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0 . INTRODUCTION. 

A c losed subse t S of the c i r c l e group T i s ca l led a weak Kronecker se t 

( K Q - s e t ) if e ach complex measu re /Lt c a r r i e d by S h a s the p rope r ty sup IjLt(n) |= HM II; 

S i s ca l led an M-set if it c a r r i e s a d is t r ibut ion r ^ 0 (of L . Schwar t z ) whose 

F o u r i e r t r ans form r ( n ) van i shes for n = +00 ; and S i s cal led M q if the 

d is t r ibu t ion r i s a finite m e a s u r e . In 1954 P y a t e c k i i - S a p i r o [3H showed the ex i s tence 

of s e t s of type M , not of type M q ; t h i s work i s s t i l l s t r ik ing because it exhibi ts a 

spécif ie se t S . Then Korne r Ql ] showed the ex i s tence of s e t s of type M H K Q . In 

th i s note we modify the method of [3 ] to p r o v e . 

THEOREM. Each c losed se t S of type M contains a c losed se t of type 

M n K . 
o 

N r -, 

1. Le t the N-dimensional t o r u s T be r e p r e s e n t e d a s the product of i n t e r v a i s L-ÏÏ , TTJ 

and let be the se t of N- tup l e s (x^, . . . , x^) such that | x ^ | < e for at l eas t 

( 1 - E ) N ind ices K = 1, 2 , . . . , N (0 < e < 1). We need a chain of lemmas to p r o v e . 
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N 

LEMMA 1. F o r N > N £ we can find a function F , continuous on T , vanishin 

off V ^ , such that | F ( x ) I < e I F(0) I for ai l cha r ac t e r s X ^0 (in additive notation) 

To prove Lemma 1 we construct a spécia l kind of product probabili ty measure on 

T N . Let 0 < t < 1 and let a t be the measure (2TT )~ 1tdx + (1-t) bQ on t , and 

X t the N-fold product of a^, a probabili ty measure on T . (The index N i s 

suppressed in X ̂  ). 

LEMMA 2 . X t ( T N ~ V ^ ) -*0 a s N ••+<», uniformly on the in terval 0 < t < | . 

This i s a simple conséquence of Chebyshev ' s inequali ty, because [ - e , e ] has 

cr̂  measure > 

LEMMA 3 . Let V be an open set in a compact abelian group G, with dual r ; 

suppose that sup | | F ( x ) I : X ^ 0 j — £ I F(0) | for every F continuous on G and 

vanishing on G ~ V . Then the re i s an identity 

1 = E > x x ( v > , ^ I a x l < e " 1 , a o = 0 , 

valid for ai l y in V . 

Proof. The Fou r i e r t ransform assoc iâ tes to each continuous F an élément of the 

space C Q (r) ; assuming that e |F(0) |< sup | | F ( x ) I : X ^ 0 j for ai l F in our 

subspace , we can wri te F(0) = b F ( x ) , with |b I < e" . Since V i s 

open, this implies 1 = > ] b ^ xTyT identically in V . 

Proof of Lemma 1. We shal l prove that an equality of the type mentioned in Lemma 3 

can be valid for only finitely many in tegers 1, 2 , . . . , N £ . The key to th is i s the 
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formula * t ( x ) = 0 - t ) k (k = 1 , 2 , 3 , . . . ) for each cha rac t e r X ^ 0 on T N . 

Suppose ) — ^"^N F O R 0 < t < e / 2 , and in tegra te the identity with r e spec t 

oo 
to X t . Then M - 2ZÎ C ^ ( l - t ) k | < e " S N over 0 < t < e / 2 , with 

oo 

y ) I C k I - e " 1 • Since the functions YZ, C k s k f o r m a n o r m a l family for I s | < 1 

in the p lane , and 77 N + 0, the identifies in question a r e possible only for N < N £ . 

Let F N be the function just cons t ruc ted , corresponding to an e > 0 and 

N > N £ . We must r ep lace by a smooth function, s ince r , being a distribution 

r a t h e r than a measure , does not admit multiplication by continuous f unct ions . Let 0(x) 

be a smooth approximation to 8Q vanishing outside a small in terval G- 5 , &3 and let 

G N be the convolution F N ^ ( 0 ( x 1 ) . . . <i(x N )) . Then G N ( 0 ) = F N ( 0 ) = 1 (say) and 

G N vanishes outside V^ + g ç V^g when 0 < e < 8 . Also | G N ( x ) I < e I 0 (k 1 ) 

. . 0 ( 1 ^ ) 1 when X ^ 0 and x has components ( K ^ K N ) . 

2 . Proof of Theorem. Let T be a distr ibution such that r(°°) = 0 , and g(x) a r e a l 

function of c l a s s C°°(T). F o r in tegers p > 1 we a r e going to use dis t r ibut ions of 

the form = G N (g(x) - px, . . . , g(x) - p N x ) . T(dx), and observe f i rs t of ai l that the 

multiplier of T i s smooth on T , so the product i s defined. Using the expansion of 

N 

G N a s a F o u r i e r s é r i e s on T , we can wr i te a s a sum 

£ ^ C ( k r . . . , kj^) exp i (k 1 + . . . + k N )g (x ) . exp - i (pk 1 + . . . + p N k N ) x . T ( d x ) . 

The dis t r ibut ions with bounded F o u r i e r t ransforms form a Banach space with the norm 

||a || = sup la | . The sum above converges in norm, uniformly with r e spec t to p . 

F o r ||exp - i k x . r ( x ) | | = | | T | | ; the C 1 (T) -norm of exp i (k 1 + . . . + k N )g (x ) i s 

0 ( 1 ) + 0 ( | k 1 + . . . + k^ I ) , and |C | k 1 , . . . , 1 ^ ) I < | 0 ^ ) . . . 0 ( 1 ^ ) | with 0 in 
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C°°(T), so $ d e c r e a s e s rap id ly . 

We a s s e r t now that for l a rge p | | T 1 - T | | exceeds by O(1) the maximum norm 

of the summands with | k 1 l + . . . + | k N l > 0 , a number bounded in turn by 

| |T II . sup | C ( k 1 , . . . , kj^) | . ||exp i (k 1 + . . . + k N ) g ( x ) H c 1 . In view of the uniform conver ­

gence mentioned above, it i s sufficient to verify this for finite sums, say for 

1 < | k 1 I + . . . + | k ^ I < A . Each distr ibution in the sum has a transform vanishing at 

infinity ; to each B , and p > p(B), the values of pk 1 + . . . + p 1 ^ ^ , generated by 

the N-tuples in question, differ by at leas t B . This in fact suffices for the necessa ry 

bound on \\T^ - T | | . 

Recal l that p was chosen after N ; we now study the effect of increas ing N , 

and a s s e r t that | 0(k^ ) . . . 0 ( k N ) I . I k^ + . . . + kj^ I remains bounded for ai l N . In 

the argument we can assume 1 < < . . . < k ^ , and observe that | 0(k) | < 1-7? 

for k > 1. Cancellation of k 1 effects a multiplication by at leas t (l-t?)"" 1(1--N"" 1), 

and this exceeds 1 provided N > rf~^. Thus the problem i s reduced to the spécial 

— 1 ^ — 1 

case N < 77 and he re the inequality | 0(k) | < k™ i s at hand. F inal ly , for l a rge 

N we have the additional f ac tor e > 0 . 

Before applying th is to the las t s t ep , we recapi tula te what has been at ta ined. Given 

g in C°°(T) and 8 > 0 we found a function H in C°°(T) such that 

| |H(X)T(X) - r (x ) | | < 8. Moreover there exist in tegers p > 1 and N > 1 such that 

H(x) = 0 unless at leas t (1-8 )N of the inequali t ies lg(x) - p r x | < 2 8 (modulo 2ÎT) 

a r e fulfilled. Of course the closed support of H(X)T(X) i s contained in that of T , 

and a lso in the set just mentioned. 

Beginning with a distr ibution T we choose a séquence (g j )p uniformly 

dense in the real Banach space C(T) an22d 9  perform a séquence of opérations of the kind
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just complétée!. We obtain a distribution r ^ ^ 0, whose closed support is 

contained in the support of S. For each j > 1 there are integers p. and N. 

so that at least (1_2" J)N j of the NL inequalities (with P = Pj, g = gj> N=Nj) 

|g(x) - p r x |< 2~ j (modulo 277 ), 1 < r < N are fulf illed at each point in S ̂ . Thus 

S . is a K -set : S . 1 0 1 has the property, somewhat stronger, that each finite measure 

on S ̂  is nearly carried by a Kronecker set. 
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