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SOLVABILITY OF PARTTIAL DIFFERENTIAL EQUATIONS
IN THE TRACES OF ANALYTIC SOLUTIONS OF THE HEAT EQUATION
by

M,S. BAQUENDI
Purdue University

O Y e v e e

N. ARONSZAJN introduced in his lecture ut this collogium [1] an abstract
FRECHET space o% : "the traces" of the analytic solutions of the heat equation,
In this talk, we give additional properties and discuss the solvability of partial
differeatial equations in o% . As examples, we prove the solvability in this
space of some first order operators which are solvable neither in the space of
distributions, nor in the space of SATO-MARTINEAU hyperfunctiong ,

The complete procfs will be published elsewhere ([2]),

T~ Définitions, notations and basic properties

We denote by R (resp.C”) the n dimensional real (resp,complex) space, We

introduce the following notations:

¢ ={x€¢1

& xe , T-¢xT, .
+ + +

, Rex >0} , o:+={xec1 , Re x ) 0}

+

+
!
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SOLVABILITY

If xe¢ ,x= (x1,.....xn) = (x')x)

with 1= (xeex )
n n
x2 =3 xi ]x|2 =3 |xi]2
i=t i
where lxil denotes the modulus of the complex number xi o If a is a multi-

index, a = (a1.....an) ’ ai integer » O we denote

o
o o 0% 3%
Dx = D =_5;a?,__,,,_5;£q, x€wn or xGIRn.

If Q@ 4is an open set in cn , we denote by H(Q) the space of analytic
functions defined in Q , with the usual topology ; and H'(Q) its dual, the
space of analytic functionals in Q ,

We denote

1 2
E(x,t) =—-—-"p ©XP (- ""}") » (x,%) € ﬁn-”
( " n

4nt)Z

LetNb= Mn be the space of analytic solutions wu of the heat equation

n
(1.1) du 5 O u

defined in Gﬁ“ .fke» is a closedsubspace of H(GI:_H ) .

The mapping
(1.2) My (e

u (4 (uo y u1)
where v, and u1 are the CAUCHY data defined by

uo(x' ,t) = u(x' ,O,t)

is a topological isomorphism, (The inverse mapping is given by the solution of the
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BAOUENDI

corresponding global CALUCHY problem),
If f 1is, say a tempered distribution defined on an , we denote
(1,3) £(x,t) = <£(y) , B(xy,t)>
In fact, (I,3) defines a topological embedding of '( iRn) , H'(wn) into
c% n with dense range, Therefore, we have a natural topological embedding
% v n n ) i
of the dualc¢ n into ‘5( 14 )qH(G ) . We will give in the next section a com=
. . A-}é ' n
plete characterization of ¢ n * 88 subspace of bp( R)NH (wn) .
From now on, we condidercf“@ as an abstract space which contains (R"),H' (¢®),
etc,,e o If u €S we denote
u(x,t)
the value of the corresponding solution of the heat equation at (x,t) € Gf,_lﬂ o An
element :an"H’& is called a "trace",
We refer to [1] where the space o‘H{; is introduced and where other properties
are discussed,
IT, Characterization of the dual space, the multipliers and the convolutors
A 1
We considerd n as a subspace ofc¢ n* We have the following

PROPOSITION II,1.,=-

L
1)- A trace u is inu%n if and only if there exists F € H'(G’T'1 )
(non-unique) such that, for (x,t) € @ﬁ_”
(11.1) u(x,t) = <#(y,7) , By , t+1)> .

' .
2)= For any u €c%n , there exists a unique pair (Fo’F‘l) € [H‘(G_?]z

such that, for (x,t) € Ci” .

(11.2) u(x,t) = <F (v',1) B 6(y,) + 7, (v0,%) ® 63(y,) 5 Blay,b40)>
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SOLVABILITY

[_Ypere & is the DIRAC measure in one variable, and &' dits derivative,
Part 2) follows, in particular from the isomorphism (1,2).
THEOREM II,1.-
i . \é' .
Let f be an entire function defined in ¢ , f € cﬂ? if an

only if there exist C30 , MM , AXBX0 such that for any x € @n

(11.3) L [£(x)] < exp (m|x| + B|x2| - A Re x°),

PROOF 10)Necessity of (II,3)

From (II.1) we get

[u(x)| = |<F(y,%) , E(z=y,%)>| ¢ C sup E(x=y,7)
(v,7) €K

where C>0 and K is a compact set in ¢ﬁf1 .

The inequality (11.3) follows easily for u(x) .

20) Sufficiency of (II1,3)

If F is an anlytic functional in " , let us denote
* .
F(g) = <F(x) , exp (-ix,g)>
)
its Fourier-BOREL transform, If f € c‘ﬂé , it follows easily from (II.1)

and (II.2) that one can obtain the representations
* 2
(11.4) £(x) = a(x, - ix%)

1
, @€ H'(mnj“r )

or

* ~
.2 ~ : .2 n
Go(x', -ix°) 4+ an1(x', -ix<) , G,sG € H'(G+)

(11.5) £(x) ,

In order to prove the sufficiency of (II,%), we assume that a given entire
function f satisfies (II.B). We shall show that f may be written in the form

(II.B). The latter result is a consequence of the following lemmas,
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LEMMA TT.1.-
Let f Dbe an entire function in n complex variables even with respect
to Xn(i.e f(x‘,xn) = f(x',—xn)), There exists a unique entire function g
defined in " such that
£(xt,x ) = sx' , ).

In addition, f satisfies (II.3) if an only if there exist C'0 »
M'90 , A'>B'Y0 such that for y € ¢© and 1 € C .
(11.6) |8(y,1)|< c' exp (M'|y| + B*|z]| - A' Re 7).

-

We observe here, that the condition (II.6) is equivalent to say that there

exists G € H'(mﬁ) such that
*
g(y,t) = aly, -iv)
(see[5], [6]1).

LEMMA(TI.2) .~

Let f be an entire function satisfying (II.3), and P a polynomial
in n variables with complex.coefficients, If —%— is entire it also

satisfies (I1.3).

The proof of lemma (11.2) uses the inequality

(see[5]).

Remark II.1.- Using the characterization (II.1) and (II.4), it is readily seen

oL}
that<;“G is closed under the FQURIER transform,

From the characterization (II.3) one can obtain
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SOLVABILITY

THEORE IT.2,=
The multipliers of(% are the entire functions u(x) in n wvariables
which satisfy the condition :

For any >0, there exist C» , M0 , AYB-e such that, for any

x €

(11.7) L lu(x)| ¢ ¢ exp (u|x| + B|#| - & Re x°),

Let us observe in particular, that the space of the multipliers contains the
space of entire functions of exponential type.

Let us denote byclt: the space of multipliers, namely the space of entire

functions which satisfy (II.7).

A
The space % = t is the space of convolutors, We have in particular the

inclusion
(e e &,

Let to>0 , we denote by Zt the subspace of g‘ﬂé defined by
o

u€n <= u(x,t) = v(x,t + to)
(o}

where Vv € ﬂ%‘.

The space Zt is the space of sections at to . zt is provided with
!
o o

the topology of uniform convergence on compact sets of € x fteec , Re -t } .
We define the space of sections :

£ = ind,lim, Zt
to -0 [

t >0
0

We have the following result :
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THEOREM I1,3,-

The dual X' of the space of sections ¥ 1is equal as a subspace
of c% , to.the space of convolutors, ‘é =C ’L .

In addition, a trace u is in ' if and only if there exists

n+t

F e H'(TET") (non-unique) such that, for (x,t) € G_'_

L a(x,8)= <Fy,7) , E(xy, t+c)>,
IIT,~ Solvability of P,D.E, with polynomial coefficients

We consider first, in this section, the constant coefficient case, We prove
the possibility of the division by a polynomial inc“M. Using the Fourier transform,
we get the solvability of P,D.E, with constant coefficients, as well as the approxi-
mation of the solution of homogeneous equations by exponential-polynomials,

The proofs are based on LEMMA(II.Z). In the distribution case, similiar ideas
are used in [5].

We have the following results,

THEOREM III,I,-
let P4 O be a polynominal in n variables, with complex

coefficients For any f €¢Fffn , there exists

u €A’Kﬂ such that

L Pu=1f ,

COROLLARY III,1.-
Let P(D) ;é 0 be a partial differential operator in n variables

2

, there exists u €C<M

with complex coefficients, For any f €c n a
such that P(D)u = £
v
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SOLVABILITY

Let us call exponential-polynomial any entire function f of the form
£(x) = a(x) exp.(a.x) ,
where Q is a polynomial and a € ¢ . We denote by V(P(D)) the space of traces
spanned by the exponential-polynomials f satisfying
P(D)f =0 .
THEOREM III,2.-
The space V(P(D)) is dense in the space
{ueo‘K, P(D)u=0}

We shall consider now the polynomial coefficient case, Let P be a differen-
tial operator: in n variables x,, ...., x ~With polynomial coefficients
(111.1) P=P(x0) =2 aa(x)Da

a, €¢ [x1,.....xn].

We shall discuss the solvability ind#t; of the equation

(111.2) P(x,D ) u=1.

Let us first consider the following operator

~ ~ k
(111.3) P=3(x,40D) =% =1 (x,0)
¥ k=0 ki R
with L(x,n) =2(x,D)

Lk+1(x’Dx) = AxLx(x’Dx) - Lk(x’Dx)éx

n 22
ol o2
B i

Lk vanishes for large k and the series (III.3) is in fact a finite sum,
The operator P satisfies the following properties :

(111.4) §(x,o,nx) = P(x,Dx)
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P commutes with the heat operator |H = _3%. - &
(111.5) HP=PH
For any trace u j; x € (Dn , t € (Il+ H

~ ~ Nad
(Pu) (th) = P(X,t,I}; )u(x,t) .
Let us write P in the following form

- 2k -+
(111.6) P(x,t,Dx) =1§ Mk(x,t,Dx,)Dxn + Nk(x,t,Dxn)Dxn+ .

where lvgg and Nk are differential operators in x' , their coefficient being
polynomial in x and t ,

THEOREM III.3.-
The solvability of (III.2) in L%is equivalent to the solvability
of the following problem :
For any (fo:f1) ¢ (H(a’i))2 find

(@, yu,) € (H((trjr))2 such that

(111.7) z Mk(x',o,t,Dx,)(a-—g-E - Ax,)kuo + N (x',0,%,D,) (-%-t— - AX,)kuf: £

Ol_qk d k ) k41
E (Exn)(x"o’t’nx')(-_b?; - Ax') ) +Nk(x"0’t'Dx')(—5T; - Ax') Y% *

ON: [e] k ¢] k
(&i)(xtroyt,Dx')('BTt - AX') u1 +Mk(x.v0’tny.) (-'6% - AX') u1 = f1(*)

The isomorphism (1.2) is used in the proof of theorem (III.B). This theorem
reduces the solvability of (III, 2) inc% to the solvability of a system of two
P.D.E, with polynomial coefficients in the space of homolorphic functions in 02 N

for which global CAUCHY-KOVALEVSKY type theorems may be used,

*)

if Q(x,D) = an(x)Da is a partial differential operator, we denote
(2)(x,0) =z Bs(x) po
0x, ox,

i
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Example 1 : Let us consider the operator

—_— 1 -—
bx1 1 bx2

It is well known that it is not solvable (even locally) in the space of
distributions.([4],[7],...). For the non-solvability in the space of hyperfunctions
see [8]. (see also [9]).

THEOREM III.4
The operator

P = 9 + ix, —-x——
"5;-:; 1 T ox

is solvable in (}Hﬁz o

—

After a permissible change of variables, the operator P defined in (III.3)

becomes in this case

62 2

Poae( -2y .p
bx2 bx2
1 2
The system (ITII.7) is of the form
62110
(111.8) -3 =8 + Qo(uo'u1)
>4
1
52111 ( )
———t=g o+ Q,\u ,u
6x2 1 10" 1

1

where go and g, are given homolorphic functions in (L'i and Qo s Q are

1 1

differential operators of order {, acting on u.c> and u1 , With respect to the

variables x1 and t , with homolorphic coefficients in ci . The solvability

of (111.8) in (H(Gf_))2 may be proved using a global CAUCHY-KOVAIEVSKY type theoram

(see[3] for similar techniques),
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Exampl_e_g:-

THEOREM III,5.~
Let o be a complex number,
The operator

P=x +ax--59-

d
2bx1 1 5

is solvable inc‘"ﬁz if and only if a £ -1 .
The idea of the proof is similar to that used in theorem (III.4). The non -
solvability of (III.9) for o = =1 was pointed out by R, MOYER,

Remark III,?, - The operator

(111.10) x -x
is not solvable m% o° However it is possible to prove that, if we consider

the "traces of analytic solutions" of the operator

2 2
Q s} o]
8T e A2 S N

instead of the heat operator, (III.10) is solvable in this new space,

T S e I e T e e 5
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