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0. INTRODUCTION.

A closed subset S of the circle group T is called a weak Kronecker set
(Ko-set) if each complex measure u carriedby S has the property sup | ; )= |lp “,
S is called an M-set if it carries a distribution 7 #0 (of L. Schwartz) whose
Fourier transform ;'(n) vanishes for n=+% ; and S is called M_  if the
distribution 7 is a finite measure. In 1954 Pyateéldi—éapiro [3] showed the existence
of sets of type M, not of type MO ; this work is still striking because it exhibits a
specific set S. Then Kdrner [1] showed the existence of sets of type MN Ko. In

this note we modify the method of [3] to prove.

THEOREM. Each closed set S of type M contains a closed set S] of type

MﬂKo.

1. Let the N-dimensional torus TN be represented as the product of intervals (-7 ,'rr]
and let Vlz be the set of N-tuples (x1, cees xN) such that |xk [< € for at least

(1-e)N indices K=1,2, ..., N (0< g< 1), We need a chain of lemmas to prove.
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LEMMA 1, For N> NE we can find a function F, continuous on TN, vanishing

off Vlz, such that |F(x)|< e|F(0)] for all characters x # O (in additive notation).

To prove Lemma 1 we construct a special kind of product probability measure on

N

T, Let 0<t< 1 andlet o, be the measure (21r)-1tdx+(1—t)6o on t, and

t

N

A the N-fold product of o© a probability measure on T . (The index N is

t t’

suppressed in A t).

LEMMA 2. A t(TNNVl;‘) ~0 as N4, uniformly on the interval 0<t< 3.

This is a simple consequence of Chebyshev's inequality, because [—E, e:] has

€
> -
crt measure = 1 5.

LEMMA 3. Let V be an open set in a compact abelian group G, withdual T ;
suppose that sup {I F(x)l: x # 0}2 € |F(0)| for every F continuouson G and
vanishing on G ~V. Then there is an identity

-1
1= % x(y) , Zlaxls.s , 0, =0,

vaid for all y in V.

Proof. The Fourier transform associates to each continuous F an element of the
space Co(l“) ; assuming that € |F(0) /< sup {lF(x) [+ x # 0} for all F in our
~ ' - _
subspace, we can write F(0)=) b>< F(x), with } be |<e!. Since V is

open, this implies 1= Z b>< x(y) identically in V.

Proof of Lemma 1. We shall prove that an equality of the type mentioned in Lemma 3

can be valid for only finitely many integers 1, 2, ..., N p The key to this is the
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formula At(x)= (1—t)k (k=1,2,3,...) foreachcharacter x #£0 on ™,

Suppose A t(VI(_\:I )= 1-my for O<t< €/2, and integrate the identity with respect

oo
N k -1 .
to At. Then |1 - 21 :Ck(l—t) | < € Ny over 0st< €/2, with
N 1 2. N_k
> le < € '. Since the functions J C, s  form a normal family for Is]| <1
1

in the plane, and 7, +0, the identities in question are possible only for N < N .
N €

Let FN be the function just constructed, corresponding toan €> 0 and

N > Ne' We must replace F by a smooth function, since 71, being a distribution

N
rather than a measure, does not admit multiplication by continuous functions. Let ¥(x)
be a smooth approximation to 80 vanishing outside a small interval [-8,5] and let
GN be the convolution FN*(qb (x1) een lb(xN)). Then GN(O) = FN(O) =1 (say) and

. R N N o 4
Gy vanishes outside V_ sc Vs when 0<e< 8. Also |GN(X)| <elplky) ..

..d)(kN)] when X #0 and ¥ has components (K1, ...,KN).

2. Proof of Theorem. Let T be a distribution such that :;'(oo) =0, and g(x) areal
function of class C®(T). Forintegers p= 1 we are going to use distributions of
the form T, = GN(g(x) - PX, ..., g(x) - pNx). 1(dx), and observe first of all that the
multiplier of T is smoothon T, so the product is defined. Using the expansion of

. . N .
GN as a Fourier serieson T ', we can write T, asasum

:C(k1 y eeey kN) exp i(k1 ot kN)g(x).exp - i(pk1 - kaN)x. T(dx).

The distributions with bounded Fourier transforms form a Banach space with the norm

”c ” = sup |l |. The sum above converges in norm, uniformly with respect to p.

For |lexp - ilkx.7(x)| = |l7]] ; the C1(T)—normof exp i(k1 +...+kN)g(x) is
O(1) + O( kg +...+ kg 1), and [Clk,, s kIS lfb(k])...i(kN)l with ¢ in
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c®(T), so § decreases rapidly.
We assert now that for large p ”’1’1 - 7|l exceeds by of1) the maximum norm
of the summands with Ik1 [+ ... + |kN | > 0, a number bounded in turn by

[l

gence mentioned above, it is sufficient to verify this for finite sums, say for

. sup |C(k1, ooy kN) | .ilexp i(k1 Feuot kN)g(x)“CI . In view of the uniform conver-
1< lk1 | +.. .+ lkN | < A. Each distribution in the sum has a transform vanishing at
infinity ; toeach B, and p > p(B), the values of Pk +o..t kaN, generated by
the N-tuples in question, differ by at least B. This in fact suffices for the necessary
bound on H'r1 - TH

Recall that p was chosen after N ; we now study the effect of increasing N,
and assert that |:b(k1) . zZ(kN) . |k1 +ooot Ky | remains bounded for all N. 1In
the argument we can assume 1<k, < ...=<Lky, andobserve that !@(k) < 1-m
for k= 1. Cancellationof k, effects a multiplication by at least (1-7m )_1(1-N"1),

and this exceeds 1 provided N > 'r)"1 . Thus the problem is reduced to the special

1 and here the inequality |p(k)i< k! isat hand. Finally, for large

case N=<n_
N we have the additional factor € > 0.

Before applying this to the last step, we recapitulate what has been attained. Given
g in C(T) and § >0 wefounda function H in C™(T) such that
“H(X)’T(X) - T(X)” < 8. Moreover there exist integers p=1 and N =1 such that
H(x)=0 unless at least (1-8)N of the inequalities |g(x)-p'x| <28 (modulo 27)
are fulfilled. Of course the closed support of H(x)T(x) is contained in that of T,
and also in the set just mentioned.

Beginning with a distribution 7 # 0, we choose a sequence (gj)r; uniformly

dense in the real Banach space C(T) and perform a sequence of operations of the kind
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just completed., We obtain a distribution T # 0, whose closed support 51 is

contained in the support of S. Foreach j= 1 there are integers p:i and N.

=g, N=N.
g=g J)

lg(x) - p'x < 2”0 (modulo 27), 1=<r<N are fulfilled at each point in S

so that at least (1_2—j)Nj of the N:i inequalities (with p = Py

1° Thus

S1 is a Ko—set H S1 has the property, somewhat stronger, that each finite measure

on S1 is nearly carried by a Kronecker set.
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