Thomas W. Körner

A pseudofunction on a Helson set. II.

Astérisque, tome 5 (1973), p. 231-239
http://www.numdam.org/item?id=AST_1973__5__231_0
© Société mathématique de France, 1973, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

A PSEUDOFUNCTION ON A HELSON SET. II.

Thomas Körner

ABSTRACT. A simpler proof is given of the existence of a pseudofunction on a Helson set.

This note is devoted to the bitter sweet task of replacing the contents of sections 1 to 3 of the paper above by a short demonstration of the main result. This is achieved by a much simpler demonstration of the main combinatorial lemma (Lemma 1 below) without using Conway'slemma and by passing directly from the result for weak Dirichlet to the result for weak Kronecker sets.

LEMMA 1. Let $\Psi(m)=\{\emptyset \neq S \subseteq\{1,2, \ldots, m\}\}$ and set

$$
\begin{array}{ll}
f_{S}(T)=1 & \text { if } \quad S \subseteq T \\
f_{S}(T)=0 & \text { otherwise } .
\end{array}
$$

If $1>\lambda>0$ write
$B(\lambda, m)=\inf \left\{\sum_{S \in \Psi(m)}\left|a_{S}\right|: \sum_{S \in \Psi(m)} a_{S} f_{S}(T)=1\right.$ for all $T \in \Psi(m)$, card $\left.T \geq \lambda m\right\}$.
Then $B(\lambda, m) \rightarrow \infty$ as $m \rightarrow \infty$.

Proof. Suppose $\sum_{S \in \Psi(m)} a_{S} f_{S}(T)=1$ for all $T \in \Psi(m)$, card $T \geq \lambda m$. Then if $\Sigma(\mathrm{m})$ is the permutation group on $\{1,2, \ldots \mathrm{~m}\}$ it follows that $\sum_{S \in \Psi(m)} a_{S} f_{S}(\sigma T)=1$ for all $T \in \Psi(m), \quad$ card $T \geq \lambda m, \quad \sigma \in \Sigma(m)$ and so $\sum_{\sigma E \Sigma(m)} \sum_{S_{S \in \Psi(m)}} a_{S} \mathbf{f}_{S}(\sigma T)=\sum_{\sigma \in \Sigma(m)} 1$ for all $T \in \Psi(m)$, card $T \geq \lambda$ m. Thus
$\sum_{S=1}^{m}\left(\sum_{S E \Psi(m), \text { card } S=S} a_{S}\right) \gamma_{s, t, m}=1$ for all $m \geq t \geq \lambda m \quad$ where
$\gamma_{s, t, m}=\frac{\sum_{\sigma \in \Sigma(m)} f_{S}^{(\sigma T)}}{\sum_{\sigma \in \Sigma(m)} 1}=\frac{t}{m} \frac{(t-1)}{(m-1)} \cdots \frac{(t-s+1)}{(m-s+1)} \quad[\operatorname{card} T=t, \quad 1 \leq t, s \leq m]$.
Thus, noting that $\sum_{S \leq S}\left|\sum_{\operatorname{cardS}=\mathrm{s}} a_{S}\right| \leq \sum_{S}\left|a_{s}\right|$, we see that if $B(\lambda, m) \nrightarrow \infty$ we can find $a \quad B>0$ and $m(1), m(2), \ldots$ together with $\alpha_{S, m(j)}$ such that

$$
\sum_{s=1}^{m(j)}\left|\alpha_{s, m(j)}\right| \leq B
$$

and $\sum_{S=1}^{m(j)} \alpha_{s, m(j)} \gamma_{s, t, m(j)}=1$ for all $m \geq t \geq \lambda m$. Now, since $\sum_{S=1}^{m(j)}\left|\alpha_{S, m(j)}\right| \leq B$ it follows that we can find $j(k) \rightarrow \infty$ such that $\alpha_{s, m(j(k))} \rightarrow \alpha_{s}$ and since $\left|\gamma_{s, t, m(j)}\right| \leq\left(\frac{t}{m(j)}\right)^{s}$ it follows that allowing $\quad \frac{t}{m(j)} \rightarrow x \quad$ for some $\quad 1>x>\lambda \quad$ we have

$$
\sum_{s=1}^{\infty} \alpha_{s} x^{s}=1
$$

Thus $\sum_{S=1}^{\infty}\left|\alpha_{S}\right| \leq B$ and $\sum_{S=1}^{\infty} \alpha_{S} x^{s}=1$ for all $1 \geq x \geq \lambda \quad$ which is absurd. It follows that $B(\lambda, m) \rightarrow \infty$ as $m \rightarrow \infty$ and the lemma is proved.

LEMMA 2. Let $1>\lambda>0, m \geq 1$. Then, with the notation of Lemma 1, we can find $\quad b_{T} \in \mathbb{C} \quad[T \in \Psi(m)$, card $T \geq \lambda m]$ such that
(i) $\sum_{T \in \Psi(m), ~ c a r d ~}^{T} \geq \lambda m{ }_{T}{ }^{\mathrm{b}} \mathrm{T}=1$
(ii) $\left|\sum_{T \in \Psi(m), ~ c a r d ~}^{T \geq \lambda m}{ }^{m} T_{S}(T)\right| \leq B(\lambda, m)^{-1} \quad$ for all $S \in \Psi(m)$.

Proof. Write $E=\{T \in \Psi(m):$ card $T \geq \lambda m\}$ and observe that $\Gamma=\left\{\sum_{S \in \Psi(m)} a_{S} f_{S}\left|E: \sum_{S \in \Psi(m)}\right| a_{S} \mid<B(\lambda, m)\right\} \quad$ is a convex balanced subset of $C(E)$ which does not contain 1. Thus by the theorem of Hahn-Banach there exists a $\mu \in M(E)$ such that
(i) $\langle\mu, 1\rangle=1$
(ii) $\quad|\langle\mu, g\rangle| \leq B(\lambda, m)^{-1}$ for all $g \in \Gamma$
and so in particular
(ii) $\left|\left\langle\mu, f_{S} \mid E\right\rangle\right| \leq B(\lambda, m)^{-1} \quad$ for all $\quad S \in \Psi(m)$.

Writing $\quad \mathrm{b}_{\mathrm{T}}=\mu(\{\mathrm{T}\})$ we have the result.
Next let us establish some notation. Let D be the direct product of a countable number of copies of the group $\{-1,1\}$ on 2 elements. We shall write the element $\underset{\sim}{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathrm{D} \quad\left[\alpha_{i}= \pm 1\right]$ as $\sum_{i=1}^{\infty} 2 \alpha_{i} / 3^{i}$. The dual \hat{D} of D consists of all strings $\underset{\sim}{\beta}=\left(\beta_{1}, \beta_{2}, \ldots\right)$ with $\beta_{i}= \pm 1$ and only a finite number of β_{i} equal to -1 . We shall write $\underset{\sim}{\beta}$ as $X_{i=1}^{\infty} \beta_{i} i^{i}$. Thus for example $x_{5}(2 / 3+2 / 9)=\langle(-1,1,-1,1,1, \ldots),(-1,-1,1,1, \ldots)\rangle=-1$.

LEMMA 3. Let $1 \leq n_{1}<n_{2}<\ldots<n_{m+1}, 1>\lambda>0$. Set $n_{i+1}{ }^{-1}$
$\rho_{i}=\underset{j=n_{i}}{*}\left(\delta_{2 / 3} \mathbf{j}+\delta_{o}\right) / 2 \quad$ (where $\quad \delta_{t}$ is the Diract point mass at $t \in D$) and
$\sigma_{\mathrm{T}}=\stackrel{*}{\mathrm{i} \notin \mathrm{T}} \rho_{\mathrm{i}} \quad[\mathrm{T} \in \Psi(\mathrm{m})]$. Then if, with the notation of Lemma 2, we set $\mu=\sum_{\mathrm{T} \in \Psi(\mathrm{m})} \mathrm{b}_{\mathrm{T}} \sigma_{\mathrm{T}} \quad$ we obtain
(i) $\hat{\mu}(\mathrm{r})=1$
for all $0 \leq r<2{ }^{n_{1}}$
(ii) $|\hat{\mu}(r)| \leq B(\lambda, m)^{-1}$
for all $2^{n_{1}} \leq \mathrm{r}<2^{\mathrm{n}_{\mathrm{m}}+1}$
whilst setting $E=$ supp $\mu \quad$ we have
(iii) $\left\|m^{-1} \sum_{i=1}^{m} x_{2} n_{i}-1\right\|_{C(E)} \leq 2(1-\lambda)$.

Proof. Since $\hat{\sigma}_{T}(r)=\prod_{i \notin T} \hat{\rho}_{i}(r)=1$ for $0 \leq r<2^{n_{1}}$ condition (i) of Lemma 3 follows directly from condition (i) of Lemma 2. On the other hand, suppose $2^{n_{1}} \leq r<2^{n_{m}+1}$. Then $r=\sum_{j=1}^{n_{m+1}}{ }^{-1} \gamma_{j} 2^{j}$ where $\gamma_{j}=0,1$ and $S(r)=\left\{i: \exists n_{i} \leq j<n_{i+1}\right.$ with $\left.\quad \gamma_{j} \neq 0\right\} \in \Psi_{m}$. Clearly $\hat{\rho}_{i}(r)=0$ if $i \in S(r)$, $\hat{\rho}_{i}(r)=1$ otherwise so that $\hat{\sigma}_{T}(r)=\prod_{i \notin T} \hat{\rho}_{i}(r)=f_{S(r)}(T)$ and condition (ii) of Lemma 3 follows directly from condition (ii) of Lemma 2.

Finally suppose $x \in E$. Then $x \in \operatorname{supp} \sigma_{T}$ for some $T \in \Psi_{m}$, card $T \geq \lambda m$. automatically $X_{n_{i}}(x)=1$ if i\&t $T, X_{n_{2}}(x)= \pm 1$ in general and so $\left|m^{-1} \sum_{i=1}^{m} x_{2} n_{i}(x)-1\right| \leq 2(1-\lambda)$.

LEMMA 4. We can find $1=k(1)<k(2)<\ldots$ and $n(1)<n(2)<\ldots$ together with a closed set E such that E supports a pseudofunction T with $\hat{T}(0)=1=\|T\|_{P M} \quad$ and

$$
\left\|(k(j+1)-k(j))^{-1} \sum_{i=k(j)}^{k(j+1)-1} x_{2} n(i)-1\right\|_{C(E)} \leq 2^{-j} \quad[j \geq 1]
$$

Proof. By Lemma 1 we can find $k(1)<k(2)<\ldots$ such that $B\left(1-2^{j+1}, k(j+1)-k(j)\right) \leq 2^{-j}$. Now choose integers $n(1)<n(2)<\ldots$ By Lemma 3 we can find measures μ_{j} such that
(i) $\hat{\mu}_{j}(r)=1 \quad$ for all $\quad 0 \leq r<2^{n(k(j))}$
(ii) $\left|\hat{\mu}_{j}(r)\right| \leq 2^{-j}$ for all $2^{n(k(j))} \leq r<2^{n(k(j+1))}$ whilst setting $E_{j}=\operatorname{supp} \mu_{j}$ we have
(iii) $\left\|(k(j+1)-k(j)) \sum_{i=k(j)}^{k(j+1)-1} x_{2^{i}}-1\right\| C\left(E_{j}\right) \leq 2^{-j}$
and (iv) $\left\|x_{2}-1\right\|_{C\left(E_{j}\right)}=0$ whenever $0 \leq i<k(j)$ or $k(j+1) \leq i$. Note that (i), (ii) and (iv) show that $\left\|\mu_{j}\right\|_{P M}=1$.

Now set $T_{j}=\underset{i=1}{\boldsymbol{j}} \mu_{j}$. It is clear that $\left\|T_{j}\right\|_{P M}=\hat{T}_{j}(0)=1 \quad$ and $\quad \hat{T}_{j}(r)=\hat{T}_{j+1}(r)$ for all $\quad \mathbf{r}<\mathrm{k}(\mathrm{j})$. Thus T_{j} converges weakly to a pseudomesure T with $\|T\|_{P M}=\hat{T}(0)=1$. Since $\left|\hat{T}_{j}(r)\right|=\prod_{i=1}^{j}\left|\hat{\mu}_{i}(r)\right| \leq 2^{-\ell}$ for all $2^{k(e)} \leq r<2^{k(\ell+1)}$ $[1 \leq \ell \leq j]$ it follows that $|\hat{T}(r)| \leq 2^{-\ell}$ for all $2^{k(\ell)} \leq r<2^{k(\ell+1)}$ and so T is a pseudofonction. Using (iv) we see that $F_{j}=E_{1}+E_{2}+\ldots+E_{j}$ converges (in the topological sense) to a closed set E.

We want to show that $T \in P M(E)$. To this end suppose $f \in A(D), \operatorname{supp} f \cap E=\emptyset$. Then supp $f \cap E_{j}=\emptyset$ for j sufficiently large and so (since $T_{j} \in M\left(E_{j}\right)$) $\langle T, f\rangle=0$ for j sufficiently large. Thus $\langle T, f\rangle=0$ and $\operatorname{supp} T \subseteq E$ as required.

On the other hand, suppose e€E. Then we can write $e=e_{1}+e_{2}+\ldots$ where $e_{j} \in E_{j}$. In particular, using (iv) we obtain $X_{2 n(i)}(e)=X_{2 n(i)}\left(e_{j}\right)$ for all $\mathrm{k}(\mathrm{j}) \leq \mathrm{i}<\mathrm{k}(\mathrm{j}+1)$. Thus by (iii) $\left|(k(j+1)-k(j))^{-1} \sum_{i=k(j)}^{k(j+1)-1} x_{2} n(i)^{(e)-1}\right|=\left|(k(j+1)-k(j))^{-1} \sum_{i=k(j)}^{k(j+1)-1} x_{2^{n}} n(j)^{\left(e_{j}\right)}\right| \leq 2^{-j}$ and the full result is proved.

In effect we have constructed a Weak Dirichlet set supporting a true non zero pseudofunction. But any such set can be perturbed to give a Weak Kronecker set
supporting a true non zero pseudofunction. (We shall give a proof of this in the simple special case given in Lemma 4 but the general proof is hardly more complicated).

LEMMA 5. Suppose E and T are given as in Lemma 4. Suppose further $j_{0} \geq 1$ and an $f \in C(E)$ with $f(e)= \pm 1$ for all $e \in E$ is given. Then $E_{1}=\{e \in E: f(e)=1\}$ and $E_{2}=\{e \in E: f(e)=-1\}$ are closed and we can find a $j>j_{0}$ and an x such that writing $T^{\prime}=T \mid E_{1}+\left(T \mid E_{2}\right) * \delta_{x}$ $E^{\prime}=E_{1} \cup\left(E_{2}+x\right)$ we have
(i) $\quad x_{2}(x)=1$ for all $i<k\left(j_{1}\right)$ and for all $i \geq k\left(j_{1}+1\right)$
(ii) $\quad X_{2}(x)=-1$ for all $k\left(j_{1}\right) \leq i<k\left(j_{1}+1\right)$
so in particular, setting $\quad f_{0}\left|E_{1}=1, \quad f_{0}\right| E_{2}+x=-1 \quad$ we have $f_{0} \in C\left(E^{\prime}\right)$ and
(i)' $\left\|(k(j+1)-k(j))^{-1} \sum_{i=k(j)}^{k(j+1)-1} x_{2} n(i)-1\right\|_{C\left(E^{\prime}\right)} \leq 2^{-j} \quad\left[j \geq 1, j \neq j_{1}\right]$
(ii)' $\left\|\left(k\left(j_{1}+1\right)-k(j)\right)^{-1} \sum_{i=k\left(j_{1}\right)}^{k\left(j_{1}+1\right)-1} x_{2^{n(i)}}-f_{o}\right\|_{C\left(E{ }^{\prime}\right)} \leq 2^{-j_{1}}$
whilst on the other hand T^{\prime} is a pseudo function with $T^{\prime} \in P M\left(E^{\prime}\right), \hat{T}^{\prime}(0)=1=\|T\|_{P M}$ and
(iii) $\left|\hat{T}^{\prime}(r)\right| \leq|\hat{T}(r)|+2^{-j_{0}}$.

Proof. Since E_{1} and E_{2} are disjoint closed sets we can find $g_{\ell} \in A(D)$ with $g_{\ell}(e)=1$ if e lies in a neighborhood of $E_{l}, \quad g_{e}(e)=0$ if e lies in a neighborhood of $\quad E_{3 / 2-(-1)^{\ell} / 2} \quad[\mathfrak{l}=1,2]$. Thus since $\quad \hat{T}(r) \rightarrow 0$ as $r \rightarrow \infty \quad$ it follows that $\quad \hat{T}_{e}(r)=T \mid E_{\ell}^{\hat{e}}(r)=T g_{e}(r) \rightarrow 0 \quad$ as $\quad r \rightarrow \infty$.

Choose $j_{1} \geq j_{0}$ such that $\left|\hat{T}_{e}(r)\right| \leq 2^{-j_{0}-3}$ for all $r \geq k\left(j_{1}\right)$. Set
$x=\sum_{i=k\left(j_{1}\right)}^{k\left(j_{1}+1\right)-1} 2 / 3^{n(i)}$. Conditions (i) and (ii) (and so (i)' and (ii)') follow trivially. Further since $\hat{\delta}_{x}(r)=1$ we have $\hat{T}(r)=\hat{T}^{\prime}(r)$ for all $r<k\left(j_{1}\right)$. On the other hand if $r \geq k\left(j_{1}\right)$ we know that $\hat{\delta}_{x}(r)= \pm 1, \quad\left|\hat{T}_{\rho}(r)\right| \leq 2^{-j_{0}-2} \quad[e=1,2] \quad$ so that $\left|\left(T-T^{1}\right) \hat{\wedge}(r)\right| \leq 4.2^{-\mathrm{j}^{-2}}=2^{-\mathrm{j}_{0}}$ so condition (iii) is proved. Finally since $\hat{\mathrm{T}}_{1}(r), \hat{\mathrm{T}}_{2}(\mathrm{r}) \rightarrow 0$ as $\mathrm{r} \rightarrow \infty$ it follows that $\hat{\mathrm{T}}^{\prime}(\mathrm{r}) \rightarrow 0$ as $\quad \mathrm{r} \rightarrow \infty$.

THEOREM. There exists a closed set $F \subseteq D$ which is of interpolation for $A(D)$ but carries a non zero pseudo measures.

Proof. This is an easy consequence of Lemmas 4 and 5. Take E as in Lemma 4. We can find a sequence of partitions $P_{n}=\left\{E_{n 1}, E_{n 2}, \ldots, E_{n 2^{n}}\right\}_{2^{n}}$ such that $E_{n r}$ is closed $\quad\left[1 \leq r \leq 2^{n}\right], \quad E_{n r} \cap E_{n s}=\varnothing \quad\left[1 \leq r<s \leq 2^{n}\right], \quad \bigcup_{r=1} \quad E_{n r}=E$, $E_{n+12 t-1} \cup E_{n+12 t}=E_{n t} \quad\left[1 \leq t \leq 2^{n}\right]$.

By repeated use of Lemma 5 we can find $Q(1)<Q(2)<\ldots$, trigonometric polynomials $f_{n \varepsilon_{1}} \varepsilon_{2} \ldots \varepsilon_{2} \quad\left[\varepsilon_{i}= \pm 1\right]$ and points $x_{n r} \in D \quad\left[1 \leq r \leq 2^{n}\right]$ such that setting $\quad E_{n}=\bigcup_{r=1}^{2^{n}}\left(E_{n r}+x_{n r}\right), \quad T_{n}=\sum_{r=1}^{2^{n}}\left(T \mid E_{n r}\right) * \delta_{x_{n r}} \quad$ we have
(i) $\left.\left\|f_{n \varepsilon_{1}} \varepsilon_{2} \ldots \varepsilon_{2}{ }^{-\quad \varepsilon_{r}}\right\|_{C\left(E_{n r}+x_{n r}\right.}\right) \leq 2^{-n}$
(ii) $\left\|f_{n \varepsilon_{1}} \varepsilon_{2} \ldots \varepsilon_{2}\right\|_{A(D)}=1$
(iii) $\hat{f}_{n} \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{2}{ }^{n}(\mathrm{~s})=0$ for all $s \geq 2^{Q(n)}$
(iv) $X_{2} p\left(x_{n+1} 2 t-1-x_{n t}\right)=x_{2} p\left(x_{n+12 t}-x_{n t}\right)=1$ for all $0 \leq p \leq Q(n), \quad 1 \leq t \leq 2^{n}$
(v) $\left|\hat{T}_{n}(r)\right| \leq\left|\hat{T}_{n-1}(r)\right|+2^{-n}$ for all $r \quad[n \geq 1]$ where $T_{o}=T$
(vi) T_{n}, E_{n} satisfy the conditions of Lemma 4 for a suitable choice of $k(j), n(j)$.

Under these conditions it is clear that T_{n} converges weakly to a pseudofunction S with $\|S\|=\hat{S}(0)=1$, and that E_{n} converges topologically to a set F with $\operatorname{SEPM}(F)$. (Use argument of the paragraph before last of Lemma 4). It only remains to show that F is of interpolation.

To prove this suppose $\varepsilon>0$ given, $f \in C(D)$ and f takes only the values 1 and -1. Then we can find an $n \geq 1$ such that $\varepsilon \leq 2^{-n}$, f is constant on each $E_{n r}+x_{n r} \quad\left[1 \leq r \leq 2^{n}\right] \quad$ and $\quad f(x+y)=f(y) \quad$ whenever $\quad X_{2} p(x)=1 \quad$ for all $\quad 0 \leq r \leq Q(n)$. Set $\quad \varepsilon_{2 t}=\varepsilon_{2 t-1}=f\left(E_{n t}+x_{n t}\right) \quad\left[1 \leq t \leq 2^{n}\right]$. It follows from (i), (ii), (iii) and (iv) that $\left\|f_{n+1} \varepsilon_{1} \ldots \varepsilon_{2^{n+1}}\right\|_{A(D)}=1$ and $\left\|f_{n+1} \varepsilon_{1} \ldots \varepsilon_{2^{n+1}}-f\right\|_{C(F)} \leq \varepsilon$. Thus F is of interpolation.

Remark. The work above was done after but in ignorance of Kaufman's elegant work reported above. However it may be useful to have a simple version of my original method to compare with that of Kaufman and the earlier results of Piatecki-Shapiro.

In particular it prompts the following remark. Consider the set
$E=\left\{\sum_{\mathbf{r}=1}^{\infty} \varepsilon_{\mathbf{r}} 2^{-\mathbf{r}} \pi: \sum_{\mathbf{r}=1}^{\mathbf{s}}\left|\varepsilon_{\mathbf{r}}\right| \leq s 2^{-10000}, \quad \varepsilon_{\mathbf{r}}=0,1\right\} \subset \mathbf{T}$. By the theorem of PiateckiShapiro E supports a non zero pseudofunction T. But it is clear that given $n(0)$ we can find an $n(1)$ sufficiently large that $\left\|(n(1)-n(0))^{-1} \sum_{r=n(0)}^{n(1)-1} x_{2} 100_{p}-1\right\|_{C(E)^{\leq 2}}^{-10}$. Thus perturbing E and T as in Lemmas 4 and 5 we obtain such that $f \in A(T),\|f\|_{A(T)}=10$ for all $\quad \| \in C(T)$ with $|g(t)|=1 \quad[t \in T]$. Such a set is a Helson set and we have another proof of the existence of Helson sets not of synthesis.

