s,m(j) 

it follows that we can find j(k) such that a g m ( j ( i c ) ) a

s

 a n d s i n c e 

I y g t ( j^ j ) ) S A t f ° U o w s that allowing J^jy * x f o r some 1 > x > X we have 
oo 

T : — i s -> ~ . <xs X = 1 . 

oo oo 

Thus Y~2 I a I < B and a x s =1 for ail 1 > x > X which is absurd. It follows 

that B(X , m) -**oo as m <» and the lemma is proved. 

LEMMA 2. Let 1 > X > 0, m > 1. Then, with the notation of Lemma 1, we can 

find b TGC | T G Mxti) , card T > XmJ such that 

( i ) * T = 1 

TG>Km),cardT>Xm 1 

(ii) \ZZ b_ f (T ) ! < B(X for aU SGtf(m). 
'TG^(m),cardT>Xm 1 a 1 
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Th. KORNER 

Proof. Write E = JTe^(m) : card T > Xmj and observe that 

T = \y ) a c f c | E : > ; | a c | < B(X ,m)\ is a convex balanced subset of 
lSG*(m) S s se*(m) S J 

C(E) which does not contain 1. Thus by the theorem of Hahn-Banach there exists a 

\x GM(E) such that 

(i) <M,1> = 1 

( i i ) ' | </i ,g>l< B(X,m) ' 1 for ail g G r 

and so in particular 

(ii) | <AMS I E > I <B(X,m)" 1 for ail S€>Km). 

Writing b T = f i ( { T J ) we have the resuit. 

Next let us establish some notation. Let D be the direct product of a countable 

number of copies of the group {-1,1} on 2 éléments. We shall write the élément 
oo i 

oc = (a-, O g , . . . ) € D [ c ^ = + l ] as J !201/3 . The dual D of D consists of 
~ i=1 

ail strings « = (/? p . . . ) with /3. = + 1 and only a finite number of fi. equal 

to - 1 . We shall write fi as x • Thus for example 

X 5(2/3 + 2/9)= <(-1, 1, - 1 , 1, 1 , . . . ) , ( -1 , - 1 , 1, 1 , . . . ) > = - 1 . 

LEMMA 3. Let 1 < < n 2 < . . . < n .,, 1 > X > 0. Set 

p. = * ( o 9 / ~ j + o )/2 (where 0. is the Diract point mass at tGD) and 
1 3=^ ° 1 

= * p. [T G ^ m ) ] . Then if, with the notation of Lemma 2 , we set T i j f c T i 

M = ) ] b„a we obtain 
TG*(m) T T 

n 
(i) / i ( r ) = 1 for ail 0 < r < 2 

(i i) \u(r)\ < B(X .m)" 1 for ail 2 ^ < r < 2^+^ 
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whilst setting E = supp /i we have 

1 m 

(iii) Hm" 1 Ç> n - l l l C ( E ) - 2 < 1 " X > -
i=1 2 i 

Proof. Since a^ ( r ) = II p . ( r ) = 1 for 0 < r < 2 condition (i) of Lemma 3 
T i£T 1 

follows directly from condition (i) of Lemma 2. On the other hand, suppose 

2 < r < 2 . Then r = T~~) y .2J where y . = 0 , 1 and 

S(r) = | i : 3nA < j < n i + 1 with y.. ̂  o } € * m . Clearly p ^ r ) = 0 if iGS(r), 
>V /V .A 

p.( r ) = 1 otherwise so that a ^ r ) = n p . ( r ) = f~/ v (T) and condition (ii) of Lemma 3 
ifèT 1 

follows directly from condition (ii) of Lemma 2. 

Finally suppose xGE. Then xGsuppa T for some T ^ ^ m > card T > Xm. 

automatically X n (x) = 1 if i £ T , x n (x) = + 1 in gênerai and so 
2 1 2 1 

| m " 1 ^ X n . ( x ) - 1 | < 2 ( 1 - X ) . 

LEMMA 4. We can find 1 = k( 1 ) < k(2) < . . . and n( 1 ) < n(2) < . . . together 

with a closed set E such that E supports a pseudofunction T with 

T(0)= 1 = | | T | | p M and 

||(kCH-1) - k ( j ) r 1

 x . 1|| < 2-J [j > 1] . 
fck(j) 2 n U J C ( E ) 

Proof. By Lemma 1 we can find k(1) < k(2) < . . . such that 

BO^" 4" 1, k(j+l)-k(j)) < 2~î. Now choose integers n(1) < n(2) < . . . By Lemma 3 

we can find measures \i ̂  such that 

(i) / L t ^ r ) =1 for ail 0 < r < 2 n * k ^ 
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Th. KORNER 

( i i ) lM.(r) |<2-J for ail 2 n < k ( J» < r < 2 n< k<J+ 1» 

whilst setting E.. = supp (J. ̂  we have 

(iii) ||(k(j +1) - k(j)) e 1 L / E x < 2~J 

fck(3) 2 1 C ( E j } 

and (iv) Il X j, - 1 H C ( E ) = 0 whenever 0 < i < k(j) or k(j+!) < i . Note that ( i ) , 
2 j 

(ii) and (iv) show that l l M j l l p M = 1 • 

Now set T . = * M - It is clear that | | T , | L = T.(0) = 1 and T.(r) = T. . ( r ) 3 3 3 3 3 3+' 

for ail r < k(j). Thus T. converges weakly to a pseudomesure T with 

\ j 

| | T | L m = T(0)= 1. Since |T . ( r ) |= T T i M r ) | < 2" 1 for aU 2 k ( e ) < r < 2 k ( e + l ) 

3 i = 1 l 
[1 < e < j ] it follows that | T ( r ) | <2~ for ail 2 k*^ < r < 2 k ^ + 1 ^ and so T is 

a pseudofonction. Using (iv) we see that F. = E 1 + E 9 + . . . + E. converges (in the 
3 i ^ 3 

topological sensé) to a closed set E. 

We want to show that TGPM(E). To this end suppose fGA(D), supp f HE = 0. 

Then supp f H E^ = 0 for j sufficiently large and so (since T^GM(E^)) 

<T^,f>=0 for j sufficiently large. Thus < T , f > = 0 and supp T ç E as 

required. 

On the other hand, suppose eGE. Then we can write e = e.j + e 2 + . . . 

where e. G E.. In particular, using (iv) we obtain x n ^ \ ( e ) = X „/-\( e-) * o r a l l 
3 3 2 2 ^ 

k(j) < i < k(j+1 ) . Thus by (ii i) 

.Wo-kti))"1 k(j+1)-1 

5j) x

2 n ( i ) ( e ) " 1 | - | (k ( j+D-k( j ) ) 
k(j+1)-1 

mi) < 2 n(J)< e J>h 2 " 3 

and the full resuit is proved. 

In effect we have constructed a Weak Dirichlet set supporting a true non zéro 

pseudofunction. But any such set can be perturbed to give a Weak Kronecker set 
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A PSEUDOFUNCTION O N A HELSON SET. II . 

supporting a true non zéro pseudofunction. (We shall give a proof of this in the simple 

spécial case given in Lemma 4 but the gênerai proof is hardly more complicated). 

LEMMA 5. Suppose E and T are given as in Lemma 4 . Suppose further 

j > 1 and an fGC(E) with f(e) = + 1 for ail eGE is given. Then 

E 1 = |eGE : f(e) = 1 J and E 2 = [eGE : f(e) = -1} are closed and we can find a 

j > j Q and an x such that writing T f = T | E 1 + (T |E 2 ) * &x 

E 1 = E 1 U(E 2 +x) we have 

(i) X (x) = 1 for aU i < k ( j - ) and for ail i > k ( j - + 1 ) 

2 1 

(i i) x 4 (x ) = - 1 for aU k ( j . , ) < i < k ( J 1 + 1 ) 

so in particular, setting f | E 1 = 1 , f | E 2+x = - 1 we have fQGC(E 1 ) and 

- k ( i + 1 ) - 1 M . 

( i ) ' I k k G + D - k f c l ) ) " 1 g X n ( i ) - 1 H C ( E » ) - 2
 5 ^ 1 , 1 / ^ ] 

i—k(j ) 2 

( i i ) ' I l ( k ( j L + 1 ) - ktj» gjj X 2 n ( i ) - i J I c t E , ) * 2 1 

whilst on the other hand T 1 is a pseudo function with T 1GPM(E 1 ) , T 1 ( 0 ) = 1 = | | T | | P M 

and 

(iii) | T » ( r ) | < | T ( r ) | +2*°. 

Proof. Since E^ and E 2 are disjoint closed sets we can find g ^GA(D) 

with g g ( e ) = 1 if e lies in a neighborhood of E^, g^(e) = 0 if e lies in a 

neighborhood of E 3 / 2 - ( - 1 ) ^ / 2 u?= 1 > 2 J - Thus since T( r ) 0 as r - » o o it 

follows that Tg(r) = T|E^(r) = T g g ( r ) ^ 0 as r * o o . 

-3-3 
Choose 3^ > j Q such that | T g ( r ) | < 2 for ail r > lc(j 1). Set 
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x = 2/3 . Conditions ( i) and (ii) (and so ( i ) 1 and ( i i ) ' ) follow trivially. 

Further since 8 x ( r ) = 1 we have T(r ) = T 1 (r) for aU r < kC^). On the other 

hand if r > k(j 1 ) we know that S v ( r ) = + 1, | T . ( r ) | < 2 ° [B = 1,2] so that 

- j -2 - j 

I ( T - T 1 ) ( r ) | < 4.2 ° =2 ° so condition (iii) is proved. Finally since 

T ^ r ) , T 2 ( r ) - » 0 as r o o it follows that T ' ( r ) - » 0 as r*oo. 

THEOREM. There exists a closed set F c D which is of interpolation for 

A(D) but carries a non zéro pseudo measures. 

Proof. This is an easy conséquence of Lemmas 4 and 5. Take E as in Lemma 4. 

We can find a séquence of partitions p

n = { E

n i > E

n 2 ' • • • > E

 n j s u c n t n a t E

n r 

n2 2 n 

is closed D < r < 2 n ] , E n r H E n s = 0 D < r < s < 2 n ] , E ^ = E, 

E n + 1 2 t - 1 U E n + 1 2 t = Ent 1̂ < t < 2 nJ . 

By repeated use of Lemma 5 we can find Q(1) < Q(2) < . . . , trigonométrie poly-
nomials f [e. = + i l and points x E D [l < r < 2n3 such that n e 1 e 2 . . . e n i - nr 

2 n 2 n 

setting E = U (E + x ) , T = < T l E

n r > * K w e n a v e  

n r=1 n r n n r=1 n i *nr 

( i ) i | f ne e ' V t t e + x ) ^ 2 
n E 1 £ 2 " , e . n r M t n r + X n r ; 

<»> l l ' n e l E 2 . . . e 2 n U ( D ) = 1 

(ii i) f (s) = 0 for aU s > 2 Q ^ 
n e1 e 2 ' ' ' 2n 

( i v > X 2 p
( x n + 1 2 t - 1 - x n t ) = V ( X n + 1 2 t " X n t ) = = 1 f ° r a 1 1 ^ ° ( n ) ' 1 ~ t - 2 n 

(v) | T n ( r ) | < lT 1 ( r ) | + 2 " n for ail r [ n > l ] where T Q = T 

(vi) T n , E n satisfy the conditions of Lemma 4 for a suitable choice of k(j), n(j). 
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Under thèse conditions it is clear that converges weakly to a pseudofunction 

S with ||s || = S(0) = 1 , and that E n converges topologically to a set F with 

SGPM(F). (Use argument of the paragraph before last of Lemma 4 ) . It only remains 

to show that F is of interpolation. 

To prove this suppose e > 0 given, fGC(D) and f takes only the values 1 

and - 1 . Then we can find an n > 1 such that e < 2 ~ n , f is constant on each 

E nr + xnr D ^ r < 2 n J and f(x+y) = f(y) whenever x p ( x ) = 1 for ail 0 <r<Q(n). 

Set e 2 t = ^2tmm^ = f ( E n t + x n t ) [1 < t < 2 n 3 . It follows from ( i ) , ( i i ) , (iii) and (iv) 

t h a t l | f n + U r . e 2 n J l A ( D ) = 1 a n d l | fn+1 . . . c f f
 llC(V) * e ' T h u s F i s 

of interpolation. 

Remark. The work above was done after but in ignorance of Kaufman's élégant 

work reported above. However it may be useful to have a simple version of my original 

method to compare with that of Kaufman and the earlier results of Piatecki-Shapiro. 

In particular it prompts the following remark. Consider the set 

E = |7~~; er2"rrr: l e p l< s 2 " 1 0 0 0 0 , e p = 0 , 1 J c: T. By the theorem of Piatecki-

Shapiro E supports a non zéro pseudofunction T . But it is clear that given n(0) 

M i n 0 ) ~ 1
 n m 

we can find an n(l) sufficiently large that | | (n(l)-n(0)r T2 X i m - 1 1 U / c . ^ 2 " 
F=?ï(0) 2 1 0 0 r C 1 E , 

Thus perturbing E and T as in Lemmas 4 and 5 we obtain such that 

inf | | f - g | l c ( E I ) < 2 " 8 for aU gGC(T) with l g ( t ) l = 1 C t G T } . 

f GA(T ) , J |f I l^rjy J= 1 

Such a set is a Helson set and we have another proof of the existence of Helson sets 

not of synthesis. 
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