Bernard Helffer
 Yakar Kannai

 Determining factors and hypoellipticity of ordinary

 Determining factors and hypoellipticity of ordinary differential operators with double "characteristics"

 differential operators with double "characteristics"}

Astérisque, tome 2-3 (1973), p. 197-216
http://www.numdam.org/item?id=AST_1973__2-3__197_0
© Société mathématique de France, 1973, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

DETERMINING FACTORS AND HYPOELLIPTICITY OF
 ORDINARY DIFFERENTIAL OPERATORS WITH DOUBLE " CHARACTERISTICS "

Bernard Helffer * and Yakar Kannai **

* Laboratoire de Mathématiques de l'Ecole Polytechnique Paris ** Hebrew University of Jerusalem

HBLFFRR ET KANNAI

1 - INTRODUCTION.-

Let L be an ordinary differential operator with C^{∞} coefficients in a neighborhood of the origin, and assume that the leading coefficient of L has a zero of finite multiplicity at the origin. It is a well known result of the classical theory of irregular singular points of ordinary differential equations ([1], [3]) that there exists a system of m linearly independent formal solutions $u_{1}(x), \ldots, u_{m}(x)$ of $L u=0$ (m is the order of L) with
(1.1) $\quad u_{i}(x)=e^{Q_{i}(x)} x^{\rho_{i}} v_{i}(x)$
where the $Q_{i}(x)$ are polynomials in $x^{-1 / q_{i}}$ and
(1.2) $\quad v_{i}(x)=\sum_{j=0}^{m_{i}} \quad v_{i, j}(x)(\log x)^{j}$
(1.3)

$$
v_{i, j}(x) \sim \sum_{n=0}^{\infty} v_{i, j, n} x^{n / q_{i}}
$$

for $0 \leq j \leq m_{i}, l \leq i \leq m$. Here m_{i}, q_{i} are integers, $m_{i} \geq 0, q_{i}>0$ and the series in (1.3) do not converge, in general, even if the coefficients of L are analytic. (The equations $L u_{i}=0$ hold in the sense of formal power series ; the coefficients of L are replaced by their formal Taylor expansions at the origin). The functions $Q_{i}(x)$ are called " determining factors ". Clearly, we can assume that the constant terms vanish in the determining factors. (In some texts, the $e^{Q_{i}(x)}$ - rather than the $Q_{i}(x)$ - are called determining factors).

HYPOBLLIPTICITY

The determining factors may be computed explicitely in many cases. Thus, let $L u=\sum_{j=0}^{m} a_{j}(x) d^{j} u / d x^{j}$, and set $p(x, \xi)=\sum_{j=0}^{m} a_{j}(x)(i \xi)^{j}$ - the (complete) symbol of L. It is well known that there exist m complex valued functions $\boldsymbol{\zeta}_{1}(x), \ldots, \zeta_{m}(x)$, which are continuous in a neighborhood of the origin exeept at $x=0$, such that $p(x, \xi)=a_{m}(x) \pi_{j=1}^{m}\left(\xi-\zeta_{j}(x)\right)$. The functions $\zeta_{I}(x), \ldots, \zeta_{m}(x)$ are called branches of roots of p. If the " characteristics " of L are " simple ", in the sense that whenever $\zeta_{i}(x)$ is an unbounded branch of roots of p such that $|x| \quad\left|\zeta_{i}(x)\right|$ is also bounded and $\zeta_{i}(x) / \zeta_{j}(x) \rightarrow I$ as $x \rightarrow 0$ then $i=j$, then the determination of the determining factors is relatively easy ([2], [4]). In fact, let

$$
\begin{equation*}
\zeta_{j}(x) \sim \Sigma_{k=N(j)}^{\infty} \quad \alpha_{j, k} x^{k / q} \tag{1.4}
\end{equation*}
$$

be the formal Puiseux expansion ; here q is a positive integer, $N(j)$ is a finite integer (positive, negative,or zero) with $\alpha_{j, N(j)} \neq 0$ unless $\alpha_{j, k}=0$ for all k. (The series (l.4) does not converge, in general, unless the coefficients of L are holomorphic.) The derivative of the determining factor Q_{j} is given by the simple formula
(1.5) $\quad \frac{d Q_{j}}{d x}=i \sum_{i=N(j)}^{-q-1} \quad \alpha_{j, k} x^{k / q} \quad j=r+1, \ldots, m$.
(Note that if $\zeta_{j}(x)=O\left(\frac{l}{x}\right)$ when $x \rightarrow 0$ then $Q_{j}(x)=0$; this is true in general, even if " simplicity " of the " characteristics " is not assumed).

It is the aim of the present paper to present formulas for the determining factors. In section 2 , we shall discuss briefly the main properties of the determining factors. In section 3 , we state and prove a formula for the determining factors if the " characteristics " are at most " double ", in the sense that if $\zeta_{i}(x)$ is a branch of roots of p for which $x \zeta_{i}(x)$ is unbounded as $x \rightarrow 0$ and if $\lim _{x \rightarrow 0} \zeta_{i}(x) / \zeta_{j}(x)=$ $\lim _{x \rightarrow 0} \zeta_{i}(x) / \zeta_{k}(x)=l$, then either $i=j$, or $i=k$, or $j=k$. In section 4 , we apply the results of section 3 to characterize all hypoelliptic ordinary differential operators with at most " double " " characteristics ". For this, we apply the characterization of hypoelliptic ordinary differential operators given in [4] ; this characterization is given essentially in terms of determining factors. In section 5 , we compute the determining factors and characterize hypoellipticity for general third order ordinary differential operators.

2 - PROPERTIES OF DETERMINING FACTORS. -

For the discussion in this section, it will be convenient to consider operators whose coefficients are elements of $F[x]$ - the quotient field of the ring (formal series of powers of $x^{l / q}$, where q is an arbitrary positive integer (compare [1]). Thus, let $L u=\sum_{j=0}^{m} a_{j}(x) d_{u / d x}^{j}$ be a formal differential operator with
(2.1) $\quad a_{j}(x) \sim \sum_{k=n_{j} q}^{\infty} \quad a_{j, k}\left(x^{1 / q}\right)^{k}$
where $n_{j} q$ is an integer, $a_{j, k}$ are complex numbers, and $a_{j, n_{j} q} \neq 0$ unless $a_{j}(x)=0$; in the latter case, we set
$n_{j}=+\infty$. Hence n_{j} is the multiplicity of the zero or minus the multiplicity of the pole of $a_{j}(x)$ at the origin. We shall also use the notation $n_{j}=O\left(a_{j}\right)$. Note that the integer q can be replaced in (2.1) by any integral multiple of it. We shall always assume that $n_{m}<\infty$.

Recall that the characteristic index [2] or class [3] of L is defined to be $m-r$, where the integer $r, 0 \leq r \leq m$, is specified by the

$$
\begin{array}{ll}
n_{j}-j>n_{r}-r & \text { for } j>r \tag{2.2}\\
n_{j}-j \geq n_{r}-r & \text { for } j<r
\end{array}
$$

The equation $L u=0$ possesses an indicial equation
of order r. This indicial equation is obtained by equating to zero the coefficient of the lowest order term in the formal expansion of $x^{-\rho} L\left(x^{\rho}\right)$ (the order of the lowest power of x in that expansion is $n_{r}-r$). Note that for $r=0$, the indicial equation has no roots, and if $q=1$ and the functions $a_{j}(x)$ are holomorphic at the origin, then $r=m$ corresponds to a regular singular point at $x=0$. Using the roots of the indicial equation, one obtains (by equating coefficients) r linearly independent formal log-fractional powers series solutions of $L u=0$.

In order to find the remaining $m-r$ formal solutions of the homogeneous equation $L u=0$, one looks for functions $Q(x)$ of the form

$$
\begin{equation*}
Q(x)=\Sigma_{k=1}^{s} c_{k} x^{-k / q} \tag{2.3}
\end{equation*}
$$

(here q is an integral multiple of the integer occurring in (2.1)) such that the formal differential operator M defined by $M v=e^{-Q} L\left(e^{Q} v\right)$ has a characteristic index $m-j<m$, so
that the equation $M v=0$ possesses an indicial equation of order $j \geq 1$. Hence, there exist j linearly independent formal (log) fractional powers series solution of $M v=0$. Such a function $Q(x)$ is called a determining factor (of the operator L). In this manner, the existence of a system (l.1) - (l.3) of m linearly independent formal solutions of $L u=0$ is established in the classical theory. The r formal log-fractional powers series solutions which are determined by the indicial equation of L correspond to r idertically vanishing determining factors. We shall assume, from now on, that $Q_{l}(x)=\ldots=Q_{r}(x)=0$.

We shall need some expression for the coefficients of M. Set $e^{-Q(x)}\left(e^{Q(x)}\right)(n)=S(n, x)$. Then $S(0, x)=1$ and $S(n+l, x)=Q^{\prime}(x) S(n, X)+d S(n, x) / d x$. Using Leibnitz's rule, we see that

$$
M v=\sum_{j=0^{a}}^{m} \sum_{h=0}^{j}\left(\frac{j}{h}\right) e^{-Q}\left(e^{Q}\right)^{(j-h)_{v}(h)}(x)=
$$

(2.4)

$$
=\Sigma_{h=0}^{m}\left(\varepsilon_{j=h}^{m}\left(\frac{j}{h}\right) a_{j}(x) S(j-h, x)\right) v^{(h)}(x)
$$

Differentiating (2.3), we see that
(2.5) $\quad Q^{\prime}(x)=\sum_{k=q+1}^{t} e_{k} x^{-k / q}$
where $e_{k}=-k c_{k} / q, t=s+q$. It can be verified by easy induction that
(2.6) $\quad o\left(S(n, x)-Q^{n}\right) \geq-(n-1) t / q-1$

Hence the lowest terms in the coefficient of v in M are contained in the sum
$\sum_{j=0}^{m} a_{j, n_{j} q} x^{n}{ }^{n}\left(e_{t}\right){ }^{j} x^{-t j / q}$. Set
$\min _{\substack{0 \leq j \leq m \\ \operatorname{trary})}} n_{j}-t j / q=w, M v=\sum_{h=0}^{m} b_{h}(x) d^{h} v / d x^{h}$. Then (if e_{t} is arbi-

$$
\begin{aligned}
w=O\left(b_{0}(x)\right) . & \text { Clearly, } \\
0\left(b_{h}\right) & \geq \min _{h \leq j \leq m}\left[0\left(a_{j}\right)+o(S(j-h, x))\right] \geq \min _{0 \leq j \leq m}\left[n_{j}-(j-h) t / q\right]= \\
& =w+h t / q>o\left(b_{0}(x)\right)+h
\end{aligned}
$$

It follows that the characteristic index of M can be strictly less than m only if $\sum_{j \in I} a_{j, n_{j} q}\left(e_{t}\right)^{j}=0$, where $I=\left\{j: n_{j}-t_{j} / q=w\right\}$. This well known result implies that the branches of roots can be labelled in such a way that the lowest order term c_{s} in the determining factor $Q_{j}(x)(j>r)$ is given by $e_{t}=i \alpha_{j,-t}$ and $N(j)=-t$. (The formal Puiseux expansion (l.4) exists even if the coefficients $a_{j}(x)$ are only elements of $F[x]$; the integer q appearing in (1.4) is an integral multiple of the q which appears in (2.1).)

Unfortunately, the higher terms which appear in the formula (2.3) are less easily obtained, in the most general case. Only if the " characteristics " are " simple " (in the sense that if $N(j) / q<-1$ and $N(j)=N(k), j \neq k$ then $\left.\alpha_{j, N(j)} \neq \alpha_{k, N(k)}\right)$ one can read the complete determining factor off the Puiseux expansion (1.4) ([4]). (If $a_{j}(x) \in C^{\infty}$ then the " charecteristics " are " simple " in the sense of section 1 if and only if they are simple in the sense described above, see section 6 in [4].)

$$
\text { Set } \beta(j)=N(j) /_{q} \text { if } \alpha_{j, N(j)} \neq 0 \text { and } \beta(j)=\infty
$$

if $\zeta_{j}(x)=0$. We shall assume, from now on, without explicitly mentioning it, that the factors in (2.1) are labelled in such a way that the sequence $\{\beta(j)\}$ is non-increasing. We note that $\beta(r) \geq-1$ and $\beta(r+1)<-1$. This follows immediately, either by

HELFFER ET KANNAI

equating the coefficients of $x^{n}{ }^{j}{ }_{\xi}{ }^{j}$ in the equation

$$
\begin{equation*}
p(x, \xi)=a_{m}(x) \Pi_{j=1}^{m}\left(\xi-\xi_{j}(x)\right) \tag{2.7}
\end{equation*}
$$

(compare [. 4 , section 2] for the case $q=1$) or by the fact that the lowest terms of the determining factors Q_{r+1}, \ldots, Q_{m} are given, with the correct multiplicities, by the lowest terms of the branches $\zeta_{j}(x)$.

The following lemma will simplify somewhat the proofs in sections 3 and 5 .

Lemma 2.1 :
Let $P(x)$ be an element of $F[x], P(x)=\Sigma_{k=s}^{\infty} a_{k} x^{k / q}$, such that the characteristic index of the operator $e^{-P(x)} L\left(e^{P(x)} v\right)$ is strictly less than m. Then $Q(x)=\Sigma_{k=s}^{-1} a_{k} x^{k / q}$ is a determining factor for L .

Proof:

$$
\begin{aligned}
& \text { Set } M v=e^{-Q(x)} L\left(e^{Q(x)} v\right) \text {. Then } \\
& M v=e^{P(x)-Q(x)} e^{-P(x)} L\left(e^{P(x)} e^{Q(x)-P(x)} v\right) .
\end{aligned}
$$

It follows from the assumptions that there exists an element w of $F[x]$ with $e^{-P} L\left(e^{P} w\right)=0$. But $e^{P(x)-Q(x)} \in F[x]$ which implies that $e^{P(x)-Q(x)_{w} \in F[x]}$. Set $v=e^{P(x)-Q(x)_{w}}$. Then $M v=0$. Hence M possesses an indicial equation and the lemma follows.

3 - DETERMINING FACTORS WHEN " CHARACTERISTICS " ARE A MOST

" DOUBLE ".
In the process of obtaining formulas for the derermining factors when the " characteristics " are not " simple ", we shall need the following simple lemma :

Lemma 3.1 :
Let $L u=\sum_{j=0}^{m} a_{j}(x) d^{j} u / d x^{j}$ be a formal differential operator whose coefficients are formal power series, let $n_{j}=o\left(a_{j}(x)\right)$, and let $m-r$ be the characteristic index of L. Let c_{j} be an arbitrary complex number, $0 \leq j \leq m-l$. Then the characteristic index of the operator $N u=a_{m}(x) d^{m} u / d x^{m}+\sum_{j=0}^{m-1}\left(a_{j}(x)+\right.$ $\left.c_{j} a_{j+1}(x)\right) d^{j} u^{\prime} d x^{j}$ is also equal to $m-r$. Moreover, $n_{r}=o\left(a_{r}(x)+c_{j} a_{r+1}^{\prime}(x)\right)$ if $r<m$.

Proof:

Set $a_{m+1}(x)=0, c_{m}=1$, and
$p_{j}=o\left(a_{j}(x)+c_{j} a_{j+1}(x)\right), 0 \leq j \leq m$. Clearly,
$p_{j} \geq \min \left(o\left(a_{j}(x)\right), o\left(a_{j+1}(x)\right) \geq \min \left(n_{j}, n_{j+1}-1\right)\right.$. But according to (2.2), $o\left(a_{r+l}^{\prime}(x)\right) \geq n_{r+l}-1>n_{r}$, so that $p_{r}=o\left(a_{r}\right)=n_{r}$. Applying (2.2) once more we see that if $j>r$ then
$p_{j}-j>p_{r}-r$. If $j<r$ then $j+l \leq r$. Hence we obtain from the second inequality of (2.2) that in this case $p_{j}-j \geq p_{r}-r$. Recall the standard notations
$P\left(\begin{array}{l}(\alpha) \\ \beta)\end{array}(x, \xi)=\frac{\partial^{\alpha+\beta} p(x, \xi)}{\partial \xi^{\alpha} \partial x^{\beta}}\right.$
and $q(x, D) u=\sum_{j=0}^{m} c_{j}(x)(-i)^{j} d_{d} j_{u / d x}{ }^{j}$ for $q(x, \xi)=\sum_{j=0}^{m} c_{j}(x) \xi^{j}$.

The main result of the present paper is

Theorem 1 :

Let the coefficients $a_{j}(x)$ of the differential operator $L=\sum_{j=0}^{m} a_{j}(x) d^{j} / d x^{j}$ be C^{∞} (complex valued) functions in a neighborhood of the origin and let $n_{m}<\infty$. Assume that the branches $\xi_{l}(x), \ldots, \xi_{m}(x)$ of roots of $p(x, \xi)=\sum_{j=0}^{m} a_{j}(x)^{\prime}(i \xi) j$
satisfy the following condition. If $x . \zeta_{i}(x)$ is unbounded as $x \rightarrow 0$, and $\lim _{x \rightarrow 0} \zeta_{i}(x) / \zeta_{j}(x)=\lim _{x \rightarrow 0} \zeta_{i}(x) / \zeta_{k}(x)=1$, then either $i=j$ or $i=k$ or $j=k$. Set
(3.1) $q(x, \xi)=p(x, \xi)+\frac{i}{2} p(1)(x, \xi)$
and let $m-r$ be the common characteristic index of $L=p(x, D)$ and $q(x, D)$. Then the derivatives of the non-zero determining factors $Q_{r+1}(x), \ldots, Q_{m}(x)$ of L are given by the formula

$$
\begin{equation*}
\frac{d Q_{j}}{d x}=i \quad \sum_{k=M(j)}^{-q-1} \quad \beta_{j, k} x^{k / q} \quad j=r+l, \ldots, m \tag{3.2}
\end{equation*}
$$

where $\sum_{k=M(j)}^{\infty} \quad \beta_{j, k} x^{k / q}, q \leq j \leq m$, is the formal Puiseux expansion of the branch $n_{j}(x)$ of roots of $q(x, \xi)$, labelled so that the sequence $\{M(j)\}$ is non-increasing.

Proof:

We show first that $M(j)=N(j)$ and $\beta_{j, N(j)}=\alpha_{j, N(j)}$
for $r<j \leq m$. Set $w=\min _{0 \leq h \leq m} n_{h}+h N(j) / q$,
$I=\left\{h: n_{h}+h N(j) / q=w\right\}-$, so that

$o\left(\Sigma_{h} \in I^{a_{h}}(x)\left(\alpha_{j, N(j)} x^{N(j) / q}\right)^{h}\right)>w$, but
$o\left(\Sigma_{h \in I^{a}}(x)\left(\alpha x^{N(j) / q}\right)^{h}\right)=w$ for all but finitely many values
of α. If $h \in I$, then ${ }^{n_{h+1}}-1=$
$n_{h+l}+(h+l) N(j) / q-h N(j) / q-(l+N(j) / q \geq$
$\geq w-h N(j) / q-(l+N(j) / q)=n_{h}-(I+N(j) / q)>n_{h}$.
Hence $p_{h}=n_{h}$, where we set $J_{h}=o\left(a_{h}-\frac{1}{2}(h+1) a_{h+1}^{\prime}\right)$ and $a_{m+l}(x)=0$. For all $h, 0 \leq h \leq m$,

HYPOBLLIPTICITY

$p_{h}+h N(j) / q \geq \min \left(n_{h}+h N(j) / q, n_{h+1}-1+h N(j) / q \geq\right.$
$\geq \min \left(w, n_{h+1}+(h+l) N(j) / q-(1+N(j) / q)\right)=w$.
Hence $p_{h}+h N(j) / q=w$ precisely for $h \in I$ and $\alpha_{j, N(j)} x^{N(j) q}$ is the lowest term in a Puiseux expansion for a branch η_{k} of roots of $q(x, \xi)$, since
$O\left(\Sigma_{h} \quad I\left[a_{n}-\frac{1}{2}(h+l) a_{h+l}^{\prime}\right]\left(\alpha_{j, N(j)} x^{N(j) / q}\right)^{h}\right)>w$, and if $h \in I$ then $o\left(a_{h}(x)\left(\alpha_{j, N(j)} x^{N(j) / q}\right)^{h}\right)<o\left(a_{h+l}^{\prime}(x)\left(\alpha_{j, N(j} x^{N(j) / q}\right)^{h}\right)$.

By lemma $3.1, m \geq k>r$, and it follows that all lowest order terms of the expansions of the $m-r$ branches $\eta_{r+l}(x), \ldots, n_{m}(x)$ are obtained in this way.

We want to prove that the function $Q_{j}(x)$, whose derivative is given in (3.2), is a determining factor. By lemma 2.l, it suffices to show that the characteristic index of the operator $e^{-T_{j}(x)} L\left(e^{T_{j}(x)} v\right)$ is strictly less than m, where $d T_{j}(x) / d x=$ $i \quad j(x)$. Thus suppressing the subindex j, consider the operator $M v=e^{-T(x)} L\left(e^{T(x)} v\right)=\Sigma_{h=0}^{m} b_{h}(x) d^{h} v / d x^{h}$. Then (compare (2.4))

$$
\begin{equation*}
b_{0}(x)=\Sigma \sum_{k=0}^{m} a_{k}(x) S(k, x) \tag{3.3}
\end{equation*}
$$

(3.4)

$$
b_{l}(x)=\sum{\underset{k=1}{m} k a_{k}(x) S(k-1, x) .}^{m}
$$

$$
\begin{equation*}
b_{2}(x)=\frac{1}{2} \sum_{k=1}^{m} k(k-1) a_{k}(x) S(k-2, x) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
S(n, x)=e^{-T(x)}\left(e^{T(x)}\right)(n) \tag{3.6}
\end{equation*}
$$

But $S(0, x)=1$ and $S(n+l, x)=T^{\prime}(x) S(n, x)+S^{\prime}(n, x)$. It follows easily by induction that

$$
\begin{equation*}
o(R(n, x)) \geq(n-2) N(j) / q-2 \tag{3.7}
\end{equation*}
$$

where
(3.8) $R(n, x)=S(n, x)-\left[T^{\prime}(x)\right]^{n}+\frac{n(n-1)}{2}\left[T^{\prime}(x)\right]^{n-2} T^{\prime \prime}(x)$.

Substituting in (3.3), we see that
(3.9) $b_{0}(x)=\sum_{k=0}^{m} a_{k}(x)\left[T^{\prime}(x)\right]^{k}+\sum_{k=2}^{n} \frac{k(k-1)}{2} a_{k}(x)\left[T^{\prime}(x)\right]^{k-2} T^{\prime \prime}(x)+$

$$
+\sum_{k=0}^{m} a_{k}(x) R(k, x) .
$$

Note that

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d x} \quad \sum_{k=1}^{m} k a_{k}(x)\left[T^{\prime}(x)\right]^{k-1}=\sum_{k=1}^{m} \frac{k}{2} a_{k}^{\prime}(x)\left[T^{\prime}(x)\right]^{k-1}+ \\
& \quad+\sum_{k=2}^{m} \frac{k(k-1)}{2} a_{k}(x)\left[T^{\prime}(x)\right]^{k-2} T^{\prime \prime}(x)= \\
& \sum_{k=0}^{m} a_{k}(x)\left[T^{\prime}(x)\right]^{k}+\Sigma_{k=2}^{m} \frac{k(k-1)}{2} a_{k}(x)\left[T^{\prime}(x)\right]^{k-2} T^{\prime \prime}(x)-q\left(x,-i T^{\prime}(x)\right)
\end{aligned}
$$

But $q\left(x,-i T^{\prime}(x)\right)=0$. Hence
(3.10) $b_{0}(x)=\frac{1}{2} \frac{d}{d x}\left(\sum_{k=1}^{m} k a_{k}(x)\left[T^{\prime}(x)\right]^{k-l}\right)+\sum_{k=0}^{m} a_{k}(x) R(k, x)$.

It follows from (3.7) that $o\left(\sum_{k=0}^{m} a_{k}(x) R(k, x)\right) \geq w-2 N(j) / q-2$.
We distinguish now between two cases. Either
(i) $\circ\left(p^{(l)}\left(x,-i T^{\prime}(x)\right)\right)<w-2 N(j) / q-l$, or
(ii) $\sigma\left(p^{(l)}\left(x,-i T^{\prime}(x)\right)\right) \geq w-2 N(j) / q-1$.
(i) In this case
$o\left(\frac{d}{d x} \sum_{k=1}^{m} k a_{k}(x)\left[T^{\prime}(x)\right]^{k-1} \geq o\left(p^{(1)}\left(x,-i T^{\prime}(x)\right)\right)-1\right.$
and $\circ\left(p^{(l)}\left(x,-i T^{\prime}(x)\right)\right)-l<w-2 N(j) / q-2$.

Hence $O\left(b_{0}(x)\right) \geq O\left(p^{(1)}\left(x,-i T^{\prime}(x)\right)\right)$ - l. Note that (2.6) may be applied to (3.4), with T replacing Q and $-N(j)$ replacing t, yielding the estimate

$$
\begin{aligned}
& \circ\left(b_{1}(x)-\varepsilon_{k=1}^{m} k a_{k}(x)\left[T^{\prime}(x)\right]^{k-1}\right) \geq \min _{1 \leq k \leq m}\left[n_{k}+(k-2) N(j) / q-1\right] \\
& \quad \geq w-2 N(j) / q-l . \text { It follows that } \\
& \circ\left(b_{1}(x)\right)=o\left(\varepsilon_{k=1}^{m} k a_{k}\left[T^{\prime}(x)\right)^{k-1}\right)=o\left(p^{(1)}\left(x,-i T^{\prime}(x)\right)\right) .
\end{aligned}
$$

$$
\text { Hence the charecteristic index of } M \text { cannot be larger than }
$$ m-1.

(ii) In this case, the branch $\eta_{j}(x)$ is not " simple ", i.e., there exists an index $k, r \quad k \leq m, k \neq j$, such that $N(j)=N(k)$ and $\beta_{j, N(j)}=\beta_{k, N(k)}$. By assumption, if $N(\ell)=N(j)$ and $\beta_{j, N(j)}=\beta_{\ell, N(\ell)}$, then either $j=\ell$ or $k=\ell$. An easy computation shows that
$O\left(\varepsilon_{h=2}^{m} \frac{h(h-1)}{2} a_{h}(x)\left[T^{\prime}(x)\right]^{h-2}\right)=O\left(p^{(2)}\left(x, \eta_{j}(x)\right)\right.$ has to be equal to $\mathrm{w}=2 \mathrm{~N}(\mathrm{j}) / \mathrm{q}$. Applying (2.6) (modified as in case (i)) to (3.5), we see that
$o\left(b_{2}(x)-\sum_{h-2}^{m} \frac{h(h-1)}{2} a_{h}(x)\left[T^{\prime}(x)\right]^{h-2}\right) \geq \min _{2 \leq h \leq m}\left[n_{h}+(h-3) N(j) / q-1\right]$

$$
\geq w-3 N(j) / q-1>w-2 N(j) / q .
$$

Hence $\circ\left(b_{2}(x)\right)=w-2 N(j) / q$. On the other hand, it follows from (3.7) and (3.10) that in our present case (ii)
$o\left(b_{0}(x)\right) \geq w-2 N(j) / q-2$. Hence the characteristic index of M is less than or equal to $m-2$.

HELFFER ET KANNAI

If j and ℓ are two distinct indices such that $N(j)=N(\ell)$ and $\beta_{j, k}=\beta_{\ell, k}$ for $N(j) \leq k \leq-q-1$ (so that the right hand sides of (3.2) coincide for j and ℓ, then case (ii) occurs (it is easy to see that
$o\left(q^{(1)}\left(x,-i T^{\prime}\right)\right) \geq w-2 N(j)-1$ and
$\left.O\left(P(2)\left(x,-i T^{\prime}\right)\right) \geq w-2 N(j)-1\right)$ and the indicial equation of M is of the second order. Hence $Q_{j}(x)=Q_{\ell}(x)$ is indeed a double determining factor. By assumption there can be no third index f with $N(j)=N(f)$ and $\beta_{j, N(j)}=\beta_{f, N(f)}$. Hence the formula (3.2) is completely established, with the correct multiplicities.

4 - HYPOELLIPTICITY WHEN " CHARACTERISTICS " ARE AT MOST " DOUBLE ".

In this section we apply theorem 1 to the problem of characterizing hypoelliptic ordinary differential operators whose " characteristics " are at most " double ". One of the main results of [4] is that if L is an ordinary differential operator of order m with C^{∞} coefficients in a neighborhood of the origin and if $n_{m}<\infty$, then L is hypoelliptic in a neighborhood of the origin if and only if (i) $a_{r}(0) \neq 0$ and (ii) $\left|\operatorname{Re} Q_{j}(x)\right| \rightarrow \infty$ as $x \rightarrow 0$ for $r<j \leq m$. This result was applied in [4] for the characterization of hypoelliptic ordinary differential operators whose " characteristics " are at most " simple " (Theorem 2 of [4]). Similarly, we shall prove

Theorem 2.-

Let the coefficients $a_{j}(x)$ of the differential operator $L=\sum_{j=0}^{m} a_{j}(x) d^{j} / d x^{j}$ be C^{∞} (complex valued) functions in
a neighborhood of the origin, and let $n_{m}<\infty$. Assume that the branches $\zeta_{I}(x), \ldots, \zeta_{m}(x)$ of roots of
$p(x, \xi)=\sum_{j=0}^{m} a_{j}(x)(i \xi)^{j}$ satisfy the following condition.
If $x \zeta_{i}(x)$ is unbounded as $x \rightarrow 0$, and
$\lim _{x \rightarrow 0} \zeta_{i}(x) / \zeta_{j}(x)=\lim _{x \rightarrow 0} \zeta_{i}(x) / \zeta_{k}(x)=l$, then either $i=j$ or $i=k$ or $j=k$. Set $q(x, \xi)=p(x, \xi)+\frac{i}{2} p(l)(x, \xi)$.
A necessary and sufficient condition for the hypoellipticity of L in a neighborhood U of the origin is that there exists a constant $C>0$ such that for $x \in U$ and ζ a complex number satisfying $q(x, \zeta)=0$, either $|\zeta|<C$ or $|x||\operatorname{Im} \zeta| \rightarrow \infty$ as $\mathrm{x} \rightarrow 0$.

Proof:
Sufficiency : Set $N u=q(x, D) u=\sum_{j=0}^{m} b_{j}(x) d^{j} u / d x^{j}$. By lemma 3.l, the characteristic index $m-r$ of L is equal to the characteristic index of N, and $n_{r}=o\left(b_{r}(x)\right)$. The operator Nu satisfies all the assumptions of Lemma 6.1 bis of [4]; hence the conclusions of that lemma apply to N. In particular, $o\left(b_{r}(x)\right)=O$, which implies that condition (i) is satisfied.

By theorem l, the derivatives of the determining factors of L are given by (3.2). Choose a branch of $x^{1 / q}$ which is positive for $\mathrm{x}>0$ (this implies a certain choice of the constants $\beta_{j, k}$). For every $j, r<j \leq m$, there exists at least one $\beta_{j, k}$ which is not real, with $N(j) \leq k \leq-q-l$ (otherwise $|x||\operatorname{Im} \zeta|$ would not tend to ∞ as $x \rightarrow O_{+}$, since $\eta_{j}(x)-\sum_{k=N(j)}^{-1} \quad \beta_{j, k} x^{k / q}$ is bounded as $x \rightarrow 0$, by lemma 6.2 of [4]). Hence $\left|\operatorname{Re} Q_{j}(x)\right| \rightarrow \infty$ as $x \rightarrow 0_{+}$. Similarly, we can prove that $\left|\operatorname{Re} Q_{j}(x)\right| \rightarrow \infty$ as $x \rightarrow O_{-}$. This condition (ii) is also satisfied.

HELFFER ET KANNAI

Necessity : It is easy to prove (as is done at the end of section 6 in [4]) that if there exists an unbounded branch $\eta_{j}(x)$ of zeros of $q(x, \xi)$ with $l \leq j \leq r$ then $b_{r}(0)=0$ and, by Lemma $3.1, n_{r}>0$. Similarly, $q(0, \zeta)=0$ can hold only for finitely many values of ζ. Otherwise $q(0, \zeta)=0, b_{j}(0)=0$ for all $j, 0 \leq j \leq m$ and in particular $b_{r}(0)=0$ and $a_{r}(0)=0$. If $|x|\left|\operatorname{Im} \eta_{j}(x)\right|$ does not tend to ∞ as $x \rightarrow 0$ (even if it does so from one side only) for some index j, $r<j \leq m$, then Lemma 6.2 of [4] implies once again that $\beta_{j, k}$ is real for $N(j) \leq k \leq-q-1$ (for a suitable choice of the branch of $x^{l / q}$). Thus $Q_{j}(x)$ is purely imaginary (at least from one side) by (3.2), and L cannot be hypoelliptic near the origin. Hence $p(x, \zeta)=0$ only if either $|\zeta|$ is bounded or $|x| \quad|\operatorname{Im} \zeta| \rightarrow \infty \quad$ as $x \rightarrow 0$.

5. DETERMINING FACTORS AND HYPOELLIPTICITY FOR OPERATORS OF THE

 THIRD ORDER. -Consider the operator $L u=\sum_{j=0}^{3} a_{j}(x) d^{j} u / d x^{j}$, where the coefficients $a_{j}(x)$ are C^{∞} functions at a neighborhood of the origin and $n_{3}<\infty$. Hence $a_{3}(x) \neq 0$ for $x \neq 0$ if x is sufficiently small. Set

$$
\begin{equation*}
b_{j}(x)=\frac{a_{j}(x)}{a_{3}(x)} \quad, 0 \leq j \leq 3 \tag{5.1}
\end{equation*}
$$

Then every function $b_{j}(x), 0 \leq j \leq 3$, has a formal Laurent expansion, with $O\left(b_{j}\right)>-\infty$. The determining factors of L are obviously unaffected by this division. Moreover $3-r$ is both the characteristic index of L and of $\frac{1}{a_{3}} L$.

HYPOELLIPTICITY

Set $p(x, \xi)=\Sigma_{j=0}^{m} b_{j}(x)(i \xi)^{j}$ and
(5.2) $\quad \mathrm{q}(\mathrm{x}, \xi)=\mathrm{p}(\mathrm{x}, \xi)+\frac{\mathrm{i}}{2} \mathrm{p}\left(\begin{array}{l}(1) \\ (1)\end{array}(x, \xi)-\frac{1}{1^{2}} \mathrm{p}(2)(\mathrm{Z})(\mathrm{l}, \xi)\right.$

We can state now
Theorem 3.-
Let
(5.3) $q(x, \xi) \sim-i \pi_{j=1}^{3}\left(\xi-\sum_{k=M(j)}^{\infty} \beta j, k^{x^{k / q}}\right)$
be the formal Puiseux expansion of q, labelled so that $\{M(j)\}$
is non-increasing. Then the derivatives of the determining factors of L are given by
(5.4) $\quad \frac{d Q_{j}}{d x}=i \quad \sum_{k=M(j)}^{-q-1} \beta_{j, k} x^{k / q}, j=r+1, \ldots, 3$.

Proof :

Choose complex numbers c_{j} and d_{j} such that $c_{j}+d_{j}=-(j+1) / 2, c_{j} d_{j}=(j+1)(j+2) / 12$. Repeated application of Lemma 3.1 yields that the operator $q(x, D)$, whose j-th coefficient is

$$
\begin{aligned}
& b_{j}(x)-(j+1) b_{j+1}^{!}(x) / 2+(j+2)(j+1) b_{j+2}^{\prime \prime}(x) / 12= \\
& =\left[b_{j}(x)+c_{j} b_{j+1}^{!}(x)\right]+d_{j}\left[b_{j+1}(x)+c_{j} b_{j+2}^{\prime}(x)\right]
\end{aligned}
$$

has the same characteristic index $3-r$ as L (here we have put $b_{4}(x)=b_{5}(x)=0$). Hence the use of the index r in (5.4) is justified. By lemma 2.l, it suffices to consider the characteristic index of the operator $M v=e^{-T(x)} L\left(e^{T(x)} v(x)\right)$, where

$$
\begin{equation*}
\frac{d T}{d x}=i \quad \sum_{k=M(j)}^{\infty} \quad \beta j, k^{x^{k / q}} \tag{5.5}
\end{equation*}
$$

for some $j, r<j \leq 3$. Set $M v=\sum_{j=0}^{m} c_{j}(x) d^{j} v / d x^{j}$. Then
(5.6)

$$
c_{3}(x)=1
$$

(5.7)

$$
c_{2}(x)=b_{2}(x)+3 T^{\prime}(x)
$$

$$
\begin{align*}
c_{1}(x)= & 3\left[T^{\prime}(x)\right]^{2}+2 b_{2}(x) T^{\prime}(x)+b_{1}(x)+3 T^{\prime \prime}(x) \tag{5.8}\\
c_{0}(x)=\left[T^{\prime}(x)\right]^{3} & +b_{2}(x)\left[T^{\prime}(x)\right]^{2}+b_{1}(x) T^{\prime}(x)+b_{0}(x)+ \tag{5.9}\\
& +3 T^{\prime}(x) T^{\prime \prime}(x)+b_{2}(x) T^{\prime \prime}(x)+T^{(3)}(x)
\end{align*}
$$

Inserting (5.2) into (5.3) (using also (5.3) and (5.5)), we see that
(5.10) $\quad c_{0}(x)=3 T^{\prime} T^{\prime \prime}+T^{(3)}+b_{2} T^{\prime \prime}+b_{2}^{\prime} T^{\prime}+B_{1}^{\prime} / 2-b_{2}^{\prime \prime} / 6$

Differentiating (5.7) and (5.8), we get :

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d x} c_{1}(x)=3 T^{\prime} T^{\prime \prime}+\frac{3}{2} T^{(3)}+b_{2}^{\prime} T^{\prime}+b_{2} T^{\prime \prime}+\frac{1}{2} b_{1}^{\prime} \\
& \frac{1}{6} \frac{d^{2}}{d x^{2}} c_{2}(x)=\frac{1}{6} b_{2}^{\prime \prime}(x)+\frac{T^{(3)}(x)}{2}
\end{aligned}
$$

Hence
(5.11) $\quad c_{0}(x)=\frac{1}{2} \quad \frac{d}{d x} c_{1}(x)-\frac{1}{6} \frac{d^{2}}{d x^{2}} \quad c_{2}(x)$
and

$$
o\left(c_{0}\right) \geq \min \left(o\left(c_{1}^{\prime}\right), o\left(c_{2}^{\prime \prime}\right)\right) \geq \min \left(o\left(c_{1}\right)-1, o\left(c_{2}\right)-2\right)
$$

so that the characteristic index of M is strictly less than 3. Note that if $r=0$ and the right hand side of (5.4) is independent of $j, j=1,2,3$, then $o\left(c_{2}(x)\right)=o\left(q^{(2)}\left(x,-i T^{\prime}(x)\right)\right) \geq-1$ which proves that the characteristic index of M is 0 and $Q_{1}(x)$ is a triple determining factor. If the right hand sides of (5.4) are the same for exactly two values of j, say for $j=j_{1}$ and $j=j_{2}$, then it is easily seen that

$$
o\left(q^{(1)}\left(x,-i T^{\prime}(x)\right)\right) \geq o\left(q^{(2)}\left(x,-i T^{\prime}(x)\right)\right)-1
$$

where - $\mathrm{iT}^{\prime}(x)$ is given by (5.5) for $j=j_{1}$. But

HYPOELLIPTICITY

$c_{2}(x)=-q^{(2)}\left(x,-i T^{\prime}(x)\right) / 2$ and $c_{1}(x)=-i q^{(l)}\left(x,-i T^{\prime}(x)\right)+c_{2}^{\prime}(x)$.
It follows that $o\left(c_{1}\right) \geq o\left(c_{2}\right)-1$ and the characteristic index of M is 1 .

Hence formula (5.4) gives also the correct multiplicities of the determining factors.

We can now characterize hypoelliptic ordinary differential operators of the third order.

Theorem 4 :

L is hypoelliptic near the origin if and only if (i) $n_{r}=0$ and (ii) whenever $\eta_{j}(x)$ is an unbounded branch of zeros of $q(x, \xi)$ where $q(x, \xi)$ is given by (5.2), then $|x|\left|\operatorname{Im} \eta_{j}(x)\right| \rightarrow \infty \quad$ as $x \rightarrow 0$.

Theorem 4 is an immediate corollary of theorem 1 of [4] (stated also in section 4 of the present paper), Theorem 3, and the fact that the Puiseux expansion of $\eta_{j}(x)$ is actually asymptotic expansion (compare Lemma 6.2 in [4]).

Condition (i) of Theorem 4 can be replaced by a condition on the zeros sets of $q(x, \xi)$ and of $a_{3}(x) p(x, \xi)$. We leave the details to the reader.

HBLFFER ET KANNAI

REFERENCES

[1] F.T. Cope
" Formal solutions of irregular linear differential equations I " Amer. J. Math. 56 (1934), 4ll-437
[2] A.R. Forsyth
" Theory of differential equations"" part III, vol. IV, Cambridge, 1902
[3] E.L. Ince
" Ordinary differential equations " London, 1927
[4] Y. Kannai
" Hypoelliptic ordinary differential operators " Israel d. of Math. 13 (to appear)

