Robert Kaufman
\section*{M-sets and distributions}
Astérisque, tome 5 (1973), p. 225-230
http://www.numdam.org/item?id=AST_1973__5__225_0

© Société mathématique de France, 1973, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme

M-SETS AND DISTRIBUTIONS

Robert Kaufman

O. INTRODUCTION.

A closed subset S of the circle group T is called a weak Kronecker set ($K_{o}-s e t$) if each complex measure μ carried by S has the property $\sup |\hat{\mu}(n)|=\|\mu\|$; S is called an M-set if it carries a distribution $\boldsymbol{\tau} \neq 0$ (of L. Schwartz) whose Fourier transform $\hat{\tau}(n)$ vanishes for $n= \pm \infty$; and S is called M_{o} if the distribution τ is a finite measure. In 1954 Pyatečkii-Šapiro [3] showed the existence of sets of type M, not of type M_{0}; this work is still striking because it exhibits a specific set S. Then Körner [1] showed the existence of sets of type $M \cap K_{0}$. In this note we modify the method of [3] to prove.

THEOREM. Each closed set S of type M contains a closed set S_{1} of type $M \cap K_{o}$.

1. Let the N-dimensional torus T^{N} be represented as the product of intervals $[-\pi, \pi]$ and let $\quad V_{\varepsilon}^{N}$ be the set of N-tuples $\left(x_{1}, \ldots, x_{N}\right)$ such that $\left|x_{k}\right| \leq \varepsilon$ for at least $(1-\varepsilon) \mathrm{N}$ indices $\mathrm{K}=1,2, \ldots, \mathrm{~N} \quad(0<\varepsilon<1)$. We need a chain of lemmas to prove.

LEMMA 1. For $N>N_{E}$ we can find a function F, continuous on T, vanishing off V_{ε}^{N}, such that $|\hat{F}(x)|<\varepsilon|\hat{F}(0)|$ for all characters $x \neq 0$ (in additive notation).

To prove Lemma 1 we construct a special kind of product probability measure on T^{N}. Let $0 \leq t \leq 1$ and let σ_{t} be the measure $(2 \pi)^{-1} t d x+(1-t) \delta_{0}$ on t, and λ_{t} the N-fold product of σ_{t}, a probability measure on $T N$. (The index N is suppressed in $\lambda_{\mathbf{t}}$).

LEMMA 2. $\lambda_{t}\left(\mathrm{~T}^{\mathrm{N}} \sim \mathrm{V}_{\varepsilon}^{\mathrm{N}}\right) \rightarrow 0$ as $\mathrm{N} \rightarrow+\infty$, uniformly on the interval $0 \leq \mathrm{t} \leq \frac{\varepsilon}{2}$.

This is a simple consequence of Chebyshev's inequality, because $[-\varepsilon, \varepsilon]$ has σ_{t} measure $\geq 1-\frac{\varepsilon}{2}$.

LEMMA 3. Let V be an open set in a compact abelian group G, with dual Γ; suppose that $\sup \{|\hat{F}(x)|: x \neq 0\} \geq \varepsilon|\hat{F}(0)|$ for every F continuous on G and vanishing on $G \sim V$. Then there is an identity

$$
1=\sum \alpha_{X} x(y), \sum\left|\alpha_{X}\right| \leq \varepsilon^{-1}, \alpha_{0}=0
$$

valid for all y in V.

Proof. The Fourier transform associates to each continuous F an element of the space $C_{0}(\Gamma) ;$ assuming that $\varepsilon|\hat{F}(0)| \leq \sup \{|\hat{F}(x)|: x \neq 0\} \quad$ for all F in our subspace, we can write $\hat{F}(0)=\sum b_{X} \hat{F}(x)$, with $\sum\left|b_{X}\right| \leq \varepsilon^{-1}$. Since V is open, this implies $1=\sum b_{X} \overline{x(y)}$ identically in V.

Proof of Lemma 1. We shall prove that an equality of the type mentioned in Lemma 3 can be valid for only finitely many integers $1,2, \ldots, N_{\varepsilon}$. The key to this is the
formula $\lambda_{t}(x)=(1-t)^{k} \quad(k=1,2,3, \ldots)$ for each character $x \neq 0$ on T^{N}. Suppose $\quad \lambda_{t}\left(V_{\varepsilon}^{N}\right) \geq 1-\eta_{N}$ for $0 \leq t \leq \varepsilon / 2$, and integrate the identity with respect to λ_{t}. Then $\left|1-\sum_{1}^{\infty} C_{k}^{N}(1-t)^{k}\right| \leq \varepsilon^{-1} \eta_{N} \quad$ over $\quad 0 \leq t \leq \varepsilon / 2$, with $\sum\left|C_{k}^{N}\right| \leq \varepsilon^{-1}$. Since the functions $\sum_{1}^{\infty} C_{k}^{N} s^{k}$ form a normal family for $|s| \leq 1$ in the plane, and $\quad \eta_{N} \rightarrow 0$, the identities in question are possible only for $N \leq N_{\varepsilon}$.

Let $\quad F_{N}$ be the function just constructed, corresponding to an $\varepsilon>0$ and $\mathrm{N}>\mathrm{N}_{\varepsilon}$. We must replace F_{N} by a smooth function, since τ, being a distribution rather than a measure, does not admit multiplication by continuous functions. Let $\psi(x)$ be a smooth approximation to δ_{0} vanishing outside a small interval $[-\delta, \delta]$ and let G_{N} be the convolution $F_{N^{*}}\left(\psi\left(x_{1}\right) \ldots \psi\left(x_{N}\right)\right)$. Then $\hat{G}_{N^{\prime}}(0)=\hat{F}_{N^{\prime}}(0)=1 \quad$ (say) and $\mathrm{G}_{\mathrm{N}} \quad$ vanishes outside $\quad \mathrm{V}_{\varepsilon+\delta}^{\mathrm{N}} \subseteq \mathrm{V}_{2 \delta}^{\mathrm{N}}$ when $0<\varepsilon<\delta$. Also $\left|\hat{\mathrm{G}}_{\mathrm{N}}(\mathrm{x})\right|<\varepsilon \mid \hat{\psi}\left(\mathrm{k}_{1}\right) \ldots$ $\ldots \hat{\psi}\left(k_{N}\right) \mid$ when $x \neq 0$ and x has components $\left(K_{1}, \ldots, K_{N}\right)$.
2. Proof of Theorem. Let τ be a distribution such that $\hat{\tau}(\infty)=0$, and $g(x)$ a real function of class $C^{\infty}(T)$. For integers $p \geq 1$ we are going to use distributions of the form $\quad \tau_{1}=G_{N}\left(g(x)-p x, \ldots, g(x)-p^{N} x\right) . \quad \tau(d x), \quad$ and observe first of all that the multiplier of τ is smooth on T , so the product is defined. Using the expansion of G_{N} as a Fourier series on T^{N}, we can write τ_{1} as a sum $\sum C\left(k_{1}, \ldots, k_{N}\right) \exp i\left(k_{1}+\ldots+k_{N}\right) g(x) . \exp -i\left(p k_{1}+\ldots+p^{N_{k}}{ }_{N}\right) x . \tau(d x)$.

The distributions with bounded Fourier transforms form a Banach space with the norm $\|\sigma\|=\sup |\hat{\sigma}|$. The sum above converges in norm, uniformly with respect to p. For $\|\exp -i k x . \tau(x)\|=\|\tau\|$; the $C^{1}(T)$-norm of $\exp i\left(k_{1}+\ldots+k_{N}\right) g(x)$ is $O(1)+O\left(\left|k_{1}+\ldots+k_{N}\right|\right)$, and $\left.|C| k_{1}, \ldots, k_{N}\right)\left|\leq\left|\hat{\psi}\left(k_{1}\right) \ldots \hat{\psi}\left(k_{N}\right)\right|\right.$ with ψ in
$\mathrm{C}^{\infty}(\mathrm{T})$, so $\hat{\psi}$ decreases rapidly.
We assert now that for large $p\left\|\tau_{1}-\tau\right\|$ exceeds by $o(1)$ the maximum norm of the summands with $\left|k_{1}\right|+\ldots+\left|k_{N}\right|>0$, a number bounded in turn by $\|\tau\| . \sup \left|C\left(k_{1}, \ldots, k_{N}\right)\right| .\left\|\exp i\left(k_{1}+\ldots+k_{N}\right) g(x)\right\|_{C} 1$. In view of the uniform convergence mentioned above, it is sufficient to verify this for finite sums, say for $1 \leq\left|k_{1}\right|+\ldots+\left|k_{N}\right| \leq A$. Each distribution in the sum has a transform vanishing at infinity ; to each B, and $p>p(B)$, the values of $p k_{1}+\ldots+p^{N} k_{N}$, generated by the N -tuples in question, differ by at least B . This in fact suffices for the necessary bound on $\left\|\tau_{1}-\tau\right\|$.

Recall that p was chosen after N ; we now study the effect of increasing N , and assert that $\left|\hat{\psi}\left(k_{1}\right) \ldots \hat{\psi}\left(k_{N}\right)\right| .\left|k_{1}+\ldots+k_{N}\right|$ remains bounded for all N. In the argument we can assume $1 \leq k_{1} \leq \ldots \leq k_{N}$, and observe that $|\hat{\psi}(k)| \leq 1-\eta$ for $k \geq 1$. Cancellation of k_{1} effects a multiplication by at least $(1-\eta)^{-1}\left(1-N^{-1}\right)$, and this exceeds 1 provided $\mathrm{N}>\eta^{-1}$. Thus the problem is reduced to the special case $\mathrm{N} \leq \eta^{-1}$ and here the inequality $|\hat{\psi}(\mathrm{k})|<\mathrm{k}^{-1}$ is at hand. Finally, for large N we have the additional factor $\varepsilon>0$.

Before applying this to the last step, we recapitulate what has been attained. Given g in $C^{\infty}(T)$ and $\delta>0$ we found a function H in $C^{\infty}(T)$ such that $\|\mathrm{H}(\mathrm{x}) \tau(\mathrm{x})-\tau(\mathrm{x})\|<\delta$. Moreover there exist integers $\mathrm{p} \geq 1$ and $\mathrm{N} \geq 1$ such that $H(x)=0 \quad$ unless at least $\quad(1-\delta) N$ of the inequalities $\quad\left|g(x)-p^{r} x\right| \leq 2 \delta \quad$ (modulo 2π) are fulfilled. Of course the closed support of $H(x) \tau(x)$ is contained in that of τ, and also in the set just mentioned.

Beginning with a distribution $\tau \neq 0$, we choose a sequence $\left(\mathrm{g}_{\mathrm{j}}\right)_{1}^{\infty}$, uniformly dense in the real Banach space $C(T)$ and perform a sequence of operations of the kind
just completed. We obtain a distribution $\tau_{1} \neq 0$, whose closed support $\quad S_{1}$ is contained in the support of S. For each $j \geq 1$ there are integers p_{j} and N_{j} so that at least $\left(1-2^{-j}\right) N_{j}$ of the N_{j} inequalities (with $\quad p=p_{j}, \quad g=g_{j}, \quad N=N_{j}$) $\left|g(x)-p^{r} x\right| \leq 2^{-j} \quad$ (modulo 2π), $\quad 1 \leq r \leq N \quad$ are fulfilled at each point in $\quad S_{1}$. Thus S_{1} is a K_{o}-set ; S_{1} has the property, somewhat stronger, that each finite measure on S_{1} is nearly carried by a Kronecker set.

REFERENCES

[1] KÖRNER, T. W. A pseudofunction on a Helson set, ce volume.
[2] PYATEČKII-ŠAPIRO, I. I. On the problem of uniqueness of the expansion of a function in a trigonometric series (Russian). Moskov. Gos. Univ. Uc Zap. 155 (Math V), (1952), 54-72.
[3] Supplement to the same. Ibidem 165 (Math VII), (1954), 79-97.

