Astérisque

ROBERT KAUFMAN M-sets and distributions

Astérisque, tome 5 (1973), p. 225-230 <http://www.numdam.org/item?id=AST 1973 5 225 0>

© Société mathématique de France, 1973, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

M-SETS AND DISTRIBUTIONS

Robert Kaufman

R. KAUFMAN

0. INTRODUCTION.

A closed subset S of the circle group T is called a weak Kronecker set (K_o-set) if each complex measure μ carried by S has the property $\sup |\hat{\mu}(n)| = ||\mu||$; S is called an M-set if it carries a distribution $\tau \neq 0$ (of L. Schwartz) whose Fourier transform $\hat{\tau}(n)$ vanishes for $n = \pm \infty$; and S is called M_o if the distribution τ is a finite measure. In 1954 Pyatečkii–Šapiro [3] showed the existence of sets of type M, not of type M_o ; this work is still striking because it exhibits a specific set S. Then Körner [1] showed the existence of sets of type $M \cap K_o$. In this note we modify the method of [3] to prove.

THEOREM. Each closed set S of type M contains a closed set S $_1$ of type M \cap K $_0.$

1. Let the N-dimensional torus T^N be represented as the product of intervals $[-\pi, \pi]$ and let V^N_{ε} be the set of N-tuples (x_1, \ldots, x_N) such that $|x_k| \le \varepsilon$ for at least $(1-\varepsilon)N$ indices $K = 1, 2, \ldots, N$ $(0 < \varepsilon < 1)$. We need a chain of lemmas to prove. LEMMA 1. For $N > N_{\varepsilon}$ we can find a function F, continuous on T^N , vanishing off V_{ε}^N , such that $|\hat{F}(\chi)| < \varepsilon |\hat{F}(0)|$ for all characters $\chi \neq 0$ (in additive notation).

To prove Lemma 1 we construct a special kind of product probability measure on T^{N} . Let $0 \le t \le 1$ and let σ_{t} be the measure $(2\pi)^{-1}tdx + (1-t)\delta_{0}$ on t, and λ_{t} the N-fold product of σ_{t} , a probability measure on T^{N} . (The index N is suppressed in λ_{t}).

LEMMA 2. $\lambda_t (T^N \sim V_{\epsilon}^N) \rightarrow 0$ as $N \rightarrow +\infty$, uniformly on the interval $0 \le t \le \frac{\epsilon}{2}$. This is a simple consequence of Chebyshev's inequality, because $[-\epsilon, \epsilon]$ has

 σ_t measure $\geq 1-\frac{\varepsilon}{2}$.

LEMMA 3. Let V be an open set in a compact abelian group G, with dual Γ ; suppose that $\sup \{|\hat{F}(\chi)|: \chi \neq 0\} \ge \varepsilon |\hat{F}(0)|$ for every F continuous on G and vanishing on G \sim V. Then there is an identity

$$1 = \sum \alpha_{\chi} \chi(\mathbf{y}) , \sum |\alpha_{\chi}| \le \varepsilon^{-1} , \alpha_{0} = 0,$$

valid for all y in V.

Proof. The Fourier transform associates to each continuous F an element of the space $C_0(\Gamma)$; assuming that $\varepsilon |\hat{F}(0)| \le \sup \{|\hat{F}(\chi)| : \chi \ne 0\}$ for all F in our subspace, we can write $\hat{F}(0) = \sum_{X} b_{\chi} \hat{F}(\chi)$, with $\sum_{X} |b_{\chi}| \le \varepsilon^{-1}$. Since V is open, this implies $1 = \sum_{X} b_{\chi} \overline{\chi(y)}$ identically in V.

Proof of Lemma 1. We shall prove that an equality of the type mentioned in Lemma 3 can be valid for only finitely many integers 1, 2, ..., N_{ϵ} . The key to this is the

R. KAUFMAN

formula $\lambda_t(\chi) = (1-t)^k$ (k = 1, 2, 3, ...) for each character $\chi \neq 0$ on T^N . Suppose $\lambda_t(V_{\varepsilon}^N) \ge 1 - \eta_N$ for $0 \le t \le \varepsilon/2$, and integrate the identity with respect to λ_t . Then $|1 - \sum_{1}^{\infty} C_k^N (1-t)^k| \le \varepsilon^{-1} \eta_N$ over $0 \le t \le \varepsilon/2$, with $\sum |C_k^N| \le \varepsilon^{-1}$. Since the functions $\sum_{1}^{\infty} C_k^N s^k$ form a normal family for $|s| \le 1$ in the plane, and $\eta_N \ne 0$, the identities in question are possible only for $N \le N_{\varepsilon}$.

Let F_N be the function just constructed, corresponding to an $\varepsilon > 0$ and $N > N_{\varepsilon}$. We must replace F_N by a smooth function, since τ , being a distribution rather than a measure, does not admit multiplication by continuous functions. Let $\psi(x)$ be a smooth approximation to δ_0 vanishing outside a small interval $[-\delta, \delta]$ and let G_N be the convolution $F_{N^*}(\psi(x_1) \dots \psi(x_N))$. Then $\hat{G}_N(0) = \hat{F}_N(0) = 1$ (say) and G_N vanishes outside $V_{\varepsilon+\delta}^N \subseteq V_{2\delta}^N$ when $0 < \varepsilon < \delta$. Also $|\hat{G}_N(\chi)| < \varepsilon |\hat{\psi}(k_1) \dots$ $\dots \hat{\psi}(k_N)|$ when $\chi \neq 0$ and χ has components (K_1, \dots, K_N) .

2. Proof of Theorem. Let τ be a distribution such that $\hat{\tau}(\infty) = 0$, and g(x) a real function of class $C^{\infty}(T)$. For integers $p \ge 1$ we are going to use distributions of the form $\tau_1 = G_N(g(x) - px, \ldots, g(x) - p^N x)$. $\tau(dx)$, and observe first of all that the multiplier of τ is smooth on T, so the product is defined. Using the expansion of G_N as a Fourier series on T^N , we can write τ_1 as a sum

$$\sum C(k_1, \ldots, k_N) \exp i(k_1 + \ldots + k_N)g(x) \exp - i(pk_1 + \ldots + p^N k_N)x \cdot \tau(dx).$$

The distributions with bounded Fourier transforms form a Banach space with the norm $||\sigma|| = \sup |\hat{\sigma}|$. The sum above converges in norm, uniformly with respect to p.

For $||\exp - ikx.\tau(x)|| = ||\tau||$; the $C^{1}(T)$ -norm of $\exp i(k_{1} + \ldots + k_{N})g(x)$ is $O(1) + O(|k_{1} + \ldots + k_{N}|)$, and $|C|k_{1}, \ldots, k_{N}| \le |\hat{\psi}(k_{1}) \ldots \hat{\psi}(k_{N})|$ with ψ in

 $C^{\infty}(T)$, so $\hat{\psi}$ decreases rapidly.

We assert now that for large $p ||\tau_1 - \tau||$ exceeds by o(1) the maximum norm of the summands with $|k_1| + \ldots + |k_N| > 0$, a number bounded in turn by $||\tau|| \cdot \sup |C(k_1, \ldots, k_N)| \cdot ||\exp i(k_1 + \ldots + k_N)g(x)||_C 1$. In view of the uniform convergence mentioned above, it is sufficient to verify this for finite sums, say for $1 \le |k_1| + \ldots + |k_N| \le A$. Each distribution in the sum has a transform vanishing at infinity; to each B, and p > p(B), the values of $pk_1 + \ldots + p^N k_N$, generated by the N-tuples in question, differ by at least B. This in fact suffices for the necessary bound on $||\tau_1 - \tau||$.

Recall that p was chosen after N; we now study the effect of increasing N, and assert that $|\hat{\psi}(k_1) \dots \hat{\psi}(k_N)| . |k_1 + \dots + k_N|$ remains bounded for all N. In the argument we can assume $1 \le k_1 \le \dots \le k_N$, and observe that $|\hat{\psi}(k)| \le 1 - \eta$ for $k \ge 1$. Cancellation of k_1 effects a multiplication by at least $(1-\eta)^{-1}(1-N^{-1})$, and this exceeds 1 provided $N > \eta^{-1}$. Thus the problem is reduced to the special case $N \le \eta^{-1}$ and here the inequality $|\hat{\psi}(k)| \le k^{-1}$ is at hand. Finally, for large N we have the additional factor $\varepsilon > 0$.

Before applying this to the last step, we recapitulate what has been attained. Given \mathbf{g} in $C^{\infty}(T)$ and $\delta > 0$ we found a function H in $C^{\infty}(T)$ such that $||\mathbf{H}(\mathbf{x})\tau(\mathbf{x}) - \tau(\mathbf{x})|| < \delta$. Moreover there exist integers $\mathbf{p} \ge 1$ and $\mathbf{N} \ge 1$ such that $\mathbf{H}(\mathbf{x}) = 0$ unless at least $(1-\delta)\mathbf{N}$ of the inequalities $|\mathbf{g}(\mathbf{x}) - \mathbf{p}^{T}\mathbf{x}| \le 2\delta$ (modulo 2π) are fulfilled. Of course the closed support of $\mathbf{H}(\mathbf{x})\tau(\mathbf{x})$ is contained in that of τ , and also in the set just mentioned.

Beginning with a distribution $\tau \neq 0$, we choose a sequence $(g_j)_1^{\infty}$, uniformly dense in the real Banach space C(T) and perform a sequence of operations of the kind

R. KAUFMAN

just completed. We obtain a distribution $\tau_1 \neq 0$, whose closed support S_1 is contained in the support of S. For each $j \ge 1$ there are integers p_j and N_j so that at least $(1-2^{-j})N_j$ of the N_j inequalities (with $p = p_j$, $g = g_j$, $N = N_j$) $|g(x) - p^T x| \le 2^{-j}$ (modulo 2π), $1 \le r \le N$ are fulfilled at each point in S_1 . Thus S_1 is a K_0 -set; S_1 has the property, somewhat stronger, that each finite measure on S_1 is nearly carried by a Kronecker set.

REFERENCES

- [1] KORNER, T. W. A pseudofunction on a Helson set, ce volume.
- [2] PYATEČKII-ŠAPIRO, I. I. On the problem of uniqueness of the expansion of a function in a trigonometric series (Russian). Moskov. Gos. Univ. Uc Zap. 155 (Math V), (1952), 54-72.
- [3] Supplement to the same. Ibidem 165 (Math VII), (1954), 79-97.