Gerd Grubb

Inequalities for boundary value problems for systems of partial differential operators

Astérisque, tome 2-3 (1973), p. 171-187
http://www.numdam.org/item?id=AST_1973__2-3__171_0

© Société mathématique de France, 1973, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

INEQUALITIES FOR BOUNDARY VALUE PROBLEMS FOR

 SYSTEMS OF PARTIAL DIFFERENTIAL OPERATORS
by

Gerd GRUBB
INTRODUCTION.

One of the classical techniques for studying homogeneous boundary value problems for elliptic operators was to rephrase them in terms of integro-differential sesquilinear forms. After it was discovered that there exist boundary problems with optimal regularity, but which cannot be expressed by sesquilinear forms, the method was abandoned by many people. However, others have stayed with it because it handles existence and uniqueness questions in a very convenient way, and they have applied it to more general differential operators, without worrying much about which boundary problems could be treated (there was always the Dirichlet problems, and other examples).

The first part of this lecture will be concerned with filling this gap, determining exactly which boundary problems enter in the variational framework. It will be seen that as soon as one requires some semiboundedness - more precisely, that
(I) $\operatorname{Re}(A u, u) \geqslant-$ const. $\|u\|_{m}^{2}$, all u satisfying boundary conditions, A being a differential operator of order $2 m$ - then (and only then) the boundary condition falls within the class associated with sesquilinear forms on H^{m}. This holds not only for elliptic operators, but for quite general ones, e.g. the degenerate elliptic operators. Our treatment can be extended to systems of "mixed order", giving new information on these. The inequality (I) will be called "weak semiboundedness".

In the second part of the lecture we study "Garding's inequality" $\operatorname{Re}(A u, u) \geqq c_{m}\|u\|_{m}^{2}-c_{0}\|u\|_{0}^{2}$, all u satisfying bdry. cond., characterizing the boundary conditions for which it holds. Here and in the first part the methods are inspired from a general "abstract" theory for boundary problems [3], [4]. However, we thought it might be useful to show how (II) can be treated directly, without the whole machinery.

In the third part, the above results are applied, with some use of the abstract theory, to show that when A is strongly elliptic, the negative eigenvalues of the selfadjoint elliptic realizations A_{B} satisfy

$$
\begin{equation*}
\left[N^{-}\left(A_{B} ; t\right)=\right] \sum_{-t<\lambda_{j}<0} 1 \leqq c\left(A_{B}\right) t^{(n-1) / 2 m}+o\left(t^{(n-1) / 2 m}\right) \tag{III}
\end{equation*}
$$

for $t \rightarrow \infty$, improving results of Agmon and Hbrmander.

1. WEAKLY SEMIBOUNDED REALIZATIONS

compact
Let $\bar{\Omega}$ be an n-dimensional riemannian manifold with boundary Γ and interior $\Omega=\bar{\Omega} \backslash \Gamma$. Let E be a C^{∞} hermitian vector bundle over $\bar{\Omega}$, of fiber dimension $q \geqslant 1$. Then the spaces of square integrable sections, $L^{2}(E)$ and $L^{2}(E \mid \Gamma)$, and the Sobolev spaces $H^{s}(E)$, $H^{s}\left(\left.E\right|_{\Gamma}\right)(s \in I R)$ and $H_{0}^{s}(E)(s \geqslant 0)$ may be defined; we denote inner products over $\bar{\Omega}$ by (,) and inner products (and dualities) over Γ by \langle,$\rangle . With a normal derivative D_{n}$ defined in E as in H女rmander [6], we have the trace operators γ_{k} defined by

$$
\gamma_{k}:\left.u \mapsto\left(D_{n}^{k} u\right)\right|_{\Gamma}, k=0,1,2, \ldots,
$$

they are continuous from $H^{s}(E)$ into $H^{s-k-1 / 2}(E \mid \Gamma)$, for $s>k+1 / 2, c f \cdot[8]$.

We shall stady boundary value problems defined as follows:
Given a linear differential operator A in E of order $2 m$, m integer >0. Denote
(1.1) $M=\{0, \ldots, 2 m-1\}, M_{0}=\{0, \ldots, m-1\}, M_{1}=\{m, \ldots, 2 m-1\}$, and denote
(1.2) $\rho u=\left\{\gamma_{0} u, \ldots, \gamma_{2 m-1} u\right\}^{\prime}=\left\{\gamma_{k} u\right\}_{k \in M}, \gamma u=\left\{\gamma_{k} u\right\}_{k \in M_{0}}, v u=\left\{\gamma_{k} u\right\}_{k \in M,}$, respectively the Cauchy data, Dirichlet data and Neumann data of u with respect to A (usually regarded as column vectors).

Given for each $j \in M$ a hermitian vector bundle F_{j} over Γ of fiber dimension $p_{j} \geq 0$. For each pair $\{j, k\} \in \mathbb{M} \times M$ there is given a differential operator $3_{j k}$ from $E \mid \Gamma$ to F_{j} of order $j-k$; we use the convention that differential operators of negative order are zero. Note that the operators $B_{k k}$ are of orier zero, so they are locally multiplication by a $p_{k} \times q$ - matrix, globally they may be viewed as vector bundle morphisms from $\left.E\right|_{\Gamma}$ to F_{k}. Of course $B_{j k}$ is 0 if $p_{j}=0$ (i.e. $F_{j}=\Gamma \times\{0\}$). Altogether, the $B_{j x}$ form a $2 m \times 2 m$ - matrix of differential operators, $B=\left(B_{j k}\right)_{j, k \in M}$, it is of type $(-k,-j)_{j, k \in M}$ in the notation of [6], i.e. continuvus from $\prod_{k \in M} H^{\alpha-k}\left(\left.E\right|_{\Gamma}\right)$ to $\prod_{j \in M} H^{\alpha-j}\left(F_{j}\right)$, for all $\alpha \in \mathbb{R}$.

The boundary condition is now given by

$$
\begin{equation*}
{ }^{\mathrm{B}} \rho \mathrm{u}=0 \tag{1.3}
\end{equation*}
$$

and we shall study the realization A_{B} of A defined by
(1.4) $\quad A_{B}: u \mapsto A u ; D\left(A_{B}\right)=\left\{u \in H^{2 m}(E) \mid B \rho u=0\right\}$.
(1.3) is a reformulation of the usual systems of boundary conditions, where we have grouped together cond tions of the same rommal order, and permitted the range space for each group to be a nontrivial bundic.

We shall assume throughout that the following definition is setisfied:

GRUBB

Definition 1.1 The boundary condition $B \rho u=0$ - or the operator B - will be said to be normal when all the morphisms $B_{l k}(k \in M)$ are surjective (so in particular $p_{k} \leqq q$, all $k \in M$).

The assumption is partly justified by the observation of Seeley [11] that, for elliptic A_{B}, Agmon's necessary and suffjcient condition for the existence of a "ray of minimal growth" implies normality; and when (II) holds (even with $c_{m}=0$), there are many rays of minimal growth. We believe that normality is necessary for (I) under much more general circumstances. - The definition is a vector bundle version of that of Seeley [11]. It is more general then that of Geymonat [2] for matrices, which may be shown to hold exactly when ker $B_{k k}$ is a trivial bundle, for all $k \in M$.
B is a lower triangular matrix, since $B_{j k}=0$ for $j<k$. It is the sum of its diagonal part B_{d} and its subtriangular part B_{s}

$$
\begin{equation*}
B_{d}=\left(\delta_{j k} B_{j k}\right)_{j, k \in M}, \quad B_{s}=B-B_{d} ; \tag{1.5}
\end{equation*}
$$

we call matrices with zeroes in and on one side of the diagonal subtriangular. B_{d} is a surjective morphism from $\left.\underset{k \in M}{\oplus} E\right|_{\Gamma}$ to $\underset{j \in M}{\bigoplus} F_{j}$.

Proposition 1.2 B_{d} has the right inverse

$$
C_{d}=B_{d}^{*}\left(B_{d} B_{d}^{*}\right)^{-1},
$$

and B has the right inverse

$$
C=C_{d}-C_{d} B_{s} C_{d}+\ldots+C_{d}\left(-B_{s} C_{d}\right)^{2 m} ;
$$

C is an injective triangular differential operator from $\bigoplus_{k \in M} F_{k}$ to $\left.\bigoplus_{j \in M} E\right|_{\Gamma}$ of type $(-k,-j)_{j, k \in M}$.

In the proof it is used that $B_{s} C_{d}$ is a subtriangular differential operator in $\bigoplus_{j \in \mathbb{M}}{ }_{j}$, thus nilpotent.

1) The definition clearly extends the original definition of Oronszajn and Milgram for the case where A is scalar (i.e.g. = 1).

Define for $\alpha \in \mathbb{R}$

$$
\begin{equation*}
Z^{\alpha}(B)=\left\{\phi \in \prod_{k \in \mathbb{M}} H^{\alpha-k-1 / 2}\left(\left.E\right|_{\Gamma}\right) \mid B \varphi=0\right\}, \quad Z(D)=\bigcup_{\alpha \in \mathbb{R}} Z^{\alpha}(R), \tag{1.6}
\end{equation*}
$$

$$
\text { (1.7) } \quad R^{\alpha}(I-C B)=(I-C B) \prod_{k \in \mathbb{M}} F^{\alpha-k-1 / 2}\left(\left.E\right|_{\Gamma}\right), \quad R(I-C B)=\bigcup_{\alpha \in R} R(I-C B)
$$

and define similarly $R^{\boldsymbol{\alpha}}\left(B^{*}\right), R\left(B^{*}\right), Z^{\alpha}\left((I-C B)^{*}\right)$ and $Z\left((I-C B)^{*}\right)$. One has immediately

Lemma 1.3 For all $\alpha \in \mathbb{R}$

$$
\begin{array}{lll}
(1.8) & Z^{\boldsymbol{\alpha}}(B)=R^{\boldsymbol{\alpha}}(I-C B), & Z(B)=R(I-C B) \\
(1.9) & R^{\boldsymbol{\alpha}}\left(B^{*}\right)=Z^{\boldsymbol{\alpha}}\left((I-C B)^{*}\right), & R\left(B^{*}\right)=Z\left((I-C B)^{*}\right)
\end{array}
$$

We shall later need the following lemma:

Lemma 1.4 There exists a differential operator Φ from $\bigoplus_{k \in \mathbb{M}} \sum_{k}$

 to $\left.\bigoplus_{j \in M} E\right|_{\Gamma}$ of type $(-k,-j)_{j, k \in M}$, with injective diagonal part, such that$$
\left.Z^{\alpha}(B)=\Phi \prod_{k \in M} H^{\alpha-k-1 / 2}\left(Z_{k}\right), \quad \underline{a} 1\right] \quad \alpha \in \mathbb{R}
$$

here Z_{k} denotes the bundle ker $B_{k k}$, $k \in \mathbb{N}$.
By Proposition 1.2 applied to Φ^{*}, Φ has a left inverse Ψ, triangular differential operator with surjective diasonal part.

Next, we shall establish the necessary Green's formulae. The following version of Green's formula is well known (cf. [9], [6])

$$
\begin{equation*}
(A u, v)-\left(u, A^{\prime} v\right)=\langle Q \rho u, \rho v\rangle, \text { all } u \in H^{2 m}(E) ; \tag{1.10}
\end{equation*}
$$

here A^{\prime} denotes the formal adjoint of A, and A is a skew-trisngular $2 \mathrm{~m} \times 2 \mathrm{~m}$ - matrix $a=\left(a_{j k}\right)_{j, k \in N}$ where $a_{i k}$ is of order $2 \mathrm{~m}-\mathrm{j}-\mathrm{k}-1$; the elements in the second diagonal, $a_{j, 2 m-1-j}$, are of order 0 , and they are vector burdie isomorphisms if and only if Γ is noncharacteristic for A.

Split $\boldsymbol{a}_{\text {in }}$ four blocks (recall (1.1))

$$
a=\left(\begin{array}{ll}
a^{00} & a^{0,1} \\
a^{10} & 0
\end{array}\right), \quad a^{\delta \varepsilon}=\left(a_{j k}\right)_{j \in M_{\delta}, k \in M_{\varepsilon}} ;
$$

then (1.10) becomes, in view of (1.2)
(1.11) $(A u, v)-\left(u, A^{\prime} v\right)=\left\langle a^{00} \gamma u, \gamma v\right\rangle+\left\langle a^{01} r u, \gamma v\right\rangle+\left\langle a^{10} \gamma u, \gamma v\right\rangle$.

We shall also need the "halfways" Green's formula (proved in [5])

Proposition 1.5 Let $a(u, v)$ be a sesquilinear form on $H^{m}(E)$

 associated with A, i.e. a form(1.12) $a(u, v)=\sum_{i \in I}\left(Q_{i} u, P_{i} v\right)$,
with Q_{i} and P_{i} of order $\leqq m$, indexed by a finite index set I, and with $\sum_{i \in I} P_{i}^{\prime} Q_{i}=A$. Then for all $u \in H^{2 m}(E)$, all $v \in H^{m}(E)$,

$$
\begin{equation*}
(A u, v)=a(u, v)+\left\langle Q^{01} \nu u, \gamma v\right\rangle+\left\langle\mathscr{\varphi}_{\gamma u, \gamma v\rangle},\right. \tag{1.13}
\end{equation*}
$$

where $\mathscr{S}=\left(\mathscr{S}_{j k}\right)_{j, k \in M_{0}}$ is a differential operator of type $(-k,-2 m+1+j)_{j, k \in M_{0}}$ in $\left.\underset{k \in M_{0}}{\bigoplus} E\right|_{\Gamma}$ Conversely, for any such $\mathcal{S}_{\text {there }}$ exists a sesquilinear form $a(u, v)$ associated with 1 , such that (1.13) holds.

```
Now split B and C in blocks elso :
```

$$
B=\left(\begin{array}{cc}
B^{00} & 0 \\
B^{10} & B^{11}
\end{array}\right), \quad C=\left(\begin{array}{cc}
c^{00} & 0 \\
C^{10} & C^{11}
\end{array}\right)
$$

where $B^{\delta \varepsilon}=\left(B_{j k}\right)_{j \in M_{\delta}, k \in M_{\varepsilon}}$ and $C^{\delta \varepsilon}=\left(C_{j k}\right)_{j \in M_{\delta}, k \in M_{\varepsilon}}$; then C^{00} and. C^{11} are the right inverses of B^{00} resp. B^{11} by the construction in Proposition 1.2. Then the boundary condition may be written

$$
\begin{equation*}
B^{00} \gamma u=0, \quad B^{10} \gamma u+B^{11} v u=0 . \tag{1.14}
\end{equation*}
$$

Moreover, we observe that by Lemma 1.3

Lemma 1.6 A section $u \in H^{2 m}(E)$ satisfies (1.14) if and only if (1.15) $\quad \gamma u \in Z^{2 m}\left(B^{00}\right), \quad \nu u+C^{11} B^{10} \gamma u \in Z^{2 m}\left(B^{11}\right)$;
and if and only if

$$
\begin{equation*}
\gamma^{u \in R^{2 m}}\left(I-C^{00} B^{00}\right), \nu u+C^{11} B^{10} \gamma u \in R^{2 m}\left(I-C^{11} B^{11}\right) . \tag{1.16}
\end{equation*}
$$

The theorem can now be stated.

Theorem I The following statement are equivalent:

(i) For some $c>0$,

$$
\begin{equation*}
\operatorname{Re}(A u, u) \geqq-c\|u\|_{m}^{2}, \text { for all } u \in D\left(A_{B}\right) \tag{1.17}
\end{equation*}
$$

ie., A_{B} is weakly semibounded.
(ii) The identity holds

$$
\begin{equation*}
\left(I-C^{00} B^{00}\right) * a^{01}\left(I-C^{11} B^{11}\right)=0 \tag{1.18}
\end{equation*}
$$

(iii) There exists a sesquilinear form $a_{B}(u, v)$ on $H^{m}(E)$ associated with A, for which

$$
\begin{equation*}
(A u, v)=a_{B}(u, v), \text { for all } u, v \in D\left(A_{B}\right) . \tag{1.19}
\end{equation*}
$$

(iv) For some $c>0$,

$$
|(A u, v)| \leqq c\|u\|_{m}\|v\|_{m} \text {, for all } u, v \in D\left(A_{B}\right)
$$

A detailed proof is given in [5] ; let us just explain how (1.18) enters: In the formula (1.13), the only term on the right side that is not continuous on $H^{m}(E) \times H^{m}(E)$ is $\left\langle Q^{01} \nu u, \gamma v\right\rangle$. However, when u and $v \in D\left(A_{B}\right)$, then by (1.16)

$$
\nu u+C^{11} B^{10} \gamma u=\left(I-C^{11} B^{11}\right) \varphi, \quad \gamma v=\left(I-C^{00} B{ }^{00}\right) \psi
$$

for suitable φ, ψ, so when (1.18) holds, then

$$
\left\langle Q^{01} \gamma u, \gamma v\right\rangle=\left\langle Q^{01}\left(I-C^{11} B^{11}\right) \varphi,\left(I-C^{00} B^{00}\right) \psi\right\rangle-\left\langle Q^{01} C^{11} B^{10} \gamma u, \gamma v\right\rangle
$$

$$
\begin{equation*}
=\quad 0-\left\langle a^{01} C^{11} B^{10} \gamma^{u}, \gamma v\right\rangle \text {, } \tag{1.20}
\end{equation*}
$$

and thus $\left|\left\langle Q^{01} v u, \gamma v\right\rangle\right| \leqq c\|u\|_{m}\|v\|_{m}$ for $u, v \in D\left(A_{B}\right)$.

Then (i) and (iv) are valid, and (iii)follows by use of the last part of Proposition 1.5. Conversely, (1.18) is seen to be necessary even for (i), since ϕ varies independently of γu.

Let us give a few more remarks on (1.18), for the case where Γ is noncharacteristic for A. Then (1.18) implies $\sum_{j \in M} p_{j} \geqslant m q$, and when $\sum_{j \in \mathbb{M}} p_{j}=m q$ (the case usually considered for elliptic opaerators), (1.18) is equivalent with the statement

$$
\begin{equation*}
z^{2 m}\left(B^{00}\right)=\left(a^{01^{*}}\right)^{-1} R^{2 m}\left(B^{11^{*}}\right) \tag{1.21}
\end{equation*}
$$

and with

$$
\begin{equation*}
B^{00}\left(a^{01^{*}}\right)^{-1} B^{11^{*}}=0 . \tag{1.22}
\end{equation*}
$$

Now $\gamma^{D}\left(A_{R}\right)=Z^{2 m}\left(R^{00}\right)$, and it is easily seen that the formally adjoint realization $\left(\Lambda_{B}\right)$ ' is defined by a normal boundary condition B' pu = 0, for which

$$
z^{2 m}\left(E^{\prime 0}\right)=\left(e^{01^{*}}\right)^{-1} R^{2 m}\left(B^{11^{*}}\right)
$$

Thus (1.21) means

$$
\gamma D\left(A_{B}\right)=\gamma D\left(A_{B}^{\prime}\right) .
$$

This is symmetric in $\{A, B\}$ and $\left\{A^{\prime}, B^{\prime}\right\} ;$ holds, $A^{\prime} B^{\prime}{ }^{\prime}$ is also weakly semibounded.

Finally, we mention the treatment of systems of "mixed order" (details are given in [5]). Let $\Lambda=\left(A_{s t}\right)_{s, t=1, \ldots, q}$, where each ${ }^{A}$ st is a differential operator on $\bar{\Omega}$ of order $m_{s}+m_{t}$, for a given set of nonnegative integers $\left\{m_{1}, \ldots, m_{q}\right\}$. Denote $\max m_{t}=m$. Then one car establish a Green's formula

$$
\begin{equation*}
(\operatorname{iiu} u, v)-\left(u, A^{\prime} v\right)=\left\langle\hat{q}^{00} \beta^{0} u, \beta_{v} v+\left\langle\tilde{Q}^{01} \beta^{1} u, \beta^{0} v\right\rangle+\left\langle\tilde{Q}^{10} \beta^{0} u, \beta^{1} v\right\rangle,\right. \tag{1.23}
\end{equation*}
$$

where $\beta^{O_{u}}$ is a certain remrangement of the Dirichlet traces
$\left\{\gamma_{0} u_{1}, \ldots, \gamma_{m_{1}-1} u_{1} ; \ldots ; \gamma_{0} u_{q}, \ldots, \gamma_{m_{q}-1} u_{q}\right\}$, and $\beta^{1} u$ is a rearrargement of the $\operatorname{traces}\left\{\gamma_{m_{1}} u_{1}, \ldots, \gamma_{m_{1}+m-1} u_{1} ; \ldots ; \gamma_{m_{a}} u_{q}, \ldots, \gamma_{m_{r}+m-1} u_{q}\right\}$, and \tilde{Q}^{01} and \tilde{Q}^{10} are skew-triangular matrices of matrix-valued differential operators on Γ. When Γ is noncharacteristic for is, \tilde{a}^{01} is surjective and \tilde{Q}^{10} is injective (but oijective only if all m_{t} equal m). Proposition 1.5 extends, and normal boundary conditions can be defined. (This treatment seems new.) Now Theorem I can be proved in a version completely analogous to the $2 m$-order case, γ^{u}, va and a^{01} replaced by $\beta^{0} u, \beta^{1}$ and \tilde{a}^{01}, respectively. Moreover, we find that the boundary conditions satisfyine the statements in Theorem I, are actually normal boundary conditions on $\beta^{0} u$ and $\mathcal{Q}^{01} \beta^{1} u$ (when Γ is noncharacteristic, and the number of boundary conditions is $m_{1}+\ldots+m_{q}$, like in elliptic prorlems). For such conditions, it is possible to extend the Liors - Magenos theiny, on the basis of (1.23).

2. G ARDING 'S INE®UATITY

Gårding has shown that A must be strongly elliptic in orofr for (II) to hold even for $u \in C_{0}^{\infty}(E)$, so we assume from row on that A is strongly elliptic. Define the "real" part of A.

$$
\begin{equation*}
A^{r}=1 / 2\left(A+A^{\prime}\right) \tag{2.1}
\end{equation*}
$$

it is also strongly elliptic. We can assume that a sufficiertly large constant has been added to A so that (with $\left.c_{1}, c_{2}>0\right)$

$$
c_{1}\|u\|_{m}^{2} \leqq\left(A^{r} u, u\right)=(A u, u) \leqq c_{2}\|u\|_{m}^{2}, \text { for } u \in H_{0}^{m}(E) \cap H^{2 m}(E)
$$

then the Dirichlet $A y$ and $A \gamma$ defined $r y \quad \gamma_{\gamma}=C$ boundary condition i e. with iomains

$$
D\left(A_{\gamma}\right)=D\left(A_{\gamma}^{r}\right)=H_{0}^{m}(E) n_{H^{2}}^{2 m}(E),
$$

are bijective (onto $\pm(E)$).

$$
\begin{align*}
& \text { Define for } \operatorname{each} \alpha \in \mathbb{R} \\
& \qquad Z^{\alpha}(A)=\left\{u \in H^{\alpha}(Z) \mid A u=0\right\}, \\
& Z^{\alpha}\left(A^{r}\right)=\left\{u \in H^{\alpha}(E) \mid A^{r} u=0\right\} . \tag{2.2}\\
& \text { For } u \in H^{2 m}(E), \text { let } \\
& \quad u_{\gamma}^{r}=\left(A_{\gamma}^{r}\right)^{-1} A u, \quad u_{5}^{r}=u-u_{\gamma}^{r},
\end{align*}
$$

this defines a decomposition of $H^{2 m}(F)$ (by $\left.u=u_{\gamma}^{r}+u_{\zeta}^{r}\right)$:

$$
H^{2 m}(E)=D\left(A_{\gamma}^{r}\right)+Z^{2 m}\left(A^{r}\right) \quad(\text { topological direct sum }) .
$$

'It follows from the theory of Lions and Magenes [8], that

$$
\begin{equation*}
\gamma: Z^{\alpha}\left(A^{r}\right) \rightarrow \prod_{k \in M_{0}} H^{\alpha-k-1 / 2}\left(\left.E\right|_{\Gamma}\right) \tag{2.3}
\end{equation*}
$$

is an isomorphism for all $\alpha \in \mathbb{I}$; we call it γ_{Z}^{r}. Then we can define the composed operator
(2.4) $\quad P^{r}=V \circ\left(\gamma_{Z}^{r}\right)^{-1}: \prod_{k \in M_{0}} H^{\alpha-k-1 / 2}\left(\left.E\right|_{\Gamma}\right) \rightarrow \prod_{k \in M_{1}} H^{\alpha-k-1 / 2}\left(\left.E\right|_{\Gamma}\right)$, and it is a consequence of [6], [9] (see also [4]), that P^{r} is an elliptic pseudo-differential operator, of type $(-k,-j)_{j \in \mathbb{M}_{1}}, k \in M_{0}$. Note that when $u \in H^{2 m}(\mathbb{B})$, we have
(2.5) $\gamma u_{\gamma}^{r}=0, \quad \gamma u_{3}^{r}=\gamma\left(u-u_{\gamma}^{r}\right)=\gamma u$, $\nu u_{\zeta}^{r}=P^{r} \gamma u_{\xi}^{r}=P^{r} \gamma u, \quad \nu u_{\gamma}^{r}=\nu u-P^{r} \gamma u$.

The analogous formulae hold for A (omit r everywhere).
Lemma 2.1 Let $u \in H^{2 m}(E)$. Then
(2.6) $\operatorname{Re}(A u, u)=\left(A^{r} u_{\gamma}^{r}, u_{\gamma}^{r}\right)+\operatorname{Re}\left\langle\boldsymbol{a}^{01} \nu u, \gamma u\right\rangle$

$$
+\left\langle\frac{1}{2}\left(a^{00^{*}}+\left(a^{10^{*}}-a^{01}\right) P^{r}\right) \gamma u, \gamma u\right\rangle .
$$

Proof: Write $u=v+w$, where $v=u_{\gamma}^{r}$ and $w=u_{\zeta}^{r}$. The:

$$
\begin{aligned}
\operatorname{Re}(A u, u)= & \frac{1}{2}(A u, u)+\frac{1}{2}(u, A u) \\
= & \frac{1}{2}[(A v, v)+(A v, w)+(A w, v)+(A w, w)] \\
& +\frac{1}{2}[(v, A v)+(v, A w)+(w, \dot{A} v)+(w, A w)]
\end{aligned}
$$

${ }^{n-r}$ Green's formula (1.11), we find using tnat $\gamma_{v}=0$:

$$
\begin{aligned}
& (v, A v)=\left(A^{\prime} v, v\right), \\
& (w, A v)=\left(A^{\prime} w, v\right)+\left\langle\gamma w, a^{01} v v\right\rangle \\
& (w, A w)=\left(A^{\prime} w, w\right)+\left\langle\gamma w, a^{00} \gamma w+a^{01} v w\right\rangle+\left\langle\nu w, a^{10} \gamma w\right\rangle
\end{aligned}
$$

This gives, using (2.1),

$$
\begin{aligned}
& \operatorname{Re}(A u, u)=\left(A^{r} v, v\right)+\left(A^{r} w, v\right)+\left(v, A^{r} w\right)+\left(A^{r} w, w\right)+ \\
& +\frac{1}{2}\left[\left\langle\gamma w, a^{01} \nu v\right\rangle+\left\langle a^{01} \nu v, \gamma w\right\rangle+\left\langle\gamma w, a^{00} \gamma w+a^{01} \nu w\right\rangle+\left\langle\nu w, a^{10} \gamma w\right\rangle\right] .
\end{aligned}
$$

Here $A^{r} w=0$. Using (2.5) we then find

$$
\begin{aligned}
\operatorname{Re}(A u, u)= & \left(A^{r} u_{\gamma}^{r}, u_{\varphi}^{r}\right)+\frac{1}{2}\left[\left\langle\gamma u, Q^{01}\left(\nu u-P^{r} \gamma u\right)\right\rangle+\right. \\
& \left.+\left\langle Q^{01}\left(\nu u-P^{r} \gamma u\right), \gamma u\right\rangle+\left\langle\gamma u, Q^{00} \gamma u+Q^{01} P^{r} \gamma u\right\rangle+\left\langle P^{r} \gamma u, Q^{10} \gamma u\right\rangle\right] \\
= & \left(A^{r} u_{\gamma}^{r}, u_{\gamma}^{r}\right)+\operatorname{Re}\left\langle Q^{01} \nu u, \gamma u\right\rangle+\left\langle\frac{1}{2}\left(a^{00^{*}}+\left(Q^{10^{*}}-Q^{01}\right) P^{r}\right) \gamma u, \gamma u\right\rangle .
\end{aligned}
$$

Corollary 2.2 When A_{B} is weakly semibounded, then

$$
\begin{equation*}
\operatorname{Re}(A u, u)=\left(A^{r} u_{\gamma}^{r}, u_{\gamma}^{r}\right)+\operatorname{Re}\langle R \gamma u, \gamma u\rangle \text {, where } \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{R}=-a^{01} C^{11} B^{10}+\frac{1}{2} Q^{00^{*}}+\frac{1}{2}\left(a^{10^{*}}-a^{01}\right) \mathrm{P}^{\mathrm{r}} . \tag{2.8}
\end{equation*}
$$

Proof: By the characterization of weak semiboundedness given in Theorem I, we have in particular from (1,20):

$$
\left\langle\theta^{01} v u, y u\right\rangle=-\left\langle 0_{C}^{11}{ }_{B}^{10} \gamma^{u}, x^{u}\right\rangle
$$

for $u \in D\left(A_{R}\right)$; the corollary follows by inserting this in (2.6).

We can now show

Theorem II Let A be strongly elliptic, and let A_{B} be the realization of a normal boundary condition B pu $=0$. Then A_{B} satisfies Gårding's inequality

$$
\begin{equation*}
\operatorname{Re}(A u, u) \geqslant c_{m}\|u\|_{m}^{2}-c_{0}\|u\|_{0}^{2}, \text { all } u \in D\left(A_{B}\right) \tag{II}
\end{equation*}
$$

for some c_{m} and $c_{0}>0$, if and only if (i) and (ii) hold :
(i) $\quad\left(I-C^{00} B^{00}\right) * Q^{01}\left(I-C^{11} B^{11}\right)=0$;
(ii) $\operatorname{Re} \sigma^{0}(\mathbb{K})=\frac{1}{2}\left[\sigma^{0}(\mathbb{K})+\sigma^{0}(\mathbb{K})^{*}\right]$ is positive definite on $\mathbb{T}^{*}(\Gamma) \backslash 0$, where

$$
\begin{equation*}
K=\Phi * \Re \Phi, \tag{2.9}
\end{equation*}
$$

Φ being the differential operator obtained by applying Lemma 1.4 to B^{00}; here \mathbb{K} is a pseudo-differentiel operator in $\underset{k \in M_{0}}{\oplus} Z_{k}$ of type $(-k,-2 m+1+j)_{j, k \in M_{0}} ;$ its principal symbol is defined accordingly.

Proof: We know from Theorem I that (i) is necessary for (II), so we may assume it to hold. Then (2.7) holds on $D\left(A_{B}\right)$. Now it is proved just as in [4 , Theorems 3.3 and 4.3] that (II) is equivalent with
(2.10) $\operatorname{Re}\langle\pi \gamma u, \gamma u\rangle \geqq c_{m}^{\prime}\|\gamma u\|_{\{m-k-1 / 2\}}^{2}-c_{0}^{\prime}\|\gamma u\|_{\{-k-1 / 2\}}^{2}$, all $\gamma \underline{\mu} \in j^{D}\left(A_{B}\right)$, where we denote the norm in $\prod_{k \in M_{0}} H^{\alpha-k-1 / 2}\left(\left.E\right|_{\Gamma}\right)$ by $\|\cdot\|_{\{\alpha-k-1 / 2\}}$.Here

$$
\gamma D\left(A_{B}\right)=z^{2 m}\left(B^{D O}\right)=\Phi \prod_{k \in \mathbb{M}_{0}} H^{2 m-k-1 / 2}\left(z_{k}\right)
$$

by Lemmas 1.4 and 1.6. Inserting $\gamma^{u}=\Phi \varphi$, we find, using the continuity of Φ and its left inverse Ψ, that (2.10) is equivalent with (2.11) $R \in\langle\Phi * R \Phi \varphi, \varphi\rangle \geqslant c_{m}^{\prime \prime}\|\varphi\|_{\{\mathrm{m}-\mathrm{k}-1 / 2\}}^{?} \mathrm{c}_{0}^{\prime \|}\|\varphi\|_{\{-\mathrm{k}-1 / 2\}}^{?}$,

$$
\text { all } \varphi \in \prod_{k \in M_{0}} H^{2 m-k-1 / 2}\left(z_{k}\right),
$$

$\|\cdot\|\{\alpha-k-1 / 2\}^{\text {now }}$ denoting the n: rm in $\prod_{k \in \mathrm{H}_{0}} H^{\alpha-k-1 / 2}\left(Z_{k}\right)$. It is easily
checked that

for all α; in particular it is of type $\left(m-\frac{1}{2}-k,-m+\frac{1}{2}+j\right)_{j, k \in H_{0}}$, so by a well-known theorem on pseudo-differential operators, (2.11) holds if and only if $\operatorname{Re} \sigma^{0}(\mathbb{K})>0$ on $T^{*}(\Gamma) 0$.

Remark 2.3 Consider the case where A is formally selfadjoint. Then $A=A^{r}, P=P^{r}$ etc. Moreover, $a^{*}=-a$, so $a^{00}=-a^{00}$, $a^{01^{*}}=-a^{10}, a^{10^{*}}=-a^{01}$. Then

$$
R=-a^{01} C^{11} B^{10}-\frac{1}{2} Q^{00}-a^{01} P=-a^{01}\left(C^{11} B^{10}+P\right)-\frac{1}{2} a^{00}
$$

Assume now furthermore that $\sum_{j \in M} p_{j}=m q$. Then we have by (1.21)

$$
\begin{equation*}
z^{2 m}\left(B^{00}\right)=\left(Q^{01^{*}}\right)^{-1} B^{11^{*}} \prod_{j \in \mathbb{H}_{1}} H^{2 m-j-1 / 2}\left(r_{j}\right) \tag{2.12}
\end{equation*}
$$

Thus, writing $\gamma u=\left(a^{01^{*}}\right)^{-1} B^{11^{*}} \psi$, and using that $\operatorname{Re}<Q^{00} \gamma u, \gamma u>=0$,

$$
\begin{aligned}
\operatorname{Re}\langle\mathcal{R} \gamma u, \gamma u\rangle & =\operatorname{Re}\left\langle-2^{01}\left(c^{11} B^{10}+P\right)\left(Q^{01^{*}}\right)^{-1} B^{11^{*}} \neq\left(\mathcal{Q}^{01^{*}}\right)^{-1} B^{11^{*}} \gamma^{\prime}\right\rangle \\
& =\operatorname{Re}\left\langle\mathcal{K}_{1} \psi, \psi\right\rangle,
\end{aligned}
$$

where

$$
\begin{equation*}
X_{1}=-\left(B^{10}+B^{11} P\right)\left(Q^{01^{*}}\right)^{-1} B^{11^{*}}, \tag{2.13}
\end{equation*}
$$

a pseudo-differential operator in $\bigoplus_{j \in \mathbb{M}_{1}} \Gamma_{j}$; and (II) holds if and only
if $\operatorname{Re} \sigma^{0}\left(\mathbb{K}_{1}\right)>0$. (This gives $ఓ$ somewhat simpler formula.)

3. NEGATIVE EIGENVALUAS

From now on we assume that A is formally selfadjoint, besides being strongly elliptic. Let A_{B} be a selfadjoint, elliptic realization defined by a boundary condition Bgu = O (necessarily normal); the general theory shows that A_{B} has if and only if (1.18) holds and \mathcal{K}_{1}, defined by (2.13), is selfadjoint and elliptic. The spectrum of A_{B} (as an operator in $L^{2}(E)$) consist of the two sequences

$$
\begin{aligned}
& c \leqq \lambda_{1}^{\top} \leqq \lambda_{2}^{+} \leqq \cdots \\
& 0>\lambda_{1}^{-} \leqq \lambda_{2}^{-} \leqq \cdots
\end{aligned}
$$

$\left\{\lambda_{p}^{+}\right\}$goes to $+\infty$ and $\left\{\lambda_{p}^{-}\right\}$is either finite or goes to $-\infty$; it is finite if and only if $\sigma^{0}\left(\mathbb{K}_{1}\right)>0$. By adding a real constant to A if necessary, we obtain that A_{B} is invertible.

Denote (cf. (2.3) and Lemme 1.6)
(3.1) $\quad v^{2 m}=\gamma_{z}^{-1} z^{2 m}\left(B^{00}\right)=\left\{u_{s} \mid u \in D\left(A_{B}\right)\right\}$,
and denote its closure in $L^{2}(E)$ by V. The general theory asserts that there corresponds to A_{B} an unbounded selfadjoint invertible operator T in V witn domain $D(T)=V^{2 m}$, satisfying
(3.2) $(A u, u)=\left(A u_{\gamma}, u_{\gamma}\right)+\left(T u_{5}, u_{\zeta}\right)$, for all $u \in D\left(A_{B}\right)$;

$$
\begin{equation*}
A_{B}^{-1}=A_{\gamma}^{-1}+T^{(-1)} \quad \text { on } \quad L^{2}(E) \tag{3.3}
\end{equation*}
$$

where $T^{(-1)} f_{f}=T^{-1}$ proj $_{V} f$ (orthogonal projection). By (3.3), $T_{T}^{(-1)}$ is compact. (Formulae like (3.2) - (3.3) have been applied by Krein and by Birman to semibounded problems.) Note that it follows from (3.2), (2.7) and Remark 2.3 that

$$
\begin{equation*}
\left(T u_{5}, u_{\zeta}\right)=\left\langle\mathcal{K}_{1} \psi, \psi\right\rangle, \text { when } u_{\zeta}=\gamma_{2}^{-1}\left(Q^{01^{*}}\right)^{-1} B^{11^{*}} \psi \tag{3.4}
\end{equation*}
$$ Denote by $N^{+}\left(A_{B} ; t\right)$ resp. $N^{-}\left(A_{B} ; t\right)$ the number of positive resp. negative ejgenvalues in $]-t, t\lceil(t \leqq \infty)$. It is known that

$$
\begin{align*}
N^{+}\left(A_{B} ; t\right)-c(A) t^{n / 2 m} & =O\left(t^{(n-\theta) / 2 m}\right) \quad \text { as } \quad t \rightarrow \infty, \tag{3.5}\\
N^{-}\left(A_{R} ; t\right) & =O(t(n-\theta) / 2 m) \tag{3.6}
\end{align*} \quad \text { as } \quad t \rightarrow \infty,
$$

for $\theta<\frac{1}{2} \quad(A g m o n\lfloor 1])$ (and seemingly for $\theta<1$ in certain cases as consequence of Hbrmander [7]). We shall now show that (3.6) holds with $\theta=1$ (actually we give a more precise result).

$$
(3.2)-(3.3) \text { imply }
$$

Proposition 3.1 (i) $N^{-}\left(A_{B} ; \infty\right)=N^{-}(T ; \infty)$ (ie.., A_{B} and T have the same number of negative eigenvalues).
(ii) $N^{-}\left(A_{B} ; t\right) \leqq N^{-}(T ; t)$ for all $t \in[0, \infty[$.

In order to apply this, we need

Proposition 3.2 There exists an elliptic pseudo-differential

 operator \wedge in $\underset{j \in M_{1}}{\oplus} F_{j}$ of type $\left(0,-j-\frac{1}{2}\right)_{j, k \in M_{1}}$, such that the composed operator$$
\gamma_{Z}^{-1}\left(a^{01^{*}}\right)^{-1} B^{11^{*}} \wedge
$$

maps $L^{2}\left(\underset{j \in M_{1}}{ } F_{j}\right) \quad$ isometrically onto $\quad V$.
The proof uses [4, Example 6.3].
Denote $\underset{j \in \mathbb{M}_{1}}{\oplus} F_{j}=F^{1}$ and denote $\left(Q^{01^{*}}\right)^{-1} B^{11^{*}}=\Theta$, then clearly $\gamma D\left(A_{B}\right)=\Theta \wedge H^{2 m}\left(F^{1}\right)$. Now, when $u_{5}=\gamma_{z}^{-1} \Theta \wedge \eta$, where $\eta \in H^{2 m}\left(F^{1}\right)$, then by (3.4)

$$
\left(T u_{s}, u_{s}\right)=\left\langle\mathcal{K}_{1} \wedge \eta, \wedge \eta\right\rangle=\left\langle\mathcal{F}_{\eta}, \eta\right\rangle,
$$

where

$$
\mathcal{J}=\Lambda^{*} \mathcal{K}_{1} \wedge
$$

is seen to be an elliptic pseudo-differential operator in F^{1} of order 2 m , bijective from $H^{2 m}\left(F^{1}\right)$ onto $L^{2}\left(F^{1}\right)$. Moreover, by Provosition 3.1,

$$
\frac{\left(T u_{5}, u_{5}\right)}{\left\|u_{5}\right\|_{L}^{2}(E)}=\frac{\langle T \eta, \eta\rangle}{\|\eta\|_{L^{2}\left(F^{1}\right)}^{2}} \text {, all } u_{5} \in D(T) \text {. }
$$

Thus, by the mini-max principle, applied to the inverses, T and \mathscr{T} have the same eigenvalues.

Since Γ is ($n-1$)-dimensional, it follows from a theorem of See-

GRUBB

ley [10], that for a certain constant $c^{-}(\mathscr{F})$ depending on $\sigma^{0}(\mathscr{T})$,

$$
N^{-}(\mathscr{T} ; t)-c^{-}(\mathcal{T}) t^{(n-1) / 2 m}=\sigma\left(t^{(n-1) / 2 m}\right)
$$

(with $\sigma\left(t^{(n-1) / 2 m}\right)$ replaced by $\theta\left(t^{(n-2) / ? m}\right)$ when \mathcal{J} is scalar or a certain root condition is satisfied so that [7] applies). We have as an immediate application, using Proposition 3.1

Theorem III

$$
\mathbb{N}^{-}\left(A_{\mathrm{P}} ; \infty\right)=\mathrm{IV}^{-}(\mathscr{T} ; \infty)
$$

and
(3.7) $\quad N^{-}\left(A_{B} ; t\right) \leqq N^{-}(\mathscr{T} ; t)=c^{-}(\mathscr{T}) t^{(n-1) / 2 m}+R(t)$ for $t[0, \infty[$, where $R(t)$ is in general $\sigma\left(t^{(n-1) / 2 m}\right)$ for $t \rightarrow \infty$, and is $O\left(t^{(n-2) / 2 m}\right)$ in certain cases.

Let us finally mention that one can also prove that, at least when the $B_{j k}$ in B^{01} are permitted to be pseudo-differential operators, there exists for any $c>0$ and any normal B^{00} an elliptic selfadjoint realization A_{B} satisfying (in addition to (3.7))

$$
N^{-}\left(A_{B} ; t\right) \geqq c t^{(n-1) / 2 m} .
$$

Remark. Some of the results presented here have been announced in Comptes Rendus Acad. Sci. (Sér. A) 1972, p.319-323 and p. 409-412, and briefly explained in Séminaire Coulsouic-Schwartz 1971-1972 (exposés XIX et 19 bis). The complete details for section 1 are given in [5]; an article "Properties of normal boundary problems for elliptic systems"elaborating the results of sections 2 and 3 is under preparation.
[1] S. Agmor : Asymptotic formulas with remainder estimぇtes for eigenvalues of elliptic operators, Arch. Rat. Mech. An. 28 (1968), 165-183.
[2] G. Geymonet : Su alcuni problemi ai limiti per i sistemi lineari ellittici secondo Petrowsky, Le Matematiche 20 (1965) 211-253.
[3] G. Grubb : A characterization of the non-local boundary value problems associated with en elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968),425-513.
[4] G. Grubb: On coerciveness and semibourciedness of seneral boundary problems, Israel J. Math. 10 (1971), 32-95.
[5] G. Grubb : Weakly semibounded boundary problems and sesguilinear forms, Copenh. Univ. Nat. Inst. Preprint Ser. 1972 no. 14.
[6] L. Hלrmander : Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math. 83 (1966), 129-209.
[7] L. H8rmander : The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218.
[8] J. L. Lions and E. Magenes : Problèmes aux limites non-homogenes et applications, vol. 1, Ed. Dunod, Paris 1968.
[9] R. Seeley : Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781-809.
[10] R. Seeley : Complex powers of an elliptic operetor, Proc. Symp. Pure Math. (AMS) 10 (1968), 288-307.
[11] R. Seeley : Fractional powers of boundary problems, Actes Congrès Intern. Nice 1970, vol. 2, 795-801.

MATEMATISK INSTITUT
UNIVERSITETSPARKEN 5
2100 COPENHAGUE, DANEMARK.

