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The fundamental solution of nonlinear equations
with natural growth terms

BENJAMIN J. JAYE AND IGOR E. VERBITSKY

Abstract. We find bilateral global bounds for the fundamental solutions associ-
ated with some quasilinear and fully nonlinear operators perturbed by a nonneg-
ative zero order term with natural growth under minimal assumptions. Important
model problems involve the equations �1pu = � |u|p�2 u + �x0 , for p > 1,
and Fk(�u) = � |u|k�1 u + �x0 , for k � 1. Here 1p and Fk are the p-Laplace
and k-Hessian operators respectively, and � is an arbitrary positive measurable
function (or measure). We will in addition consider the Sobolev regularity of the
fundamental solution away from its pole.

Mathematics Subject Classification (2010): 35J60 (primary); 42B37, 31C45,
35J92, 42B25 (secondary).

1. Introduction

1.1. In this paper we study the fundamental solution associated with certain non-
linear operators perturbed by natural growth terms. Consider, for 1 < p < 1, the
quasilinear operator

L(u) = L(p)(u) = �1pu � � |u|p�2 u, (1.1)

where1pu = div(ru |ru|p�2) is the p-Laplacian operator and � is a nonnegative
Borel measure, on Rn .

Our main goal is to investigate the interaction between the differential operator
�1pu, and the lower order term � |u|p�2 u, under necessary conditions on � . This
interaction between the differential operator and the lower order term turns out to
be highly nontrivial. We will also study the corresponding problem when the p-
Laplacian is replaced by a more general quasilinear operator, or a fully nonlinear
operator of Hessian type.

Our theorems extend to nonlinear operators very recent results [16, 17, 19] re-
garding the behavior of the Green function of the time independent Schrödinger
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operator �1u � �u. Our approach, which combines some nonhomogeneous har-
monic analysis, nonlinear potential theory and PDE methods, is based on a certain
discrete “pseudo-probabilistic” model of equation (1.1), which employs a family of
nonlinear expectation operators (see Section 4 below).

This method allows us to construct fundamental solutions of the operator L
under assumptions on � so in general the Harnack inequality fails for positive so-
lutions u of L(u) = 0. The Harnack inequality formed an essential part in classical
arguments concerning the construction of fundamental solutions to both linear and
nonlinear operators [41,54–56]. For example, our results hold for the Hardy poten-
tial � (x) = c|x |�p for 0 < c < ((n � p)/p)p.

Now consider the equation:

L(u) = �x0 in Rn, inf
x2Rn

u(x) = 0, (1.2)

where �x0 is the Dirac delta measure concentrated at x0. A solution u(x, x0) of (1.2)
understood in a suitable weak, or potential theoretic sense (see Definition 2.1), is
called a fundamental solution of the operator L, with pole at x0.

It is well known [55,56,64] that, under stringent assumptions on � , there exists
a positive constant c so that

1
c
G(x, x0)  u(x, x0)  c G(x, x0), (1.3)

if |x � x0| < R for some R > 0, where G(x, x0) is the fundamental solution of1p
on Rn:

G(x, x0) = �p,n | x � x0|
p�n
p�1 , when 1 < p < n. (1.4)

Here �p,n = p�1
n�p

�
n!n�1

�� 1
p�1 and!n�1 is the surface area of the n�1 dimensional

sphere in Rn . Moreover, it was shown recently by L. Verón (see [53, Lemma 5.1])
that limx!x0 u(x, x0)/G(x, x0) = c if � 2 L1

loc(Rn). However, as we will see
below, u(x, x0)may behave very differently in comparison to G(x, x0), both locally
and globally.

In this paper we will obtain sharp global estimates for the behavior of funda-
mental solutions: Suppose 1 < p < n. Then any fundamental solution u(x, x0)
with pole at x0 satisfies the following lower bound:

u(x, x0) � c |x � x0|
p�n
p�1 exp

 

c
Z |x�x0|

0

✓
� (B(x, r)
rn�p

◆1/(p�1) dr
r

!

· exp

 

c
Z |x�x0|

0

� (B(x0, r))
rn�p

dr
r

!

,

(1.5)

for any x, x0 2 Rn under necessary conditions on the measure � . Here c is a
positive constant depending on n and p, and B(x, r) is a ball of radius r centered
at x .
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The sharpness of this lower bound is illustrated explicitly by our primary result:
Under a natural assumption on � , there exists a fundamental solution u(x, x0) of
L satisfying the corresponding upper bound, i.e. for another positive constant c,
depending on n, p and � , it holds that:

u(x, x0)  c |x � x0|
p�n
p�1 exp

 

c
Z |x�x0|

0

✓
� (B(x, r))
rn�p

◆1/(p�1) dr
r

!

· exp

 

c
Z |x�x0|

0

� (B(x0, r))
rn�p

dr
r

!

.

(1.6)

See Theorems 2.2 and 2.5 below for more precise statements. Furthermore, it fol-
lows that there is a minimal fundamental solution which obeys (1.5) and (1.6);
see Corollary 3.10. These results had previously been announced without proofs
in [63].

In addition to the pointwise bounds presented above, the regularity of the con-
structed fundamental solution u(x, x0) away from the pole x0 will be considered. In
particular it will be proved that u(·, x0) 2 W 1,p

loc (Rn\{x0}), see Theorem 2.8. This is
the optimal regularity that one can hope for under our assumption on � , see Remark
2.9 below.
Remark 1.1. It is somewhat surprising that expressions involving both the linear

potential I⇢p� (x0) =
Z ⇢

0

� (B(x0, r))
rn�p

dr
r
of fractional order p, and the nonlinear

Wolff’s potential, introduced in [21],

W⇢
1,p� (x) =

Z ⇢

0

✓
� (B(x, r))
rn�p

◆1/(p�1) dr
r

,

should appear, in the exponential form, in global bounds of solutions of the equation
�1pu � � |u|p�2 u = �x0 .

We observe that local Wolff’s potential estimates of solutions of the equation
�1pu = � were established by Kilpeläinen and Maly in [33], while the fully
nonlinear analogues for Hessian equations are due to Labutin [36].

A simple corollary of our results (Corollary 7.2 below) gives necessary and
sufficient conditions on � which ensure that u(x, x0) and G(x, x0) are pointwise
comparable globally. This requires the uniform boundedness of the Riesz potential
Ip� when 1 < p  2 and the Wolff potentialW1,p� when p > 2:
Suppose there is a constant c > 0 so that (1.3) holds for all x, x0 2 Rn . Then
necessarily,

sup
x2Rn

Z 1

0

� (B(x, r))
rn�p

dr
r

< 1 if 1 < p  2, (1.7)

sup
x2Rn

Z 1

0

✓
� (B(x, r))
rn�p

◆1/(p�1) dr
r

< 1 if p > 2. (1.8)
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Conversely, (1.7)–(1.8) are sufficient for (1.3) to hold for all x, x0 2 Rn , under a
natural smallness assumption on � discussed below.

In a recent paper of Liskevich and Skrypnik [40], an indication of this behav-
ior involving the linear potential Ip(� ) when 1 < p  2 appeared for the first
time. They studied isolated singularities of operators of the type Lu = �1pu �
� |u|p�2 u, under the assumption that � is in the quasilinear Kato class (see, e.g.,
[7]):

lim
⇢!0+

sup
x2Rn

Z ⇢

0

✓
|� |(B(x, r))

rn�p

◆1/(p�1) dr
r

= 0. (1.9)

In this paper we will assume that � is a positive Borel measure satisfying the fol-
lowing capacity condition:

� (E)  C capp(E) for any compact set E ⇢ Rn, (1.10)

where capp is the standard p-capacity:

capp(E) = inf{ kr f kpLp : f � 1 on E, f 2 C1
0 (Rn) }. (1.11)

This intrinsic condition, which originated in the work of Maz’ya in the context
of linear problems (see [44]), is less stringent than the quasilinear Kato condition
(1.9). However, when working in this generality, we cannot expect solutions to be
continuous or satisfy a Harnack inequality.

It is easy to see that (1.10) with constant C = 1 is necessary in order that
u(·, x0) be finite a.e., which is an immediate consequence of the inequality

Z

Rn
|h|p d� 

Z

Rn
|rh|p dx, h 2 C1

0 (Rn). (1.12)

The preceding inequality holds whenever there exists a positive supersolution u so
that �1pu � �u p�1 (see Section 4). We observe that, in its turn, (1.10) with
C = (p � 1)p/pp yields (1.12) (see [44]).

1.2. Recall that the fundamental solution of the Laplacian operator plays an impor-
tant role in the theory of harmonic functions not only because of the principle of su-
perposition, but also because of its importance in understanding how solutions near
an isolated singularity can behave, see e.g. [3, Theorem 1.3.7]. The latter theory car-
ries over to the theory of the quasilinear and fully nonlinear operators considered
here, and hence from the bounds for the fundamental solution we deduce a rather
complete analysis of the behavior of solutions of L(u) = 0, and the analogue for
the k-Hessian operator, in the punctured space. For the quasilinear operator, this has
been considered under a variety of assumptions on � in [40,49,55,56,64]. Isolated
singularities of nonlinear operators have been studied recently in [35, 38]. We will
present this application in a forthcoming note, where we will also consider other
applications, for instance to the study of sign changing solutions of the equation:

�1pu = |ru|p + �, (1.13)

see, for instance [2,14,20,27,46] for some of the existing literature regarding (1.13).
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1.3. The plan of the paper is as follows. In Section 2 we precisely state our main
results regarding the fundamental solution of (1.1) and its fully nonlinear analogue.

In Section 3, we rapidly review some elements of the theory of nonlinear PDE
from a potential theoretic perspective. We are essentially interested in two aspects
of this theory: potential estimates for solutions, and weak continuity of the elliptic
operators. In this section we also collect a few facts about capacities, and discuss
minimal fundamental solutions. After this, in Section 4, we discuss how the poten-
tial estimates reduce matters to the study of certain nonlinear integral inequalities.
In this section we also discuss the necessary capacity conditions on the measure �
in order for positive solutions of the differential inequalities Lu � 0 or Gu � 0 to
exist.

Section 5 is concerned with finding a lower bound for any positive solution of a
certain nonlinear integral inequality. This bound is proved by estimating successive
iterations of the inequality by induction. From this bound Theorems 2.2 and 2.11
are deduced, and their proofs conclude Section 5.

In Section 6, we consider the problem of constructing a positive solution to the
integral inequality of Section 5. This construction forms the main technical step
in the arguments asserting Theorems 2.5 and 2.12, which we prove in Section 7.
In this section we also discuss criteria for the fundamental solutions of L and G to
be pointwise equivalent to the fundamental solutions of the unperturbed differential
operators.

Finally, in Section 8, we consider the Sobolev regularity of the fundamental
solution away from its pole. This is the content of Theorem 2.8 below.

2. Main results

We need to introduce some notation before we can state our results. The global
bounds will involve two local potentials, a nonlinear Wolff potential, and a linear
Riesz potential. If s > 1,↵ > 0 with 0 < ↵s < n, we define the local Wolff
potential of a measure � , for ⇢ > 0, by:

W⇢
↵,s� (x) =

Z ⇢

0

✓
� (B(x, r))
rn�↵s

◆1/(s�1) dr
r

. (2.1)

For 0 < ↵ < n the local Riesz potential of � is defined by:

I⇢↵� (x) =
Z ⇢

0

� (B(x, r))
rn�↵

dr
r

. (2.2)

We make the convention that when ⇢ = +1, then we write W↵,s� and I↵� for
W1
↵,s� and I1↵ � respectively. In particular,

I↵� (x) =
Z +1

0

� (B(x, r))
rn�↵

dr
r

= (n � ↵)�1
Z

Rn

d� (y)
|x � y|n�↵

. (2.3)
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When d� = f (x) dx where f 2 L1loc(dx), we will denote the corresponding po-
tentials byW↵,s f and I↵ f respectively.

2.1. Let us first state our main result for the quasilinear operator L defined by
(1.1). We choose to work with solutions in the potential theoretic sense, see Sec-
tion 3 below. The reader should note that these solutions are by definition lower
semicontinuous, and hence defined everywhere, and so it makes sense to talk about
pointwise bounds. We could have alternatively worked with solutions in the renor-
malized sense, see [12] for a thorough introduction.
Definition 2.1. A fundamental solution (with pole at x0) of the operator L de-
fined by (1.1), is a positive p-superharmonic function u( · , x0), such that u 2
L p�1loc (� ), satisfying equation (1.2). The equality in (1.2) is understood in the p-
superharmonic sense, i.e. in the sense of Definition 3.1 in Section 3 below.

When we write u(x, x0) is a fundamental solution of L, with no mention of the
pole, we tacitly assume that it has pole at x0.

The first theorem concerns the lower bound for fundamental solutions. Through-
out this paper, unless stated otherwise, we will make the assumption that the mea-
sure � is not identically 0.

Theorem 2.2. a) Let 1 < p < n, x0 2 Rn , and suppose u( · , x0) is a fundamental
solution of L with pole at x0. Then (1.10) holds with C = 1. In addition, there is a
constant c > 0, depending on n, p such that the bound (1.5) holds. In other words,
for all x 2 Rn

u(x, x0) � c |x � x0|
p�n
p�1 exp

⇣
cW|x�x0|

1,p (� )(x) + cI|x�x0|p (� )(x0)
⌘

.

b) If p � n, and u is a nonnegative p-superharmonic function satisfying the differ-
ential inequality:

Lu � 0, in Rn

then u ⌘ 0.

Remark 2.3. Part b) of Theorem 2.2 is a Liouville theorem, and when p > n it is
related to the important recent works of Serrin and Zou (see [57, Theorem II0]), and
Bidaut-Véron and Pohozaev [6]. When p = n the result is a straightforward conse-
quence of well known local estimates of the Riesz measure of a p-superharmonic
function, for instance one may use [32, Lemma 3.5]. For several special cases the
result follows from those in [6].
Remark 2.4. As we shall see below (in Lemma 4.3), the condition (1.10) is in fact
necessary for the existence of a positive p-superharmonic function satisfying the
inequality Lu � 0 in the p-superharmonic sense.

In the case when 1 < p  n, it is a nontrivial fact that when � ⌘ 0 that the fun-
damental solution is in fact unique; this was proved in [28]. An alternative method
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is outlined in [60], where uniqueness of the fundamental solution to the fully non-
linear k-Hessian operators when 1  k  n/2 is treated. However, when � is not
trivial, it is known even in the linear case (p = 2, or k = 1) that solutions of L are
not necessarily unique for a general measure � (see [47]). It is therefore desirable
to single out a distinguished class of fundamental solutions. We are interested in
fundamental solutions of L which behave like the lower bound (1.5). The existence
of such fundamental solutions, called minimal fundamental solutions, is the content
of the next theorem.

Theorem 2.5. Let 1 < p < n, x0 2 Rn and suppose � is a nonnegative Borel
measure so that (1.10) holds. There is a constant C0 = C0(n, p) > 0 such that if
(1.10) holds with constantC < C0, then there exists a fundamental solution u( ·, x0)
of L with pole at x0, together with a constant c = c(n, p,C) > 0, so that the upper
bound (1.6) holds for all x 2 Rn , i.e.

u(x, x0)  c |x � x0|
p�n
p�1 exp

⇣
cW|x�x0|

1,p (� )(x) + cI|x�x0|p (� )(x0)
⌘

.

Remark 2.6. As a corollary of Proposition 3.8 - which states that whenever there
exists a fundamental solution ofLwith pole at x0, then there exists a unique minimal
fundamental solution of L with pole at x0 - we assert the existence of a unique
minimal fundamental solution of (1.1) obeying the bounds (1.5) and (1.6). See
Corollary 3.10 below.

When p = 2, the p-Laplacian reduces to the Laplacian operator and Theorems
2.2 and 2.5 are contained in some very recent work of M. Frazier and the second
author [16]. In fact when p = 2 the lower bound, Theorem 2.2, has been known
for some time, under various restrictions on � (see [19]). The corresponding upper
bound seems to be much deeper. In [16, 17] such bounds for the Green function of
Schrödinger type equations with the fractional Laplacian operator are discussed.
Remark 2.7. From our method it is clear that Theorems 2.2 and 2.5 continue to
hold if we replace the p-Laplacian operator by the general quasilinearA-Laplacian
operator divA(x,ru) (see, e.g., [22], and Section 3 below). The constants appear-
ing in the theorems will then in addition depend on the structural constants ofA.

Having constructed a fundamental solution, we now turn to considering how
regular it is away from the pole x0. This is the content of the next theorem.

Theorem 2.8. Suppose the hypothesis of Theorem 2.5 are satisfied, and that
u(x, x0) 6⌘ 1, with u(x, x0) the fundamental solution constructed in Theorem 2.5.
Then, there exists C0 = C0(n, p) > 0 so that if (1.10) holds with C < C0, then:

u( ·, x0) 2 W 1,p
loc (Rn\{x0}).

Remark 2.9. The local Sobolev regularity W 1,p
loc (Rn\{x0}) is optimal for solutions

of L(u) = 0 under the assumption (1.10) on � , see [24]. Theorem 2.8 seems to be
new in the linear case p = 2. In this case the proof, given in Section 8, can clearly
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be easily adapted to deduce the local regularity of the minimal Green’s function
of the Schrödinger operator in a bounded domain �, as was constructed recently
in [16,17].

2.2. We now move onto a fully nonlinear analogue of Theorems 2.2 and 2.5. Let
1  k  n be an integer. Then the second operator we consider, denoted by G, is
the fully nonlinear operator defined by:

G(u) = Fk(�u) � � |u|k�1 u. (2.4)

Here � is again a nonnegative Borel measure, and Fk is the k-Hessian operator, in-
troduced by Caffarelli, Nirenberg and Spruck [8], and defined for smooth functions
u by:

Fk(u) =
X

1i1<···<ikn
�i1 . . . �ik

with �1, . . . �n denoting the eigenvalues of the Hessian matrix D2u. We will use
the notion of k-convex functions, introduced by Trudinger and Wang [59], to state
our results. See Section 3 for a brief discussion and definitions.
Definition 2.10. A fundamental solution (with pole at x0) u( · , x0) of G is a func-
tion such that�u( ·, x0) is a k-convex function so that u( ·, x0) 2 Lkloc(� ) satisfying
Gu( ·, x0) = �x0 in the viscosity sense, and inf

x2Rn
u(x, x0) = 0.

The necessary condition on � is now considered in terms of the k-Hessian
capacity, introduced in [61];

capk(E) = sup{ µk[u](E) : u is k-convex in Rn, �1 < u < 0 }, (2.5)

for a compact set E . Here µk[u] is the k-Hessian measure of u; see Theorem 3.6
below.

Theorem 2.11. a) Let 1  k < n/2, and let x0 2 Rn . If u( ·, x0) is a fundamental
solution of G, then there is a constant C > 0, C = C(n, k), such that

� (E)  C capk(E) for all compact sets E ⇢ Rn. (2.6)

In addition, there is a constant c > 0, c = c(n, k,C), such that

u(x, x0) � c |x � x0|2�
n
k exp

 

c
Z |x�x0|

0

✓
� (B(x, r)
rn�2k

◆1/k dr
r

!

· exp

 

c
Z |x�x0|

0

� (B(x0, r))
rn�2k

dr
r

!

.

(2.7)

b) Let k � n/2. Then if u is a nonnegative function so that�u is a k-convex function
satisfying the inequality:

G(u) � 0 in Rn

then u ⌘ 0.



NONLINEAR EQUATIONS WITH NATURAL GROWTH TERMS 101

Theorem 2.12. Let 1  k < n/2, and suppose � is a nonnegative Borel measure
satisfying (2.6). There is a constant C0 = C0(n, k), such that if C < C0 and
(2.6) holds with constant C , then there exists a fundamental solution u( ·, x0) of G,
together with a constant c = c(n, k,C) so that

u(x, x0)  c |x � x0|2�
n
k exp

 

c
Z |x�x0|

0

✓
� (B(x, r)
rn�2k

◆1/k dr
r

!

· exp

 

c
Z |x�x0|

0

� (B(x0, r))
rn�2k

dr
r

!

.

(2.8)

Remark 2.13. Part b) of Theorem 2.11 is easy to see using well known local es-
timates. For instance, one can readily deduce the result from [59, Theorem 3.1],
along with a routine approximation argument using weak convergence of Hessian
measures.

3. Preliminaries

3.1. Notation. For an open set�, we denote by L ploc(�) to be the space of functions
locally integrable to the p-th power with respect to Lebesgue measure. Similarly,
L ploc(�, d� ) then denotes the space of functions which are locally integrable to the
p-th power with respect to � measure. W 1,p

loc (�) is the space of functions u 2
L ploc(�), with weak derivative ru 2 L ploc(�; Rn). From time to time, we will use
the symbol A . B to mean that A  CB with the constant C > 0 depending on
the allowed parameters of the particular result being proved.

For a set E , we will write either � (E) of |E |� to denote the � -measure of E .

3.2. In this section we will introduce some fundamental results from the potential
theory of nonlinear elliptic equations. Two results will be key to our study: a poten-
tial estimate; and a weak continuity result. The potential which the estimates will
involve is called the Wolff potential [21]. For s > 1 and 0 < ↵s < n, we define the
Wolff potential of a nonnegative Borel measure µ by:

W↵,sµ(x) =
Z 1

0

✓
µ(B(x, r))
rn�↵s

◆1/(s�1) dr
r

(3.1)

We first will discuss quasilinear equations. The material regarding these equations
is drawn from [22,32,33,42, 50, 51, 61].

Let us assume thatA : Rn xRn ! Rn satisfies:

x ! A(x, ⇠) is measurable for all ⇠ 2 Rn, and

⇠ ! A(x, ⇠) is continuous for a.e. x 2 Rn.
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In addition suppose that there are constants 0 < ↵  � < 1 so that for a.e.
x 2 Rn:

↵ |⇠ |p  A(x, ⇠) · ⇠, and |A(x, ⇠)|  � |⇠ |p�1 .

We will also assume that:

(A(x, ⇠1) � A(x, ⇠2)) · (⇠1 � ⇠2) > 0

whenever ⇠1 6= ⇠2.
Now, let � be an open subset of Rn , (we will be most interested in the case

� = Rn). Whenever u 2 W1,p
loc (�), we define the divergence of A(x,ru) in the

distributional sense. As follows from the classical regularity theory of de Giorgi,
Nash and Moser, any u 2 W 1,p

loc (�) solution of �divA(x,ru) = 0 in the dis-
tributional sense has a locally Hölder continuous representative, and we call these
representatives A-harmonic functions. Here and in the following the p-Laplacian
operator corresponds to the choice of A(x, ⇠) = |⇠ |p�2 ⇠ , in this case A-harmonic
functions are called p-harmonic functions, and similarly p-superharmonic func-
tions areA-superharmonic functions (as defined below) in this special case.

In analogy with classical superharmonic functions, we define the A-superhar-
monic functions via a comparison principle. We say that u : � ! (�1,1] is A-
superharmonic if u is lower semicontinuous, is not identically infinite in any com-
ponent of �, and satisfies the following comparison principle: Whenever D ⇢⇢ �
and h 2 C(D̄) isA-harmonic in D, with h  u on @D, then h  u in D.

An A-superharmonic function u does not necessarily have to belong to
W1,p
loc (�), but its truncates Tk(u) = min(u, k) 2 W1,p

loc (�) for all k > 0. In ad-
dition Tk(u) are supersolutions, i.e. �divA( ·,rTk(u)) � 0, in the distributional
sense (see [22]).

The above paragraph leads us to the definition of the generalized gradient of
anA-superharmonic function u as the unique Lebesgue measurable function Du so
that:

Du(x) = r(Tk(u))(x) whenever x 2 {u < k}

see e.g. [32, page 595]. The function Du is then necessarily the distributional gra-
dient of u.

Let u be A-superharmonic and let 1  q < n/(n � 1). Then it is proved
in [32] that |Du|p�1 and A(·, Du) belong to Lqloc(�). This allows us to define a
nonnegative distribution for eachA-superharmonic function u by:

�divA(x,ru)( ) =
Z

�
A(x, Du) · r dx (3.2)

for  2 C1
0 (�). So, the Riesz representation theorem yields the existence of a

unique nonnegative Borel measure µ[u] so that �divA(x,ru) = µ[u]. Further-
more, by the integrability of the gradient, it follows that for any r > n:
Z

�
A( ·, Du)·r�dx=

Z

�
�dµ, for all � 2 W 1,r (�) with compact support. (3.3)
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We now formally define solutions involving the perturbed operator L in the p-
superharmonic sense:
Definition 3.1. For a nonnegative measure!wewill say that�divA(·,ru) = ! in
the p-superharmonic sense if u is p-superharmonic, and µ[u] = !. ThusL(u) = !
in the p-superharmonic sense if µ[u] = �u p�1 + !.
Remark 3.2. Amajor open problem in the theory of the quasilinear operators mod-
eled by the p-Laplacian is to find the correct notion of solution in order to guaran-
tee both existence and uniqueness. As a result there are many notions of solution
which have been developed, of which p-superharmonicity is the weakest. There
are alternative notions of solutions which we could have introduced to obtain our
results, for instance either renormalized solutions or supersolutions up to all levels,
see [12] and [42] respectively. We chose to use the language of A-superharmonic
functions because the potential estimates (Theorems 3.4 and 3.5) were developed
in this framework. It was shown in [26] that A-superharmonic functions coincide
with the notion of viscosity supersolutions for the operator A. Moreover, it has
very recently been shown that p-superharmonic functions are locally renormalized
solutions, see [31]. For more information on these competing notions of solution,
we refer the reader to T. Kilpeläinen’s survey article [30].

We now state a very useful convergence result, contained in Kileplainen and
Maly [32, Theorem 1.17].

Theorem 3.3 ([32]). Suppose {u j} j is a sequence of nonnegativeA-superharmonic
functions in an open set �. Then there is a subsequence {u jk }k which converges
almost everywhere to a nonnegative function u which is either p-superharmonic or
identically infinite in each component of �.

The next result, first stated explicitly in [61], shows thatA-Laplace operator is
weakly continuous.

Theorem 3.4 ([61]). Suppose {u j} j is a sequence of nonnegativeA-superharmonic
functions which converge almost everywhere to an A-superharmonic function u.
Then µ[u j ] converges weakly to µ[u].

The second major result we need is the Wolff’s potential estimates of Kilpeläinen
and Maly [33] (see also [42,50]).

Theorem 3.5 ([33]). Let u be a nonnegative A-superharmonic function in Rn so
that infx2Rn u(x) = 0. If µ = �divA(· ,ru), then there is a constant K =
K (n, p,↵,�), so that for all x 2 Rn ,

1
K
W1,pµ(x)  u(x)  K W1,pµ(x). (3.4)

3.3. We now turn to the fully nonlinear counterpart of these results. A very recent
and comprehensive account of the k-Hessian equation is [65]. Here k-convex func-
tions associated to the k-Hessian operator, introduced by Trudinger and Wang [59],
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will play the role of A-superharmonic functions in the quasilinear theory above.
Let � ⇢ Rn be an open set, let k = 1, . . . , n and u 2 C2(�), then the k-Hessian
operator is:

Fk(u) =
X

1i1<···<ikn
�i1 . . . �ik

where �1, . . . , �n are the eigenvalues of the matrix D2u. We will then say that
u is k-convex in � if u : � ! [�1,1) is upper semicontinuous and satisfies
Fk(u) � 0 in the viscosity sense, i.e. for any x 2 �, Fk(q)(x) � 0 for any
quadratic polynomial q so that u � q has a local finite maximum at x . Equivalently
(see [59]), we may define k-convex functions by a comparison principle: an upper
semicontinuous function u : � ! [�1,1) is k-convex in � if for every open set
D ⇢⇢ �, and v 2 C2loc(D) \ C(D̄) with Fk(v) � 0 in D, then

u  v on @D =) u  v in D.

Let 8k(�) be the set of k-convex functions such that u is not identically infinite in
each component of �. The following weak continuity result is key to us.

Theorem 3.6 ([59]). Let u 2 8k(�). Then there is a nonnegative Borel measure
µk[u] in � such that

• µk[u] = Fk(u) whenever u 2 C2(�), and
• If {um}m is a sequence in8k(�) converging in L1loc(�) to a function u, then the
sequence of measures {µk[um]}m converges weakly to µk[u].

The measure µk[u] associated to u 2 8k(�) is called the Hessian measure of u.
Hessian measures were used by Labutin [36] to deduce Wolff’s potential estimates
for a k-convex function in terms of its Hessian measure. The following global
version of Labutin’s estimate is deduced from his result in [50]:

Theorem 3.7 ([50]). Let 1  k  n, and suppose that u � 0 is such that �u 2
8k(�) and infx2Rn u(x) = 0. Then, if µ = µk[u], there is a positive constant K ,
depending on n and k, such that:

c1W 2k
k+1 ,k+1

µ(x)  u(x)  c2W 2k
k+1 ,k+1

µ(x), x 2 Rn.

3.4. This subsection is concerned with minimality of fundamental solutions. A
minimal fundamental solution u(x, x0) of L defined by (1.1), is a fundamental so-
lution of L as in Definition 2.1, so that u(x, x0)  v(x, x0) whenever v(x, x0) is a
fundamental solution of L. Our aim is to prove the following proposition.

Proposition 3.8. Let 1 < p < n and � be a nonnegative measure. Suppose that
there exists a fundamental solution v(x, x0) of L with pole at x0. Then there exists
a unique minimal fundamental solution u(x, x0) of L.
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We will need the following simple lemma, and as we could not locate a refer-
ence we will provide a proof.

Lemma 3.9. Let � ⇢ Rn be a bounded Lipschitz domain, and suppose that v is
a positive p-superharmonic function in � so that Tk(u) 2 W 1,p(�) for all k > 0,
and�1pv = ⌫ for a nonnegative measure ⌫. Let µ  ⌫, be a compactly supported
measure in �, then there is a nonnegative p-superharmonc fuction w, such that
w  v and:

�1pw = µ in �, w = 0 continuously on @�. (3.5)

Proof. Let Tk(v) = min(v, k), and let ⌫k be the Riesz measure of Tk(v). Then
⌫k 2 W�1,p0

(�), and ⌫k ! ⌫ weakly. Let µk be a sequence in W�1,p0
(�) so that

µk  ⌫k and µk ! µ weakly. By the compact support of µ we may also assume
that there is a compactly supported set K ⇢ �, which contains the support of µk ,
for each k (otherwise we just multiply µk by a smooth bump function � 2 C1

0 (K )

such that � ⌘ 1 on the support of µ). Let wk 2 W 1,p(�) be the solution of:

�1pwk = µk in �, wk = 0 on @�.

Such a unique solution exists by the theory of monotone operators due to Browder
and Visik, see e.g. Showalter [58, Chapter 2, Proposition 5.1], The reader can
alternatively consult the monograph J. L. Lions [39].

In addition, 0  wk  Tk(v)  v in �. The first and second inequalities here
are by the classical comparison principle. Therefore, by [32, Theorem 1.17], we see
that by a relabeling of the sequence, we may assert that there is a p-superharmonic
function w = limk!1 wk almost everywhere, with w  v and �1pw = µ.

It remains to prove thatw is zero at the boundary and attains its boundary value
continuously. First note that each wk is p-harmonic in �\K . Since � is Lipschitz,
there exists M � 2, c > 0 and 0 < r0 < d(K , @�)/4, such that for all z 2 @�
and 0 < r < r0: supB(z,r/c)\�wk  cwk(a(z)), here a(z) is a point such that
M�1r  |a(z) � z|  Mr . This is a well known boundary estimate, see e.g. [5,37].
Combined with the boundary regularity of p-harmonic functions, [43] (see also
[22, 42]), we see that each wk is locally Hölder continuous in a neighbourhood of
each boundary point with constants independent of k. Indeed, there exists constants
c, ✓ > 0 depending on n and p, such that if 0 < r < r0, then for each z 2 @� and
x, y 2 B(z, r/c) \�:

|wk(x) � wk(y)| c max
B(w,r/c)\�

wk · |x � y|✓  cwk(a(z)) · |x � y|✓

 c inf
B(a(z),r/2M)

wk · |x � y|✓  c inf
B(a(z),r/2M)

v · |x � y|✓ .
(3.6)

The third inequality in display (3.6) follows from the second by Harnack’s inequal-
ity. That w = 0 continuously on @� follows from (3.6).

By Theorem 2.2, we may assume that � satisfies (1.10) (see Lemma 4.3 be-
low), in proving Proposition 3.8. This assumption is the key for the construction,
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as we will apply uniqueness results. For general measure data, the uniqueness of
solutions in a suitable sense is an open problem for the p-Laplacian.

Proof of Proposition 3.8. Let w be any fundamental solution of the operator L de-
fined by (1.1) with pole at x0. We will construct a fundamental solution u so that
u  w. This construction will be independent of choice of w and hence will prove
the proposition. Our first goal is to show w � u0 := G(·, x0), with G(x, x0)
defined as in (1.4). By using Lemma 3.9 repeatedly in a sequence of concentric
balls, along with Theorems 3.3 and 3.4, we assert the existence of a solution w0 of
�1pw0 = �x0 in Rn , with w0  w, and hence infx2Rn w0(x) = 0. Since G(x, x0)
is unique (see [28]), it follows that w0 = u0. Thus w � u0.

Now suppose that w � um�1. Then, for each j and k > j , we see by Lemma
3.9 there is a positive p-superharmonic function u j,km solving:

�1pu
j,k
m = (�u p�1m�1)�B(x0,2 j ) + �x0 in B(x0, 2k), u j,km = 0 on @B(x0, 2k)

with u j,km  w. But using [62, Theorem 4.2] (which applies as a simple conse-
quence of (1.10), and uk, jm being p-harmonic near @B(x0, 2k)), we see that u

j,k
m

is unique (and hence independent of w). By combining Theorems 3.3 and 3.4,
we conclude that there exists a p-superharmonic function u jm such that �1pu

j
m =

(�u p�1m�1)�B(x0,2 j ) +�x0 inRn . Furthermore u jm  w, and hence infx2Rn u jm(x) = 0.
We remark here that there are other uniqueness results with slightly different hy-
pothesis, (for instance see [12,34]) which could also be used, but the cited theorem
of Trudinger and Wang above is quickest to verify here.

Again by Theorem 3.3, and weak continuity (Theorem 3.4), there exists a p-
superharmonic function um such that: �1pum = �u p�1m�1 + �x0 in Rn and um  w.
Therefore infx2Rn um(x) = 0. Appealing to Theorem 3.3 and weak continuity a
final time, we find a p- superharmonic function u such that �1pu = �u p�1 + �x0
in Rn and u  w, thus infx2Rn u(x) = 0 and u is a fundamental solution of L.

The proposition is proved, since whenever w is a fundamental solution of L,
then iteratively we see that w � um for all m and hence w � u.

With this proposition the following Corollary is an immediate consequence of The-
orems 2.2 and 2.5.

Corollary 3.10. Suppose that � is a nonnegative measure satisfying (1.10) with
constant C > 0. Then there exists a positive constant C0 depending on n and p, so
that if C < C0, there exists a unique minimal fundamental solution u(x, x0) of L
defined by (1.1). Furthermore u(x, x0) satisfies global bilateral bounds (1.5) and
(1.6), with a different constant c = c(n, p) > 0 in each direction.

The existence of a minimal fundamental solution for the k-Hessian operators
can be shown in a similar way to the quasilinear case presented above, adapting
techniques in [60].
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3.5. We finish this section with a brief discussion of capacity. In the range of
exponents we are interested in, both the p-capacity and the k-Hessian capacities are
equivalent, for compact sets, with certain Riesz capacities.

Let s > 1 and 0 < ↵ < n. For E ⇢ Rn , we define the Riesz capacity of E by
the following:

cap↵,s(E) = inf{ k f ksLs : f 2 Ls(Rn), f � 0, I↵ f � 1 on E }. (3.7)

See (2.3) for the definition of the Riesz potential I↵ .
Recall the p-capacity defined in (1.11). Then we have the following equiva-

lence.

Lemma 3.11. Let 1 < p < n. Then there is a positive constant C = C(n, p) so
that, for all compact sets E ⇢ Rn:

1
C
cap1,p(E)  capp(E)  Ccap1,p(E).

For a proof of this Lemma, see, e.g., [44] or [42].
Now, recall the k-Hessian capacity (2.5). Then the following equivalence holds

(see [50, Theorem 2.20]).

Lemma 3.12. Let 1  k < n/2. Then there is a positive constant C = C(n, k) > 0
so that for all compact sets E ⇢ Rn:

1
C
cap 2k

k+1 ,k+1
(E)  capk(E)  Ccap 2k

k+1 ,k+1
(E).

4. Reduction to integral inequalities and necessary conditions on �

4.1. In this section we will show how our study of the fundamental solutions of L
and G can be rephrased into a question of nonlinear integral operators. The Wolff
potential estimate will be the key to this idea, recall the definition from (3.1).

Let us introduce two nonlinear integral operators, N1 and N2, acting on non-
negative functions f � 0 by:

N1( f )(x) :=W1,p( f p�1d� )(x), and: (4.1)

N2( f )(x) :=W 2k
k+1 ,k+1

( f kd� )(x) (4.2)

see also (4.5) below. These operators appear naturally in studying the equations
L(u) = ! and G(u) = ! for a nonnegative Borel measure !. Indeed, if 1 < p < n
and u is a nonnegative p-superharmonic function such that L(u) = !, then by the
Wolff potential estimate, Theorem 3.5, there is a constant C = C(n, p) > 0 such
that

u(x) � CW1,p(u p�1d� )(x) + CW1,p(!)(x).
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Note that from this it follows that u 2 L p�1loc (� ). Hence, if u is a fundamental
solution of L, then it follows:

u(x) � CN1(u)(x) + C |x � x0|
p�n
p�1 (4.3)

sinceW1,p(�x0)(x) = c(n, p) |x � x0|
p�n
p�1 when 1 < p < n. Here C is a positive

constant depending on n, p.
In much the same way, if 1  k < n/2 and u is a nonnegative function so that

�u is a k-convex solution of G(u) = ! in the sense of k-Hessian measures, then
by the Wolff potential estimate, Theorem 3.7, there is a constant C = C(n, k) > 0
such that

u(x) � CN2(u)(x) + CW 2k
k+1 ,k+1

(!)(x).

Thus u 2 Lkloc(� ), and hence if u is a fundamental solution of G, then there is a
constant C = C(n, k) so that

u(x) � CN2(u)(x) + C |x � x0|2�n/k . (4.4)

With the aid of theWolff potential, by introducing theN1 andN2, we have rephrased
the problem of finding lower bounds for the fundamental solutions to finding lower
bounds of solutions of the nonlinear integral inequalities (4.3) and (4.4).

In addition, we will see in Section 6 that explicitly constructing solutions of
(4.3) and (4.4) will be the main technical step in proving existence of minimal
fundamental solutions of the differential operators L and G.

As a result of this discussion it makes sense to introduce a more general non-
linear operator which generalizes bothN1 andN2. To this end, recall that the Wolff
potential acting on a measure ! is given by (3.1).

Let s > 1, ↵ > 0 so that 0 < ↵s < n, then we define the nonlinear operator
N , for a Borel measurable function f � 0, by:

N ( f )(x) =W↵,s( f s�1d� )(x)

=
Z 1

0

✓
1

rn�↵s

Z

B(x,r)
f s�1(z)d� (z)

◆1/(s�1) dr
r

(4.5)

The operators N1 and N2 are clearly special cases of N for certain choices of ↵
and s.

4.2. Fix s > 1 and ↵ so that, 0 < ↵s < n. For the remainder of this section we will
be concerned with positive solutions u of the integral inequality:

u(x) � C0N u(x) (4.6)

where C0 is a positive constant. Our first goal will be to prove some necessary con-
ditions on the measure � for there to exist positive solutions of (4.6). In particular,
we will prove the following theorem. Recall the definition of the capacity in (3.7).
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Theorem 4.1. Suppose that u is a positive solution of the inequality (4.6) with con-
stant C0 > 0. Then, there is a positive constant C , depending on ↵, s, n and C0, so
that for every compact set E ⇢ Rn

� (E)  C cap↵,s(E). (4.7)

Corollary 4.2. Theorem 4.1 implies the capacity estimates which appear in Theo-
rems 2.2 and 2.11.

Proof of Corollary 4.2. Suppose first that u is a fundamental solution of L. Then u
satisfies (4.3), and hence u satisfies (4.6) withN = N1. This corresponds to taking
↵ = 1 and s = p in the definition of N . Hence Theorem 4.1 implies that there is
a constant C > 0 so that � (E)  C cap1,p(E) for all compact sets E . By Lemma
3.11, this is equivalent to the required capacity estimate in Theorem 2.2.

Similarly, if u is a fundamental solution of G, then u satisfies (4.4), which is
the same as (4.6) with ↵ = 2k

k+1 and s = k + 1. Hence Theorem 4.1 asserts the
existence of a constant C > 0 so that � (E)  C cap 2k

k+1 ,k+1
(E) for all compact

sets E . Appealing to Lemma 3.12, we see that this is equivalent to the capacity
condition appearing in Theorem 2.11.

The same proof shows that Theorem 4.1 in fact implies the same capacity
estimates for any positive solutions of the differential inequalities Lu � 0 and
G(u) � 0.

4.3. We will now briefly discuss an alternative approach to the capacity estimate
(1.10) in the case of the p-Laplacian operator. This approach was shown to the
second author by T. Kilpeläinen in 1997.

Lemma 4.3. Let� be an open set inRn , and let � be a nonnegative Borel measure
absolutely continuous with respect to p-capacity. Suppose that u is a positive p-
superharmonic function such that �1pu � �u p�1 in �. Then then following
embedding inequality holds:

Z

�
h p d� 

Z

�
|rh|p dx, for all h 2 C1

0 (�), h � 0, (4.8)

Proof. Let h � 0, h 2 C1
0 (�), Let µ[u] be the Riesz measure of u (see Section

3), and µk be the Riesz measure of Tk(u) = min(u, k) 2 W 1,p
loc (�). It follows that

µk 2 W�1,p0

loc (�). Let us decompose µk as:

dµk = u p�1d⌫k + d!k,

with d⌫k = u1�p�{u<k}dµk , and d!k = �{u�k}dµk . This decomposition follows
from the minimum principle, since for any compact set K ⇢⇢ �, there exists a
constant c > 0 such that u � c > 0 on K . Since µk lies locally in the dual Sobolev



110 BENJAMIN J. JAYE AND IGOR E. VERBITSKY

space W�1,p0

loc (�), and h pTk(u)1�p 2 W 1,p(�) has compact support, the following
manipulations are valid:

Z
h p d⌫k 

Z
h pTk(u)1�pdµk

=
Z

rTk(u)p�2rTk(u) · r

✓
h p

Tk(u)p�1

◆
dx



 

p
Z

h p�1

Tk(u)p�1
rTk(u)p�2rTk(u) · rh

�(p � 1)
Z
h p

|rTk(u)|p

Tk(u)p
dx
◆


Z

|rh|p dx,

(4.9)

where we have used Young’s inequality in the last line. To prove the lemma, we
claim that:

u p�1�{u<k}d�  u p�1d⌫k on supp(h). (4.10)
This will follow by an adaptation of a similar argument in [11]. Indeed, since
T2k(u) 2 W 1,p

loc (�), it follows that the set {u < k} is quasi-open, see e.g. [11, 42].
Therefore, there exists an increasing sequence � j 2 W 1,1(�), so that � j converges
to �{u<k} q.e. This is a simple adaptation of the proof of [10, Lemma 2.1], since
the functions uk considered in the proof of [10, Lemma 2.1] can be chosen to be
smooth. It follows (see (3.3)) that for any  2 C1

0 (supp(h)), that:
Z

{u<k}
 � j u p�1d⌫k =

Z
|rTk(u)|p�2rTk(u) · r( � j )dx

=
Z

|ru|p�2|ru · r( � j )dx �
Z
� j u p�1d�,

the second equality here follows since � j is supported in {u < k}, and last inequality
is by hypothesis. Allowing j ! 1, (4.10) follows. Combining (4.10) with (4.9)
we conclude: Z

{u<k}
h pd� 

Z
|rh|pdx .

Letting k ! 1 with the aid of the monotone convergence theorem proves the
lemma.

It is easy to see by the definition of p-capacity that inequality (4.8) implies the
capacity inequality (1.10) with constant C = 1. As was mentioned in the introduc-
tion, the converse is also true: if (1.10) holds with constant C = ((p�1)/p)p, then
(4.8) holds (see [44]). Under the assumption that � 2 L1

loc, (4.8) is known to be
equivalent to the existence of a solution to the inequality L(u) � 0; see [53, Theo-
rem 2.3]. For more general � this relationship will be considered in [24].

4.4. Let us now prove Theorem 4.1, we will do so by verifying an equivalent char-
acterization of (4.7).
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Lemma 4.4. There is a constant C so that (4.7) holds for all compact sets E if and
only if there is a constant C1 > 0 so that:

Z

E
W↵,s(�Ed� ) d�  C1 � (E) (4.11)

for all compact sets E ⇢ Rn . Furthermore, if (4.11) holds, then there is a positive
constant A > 0, depending on ↵, s and n, such that

A�1C1  C  AC1.

Lemma 4.4 is well known, for instance a proof can be found in [1, Theorem 7.2.1].
We will verify that the equivalent statement in Lemma 4.4 holds by first show-

ing it holds for a dyadic analogue of the Wolff potential, and then using a standard
shifting argument which goes back at least to Fefferman and Stein [13]; see also
Garnett and Jones [18].

To this end, we define the dyadic mesh at level k for k 2 Z, denoted by
Dk , as the collection of cubes in Rn which are the translations by 2k� for � =
(�1, ..., �n) 2 Zn of the cube [0, 2k)n . Then the dyadic latticeD is the collection of
dyadic meshes Dk , k 2 Z. For a cube Q, we denote by `(Q) the side length of the
cube Q.

With this notation, we define the discrete Wolff potentialsW t
↵,s (see [9] for an

in depth discussion) by

W t
↵,s( f d� )(x) =

X

Q2D: x2Q+t
cQ
✓Z

Q+t
f (z)d� (z)

◆1/(s�1)
(4.12)

where cQ = `(Q)
↵s�n
s�1 and t 2 Rn . Note that there is a constant C , depending only

on n,↵ and s (but not the shift t) so that for any nonnegative function f

W t
↵,s( f d� )  CW↵,s( f d� ). (4.13)

We will use the following definition of the discrete Carleson measure. Recall that
|E |� = � (E) for a set E .
Definition 4.5. Let 1 < s < 1, and let � be a Borel measure on Rn . Then � is
said to be a discrete Carleson measure if there is a positive constant C = C(n, s)
such that for each dyadic cube P 2 D and every t 2 Rn

X

Q⇢P, Q2D
cQ |Q + t |s

0

�  C |P + t |� . (4.14)

Remark 4.6. It is well known that the inequality

X

Q2D
cQ
�
�
�
�

Z

Q+t
f d�

�
�
�
�

s0

 C || f ||s
0

Ls0 (d� )
(4.15)
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holds for every f 2 Ls0(d� ) if and only if � is a discrete Carleson measure, and
the constants in (4.14) and (4.15) are equivalent (see, e.g., [9, 48]). From this it is
immediate that if � is a Carleson measure then �E d� is also a Carleson measure,
for every measurable E ⇢ Rn .

We now formulate a discrete analogue of the characterization in Lemma 4.4
which will be sufficient for our purposes, where we make use of Definition 4.5 and
Remark 4.6.

Lemma 4.7. Suppose there is a positive solution u to the integral inequality (4.6).
Then the measure � is a discrete Carleson measure, that is there is a positive con-
stant C = C(n, s,C0) such that for each dyadic cube P 2 D and every compact
set E ⇢ Rn , X

Q⇢P
Q2D

cQ |(Q + t) \ E |s
0

�  C |(P + t) \ E |� . (4.16)

Furthermore, we have that
X

Q2D
cQ |(Q + t) \ E |s

0

�  C |E |� . (4.17)

Proof. We will prove (4.16). The proof of (4.17) follows by the same reasoning.
The proof is rather reminiscent of the classical Schur’s lemma. First note that by
hypothesis and (4.13) there is a positive function u together with a constant C > 0
so that

u(x) � CW t
↵,s(u

s�1d� )(x)

and hence, using Hölder’s inequality, we see that:

X

Q⇢P
Q2D

cQ |(Q + t) \ E |s
0

� =
X

Q⇢P
cQ
⇢Z

(Q+t)\E
u� s�1

s · u
s�1
s d�

�s0


X

Q⇢P
cQ
Z

(Q+t)\E
u�1 d� ·

⇢Z

(Q+t)\E)
us�1d�

� 1
s�1

.

By interchanging summation and integration, which is permitted by the monotone
convergence theorem, we see that the last line is equal to:

Z

(P+t)\E
u�1

X

Q⇢P
cQ
⇢Z

(Q+t)\E
us�1d�

� 1
s�1
�Q+t (x)d�


Z

(P+t)\E
u�1 · W t

↵,s(u
s�1d� )d�

 C
Z

(P+t)\E
u�1 · u d� = C |(P + t) \ E |� .
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We now state a suitable version of the dyadic averaging result which will be suffi-
cient for our purposes.

Lemma 4.8. There is a positive integer j0 2 N so that for any j 2 Z there is a
constant C = C(n,↵, s), not depending on j , so that

W2 j
↵,s( f d� )(x)  C�

Z

B(0,2 j+ j0 )
W t
↵,s( f d� )(x) dt

whereW2 j
↵,s is the local Wolff potential defined in (2.1).

A proof of this lemma can be found, for instance, in [9].
We will next use the dyadic shifting argument to prove the following lemma:

Lemma 4.9. Suppose u is a positive solution of (4.6) with constant C0. Then there
is a constant C = C(n,↵, s) so that for any compact set E ⇢ Rn , and each m 2 N
the measure � satisfies:

Z

E

�
W↵,s(�Ed� )

�m d�  Cm m! � (E).

Remark 4.10. This lemma in the case m = 1 shows that Lemma 4.4 is satisfied,
and hence proves Theorem 4.1. We prove the lemma in the form stated as it gives
us an exponential integrability result, which will be very useful in the sequel (see
Corollary 4.11 below).

Proof. Let E be a compact set. Then first we note that by Fatou’s lemma,
Z

E

�
W↵,s(�Ed� )

�m d�  lim inf
k!1

Z

E

⇣
W2k
↵,s(�Ed� )

⌘m
d�

whereW2k
↵,s(�Ed� )(x) =

Z 2k

0

✓
� (B(x, r) \ E)

rn�↵s

◆1/(s�1) dr
r
.

It therefore suffices to find a bound on the right hand side of the preceding
inequality which is independent of k. Lemma 4.8 yields:

Z

E

⇣
W2k
↵,s(�Ed� )

⌘m
d�

 Cm
Z

E

✓
�
Z

B(0,2k+ j0 )
W t
↵,s(�Ed� )dt

◆m
d�

 Cm

 

�
Z

B(0,2k+ j0 )

✓Z

E

�W t
↵,s(�Ed� )

�m d�
◆ 1

m
dt

!m

,

where the second inequality follows from Minkowski’s integral inequality.



114 BENJAMIN J. JAYE AND IGOR E. VERBITSKY

We will need the elementary summation by parts inequality:
 

1X

j=1
� j

!m
 m

1X

j=1
� j

 jX

k=1
�k

!m�1

(4.18)

which holds for any nonnegative sequence {� j } j and m � 1. We apply Lemma 4.7
to the dyadic Wolff potential, after an m fold application of (4.18). Indeed, consid-
ering the inner integral in the right hand side of the last line above, we obtain:
Z

E

�W t
↵,s(�Ed� )

�m d�

=
Z

E

 
X

Q2D
cQ |Q + t \ E |

1
s�1
� �Q+t

!m
d�

 m!
Z

E

X

Q12D
cQ1 |Q1 + t \ E |

1
s�1
� . . .

X

Qm⇢Qm�1

cQm |Qm + t \ E |
1

s�1
� �Qm+t d�

= m!
X

Q12D
cQ1 |Q1 + t \ E |

1
s�1
� . . .

X

Qm⇢Qm�1

cQm |Qm + t \ E |
s

s�1
�

 m!Cm� (E).

(4.19)

In the last line we have used (4.16) m � 1 times and then (4.17) once. Bringing
together our estimates proves the lemma.

The following exponential integrability result easily follows from Lemma 4.9,
the power series representation of the exponential, and the monotone convergence
theorem.

Corollary 4.11. Suppose u is a positive solution of (4.6). If we let � > 0 so that
C� < 1, where C is the constant appearing in Lemma 4.9, then we have the follow-
ing: Z

E
e �W↵,s(�Ed� )(y)d� (y) 

1
1� C�

� (E) (4.20)

whenever E is a compact set.

In our next result, we specialize (4.7) to when the set E is a ball. By a standard
formula for the capacity of a ball (see [1, Chapter 5]),

� (B(x, r))  C1 cap↵,s(B(x, r)) = C2rn�↵s (4.21)

for all balls B(x, r), whereC2 = AC1, and A depends only on n,↵ and s. However,
as is well known, (4.21) does not imply (4.7) for all compact sets E .

Our next lemma shows that the tail of the Wolff potential is nearly constant,
which is a key estimate to our construction of the supersolution.
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Lemma 4.12. Let � be a Borel measure satisfying (4.21). Then there is a positive
constant C = C(n,↵, s,C2) > 0, so that for all x 2 Rn and y 2 B(x, t), t > 0, it
follows:

�
�
�
�
�

Z 1

t

"✓
� (B(x, r))
rn�↵s

◆ 1
s�1

�

✓
� (B(y, r))
rn�↵s

◆ 1
s�1
#
dr
r

�
�
�
�
�
 C. (4.22)

The proof of Lemma 4.12 is a modification of an argument due to Frazier and Ver-
bitsky, [16] for integral operators with kernels satisfying a quasimetric condition.
The extension to the nonlinear potential is elementary, but also technical and rather
lengthy. Due to this we present the proof elsewhere, in Appendix A of [25].

5. Lower bounds for nonlinear integral equations,
the proof of Theorems 2.2 and 2.11

5.1. In this section, we will prove Theorems 2.2 and 2.11. Recall the operator

N ( f )(x) =W↵,s( f s�1d� )(x).

We will begin this section by proving a lower bound for solutions of the inequality:

u(x) � C0N (u)(x) + C0 |x � x0|
↵s�n
s�1 . (5.1)

We will show the following theorem:

Theorem 5.1. Suppose that u satisfies (5.1) with constant C0. Then there is a con-
stant c = c(n,↵, s,C0) > 0 such that:

u(x) � c |x � x0|
↵s�n
s�1 exp

 

c
Z |x�x0|

0

✓
� (B(x, r))
rn�↵s

◆1/(s�1) dr
r

!

· exp

 

c
Z |x�x0|

0

� (B(x0, r))
rn�↵s

dr
r

!

.

(5.2)

Theorems 2.2 and 2.11 will follow quickly from this theorem, as we shall show
once it is proved.

We shall prove Theorem 5.1 by iterating (5.1). To illustrate the iteration, sup-
pose that T is a homogeneous superlinear operator acting on nonnegative functions,
i.e. that T (c f ) = cT ( f ) for c > 0 and T ( f + g) � T ( f ) + T (g) whenever f
and g are nonnegative measurable functions. In addition suppose that u satisfies the
inequality:

u � T (u) + f (5.3)
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where f � 0. Now we define the j-th iterate of T by T j ( f ) = T (T j�1( f )), for
all j � 2. Iterating (5.3) m times yields:

u � T (T (. . . T (T (u) + f ) + f · · · ) + f ) + f

� Tm( f ) + Tm�1( f ) + · · · + T ( f ) + f,

and since m here was arbitrary,

u �
1X

j=1
T j ( f ) + f.

Now, if 1 < s  2, it is clear from Minkowski’s inequality that N is a superlinear
homogeneous operator and hence if u is a solution of (5.1), then:

u �
1X

j=1
C j
0N j (|· � x0|

↵s�n
s�1 ) + C0 |x � x0|

↵s�n
s�1 .

However, if 2 < s < n, the operator N does not fall within this framework. In
this case we consider an operator T ( f ) = N ( f 1/(s�1))s�1 = (W↵,s( f ))s�1. Then
by Minkowski’s inequality, T is superlinear, and it is homogenous, and so we may
apply the above discussion. If u satisfies (5.1), then we have that:

us�1(x) � CT j (us�1)(x) + C |x � x0|↵s�n

where C is a positive constant depending on n,↵, s and C0. Hence, we see that

us�1(x) �
1X

j=1
C jT j (|· � x0|↵s�n)(x) + C |x � x0|↵s�n .

By comparing iterates of T with the iterates ofN , we obtain

u(x) �

 
1X

j=1
C jN j (|· � x0|

↵s�n
s�1 )(x)s�1

!1/(s�1)
+ C |x � x0|

↵s�n
s�1 .

Thus, by Jensen’s (or Hölder’s) inequality, we have that for any q > 1,

u � C
1X

j=1
j (q

2�s
s�1 )C jN j

1 (|· � x0|
↵s�n
s�1 )(x) + C |x � x0|

↵s�n
s�1

where C is a positive constant depending on q, n, s,↵ and C0.
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We summarize this discussion as follows:

Lemma 5.2. Suppose u is a solution of (5.1) with constant C0. Then there is a
constant C = C(n, s,↵,C0) > 0 so that if 1 < s  2, it follows:

u �
1X

j=1
C jN j (|· � x0|

↵s�n
s�1 ) + C |x � x0|

↵s�n
s�1 . (5.4)

If 2 < s < n, then for any q > 1,

u � C(q)
1X

j=1
j (q

2�s
s�1 )C jN j

1 (|· � x0|
↵s�n
s�1 )(x) + C |x � x0|

↵s�n
s�1 (5.5)

where C(s) = C(q, n,↵, s,C0) > 0.

5.1. Proof of Theorem 5.1

Suppose that u is a solution of (5.1). Then clearly u also satisfies (4.6), and hence
by Theorem 4.1, (4.7) holds for all balls compact sets E . Hence there is a constant
C(� ) > 0 so that:

C(� ) = sup
E

� (E)

cap↵,s(E)
< 1,

where the supremum is taken over compact sets E so that cap↵,s(E) > 0. Note that
this implies � (B(x, r))  AC(� )rn�↵s for all balls B(x, r), where A is a positive
constant depending on n,↵ and s. To prove Theorem 5.1, we estimate the iterates
N j (|· � x0|

↵s�n
s�1 ). We will do this in two lemmas, giving us two bounds. We then

average the two bounds to conclude the theorem.

Lemma 5.3. For a given x 2 Rn , define jx to be the integer so that

2 jx  |x � x0| < 2 jx+1.

Then, with Bk = B(x0, 2k), for any m � 1,

Nm(|· � x0|
↵s�n
s�1 )(x) �

✓
s � 1
n � ↵s

8
↵s�n
s�1

◆m
|x � x0|

↵s�n
s�1

·

 
1
m!

n jxX

k=�1

2k(↵s�n)� (Bk+1\Bk)
om
!1/(s�1)

.

(5.6)

Proof. We will prove this lemma by induction. Let us recall the definition of the
operatorN :

N (|· � x0|
↵s�n
s�1 )(x) =

Z 1

0

✓
1

rn�↵s

Z

B(x,r)
|y � x0|↵s�n d� (y)

◆1/(s�1) dr
r

.
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First, restrict the integration in the variable r to r > 4 |x � x0|. Then, observe that
as r > 4 |x � x0|: B(x0, 2 |x � x0|) ⇢ B(x, r). This results in the bound:

N (|· � x0|
↵s�n
s�1 )(x) �

Z 1

4|x�x0|
r
↵s�n
s�1

dr
r

·

✓Z

B(x0,2|x�x0|)
|y � x0|↵s�n d� (y)

◆1/(s�1)
.

(5.7)

Now, recalling the definition of jx , we have:
Z

B(x0,2|x�x0|)
|y � x0|↵s�n d� (y) �

jxX

k=�1

2(k+1)(↵s�n)� (Bk+1\Bk).

Using this and evaluating the integral in (5.7) yields the case where k = 1.
Now suppose (5.6) holds for some m. Then by the induction hypothesis, and

the observation above:

Nm+1(|· � x0|
↵s�n
s�1 )(x) �

✓
s � 1
n � ↵s

8
↵s�n
s�1

◆m s � 1
n � ↵s

4
↵s�n
s�1 |x � x0|

↵s�n
s�1

·

0

@ 1
m!

Z

B(x0,2|x�x0|)
|z � x0|↵s�n

0

@
jyX

`=�1

2`(↵s�n)� (B`+1\B`)

1

A

m

d� (y)

1

A

1/(s�1)

.

We now consider the integral

Z

B(x0,2|x�x0|)
|z � x0|↵s�n

0

@
jyX

`=�1

2`(↵s�n)� (B`+1\B`)

1

A

m

d� (y). (5.8)

To complete the inductive step and hence prove the lemma it suffices to show that
(5.8) is greater than

2↵s�n

m + 1

 jxX

`=�1

2`(↵s�n)� (B`+1\B`)

!m+1

. (5.9)

To this end, note that by the definition of jx , (5.8) is greater than

jxX

k=�1

2(k+1)(↵s�n)
Z

Bk+1\Bk

0

@
jyX

`=�1

2`(↵s�n)� (B`+1\B`)

1

A

m

d� (y). (5.10)

We next remark that for all y 2 Bk+1\Bk , we have by definition jy = k, and so
(5.10) equals:

2↵s�n
jxX

k=�1

2k(↵s�n)� (Bk+1\Bk)

 
kX

`=�1

2`(↵s�n)� (B`+1\B`)

!m

. (5.11)
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But an application of the elementary summation by parts inequality (4.18) now
gives that (5.11) is greater than (5.9). This concludes the proof of the lemma.

By using Jensen’s (or Hölder’s) inequality, inserting Lemma 5.3 into the bounds
(5.4) and (5.5) in Lemma 5.2 yields the existence of positive constants c1 and c2,
depending on n,↵, s and C0, so that:

u(x) � c1 |x � x0|
↵s�n
s�1 exp

 

c2
jxX

`=�1

2`(↵s�n)� (B`+1\B`)

!

.

But, since � satisfies (4.21), we may further estimate the sum. Indeed,

jxX

`=�1

2`(↵s�n)� (B`+1\B`) � C
Z |x�x0|

0

� (B(x, r))
rn�↵s

dr
r

,

where C = C(n,↵, s) > 0. Hence we may conclude that there are positive con-
stants c1 and c2, depending on n,↵, s,C0 and C(� ), so that:

u(x) � c1 |x � x0|
↵s�n
s�1 exp

 

c2
Z |x�x0|

0

� (B(x, r))
rn�↵s

dr
r

!

.

The second part of the exponential build up in Theorem 5.1 is accounted for in the
following lemma:

Lemma 5.4. For any m � 1,

Nm(|· � x0|
↵s�n
s�1 )(x) �(3/2)

↵s�n
s�1

1
m!

|x � x0|
↵s�n
s�1

·

 Z |x�x0|

0

✓
� (B(x, r/2))

rn�↵s

◆1/(s�1) dr
r

!m
.

(5.12)

Proof. We will prove Lemma 5.4 when m = 3, as the case of general m is com-
pletely similar. The proof is based on the following claim:

For any locally finite Borel measures � and !, and x, x0 2 Rn:

Z |x�x0|

0

0

@ 1
rn�↵s

Z

B(x,r/2)

(Z 1

r

✓
1

un�↵s
!(B(y, u))

◆1/(s�1) du
u

)s�1
d� (y)

1

A

1/(s�1)
dr
r

�
Z |x�x0|

0

✓
� (B(x, r/2)

rn�↵s

◆1/(s�1) Z 1

r

✓
1

un�↵s
!(B(x, u/2))

◆1/(s�1) du
u
dr
r

.

(5.13)

The claim is just the triangle inequality. Suppose that |y � x | < r/2 and r < u,
then whenever z 2 B(x, u/2): B(x, u/2) ⇢ B(y, u). Thus, !(B(x, u/2)) 
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!(B(y, u)). The claim (5.13) then follows by using this estimate in the left hand
side and noting that the inner integrand no longer depends on y.

The lemma will follow from repeated use of the claim. First, by using defini-
tion and restricting domains of integration:

N 3(|· � x0|
↵s�n
s�1 )(x) �

Z |x�x0|

0

✓
1

r↵s�n

Z

B(x,r/2)

·

⇢Z 1

r

✓
1

un�↵s
!(B(y, u))

◆1/(s�1) du
u

�s�1
d� (y)

◆1/(s�1)dr
r

(5.14)

where:

!(B(y, u))

=
Z

B(y,u)

(Z 1

0

✓
1

tn�↵s

Z

B(z,t)
|w � x0|↵s�n d� (w)

◆1/(s�1) dt
t

)s�1
d� (z).

Applying the claim (5.13) to (5.14), we have that (5.14) is greater than:

Z |x�x0|

0

✓
� (B(x, r/2)

rn�↵s

◆1/(s�1) Z 1

r

✓
1

un�↵s
!(B(x, u/2))

◆1/(s�1) du
u
dr
r

.

Let’s now consider the integral:

Z 1

r

✓
1

sn�↵s
!(B(x, u/2))

◆1/(s�1) du
u

�
Z |x�x0|

r

✓
1

un�↵s
!(B(x, u/2))

◆1/(s�1) du
u

.

Then we may rewrite the right hand side of this last line as:

Z |x�x0|

r

0

@ 1
un�↵s

Z

B(x,u/2)

(Z 1

0

✓
1

tn�↵s
µ(B(z, t))

◆1/(s�1) dt
t

)s�1
d� (z)

1

A

1/(s�1)
du
u
(5.15)

where
µ(B(z, t)) =

Z

B(z,t)
|w � x0|↵s�n d� (w).

Now, restricting the integral over t to t > u, and applying the claim (5.13) with
! = µ, we see that (5.15) is greater than

Z |x�x0|

r

✓
1

un�↵s
� (B(x, u/2))

◆1/(s�1)Z |x�x0|

u

✓
1

tn�↵s
µ(B(x, t/2))

◆1/(s�1) dt
t
du
u
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where we have also restricted the integration over t to t < |x � x0|. Now, let us
consider:

Z |x�x0|

u

✓
1

tn�↵s
µ(B(x, t))

◆1/(s�1) dt
t

=
Z |x�x0|

u

✓
1

tn�↵s

Z

B(x,t/2)
|w � x0|↵s�n d� (w)

◆1/(s�1) dt
t

.

But, for w 2 B(x, t/2), note that: |w � x0| < 3/2 |x � x0|. Thus,
Z |x�x0|

u

✓
1

tn�↵s
µ(B(x, t/2))

◆1/(s�1) dt
t

� (3/2)
↵s�n
s�1 |x � x0|

↵s�n
s�1

Z |x�x0|

u

✓
1

tn�↵s
� (B(x, t/2))

◆1/(s�1) dt
t

.

Putting together what we have so far,

N 3( |· � x0|
↵s�n
s�1 )(x) � (3/2)

↵s�n
s�1 |x � x0|

↵s�n
s�1

Z |x�x0|

r=0

✓
� (B(x, r/2))

rn�↵s

◆1/(s�1)

·
Z |x�x0|

u=r

✓
� (B(x, u/2))

un�↵s

◆1/(s�1) Z |x�x0|

t=u

✓
� (B(x, t/2))

tn�↵s

◆1/(s�1) dt
t
du
u
dr
r

.

Integration by parts now yields the lemma in the case m = 3. It is easy to see that
a completely similar argument works for general m, using the claim (5.13) m � 1
times as we have done twice in the above argument. Thus the lemma is proved.

As with Lemma 5.3, we readily see that applying Lemma 5.4 to the iterates in
the bounds (5.4) and (5.5) of Lemma 5.2 yields the existence of positive constants
c1 and c2, depending on n,↵, s and C0, so that

u(x) � c1 |x � x0|
↵s�n
s�1 exp

 

c2
Z |x�x0|

0

✓
� (B(x, r/2))

rn�↵s

◆1/(s�1) dr
r

!

. (5.16)

But, since C(� ) < 1, we can replace � (B(x, r/2)) by � (B(x, r)) in the integral
in (5.16). Indeed, by change of variables:
Z |x�x0|

0

✓
� (B(x, r/2))

rn�↵s

◆1/(s�1) dr
r

= 2
↵s�n
s�1

Z |x�x0|/2

0

✓
� (B(x, r))
rn�↵s

◆1/(s�1) dr
r

,

and by (4.21):
Z |x�x0|

|x�x0|/2

✓
� (B(x, r))
rn�↵s

◆1/(s�1) dr
r

 C(n,↵, s,C(� )).
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Thus we conclude that there are positive constants c1 and c2 depending on n,↵, s,
C(� ) and C0 so that

u(x) � c1 |x � x0|
↵s�n
s�1 exp

 

c2
Z |x�x0|

0

✓
� (B(x, r))
rn�↵s

◆1/(s�1) dr
r

!

.

Proof of Theorem 5.1. We have showed that if u is a solution of (5.1) with constant
C0, then there are constants c1 and c2, depending on n,↵, s,C0 and C(� ), so that
the following two inequalities hold:

u(x) � c1 |x � x0|
↵s�n
s�1 exp

 

c2
Z |x�x0|

0

� (B(x, r))
rn�↵s

dr
r

!

, (5.17)

u(x) � c1 |x � x0|
↵s�n
s�1 exp

 

c2
Z |x�x0|

0

✓
� (B(x, r))
rn�↵s

◆1/(s�1) dr
r

!

. (5.18)

Averaging (5.17) and (5.18) with the inequality of the arithmetic mean and geomet-
ric mean, a/2+ b/2 �

p
ab, yields the required lower bound for solutions of (5.1),

and hence completes the proof of Theorem 5.1.

Proof of Theorems 2.2 and 2.11. The capacity estimates have been proven in
Corollary 4.2 so it remains to prove the bounds on the fundamental solutions. Sup-
pose first that u is a fundamental solution of L. Then, as a result of the Wolff
potential estimate, u satisfies the inequality (4.3), which is (5.1) in the case when
↵ = 1 and s = p. Applying Theorem 5.1 when specialized to this case is precisely
the bound (1.5) of Theorem 2.2.

Similarly, if u is a fundamental solution of G, then u satisfies (4.4), which is
just (5.1) when ↵ = 2k

k+1 and s = k + 1 and so we may apply Theorem 5.1. We
again see that the bound (5.2) in Theorem 5.1 with this choice of ↵ and s is exactly
the required bound (2.7) in Theorem 2.11.

6. Construction of a supersolution

6.1. In this section we will construct a solution corresponding to the integral in-
equality (6.1) below, which as we have already seen is closely related to the funda-
mental solutions of L and G. Suppose that v is a solution of the integral inequality:

v(x) � C0N (v)(x) + |x � x0|
↵s�n
s�1 (6.1)

where
N ( f )(x) =W↵,s( f s�1d� )(x)

for any positive constant C0 > 0. Then by Theorem 4.1 there is a constant C(� ) >
0 such that � satisfies:

� (E)  C(� )cap↵,s(E) (6.2)
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for all compact sets E ⇢ Rn . By Corollary 4.11, a consequence of this is that there
is a positive constant A = A(s,↵, n) so that:

Z

B(x,r)
e �W↵,s(�B(x,r)d� ) d� 

1
1� �AC(� )

� (B(x, r)), (6.3)

provided �AC(� ) < 1. In addition note that by standard capacity estimates we
may also assume that

AC(� ) � sup
x2Rn, r>0

� (B(x, r))
rn�↵s

and hence the hypothesis of Lemma 4.12 are satisfied.
To solve the inequality (6.1) it suffices to find a function u so that v � |x � x0|

↵s�n
s�1

and v � CN (v). With this in mind the following theorem will be enough for our
purposes. Recall that Bk = B(x0, 2k) and jx is defined to be the integer so that
2 jx  |x � x0| < 2 jx+1.

Theorem 6.1. Let � be a measure satisfying (6.2) (and hence (6.3)). In addition
suppose that Z 1

0

� (B(x0, r))
rn�↵s

dr
r

< 1. (6.4)

Define a function v by the following:

v(x) = |x � x0|
↵s�n
s�1 exp

 

�

jxX

`=�1

2`(↵s�n)� (B`+1)

!

· exp

 

�

Z |x�x0|

0

✓
� (B(x, r)
rn�↵s

◆1/(s�1) dr
r

!

.

(6.5)

Then, if C(� ) is sufficiently small, there exists a positive � = �(C(� ), n,↵, s),
along with a positive constant C0 = C0(�, n,↵, s, � ) so that

v � C0N (v), and in addition inf
x2Rn

v(x) = 0.

Remark 6.2. The condition (6.4) is only used to ensure that v is not identically
infinite. By inspection of the bound in Theorem 5.1 it is clear that if it is not satisfied
then any fundamental solution is identically infinite.

Proof. We letN (v) = I + I I , where I is defined by

I =
Z |x�x0|/2

0

✓
1

rn�↵s

Z

B(x,r)
vs�1(y) d� (y)

◆1/(s�1) dr
r

. (6.6)
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First note that for any y 2 B(x, r) with r  |x � x0| /2, we have that |y � x0| 
(3/2) |x � x0| and jy  jx + 1. In addition note that for such y,

|y � x0| � |x � x0| � |x � y| � |x � x0| /2.

These two observations, when plugged into I , yield:

I  2
n�↵s
s�1 |x � x0|

↵s�n
s�1 exp

 

�

jx+1X

`=�1

2`(↵s�n)� (B`+1)

!Z 1
2 |x�x0|

0

✓
1

rn�↵s

·
Z

B(x,r)
exp

 

(s � 1)�
Z 3

2 |x�x0|

0

✓
� (B(y, t))
tn�↵s

◆ 1
s�1 dt

t

!

d� (y)

! 1
s�1 dr

r
.

We now pay attention to the integral

Z

B(x,r)
exp

 

(s � 1)�
Z 3

2 |x�x0|

0
(t↵s�n� (B(y, t))1/(s�1)

dt
t

!

d� (y). (6.7)

Note that we may rewrite (6.7) as

Z

B(x,r)
exp

 

(s � 1)�
Z r

0

✓
� (B(y, t)
tn�↵s

◆1/(s�1) dt
t

!

· exp

 

(s � 1)�
Z 3

2 |x�x0|

r

"✓
� (B(y, t)
tn�↵s

◆1/(s�1)
�

✓
� (B(x, t)
tn�↵s

◆1/(s�1)# dt
t

!

d� (y)

· exp

 

(s � 1)�
Z 3

2 |x�x0|

r

✓
� (B(x, t)
tn�↵s

◆1/(s�1) dt
t

!

.

(6.8)

By the Wolff potential tail estimate, Lemma 4.12, it follows:
�
�
�
�
�

Z 3
2 |x�x0|

r

"✓
� (B(y, t)
tn�↵s

◆1/(s�1)
�

✓
� (B(x, t)
tn�↵s

◆1/(s�1)# dt
t

�
�
�
�
�
 C(n,↵, s,C(� )).

Thus (6.8) is less than a constant multiple of:

Z

B(x,r)
exp

 

(s � 1)�
Z r

0

✓
� (B(y, t)
tn�↵s

◆1/(s�1) dt
t

!

d� (y)

· exp

 

(s � 1)�
Z 3

2 |x�x0|

r

✓
� (B(x, t)
tn�↵s

◆1/(s�1) dt
t

!

.

(6.9)
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Now, provided �C(� ) is small enough we may apply (6.3), and hence we may
estimate the integral in (6.9) by:

Z

B(x,r)
exp

 

(s � 1)�
Z r

0

✓
� (B(y, t)
tn�↵s

◆1/(s�1) dt
t

!

d� (y)


Z

B(x,2r)
exp

�
(p � 1)�W �

↵,s(�B(x,2r))(y)
�
d� (y)  C� (B(x, 2r)).

Putting these estimates together, there is a constant C = C(n,↵, s,C(� )) so that:

I  C |x � x0|
↵s�n
s�1 exp

 

�

jx+1X

`=�1

2`(↵s�n)� (B`+1)

!

·
Z |x�x0|

0

✓
� (B(x, 2r))

rn�↵s

◆1/(p�1)
· exp

 

�

Z 3
2 |x�x0|

r

✓
� (B(x, t)
tn�↵s

◆1/(s�1) dt
t

!
dr
r

.

But now note since � satisfies (6.2), we have, for any ⇢ > 0:
Z 2⇢

⇢

✓
� (B(x, t)
tn�↵s

◆1/(s�1) dt
t

 C, and 2( jx+1)(↵s�n)� (Bjx+2)  C, (6.10)

where in this last display the constant depends on n,↵, s and C(� ), but is indepen-
dent of ⇢. By a change of variables and (6.10), we see there is a positive constant
C = C(n,↵, s,C(� )), so that:

I  C |x � x0|
↵s�n
s�1 exp

 

�

jxX

`=�1

2`(↵s�n)� (B`+1)

!

·
Z |x�x0|

0

✓
� (B(x, r))
rn�↵s

◆1/(s�1)
· exp

 

�

Z |x�x0|

r

✓
� (B(x, t)
tn�↵s

◆1/(s�1) dt
t

!
dr
r

.

An application of integration by parts now yields I  C v for a positive constant
C = C(n,↵, s,C(� )).

We next consider the remainder of the Wolff potential I I . By writing the
integral as a sum over dyadic annuli, it is not difficult to see that there exists a
constant C > 0, depending on n, s and ↵, so that:

I I  C
1X

k= jx

2k
↵s�n
s�1

✓Z

B(x,2k)
vs�1 d�

◆1/(s�1)
. (6.11)

Let us first consider a single integral in the sum. Since k � jx , it follows that
B(x, 2k) ⇢ B(x0, 2k+2). Thus,

Z

B(x,2k)
vs�1 d� 

Z

B(x0,2k+2)
vs�1 d� =

k+2X

`=�1

Z

B`\B`�1
vs�1 d�. (6.12)
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We now concentrate on one term in the sum on the right hand side of (6.12). Ob-
serve that for z 2 B`\B`�1, we have 2` � |z � x0| � 2`�1 and jz = ` � 1. This
yields:

Z

B`\B`�1
vs�1(z)d� (z)  2(`�1)(p�n) exp

 

�(s � 1)
`�1X

m=�1

2m(↵s�n)� (Bm+1)

!

·
Z

B`
exp

 

(s � 1)�
Z 2`

0

✓
� (B(y, t))
tn�↵s

◆1/(s�1) dt
t

!

d� (y).

But, again, if we suppose that �C(� ) is small, then by the exponential integration
result (6.3), there is a constant C = C(n, p, s,C(� )) > 0 so that:

Z

B`
exp

 

(s � 1)�
Z 2`

0

✓
� (B(y, t))
tn�↵s

◆1/(s�1) dt
t

!

d� (y)  C� (B(x, 2`+1)).

Thus, plugging this into (6.12), we find that there is a constantC=C(n,p,s,C(� ))>
0 so that:

Z

B(x,2k)
vs�1d� (z)  C

k+2X

`=�1

2`(↵s�n)� (B(x, 2`+1))

· exp

 

�(s � 1)
`�1X

m=�1

2m(↵s�n)� (Bm+1)

!

.

(6.13)

Next, consider the following summation by parts estimate (see [15]). Suppose that
{� j } j is a nonnegative sequence such that 0  � j  1. Then:

1X

j=0
� j e

P1
k= j �k  2 e

P1
j=0 � j . (6.14)

Provided C(� )  1, we may apply (6.14) to see that the right hand side of (6.13) is
less than a constant (depending on n,↵, s,C(� )) multiple of:

exp

 

(s � 1)�
k+2X

`=�1

2`(↵s�n)� (B`+1)

!

.

Hence (as we may bound two top terms in the above sum using the C(� ) condition),

I I  C
1X

k= jx

2k
↵s�n
s�1 exp

 

�
kX

`=�1

2`(↵s�n)� (B`+1)

!

. (6.15)
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This is less than a constant multiple of u provided C(� ) is small enough. Indeed,
note that the right hand side of (6.15) is a constant multiple of:

2 jx
↵s�n
s�1 exp

 

�

jxX

`=�1

2`(↵s�n)� (B`+1)

!

·
1X

k=0
2k

↵s�n
s�1 exp

 

�
kX

`=1
2`(↵s�n)� (B`+1)

!

.

(6.16)
Now, using the definitions of jx , v and also (6.2), it is immediate that (6.16) is less
than

C v(x)
1X

k=0
2k

↵s�n
s�1 exp

⇣
�AC(� )s�1k

⌘
(6.17)

where C = C(n,↵, s,C(� )) and A = A(n, s,↵). Now, with C(� ) small enough,
this series converges and so v � C I I for a positive constant C > 0 depending on
n, s,↵,C(� ).

It is left to see that infx2Rn v(x) = 0. To this end, first note that we can chose
C(� ) sufficiently small so that:

|x � x0|
↵s�n
s�1 exp

 

�

jxX

`=�1

2`(↵s�n)� (B`+1)

!

· exp

 

�

Z |x�x0|

1

✓
� (B(x, r)
rn�↵s

◆1/(s�1) dr
r

!

! 0, as |x | ! 1.

(6.18)

Indeed, this follows from the argument in (6.17), using the condition (6.2), along
with noting that:

1X

`=�1

2`(↵s�n)� (B`+1)  C
Z 1

0

� (B(x0, r))
rn�↵s

dr
r

< 1.

Let us define a sequence a j by:

a j = inf
x2B(0,2 j )\B(0,2 j�1)

Z 1

0

✓
� (B(x, r))
rn�↵s

◆1/(s�1) dr
r

.

To finish the proof it therefore suffices to show that a j tends to zero as j ! 1.
First suppose s � 2, then consider:

bR =
1
Rn

Z

B(0,R)

Z 1

0

✓
� (B(x, r))
rn�↵s

◆1/(s�1) dr
r
dx .

By Fubini and Hölder’s inequality,

bR  C
Z 1

0

1

r
n�↵s
s�1 +1

✓
1
Rn

Z

B(0,R)
� (B(x, r))dx

◆1/(s�1)
dr. (6.19)
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Then by Fubini once again,
Z

B(0,R)
� (B(x, r))dx Crn� (B(0, 2R))  Crn Rn�p,

where we have used (6.2) in this last line. Plugging this estimate into (6.19) we find
that bR ! 0 as R ! 1. This clearly implies that a j is a null sequence, since
a j  Cb2 j for a positive constant independent of j .

Now let 1 < s < 2 and note that for any integer k:
 Z 2k

0

✓
� (B(x, r))
rn�↵s

◆1/(s�1) dr
r

!s�1
 C

 
kX

j=�1

✓
� (B(x, 2 j ))
2 j (n�↵s)

◆1/(s�1)!s�1

 C
kX

j=�1

� (B(x, 2 j ))
2 j (n�↵s)

 C
Z 2k

0

� (B(x, r))
rn�↵s

dr
r

.

(6.20)

Since the previous argument shows that:

1
Rn

Z

B(0,R)

Z 1

0

� (B(x0, r))
rn�↵s

dr
r
dx ! 0, as R ! 1,

we conclude that a j ! 0 as j ! 1 when 1 < s < 2. Thus infx2Rn v(x) = 0.

7. Proofs of Theorems 2.5 and 2.12

7.1. In this section we will prove Theorems 2.5 and 2.12. We make use of the
construction in Section 6. Combined with a simple iteration scheme based on weak
continuity, which is similar to those in [50,51]. Let us first consider the quasilinear
case.

Proof of Theorem 2.5. Recall that we denote by C(� ) the positive (and by assump-
tion finite) constant:

C(� ) = sup
E

� (E)

cap1,p(E)
,

where the supremum is taken over all compact sets E ⇢ Rn of positive capacity.
Note that by Lemma 3.11;

C(� ) � C sup
E

� (E)

capp(E)

where capp is the p-capacity, and C = C(n, p) > 0. Suppose first that:
Z 1

0

� (B(x0, r))
rn�p

dr
r

= 1. (7.1)
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Then, we see that by Theorem 2.2 any fundamental solution u(x, x0) ⌘ 1, and
there is nothing to prove. Hence we may assume that the integral in (7.1) is finite,
and so we may apply Theorem 6.1. This implies that if C(� ) is sufficiently small,
in terms of n and p, then there is a function v 2 L p�1loc (� ) and a constant C0 > 0,
depending on n and p such that:

v(x) � C0W�
1,p(v

p�1)(x) + K̃ |x � x0|
p�n
p�1 , (7.2)

and infx2Rn v(x) = 0. Here K̃ = p�1
n�p K , with K = K (n, p) > 0 the same constant

that appears in the Wolff potential estimate, Theorem 3.5. Indeed, recalling that jx
is the integer such that 2 jx  |x � x0|  2 jx+1, we can let

v(x) = 2K̃ |x � x0|
p�n
p�1 exp

 

�

jxX

`=�1

2`(p�n)� (B(x0, 2`+1))

!

· exp

 

�

Z |x�x0|

r=0

✓
� (B(x, r))
rn�p

◆1/(p�1) dr
r

!

for a suitable choice of � = �(n, p) > 0. Let u0 = G( ·, x0) where G(x, x0)
is defined in (1.4). Then u0 is p-superharmonic in Rn and �1pu0(x) = �x0 (in
fact u0 is the unique such solution, see, e.g. [28]). By choice of K̃ (assuming
K > 1) we have that u0  v, and hence u0 2 L p�1loc (� ). Let ✏ > 0 be such that
✏K  C0, then we claim that there exists a sequence {um}m�0 of functions which
are p-superharmonic in Rn , um 2 L p�1loc (� ):

�1pum = ✏� (um�1)
p�1 + �x0, and inf

x2Rn
um(x) = 0, (7.3)

and in addition um(x)  v(x). The existence of this sequence can be shown by the
techniques of [51], using the notion of renormalized solutions. However, as we are
dealing exclusively with p-superharmonic functions this detour would be somewhat
artificial and so we prove the claim directly. Indeed, suppose that u1, . . . , um�1
have been constructed. Then, ✏� (um�1)

p�1 + �x0 is a locally finite Borel measure.
For each j 2 N, let u jm be a positive p-superharmonic function such that

�1pu
j
m = ✏� (um�1)

p�1�B(x0,2 j ) + �x0 in Rn.

The existence of such a p-superharmonic function is guaranteed by [29], Theorem
2.10. By subtracting a positive constant, we may assume that infx2Rn u jm = 0.

Now, by the global Wolff potential estimate and since W 1,p ( � x 0) =
p�1
n�p |x � x0|

p�n
p�1 , we find that

u jm(x)  K ✏W�
1,pu

p�1
m�1(x) + K̃ |x � x0|

p�n
p�1 .
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But since um�1  v,

u jm(x)  K ✏W�
1,pv

p�1(x) + K̃ |x � x0|
p�n
p�1 .

By choice of ✏ > 0 so that K ✏  C0, we conclude that u
j
m(x)  v(x).

Appealing now to Theorem 3.3 [32, Theorem 1.17], we find a subsequence u jkm
and an p-superharmonic function um such that u

jk
m (x) ! um(x) for almost every

x 2 Rn . Thus um(x)  v(x) and hence infx2Rn um(x) = 0. The claim is then
completed by appealing to Theorem 3.4 to see that

�1pum = ✏� (um�1)
p�1 + �x0 in Rn.

Now, since um(x)  v(x), for all m, we may again find a subsequence {umk }k and
a positive p-superharmonic function u so that umk (x) ! u(x) almost everywhere.
Since it follows that u(x)  v(x), we have that infx2R u(x) = 0. Finally, by
Theorem 3.4, we may conclude that:

�1pu = ✏�u p�1 + �x0 in Rn.

This completes the proof of Theorem 2.5 with the potential �̃ = ✏� , once we notice
that:

jxX

`=�1

2`(p�n)� (B(x0, 2`+1))  C
Z |x�x0|

0

� (B(x0, r))
rn�p

dr
r

+ C

for a positive constant C depending on n and p.

7.2. For the Hessian existence theorem, we may state the following lemma, con-
tained in [51, Lemma 4.7].
Lemma 7.1 ([51]). Letµ and ⌫ be nonnegative locally finite Borel measures inRn ,
so that µ  ⌫ andW 2k

k+1 ,k+1
⌫ < 1 almost everywhere. Suppose that u � 0 satis-

fies �u 2 8k(Rn), µk[�u] = µ, and u is a pointwise a.e. limit of a subsequence
of the sequence {um}m , with �um 2 8k(B(x0, 2m+1)) and

(
µk[�um] = µ�B(x0,2m) in B(x0, 2m+1)

um = 0 on @B(x0, 2m+1).

Then there is a nonnegative function so that �w 2 8k(Rn), w � u, and

µk[�w] = ⌫ and inf
x2Rn

v(x) = 0.

Moreover, w is a pointwise a.e. limit of a sequence {wm}m , so that

�wm 2 8k(B(x0, 2m+1))

and (
µk[�wm] = ⌫�B(x0,2m) in B(x0, 2m+1)

wm = 0 on @B(x0, 2m+1).
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Proof of Theorem 2.12. This is very similar to the previous proof so we will be
slightly brief to avoid repetition. As in the previous proof, the theorem is only
nontrivial in the case when,

Z 1

0

� (B(x0, r))
rn�2k

dr
r

< 1.

Hence if C(� ) small enough, where now

C(� ) = sup
E compact

� (E)

cap2k/(k+1),k+1(E)
,

then wemay apply Theorem 6.1 to find a positive function v such that infx2Rnv(x)=
0 and

v(x) � C0W�
2k
k+1 ,k+1

(vk)(x) + K̃ |x � x0|2/k�n

with K̃ = k
n�2k K . Here K is a constant appearing in the global Wolff potential

bound Theorem 3.7.
Let ✏ > 0 be such that ✏K  C0. Let u0 = c(n, k) |x � x0|2/k�n , where

c(n, k) = ( k
n�2k ) · (

�n
k
�
!n�1)

�1/k . Then u0 is the (unique) fundamental solution
of the k-Hessian operator in Rn , see [60]. By a repeated application of Lemma
7.1, we find a sequence {um}m of nonnegative functions so that �um 2 8k(Rn),
infx2Rn um(x) = 0, um 2 Lkloc(� ) and

µk[�um] = ✏� (um�1)
p�1 + �x0 .

Furthermore, as in the previous proof, we see that by choice of K̃ that um  v.
Now, appealing to the weak continuity of the k-Hessian operator (Theorem 3.6), we
assert the existence of a nonnegative u such that �u 2 8k(Rn),

µk[�u] = ✏�uk + �x0,

and u  v. Hence infx2Rn u(x) = 0. Thus, noting Lemma 3.12, we see that
Theorem 2.12 is proved with potential �̃ = ✏� , once we make the easy observations
that v is comparable to the right hand side of the bound (2.8).

7.3. Criteria for equivalence of perturbed and unperturbed fundamental so-
lutions. In this short section we conclude the paper with necessary and sufficient
conditions for fundamental solutions of L, defined by (1.1), to be equivalent to
the fundamental solutions of the p-Laplacian. Similar results also holds for the k-
Hessian operator. Recall the fundamental solution of �1p, which we denoted by
G(x, x0) in (1.4), and the Wolff and Riesz potentials from (2.1) and (2.2) respec-
tively.
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Corollary 7.2. Suppose that there is a positive constant c > 0 such that for all x0 2
Rn (1.3) holds whenever u(x, x0) is a fundamental solution of L. Then � (E) 
capp(E) for all compact sets E , and furthermore (1.7) and (1.8) hold.

Conversely, suppose that (1.7) holds if 1 < p  2, or (1.8) holds if p � 2.
Then there exists a positive constant C , depending on n and p, such that if � (E) 
Ccapp(E) for all compact sets E , then for any x0 2 Rn there is a fundamental
solution u(x, x0) of L with pole at x0 satisfying (1.3) for a constant c=c(n, p)>0.

The Corollary is an immediate consequence of Theorems 2.2 and 2.5 once we
notice that if 1 < p < 2 then there is a constant C = C(n, p) > 0 such that:

�
W1,p(� )(x)

�p�1
 CIp(� )(x)

for all x 2 Rn . This inequality has been proved in (6.20). The opposite inequality
holds if p > 2, this is clear from (6.20), as the sequence space imbeddings are
reversed.

8. Regularity away from the pole: the proof of Theorem 2.8

In this section we will turn to considering the regularity of fundamental solutions,
and in particular we will prove Theorem 2.8. Throughout this section we will as-
sume the hypothesis of Theorem 2.5 hold, and that the fundamental solution u con-
structed there is not identically infinite. It therefore follows from Theorem 2.2 that:

Z 1

0

� (B(x0, r))
rn�p

dr
r

= B < 1. (8.1)

By hypothesis, the constant C(� ), defined by:

C(� ) = sup
E compact

� (E)

cap1,p(E)
, (8.2)

is finite, this is nothing more than a restatement of the condition (1.10). Thus we
will assume that C(� ) < C0, for a constant C0 = C0(n, p) > 0. The first step will
be to perform some auxiliary calculations for the function v(x), defined by:

v(x) = B(n, p) |x � x0|
p�n
p�1 exp

⇣
cW|x�x0|

1,p (� )(x) + cI|x�x0|p (� )(x0)
⌘

, (8.3)

for a positive constant B(n, p) > 0 to be chosen later. In particular, we will need to
show that v 2 L ploc(Rn\{x0}). We will see that this is true assuming only that:

� (B(x, r)) . C(� )rn�p for all balls B(x, r) ⇢ Rn, (8.4)

with the implicit constant depending on n and p. Display (8.4) is a special case of
(8.2), using (4.21).



NONLINEAR EQUATIONS WITH NATURAL GROWTH TERMS 133

Lemma 8.1. There exists a constant so that if � (B(x, r))  C1rn�p for all balls
B(x, r) ⇢ Rn . Then for any ball B(x, r) ⇢ Rn , it follows:

Z

B(x,r)
eaW1,p(�B(x,r)d� )dx  C(r, p,C1), (8.5)

for a constant a  A/(C1)1/(p�1) with A > 0 depending on n and p.

There are several ways one can prove this lemma, for instance one can adopt
the proof of Lemma 4.9, leading to Corollary 4.11, which requires some lengthy
estimates of sums of dyadic cubes. We shall avoid this by instead offering a more
elegant proof, employing a regularity result from [45]. The proof of a more general
embedding for nonlinear potentials can be found in [23, Theorem 1.2].

Proof. Fix a ball B(x, r). Then under the present assumption on � , we may apply
[45, Theorem 1.12], to find a p-superharmonic solution w of:

(
�1pu = � in B(x, 10r),
u = 0 on @B(x, 10r).

(8.6)

so that w 2 BMO(B(x, 5r)), and furthermore:

sup
B(z,s)⇢B(x,5r)

�
Z

B(z,s)

�
�
�w(y) � �

Z

B(z,s)
w(y)dy

�
�
�dy . C1/(p�1)1 .

Therefore, by the John Nirenberg lemma, it follows that there exists a constant
c . C�1/(p�1)

1 so that:

�
Z

B(x,r)
ecw(y)dy  exp

✓
c�
Z

B(x,r)
w(y)dy

◆
< 1 (8.7)

Employing the local Wolff potential estimate, [32, Theorem 3.1], it follows, for
y 2 B(x, r) that:

w(y) � C
Z 4r

0

✓
� (B(y, s))
sn�p

◆1/(p�1) ds
s

� CW1,p(�B(x,r)d� )(y).
(8.8)

Substituting (8.8) into (8.7), the lemma follows.

With this lemma proved, we may now prove that v 2 L ploc(Rn)\{x0}.

Lemma 8.2. There exists C0 so that if C(� ) < C0, then:

v 2 L ploc(R
n)\{x0}.
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Proof. Let K ⇢ Rn\{x0} be a compact set, and let B(x j , r j ) be a finite cover of K .
Then, note that by crude estimates:
Z

K
v pdx . d(K , x0)p(n�p)/(p�1) exp

 

cp
Z |x0|+diam(K )

0

� (B(x0, r)
rn�p

dr
r

!

·
X

j

Z

B(x j ,r j )
exp

 

pc
Z x�x0

0

✓
� (B(z, r)\B(x j , 2r j ))

rn�p

◆1/(p�1) dr
r

!

· epcW1,p(�B(x j ,2r j )d� )dx .

(8.9)

Employing the estimate (8.4), and recalling the definition of the constant B from
(8.1), we readily derive:

Z |x0|+diam(K )

0

� (B(x0, r)
rn�p

dr
r

. B + C(� )(log(|x0| + diam(K))),

and using the same estimate on � , we similarly see for all z 2 B(x j , r j ), that:
Z x�x0

0

✓
� (B(z, r)\B(x j , 2r j ))

rn�p

◆1/(p�1) dr
r


Z diam(K )+|x0|

r j

✓
� (B(x j , r))

rn�p

◆1/(p�1) dr
r

. C(� )1/(p�1) log
✓
diam(K ) + |x0|

r j

◆
.

Substituting these two displays into (8.9), it follows:
Z

K
v pdx 

X

j
C(n, p,C(� ), r j , K )

Z

B(x j ,r j )
epcW1,p(�B(x j ,2r j )d� )dx . (8.10)

Note that under the current assumptions, we may choose C1 . C(� ), with C1 as in
Lemma 8.1. This is just a restatement of (8.4). It follows that if C0 is chosen small
enough in terms on n and p, then (8.5) will be valid, and therefore:

Z

B(x j ,2r j )
epcW1,p(�B(x j ,2r j )d� )dx < 1, for each j.

This completes the proof of the lemma.

Note that in a similar way, using Corollary 4.11 instead of Lemma 8.1, we
deduce the following lemma:

Lemma 8.3. There exists C0 so that if C(� ) < C0, then:

v 2 L ploc(R
n\{x0}, d� ).
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We are now in a position to prove Theorem 2.8.

Proof of Theorem 2.8. Let us assume that C0 has been chosen so that Lemmas 8.2
and 8.3 are both valid. To prove the theorem, we will aim to construct the sequence
{um}m as in (7.3) from the proof of Theorem 2.5 with the additional property that
um 2 W 1,p

loc (Rn\{x0}), with constants independent on m. We will do this induc-
tively, as in the proof of Theorem 2.5. Let u0 = G( ·, x0), with G(x, x0) as in (1.4).
Note G(·, x0) 2 C1

loc(Rn\{x0}). Suppose that we have constructed u1, . . . , um�1 so
that:

�1pu j = ✏�u p�1j�1 + �x0,

with u j  v, and u j�1 2 W 1,p
loc (Rn\{x0}). Let K be a compact subset of Rn\{0},

then we claim that u p�1m�1d� 2 W�1,p0
(K ). This will follow from the capacity

strong type inequality. Indeed, since � satisfies (1.10) with constant C(� ) < C0, it
follows [44], that:

Z
|h|pd�  C(� )

✓
p

p � 1

◆p Z
|rh|pdx, for all h 2 C1

0 (Rn),

and this can be extended by continuity to functions h 2 W 1,p
0 (Rn). Now, let h 2

C1
0 (K ), and K 0 be a subset K ⇢⇢ K 0 ⇢⇢ Rn\{x0} along with a function g 2

C1
0 (K 0), g ⌘ 1 on K , g � 0. Then:

Z
hu p�1m�1d� =

Z
hu p�1m�1g

p�1d� 

✓Z
|h|pd�

◆1/p ✓Z
u pm�1g

pd�
◆ p�1

p

. ||rh||p||r(um�1g)||
p�1
p  CK ||rh||p,

and hence u p�1m�1d� 2 W�1,p0
(K ), as claimed. Now let ⌫ j be the measure:

⌫ j =
�B(x0,2� j )

|B(x0, 2� j )|
,

from Poincaré’s inequality it follows that ⌫ j 2 W�1,p0
(B(x0, 2 j )). Note in addition

that ⌫ j ! �x0 weakly as measures. Invoking the theory of monotone operators, see
e.g. [39,58], we assert the existence of a unique solutionw

j
m 2 W 1,p

0 (B(x0, 2 j )) of:
(

�1pw
j
m = ✏�u p�1m�1�B(x0,2 j )\B(x0,2� j ) + ⌫ j in B(x0, 2 j ),

w
j
m 2 W 1,p

0 (B(x0, 2 j )).
(8.11)

Furthermore, by the global potential estimate for renormalized solutions, [50, The-
orem 2.1], it follows:

w
j
m(x)  K ✏W1,p(u

p�1
m�1d� )(x) + KW1,p(⌫k)(x),
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where the constant K > 0 can be assumed to be the same as the constant appearing
in Theorem 3.5. But, for x 62 B(x0, 2 · 2� j ), a simple computation yields:

W1,p(⌫k)(x) 
n � p
p � 1

2
n�p
p�1 |x � x0|

p�n
p�1 . (8.12)

Using the hypothesis um�1  v, it follows for x 2 B(x0, 2 j )\B(x0, 21� j ) that:

w
j
m(x)  K ✏W1,p(v

p�1d� )(x) + K
n � p
p � 1

2
n�p
p�1 |x � x0|

p�n
p�1 .

Let us now choose the constant B(n, p) appearing in (8.3) as B(n, p) = 2K (n �

p)/(p � 1)2
n�p
p�1 . Then, by construction of v, it follows as in the argument around

display (7.2), that we can choose ✏ > 0 and C0 > 0 so that if C(� ) < C0, then:

K ✏W1,p(v
p�1d� )(x) + K

n � p
p � 1

2
n�p
p�1 |x � x0|

p�n
p�1  v(x),

and hence,

w
j
m(x)  v(x), for all x 2 B(x0, 2 j )\B(x0, 2 · 2� j ). (8.13)

We are now in a position to derive the uniform gradient estimate.
Let � 2 C1

0 (B(x0, 2 j )\B(x0, 2 · 2� j ). Then test the weak formulation of w j
m with

the valid test function function � p · w j
m 2 W 1,p

0 (B(x0, 2 j )). It follows:

Z
|rw

j
m |p� pdx = p

Z
|rw

j
m |p�2rw

j
m · r�w

j
m�

p�1 +
Z
� pu jmu

p�1
m�1d�

Using Young’s inequality in the first term, and utilizing the bounds (8.13) and
um�1  v, we find that:

1
p

Z
|rw

j
m |pdx 

Z
v p� pd� +

1
p

Z
v p|r�|pdx=C(n, p,C(� ), supp(�))<1,

where Lemmas 8.2 and 8.3 have been used. Using Theorems 3.3 and 3.4, we let
j ! 1 to find a solution um of (7.3). Furthermore, by weak compactness in
W 1,p, we deduce that um 2 W 1,p

loc (Rn\{x0}) with the local bound on the gradi-
ent independent of m. We now follow the rest of the proof of Theorem 2.5 from
display (7.3), using weak compactness again to deduce a fundamental solution
u 2 W 1,p

loc (Rn\{x0}), so that u  v.
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[29] T. KILPELÄINEN, Singular solutions of p-Laplacian type equations, Ark. Mat. 37 (1999),
275–289.
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