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On fundamental groups related to degeneratable surfaces:

conjectures and examples

MICHAEL FRIEDMAN AND MINA TEICHER

Abstract. We argue that for a smooth surface S, considered as a ramified

cover over CP2, branched over a nodal-cuspidal curve B ⊂ CP2, one could
use the structure of the fundamental group of the complement of the branch curve

π1(CP2 − B) to understand other properties of the surface and its degeneration
and vice-versa. In this paper, we look at embedded-degeneratable surfaces — a
class of surfaces admitting a planar degeneration with a few combinatorial condi-
tions imposed on its degeneration. We close a conjecture of Teicher on the virtual

solvability of π1(CP2 − B) for these surfaces and present two new conjectures
on the structure of this group, regarding non-embedded-degeneratable surfaces.

We prove two theorems supporting our conjectures, and show that for CP1×Cg ,

where Cg is a curve of genus g, π1(CP2 − B) is a quotient of an Artin group
associated to the degeneration.

Mathematics Subject Classification (2010): 14D06 (primary); 14Q10, 14H20,
14H30, 20F36 (secondary).

1. Introduction

Given a smooth algebraic projective variety X , one of the main techniques used

to obtain information on X is to degenerate it to a union of “simpler” varieties.

The “simplest” degeneration can be thought as the degeneration of X to a union of

dim X-planes, and one would like to use the combinatorial data induced from this

arrangement of planes in order to find (or bound) certain invariants of X .

When dim(X) = 1, one would like to degenerate the curve into a line arrange-

ment with only nodes as singularities. This has been thoroughly investigated. For

example, it is known that any smooth plane curve can be degenerated into a union

of lines. However, the situation for a curve in CPn, n > 2 is completely different

as there are, for example, smooth curves in CP3 which cannot be degenerated into
a line arrangement with only double points (see [15]).
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When dim X = 2, the problem of investigating projective surfaces in terms

of their degeneration to a union of planes has only been investigated partially (see,

for example, Zappa’s papers from the 1940’s [36] and [11] for a survey on this

topic; see also [19] for degeneration of surfaces in CP3). Also, one should al-
low the existence of more complicated singularities in order to obtain degenera-

tions. But there is another method to extract information on the surface, which is

to consider it as a branched cover of the projective plane CP2 with respect to a
generic projection. The motivation for this point of view is Chisini’s conjecture

(recently proved by Kulikov [17, 18]): Let B be the branch curve of generic pro-

jection π : S → CP2 of degree at least 5. Then (S,π) is uniquely determined by

the pair (CP2, B). Moreover, if two surfaces S1 and S2 are deformation equivalent,
then their branch curves B1 and B2 are isotopic. Thus, if the fundamental group

π1(C2−B1) is not isomorphic to π1(C2−B2) then the surfaces are not deformation
equivalent. This gives another motivation for considering S in terms of its branch

curve.

Therefore, it is reasonable to combine the two methods outlined above, i.e., in-

vestigating a projective surface S and its degeneration S0 by looking at their branch

curves B and B0. Explicitly, we want to find the relations between the combina-

torics of the planar degeneration and the fundamental group π1(C2 − B).

Several works were done in this direction: for different embeddings of CP1 ×
CP1, for the Veronese surface Vn ( [29, 30] for Vn, n ≥ 3 and [37] for V2), for

the Hirzebruch surfaces F1,(a,b) and F2,(2,2) ( [6, 14]), for K3 surfaces ( [13]), for

a few toric surfaces and for CP1 × T (where T is a complex torus, see [7]). For

each surface in this list one can associate a graph T to the degenerated surface. In

all of the examples mentioned above the fundamental group π1(C2 − B) is either a

quotient of an associated Artin group A(T ) (except the Veronese surface V2 ⊂ CP5)
or a quotient of a subgroup of Ã(T )× Ã(T ) (where Ã(T ) is a quotient of A(T ) by a
single relation. For example, when T is a tree with maximum valence 3, then A(T )
is isomorphic to the braid group Bn , where n = degree of the surface). In particular,

once the embedding of the surface in a projective space is “ample enough”, the

structure of π1(C2 − B) is of the mentioned second type. Thus, a natural question
rises: what are the sufficient conditions on the degeneration such that π1(C2 −
B) will be isomorphic to a quotient of a subgroup of Ã(T ) × Ã(T )? One of the
goals of this paper is to give the conditions under which the fundamental group has

this desired structure. These conditions are in a form of a local–global condition:

if there are enough singular points in the degenerated surface satisfying a certain

local condition, then the fundamental group is isomorphic to the quotient. Under

these conditions, the conjecture posed in [34] regarding the virtual-solvability of

the above fundamental group is proven.

Another main result deals with a new set of examples, not satisfying these

conditions. The surfaces CP1 × Cg, where Cg is a curve of genus g ≥ 1, are

studied, and for g ≥ 1 the above fundamental group is computed. These new

examples are essential for the second goal of this paper: to understand better these

groups for non-simply connected surfaces.
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The structure of the paper is as follows. Section 2 examines the structure of

the fundamental group. Subsections 2.1 and 2.2 introduce the main definitions and

restrictions on the degeneration. We then state one of the main theorems in Sub-

section 2.3: that under a certain condition, there is an epimorphism from B̃
(2)
n to

π1(C2− B). We also present two conjectures on the structure of π1(C2− B) when
the condition does not hold (see Conjectures 2.25 and 2.26). In Subsection 2.4

we prove the main theorem from Subsection 2.3. In Section 3 we prove another

main theorem, where we compute the group Gg = π1(C2 − Bg), where Bg is the

branch curve of CP1 × Cg. We show that Gg is (again) a quotient of A(T ), and

also compute π1((CP1 × Cg)Gal) – the fundamental group of the Galois cover of

CP1 × Cg.

ACKNOWLEDGEMENTS. We thank Alberto Calabri and Ciro Ciliberto for refer-

ring the first author to their paper [9] and for fruitful discussions during the “School

(and Workshop) on the Geometry of Special Varieties” which was held in 2007

at the IRST, Fondazione Bruno Kessler in Povo (Trento). We also would like to

thank Christian Liedtke and Robert Schwartz for stimulating talks and important

discussions.

2. Degenerations and fundamental groups

In this section we examine the structure of the fundamental group of the comple-

ment of the branch curve, under some assumptions. Subsection 2.1 introduces the

main definitions and notation. We state the main theorem on the structure of the

fundamental group of the complement of the branch curve in C2, under certain
conditions, in Subsection 2.3 and also present two conjectures on the structure of

the fundamental group regarding surfaces which do not satisfy the desired condi-

tions. The virtual–solvability of this fundamental group is discussed in Subsection

2.3.1, together with the class of surfaces satisfying the desired conditions. In Sub-

section 2.4 we prove the main theorem.

2.1. Notation for planar degeneration

We begin with a few definitions.

Definition 2.1.

(i) Degeneration: Let " be the complex unit disc. A degeneration of surfaces,

parametrized by " is a proper and flat morphism ρ : S → " (where S is a

3-dim variety) such that each fibre St = ρ−1(t), t &= 0 (where 0 is the closed

point of "), is a smooth, irreducible, projective surface. The fiber S0 is called
the central fiber. A degeneration ρ : S → " is said to be embedded in CPr
if there is an inclusion i : S ↪→ " × CPr and, when denoting the projection
p1 : " × CPr → ", then p1i = ρ.
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(ii) Planar degeneration: When the central fiber S0 in the above embedded degen-

eration is a union of planes, then we call the degeneration a planar degener-

ation. A survey on degeneratable surfaces can be found in [11]. Examples

of planar degenerations can be found in [9] (for scrolls), [23] (for Hirzebruch

surfaces), [28] (for veronese surfaces), [21] (for CP1 × CP1).
(iii) Regeneration: The regeneration methods are actually, locally, the reverse pro-

cess of the degeneration method. In this article it is used as a generic name

for finding a degeneration ρ : S → " when the central fiber S0 is given. In

fact, one can deduce what is the effect of a regeneration on the corresponding

branch curves. The regeneration rules (see Subsection 3.1.2) explain the effect

of the regeneration on the braid monodromy factorization (see Subsection 3.1)

of the branch curves of the fibers.

(iv) Local fundamental group: Given a planar degeneration ρ : S → ", denote by

Bt the branch curve of a generic projection of St to CP2 (such that the center
of projection is the same for every t). Given a singular point p ∈ B0 choose

a small neighborhood U of p such that U ∩ Sing(B0) = {p}. Since S0 is a
planar degeneration, there are lines %i such thatU ∩ B0 = ∪(U ∩%i ), such that
∩%i = {p}. Assume that for the branch curve Bt of general fiber St ,t &= 0, we

have that limt→0(U ∩ Sing(Bt )) = {p}. The local fundamental group of p is
defined as π1(U − Bt ) and we denote it by Gp.

Let S1 ⊂ CPN be a smooth surface of degree n which admits a planar degeneration

ρ : S → ", and let f : CPN → CP2 be the generic projection with respect to
St , for every t . We denote by R the ramification curve of S1 and by B ⊂ CP2 its
branch curve with respect to a generic projection π

.= f |S1 : S1 → CP2. Also, let
G

.= π1(CP2 − B).
We denote by S0 the planar degeneration of S1 (the central fiber of ρ), i.e. S0

is a union of planes. Let

S0 =
n⋃

i=1
&i

such that each&i is a plane.

Notation 2.2. n = deg S0 = deg S1.

Let π0
.= f |S0 : S0 → CP2 be the generic projection of S0 to CP2. In this

case, the ramification curve also degenerates into a union of % lines

R0 =
%⋃

i=1
Li ,

and thus the degenerated branch curve is of the form

π0(R0) = B0 =
%⋃

i=1
li ,

where li = π0(Li ).
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Notation 2.3. % = deg R0 = deg B0.

Since R0 is an arrangement of lines in CPN , these lines can intersect each

other.

Notation 2.4. m′ =the number of points {Pi }m
′

i=1which lie on more than one line L j .

For a point x ∈ Li (or x ∈ li ) let v(x) be the number of distinct lines in R0 (or

B0) on which x lies. For example, if x ∈ {Pi }m
′

i=1, then v(x) > 1.

Notation 2.5. Denote by P = {x ∈ B0 : v(x) > 1}, and let pi = π0(Pi ) ∈ B0

(note that v(pi ) = v(Pi )). Denote P
′ .= {pi }m

′
i=1.

Remark 2.6. Note also that P ′ = {pi }m
′

i=1 ! P , since there are points (called

parasitic intersection points; see the explanation in Subsection 2.4.1) which are in

P but not in {pi }m
′

i=1.

Notation 2.7. Recall that R0 = ∪Li . Define the set of lines

M
.= {Li ∈ R0 : there is only one point x ∈ Li such that v(x) > 1}.

For each l ∈ M , choose a point yl ∈ l s.t. v(yl) = 1. Denote

Y
.= {yl}l∈M ;

the set of points is called the set of 2–point.

We recall the definition of B̃n , since the local fundamental group of many of

the singular points of B0 is strongly related to this group.

Definition 2.8.

(1) Let X,Y be two half-twists in the braid group Bn = Bn(D, K ) (see Subsection
3.1 for the notation D, K ). We say that X,Y are transversal if they are defined
by two simple paths ξ, η which intersect transversally in one point different
from their ends.

(2) Let N be the normal subgroup of Bn generated by conjugates of [X,Y ], where
X,Y is a transversal pair of half-twists. Define

B̃n = Bn/N .

Let x1, . . . , xn−1 be the standard generators of Bn . Equivalently, we can define

B̃n = Bn/〈[x2, x−1
3 x−1

1 x2x1x3]〉

for n > 3. Recall that we can define on Bn two natural homomorphism:

(i) deg : Bn → Z s.t. deg(
∏
x
ni
i ) = ∑

ni .
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(ii) σ : Bn → Sn s.t. σ (xi ) = (i i + 1). For properties of B̃n see, for
example, [22, 31, 35].

(3) The following group plays an important role in finding a presentation of a

fundamental group of the complement of the branch curve. Define, as in [8],

the group

B̃(2)
n

.= {(x, y) ∈ B̃n × B̃n, deg(x) = deg(y), σ (x) = σ (y)}.

Definition 2.9. Recall that for p ∈ P ′ = {pi }m
′

i=1, we denote by Gp the local

fundamental group (see Definition 2.1(iv)). Define the following set:

Q
.= {p ∈ {pi }m

′
i=1 : there exists an epimorphism of B̃(2)

v(p) ! Gp, and v(p) > 3}
and denote

|Q| = m.

Thus, we have the following relations between the sets of points:

Q
.= {x j }mj=1 ⊂ P ′ .= {pi }m

′
i=1 ⊂ P.

Remark 2.10. The definition of Q is not meaningless: there are singular points p ∈
{pi }m

′
i=1, v(p) > 3 which occur during the (described above) degeneration process

and have an epimorphism B̃
(2)
v(p) ! Gp, where Gp is the local fundamental group

associated to p. For example, let p6 (respectively p5) a singular point of S0 called

a 6-point (respectively 5-point) which is locally an intersection of 6 (respectively

5) planes at a point, whose regeneration is described at [22] [23, Definition 4.3.3]

(respectively [12]). Then Gpi is isomorphic to a quotient of B̃
(2)
i for i = 6, 5. For

the 4-point p4 (s.t. its regeneration is described at [22, 31]), we get that Gp4 - B̃4,

which is also a quotient of B̃
(2)
4 .

Definition 2.11 (GraphS0). We define the graph GraphS0 . The vertices are the m
′

points {Pi }m
′

i=1 and the set Y of 2-points. Two vertices in GraphS0 are connected by
an edge if both of the corresponding points on R0 lie on a unique line Li ⊂ R0.

We want to defined boundary and interior (non-boundary) vertices of Verti-

ces(GraphS0).

Definition 2.12. There are triples of edges ei , e j , ek ∈ Edges(GraphS0) such that
their union is a triangle Ti jk . We define the following subset of the vertices of

GraphS0 , called the boundary vertices.

VB = {p ∈ Vertices(GraphS0) : p is not a vertex
of two (or more) different triangles Ti jk}.

Note that Y ⊂ VB . Also, denote

V c
B = Vertices(GraphS0) \ VB .

The subset V c
B is called the interior vertices.
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Example 2.13. The interior and boundary points, for the degeneration of the Hirze-

bruch surface F1,(2,2):

Figure 2.1. The white vertices are the boundary vertices VB and the black vertices are
interior vertices V c

B .

Remark 2.14. We have two inequalities which relate the above constants.

(1) Assume that the degree of the ramification curve of S is 2% (which will be one
of the conditions imposed on S. see condition (3) in Definition 2.15). we have that

2% ≥ 2n − 2 (which follows from the fact that S is a ramified cover of CP2) or

n ≤ % + 1.

(2) Denote by m the number of vertices in GraphS0 (see Definition 2.11), by % the
number of edges in GraphS0 and n the number of triangles in GraphS0 . Note that

n > n, m > m and % = %. By the Euler characteristic for planar graphs we get
m − % + n = 1 or

n − 1 < % − m.

2.2. Conditions on the planar degeneration

In this subsection, we introduce the following conditions that our projective surface

S has to satisfy.

Definition 2.15. A surface S = S1 is called simply–degeneratable surface if it

satisfies the following three conditions:

Condition (1) S admits a planar degeneration, i.e., ∃ρ : S̃ → " s.t. ρ−1(1) =
S1 = S , ρ−1(0) = S0 and S0 is a union of planes.

Condition (2) The degeneration of S to S0 induces a degeneration of the branch

curve B to B0 that satisfies the following condition: For a plane curve C ⊂ CP2,
let Sing(C) be the singularities of C with respect to a fixed generic projection C →
CP1. Denote Sing0

.= Sing(B0), Singt = Sing(Bt ), t &= 0. For each p ∈ Sing0
consider a small enough neighborhood Up of p as in Definition 2.1(iv). We require

that the set Sing(B) \ ⋃
p∈Sing0

(Up ∩ Sing(B)) contains only simple branch points.

Condition (3) The degeneration of the branch curves B → B0 is two-to-one (see

[29, 31] for further details on two-to-one degenerations of branch curve), that is

degB = 2 degB0.
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Remark 2.16. We show that the three conditions above are independent. As we

are interested in planar degenerations, we look at the following examples when the

degeneration already satisfies Condition (1).

(1) A degeneration of a smooth cubic surface in CP3 (whose branch curve is a sex-
tic with six cusps) into a union of three planes, all of them intersecting in a line, is

an example of a surface which does not satisfy Conditions (2), (3).

(2) A degeneration of a union of three generic hyperplanes in CP3 (whose branch
curve is a union of three lines, intersecting at three different points) into a union of

three hyperplanes meeting at a single point, is an example of a degeneration that

satisfies Condition (2) but not (3).

(3) A degeneration of a cone over a smooth conic in CP2 into a union of two hy-
perplanes is an example of a degeneration that satisfies Condition (3) but not (2).

(4) An example of planar degeneration that satisfies Conditions (2), (3) is a degen-

eration of a smooth quadric in CP3 into a union of two hyperplanes.

We now define a fourth condition imposed on the degeneration: that every

boundary vertex has at least one interior vertex as a “neighbor” (see Definition

2.12).

Definition 2.17. A surface S is called embedded–degeneratable surface if it is a

simply–degeneratable surface and it satisfies the following fourth condition:

Condition (4) We require that for each boundary vertex p ∈ VB there exist an

interior vertex pc ∈ V c
B and an edge ep ∈ Edges(GraphS0) s.t. ep connects p

and pc.

Example 2.18. The fourth condition is imposed in order to avoid degenerations as

depicted in the following picture. Figure 2.2[1] presents a degeneration with no

interior points (V c
B = ∅). Figure 2.2[2] presents a degeneration with not enough

neighboring interior vertices (though V c
B &= ∅). By definition, the dashed border

lines are not a part of Edges(GraphS0).

[1]  [2]  

Figure 2.2. Degenerations which do no satisfy Condition (4).The white vertices are the
boundary vertices VB and the black vertices are interior vertices V

c
B .

The following degeneration is a degeneration that satisfies all the four conditions.



ON FUNDAMENTAL GROUPS RELATED TO DEGENERATABLE SURFACES 573

Figure 2.3. Allowable degeneration ofCP1×CP1. The white vertices are the boundary
vertices VB and the black vertices are interior vertices V

c
B .

Remark 2.19. Assume that there are interior vetrices in a given degeneration

(V c
B &= ∅). Then in the case of a toric degeneration any degeneration always satisfies

Condition (4). However, this is not known for general degenerations.

2.3. Necessary condition on π1(C2 − B)

We present here the main result for this section – under which conditions is π1(C2−
B) a quotient of B̃

(2)
n . We begin with two examples:

Example 2.20. For the degeneration of the Hirzebruch surface F1,(2,2):

x 1  2x

Figure 2.4. The degeneration of F1,(2,2). Note that the dashed border lines are not a
part of the ramification curve

we have Q = {x1, x2} (see [14] for the calculation of the local fundamental groups)
andm = 2, % = 13, n = 12, as depicted above. Note that in this case %−m ≤ n−1.
Example 2.21. For the degeneration of the surface CP1 × T (where T is a torus),
embedded with respect to the linear system (2, 3)

x 1 x 3 2x

Figure 2.5. The degeneration of (CP1×T)(2,3). Note that the dashed horizontal border
lines are not a part of the ramification curve and the vertical are. The vertical border
lines are identified.

We have m = 3, % = 15, n = 12 (as Q = {x1, x2, x3}), and the inequality % − m ≤
n − 1 is not satisfied.
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These observations lead us to state the following theorem.

Theorem 2.22. Let S be a smooth embedded–degeneratable projective surface. Let

B ⊂ C2 its branch curve with respect to a generic projection, B0 its degeneration.
Denote % = 1

2
deg B, n = deg S,m = number of singular points p of B0 whose

local fundamental group is a quotient of B̃
(2)
v(p) (see Definitions 2.1, 2.9).

If % − m ≤ n − 1 then there exist an epimorphism B̃
(2)
n → G = π1(C2 − B).

The proof of this theorem will be given in Subsection 2.4.

Example 2.23. We give here a list of known surfaces, satisfying Theorem 2.22:

CP1 × CP1 embedded with respect to the linear system al1 + bl2, where a, b > 1

(see [22]), the Veronese surface Vn, n ≥ 3 (see [29, 30]), the Hirzebruch surfaces

F1 (embedded with respect to the linear system aC + bE0, where a, b > 1, C, E0
generate the Picard group of F1, see [14]) and F2 (embedded with respect to the

linear system 2C + 2E0 (see [6]), and a few families of K3 surfaces (see [13]).

Before proving the theorem, we want to review a few surfaces for which the

condition in Theorem 2.22 does not hold, presenting two conjectures.

For the first conjecture we need the following definition.

Definition 2.24. (1) Given an Artin group A, generated by {xi }ri=1, r > 2, we

define the following quotient:

Ã = A/〈[x2, x−1
3 x−1

1 x2x1x3]〉.

(2) Let deg be the following epimorphism: deg : A → Z s.t. deg(
∏
x
ni
i ) = ∑

ni .

Assume there exists an epimorphism from A to the symmetric group σ : A → Sn .

In this case, define

Ã(2) .= {(x, y) ∈ Ã × Ã, deg(x) = deg(y), σ (x) = σ (y)}.

The first conjecture on the structure of G = π1(C2−B) is similar to Theorem 2.22,
when Q &= ∅ but does not contain enough points.
Conjecture 2.25. For a smooth embedded-degeneratable surface S s.t. |Q| = m ≥
1 and % − m > n − 1 (i.e. does not satisfy the condition in Theorem 2.22) one can

associate a graph T and an Artin group A(T ) such that G is a quotient of Ã(T )
(2)
.

The condition above means that S has a planar degeneration with 2:1 degener-

ation of the branch curve, whose degeneration has singular points in the set Q, but

not enough. For example, See [7, Conjecture 3.7] (on the embedding of CP1 × T
with respect to the linear system (m, n),m, n > 1) and [3] (for the degeneration of

T × T).
We now review a few surfaces for which the set Q is empty.
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Conjecture 2.26. For a simply–degeneratable surface S such that the set Q = ∅
(i.e. the degeneration has only boundary points (see Definition 2.12)) and such

that G = π1(C2 − B) has “enough” commutation relations (see Remark 2.27), we
conjecture that one can associate a graph T and an Artin group A(T ) such that G is
a quotient of A(T ).

Remark 2.27. Recall that G has the natural monodromy epimorphism ϕ : G → Sn
(n = deg(S)), defined by sending each generator to a transposition, describing the
sheets which are exchanged. By “enough” commutation relations we mean that for

a, b ∈ G such that ϕ(a),ϕ(b) are disjoint transpositions, then a, b commute.

Example 2.28. (1) The surface CP1 × CP1 (embedded with respect to the linear
system l1 + bl2, b ≥ 1 and denoted as (CP1 × CP1)(1,b)) and the Hirzebruch sur-
face F1 (embedded with respect to the linear system aC+E0, a ≥ 1 and denoted as

F1,(1,a)) were investigated in [5]. They do not satisfy condition (4) (see Definition

2.17) and also the main condition in Theorem 2.22. In both of these cases, however,

the fundamental group π1(C2 − B) is a quotient of the braid group Bn , or equiv-
alently a quotient of the Artin group A(T ), where T is depicted in the following
figure.

 [1]    [2]

Figure 2.6. The degeneration of (CP1 × CP1)(1,3) (Figure [1]) and F1,(1,3) (Figure [2])
and their associated graphs T .

(2) The Veronese surface S = V2 ⊂ CP5 and its associated fundamental group
π1(C2 − BS) were investigated in [24, 37]. Also in this example V2 and its degen-
eration do not satisfy the necessary conditions. Note that this is an exceptional case

to the previous example, as π1(C2 − BS) is not isomorphic to a quotient of A(T ),
where T is depicted in the following figure.

Figure 2.7. The degeneration of V2 and its associated graph T .

This can be seen from [37], as π1(CP2 − BS) is generated by four generators. The
fact that G = π1(C2 − BS) does not have commutation relations is the reason we



576 MICHAEL FRIEDMAN AND MINA TEICHER

require that “enough” commutation relations in Conjecture 2.26 will hold (indeed,

the condition in Remark 2.27 is not satisfied with respect to the map G → S4).

Note that the Veronese surface V2 is exceptional also for other statements in

classical algebraic geometry – it is, for example, the only counter example to the

Chisini’s conjecture [18].

2.3.1. Virtual solvability of G

For surfaces whose planar degeneration satisfy the condition introduced in Theo-

rem 2.22, the conjecture on the structure (and the virtual solvability) of G proposed

in [34] is correct. This is due to the fact that by [8, Remarks 3.7, 3.8], if there is

an epimorphism B̃
(2)
n ! G, then G is virtually solvable. However, these condi-

tions imply that the class of embedded–degeneratable surfaces is rather small; for

example, if π1(S) contains a free group of rank 2, then G is not virtually solvable

(see [20]). These type of surfaces is the main topic of Section 3.

Also, by [20, Corollary 4.9, Proposition 4.11] one can compute explicitly

rank(H1(XGal, Z)) (where XGal is the Galois cover of X. see subsection 3.4), and if
X is simply connected, one can also find π1(XGal).

2.4. Proof of the main theorem

We first cite the theorem we want to prove (Theorem 2.22):

Let S be a smooth embedded–degeneratable projective surface. Let B ⊂ C2 its
branch curve with respect to a generic projection, B0 its degeneration. Denote

% = 1
2
deg B, n = deg S,m = number of singular points p of B0 whose local

fundamental group is a quotient of B̃
(2)
v(p) (see Definitions 2.1, 2.9).

If % − m ≤ n − 1 then there exist an epimorphism B̃
(2)
n → G = π1(C2 − B).

Proof. We introduce the following notation.

Notation 2.29. Let S0 = ∪n&i be the degeneration of S as above, R0 the degener-

ated ramification curve. We build the graph S∗
0 = (E, V ) called the dual graph to

S0 by the following procedure (see also [23, page 532]). each plane&i corresponds

to a vertex vi ∈ V, 1 ≤ i ≤ n, and each line &k ∩ & j = Li ∈ R0 corresponds to

an edge ei ∈ E, 1 ≤ i ≤ %, connecting the vertices vk and v j . For example

Figure 2.8. The dual graph S∗
0 of the degeneration of F1,(2,2).

We first prove the following lemma:
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Lemma 2.30. There exists a spanning subtree of S∗
0 with % − m edges if and only

if % − m ≤ n − 1.

Proof. If n is the number of vertices in a connected graph, then if the number of

edges is greater than n − 1, then there are cycles in the graph. Therefore, if there is

a spanning connected subtree of S∗
0 with % − m edges, then % − m ≤ n − 1.

For the other direction, assume first that % − m = n − 1. For x ∈ {pi }m
′

i=1 we
denote by Lx the set of lines such that x lies on them, and let L

∗
x be the set of edges

in S∗
0 corresponding to Lx . We create a new graph T

∗
0 = (ET , VT ) from S∗

0 . The

vertices of T ∗
0 will be the same as S

∗
0 , but for each x ∈ Q we erase one edge ex

from S∗
0 , such that ex ∈ L∗

x . Since for each x ∈ Q, v(x) > 3, we demand that if

there exist x, y ∈ Q such that x and y are neighbors (i.e. there exist a line L s.t.

x, y ∈ L), then ex ∩ey = ∅. We choose the ex ’s satisfying the above requirements.
Let us note that m can be equal to 1, so the choice of y above is irrelavant. We now

show that the resulting graph T ∗
0 is connected.

Note that if x, y are neighbors, then locally the graphs S0 and S
∗
0 would look

as in the following figure:

S0

xy

S0
*

e x

e y

Figure 2.9. Local neighborhood of two vertices.

since the degeneration is planar. Thus we can choose ex and ey as depicted in Figure

2.7 and the resulting graph will be connected. Now one can proceed by induction

to prove connectedness. Note that the number of edges in T ∗
0 is % − m. Since

% − m = n − 1, T ∗
0 is a spanning subtree of S

∗
0 , by definition.

If % − m < n − 1 there exist k ∈ N, k < m such that % − k = n − 1. We now

choose k points from Q, and proceed as before to construct T ∗
0 .

For example, the following figure presents a possible spanning subtree T ∗
0 for

the degeneration of F1,(2,2):

Figure 2.10.
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By Lemma 2.30, there exists a spanning subtree T ∗
0 . We refine the construction

of T ∗
0 in the following way. By our assumptions, for each x ∈ Q, there exists an

epimorphism B̃
(2)
v(x) → Gx , where Gx is the local fundamental group of x . As can

be seen from Definition 2.8, B̃
(2)
v(x) is generated by pairs {+i ,+′

i }
v(x)−1
i=1 , when the

+i ’s are the standard generators of B̃v(x). However, by the Van Kampen Theorem

(see Theorem 3.6), using the fact that the degeneration reduces the degree of the

branch curve by half (by Condition (3) on S. See Definition 2.15), we see that Gx

is generated by pairs of (topological) generators {γi , γi ′}v(x)
i=1 . Thus, we can choose

to express two generators γ , γ ′ ∈ {γi , γi ′}v(x)
i=1 by the other generators s.t. the pair

γ , γ ′ corresponds to a degenerated line L ∈ Lx and its corresponding edge ex ∈ L∗
x

will be the edge which we erase (possibly after renumeration of the generators of

B̃
(2)
v(x) such that the erased edge will satisfy the demands imposed on it as in Lemma

2.30) in order to get T ∗
0 .

Remark 2.31. Note that for all x ∈ {pi }m
′

i=1 we erase at most one edge from L∗
x .

It is clear that for each x ∈ Q there exists an embedding B̃
(2)
v(x) ↪→ G. There-

fore Gx - B̃
(2)
v(x)/Rv(x) ↪→ G where Rv(x) = ker(B̃

(2)
v(x) → Gx ).

Remark 2.32. The embedding B̃
(2)
v(x) ↪→ G might be possible only after a conjuga-

tion of the generators +i ,+i ′ by a certain power of σi (which is a generator of the
braid group). See, for example, [8, Subsection 6.1.2].

Let us now look at the points x ∈ P ∪ Y, x &∈ Q: these are the points whose

corresponding local fundamental group is not B̃
(2)
v(x). We start, in the following

subsection, with the most important case, and later we remark on two more cases.

2.4.1. Parasitic intersection points

Each point x ∈ B0 such that v(x) = 2 is an intersection of two lines li , l j . This

kind of point, when x ∈ P, x &∈ {pi }m
′

i=1 is called a parasitic intersection point.
These points are not a projection of singular points of R0, hence we get them as

a result of the projection to CP2. During the regeneration process (see Subsection
3.1.2), each line is doubled, so eventually we get 4 nodes in R, and thus the local

fundamental group is {+i ,+i ′,+ j ,+ j ′ : [+i , (+ j )α] = 1}, where +i = +i or +i ′

and α ∈ Bn . Examining these relations together, it can be seen easily that α can
be written as a product of generators which commute with +i (see [26, Theorem
IX.2.2], since this arrangement of lines is a partial arrangement to what is called

in [26, section IX, §1] dual to generic). Therefore, from the parasitic intersection

points we induce the commutator relations between different generators +i ,+ j such

that the corresponding lines Li , L j do not have a vertex in common.

Notation 2.33. Denote the set of all relations induced from the parasitic intersec-

tion points as RPar.
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Remark 2.34. Let us consider two more types of points which can appear during

the regeneration process:

(I) First, recall that each y ∈ Y is a 2-point: it is on a line, which is the intersection

of two planes. During the regeneration process, this line is regenerated into a

conic. If y is on the line Li , whose corresponding edge in T
∗
0 is ei , then

we induce the relation +i = +i ′ in G, where {+i ,+i ′} is the corresponding
generators of ei . Explicitly, the local fundamental group is {+i ,+i ′ : +i =
+i ′} - Z. This is due to the fact that the line Li is regenerated to a conic such
that the branch point of the conic (which corresponds to y) induces the relation

+i = +i ′ .

(II) The second case is that x ∈ {pi }m
′

i=1, x &∈ Q and thus x is a projection of a

singular point of R0 (if x were not a projection of a singular point of R0, then

the projection would not be a generic one). Note that v(x) > 2. Let us assume

that the local configuration of lines exiting from x is as in the following figure,

when the lines are numerated by their order of appearance in the degeneration

process:

1k−2k−1k

Figure 2.11. Local neighborhood of a k-point.

In this case, the local braid monodromy factorization was calculated in [12]

and one can induce easily the local fundamental group associated for this

point(see e.g. [23, Subsection 4.5]). Note that other numerations can appear

also in non-planar degenerations, such as in the degeneration of CP1 × Cg
(g ≥ 1. See Subsection 3.2 and Remark 3.10).

Remark 2.35. Recall that some of the singular points of a generic projection B →
CP1 do not regenerate from B0. By Condition (2) on S (see Definition 2.15), these

singular points would be branch points. These branch points only induce relations

of the form {+ j = + j ′} when + j ,+ j ′ correspond to the same line l j in the degener-
ated branch curve B0 (see [31] for further explanations).

We now examine what is the relation between the local fundamental groups

Gx and the group G. It is clear that for each x , Gx ↪→ G, and in fact G -
( ∗
x∈P∪Y

Gx )/〈RI 〉 where RI is the identification of the same generators in G be-

longing to different Gx ’s. Since we find a presentation of G (and respectively of

the groups Gx ) by means of the Van-Kampen theorem, we can say that G is gener-

ated by 2l (respectively 2v(x)) generators. However, by the definition of Q and T ∗
0

the number of generators for G can be reduced to 2(l − m).
Let us examine two cases:

(i) Assume that % − m = n − 1. By definition, for each x ∈ Q, Gx is isomorphic

to a quotient of B̃
(2)
v(x) (where this Gx is generated by 2(v(x) − 1) generators

{γx,i , γx,i ′}v(x)−1
i=1 ).
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Lemma 2.36. Let + ∈ G be a generator. So there exists x ∈ Q s.t. + is a

generator of Gx .

Proof. Assume that there is a generator +0 of G such that it is not a generator

of Gx for every x ∈ Q. This generator corresponds to a line l0 in B0. By our

construction, there are two points p1, p2 on l0 that belong to the set P
′ ∪ Y ,

and by assumption, both of them do not belong to Q (recall that P ′ is the set of
singular points of B0 which are images of singular points of R0 and that Y is the

set of 2-points). We now look at two cases:

(I) One of the points belongs to Y .

Let p1 ∈ Y, p2 ∈ P ′. The point p2 is an “inner” point (see Condition (4) in
Definition 2.17), i.e., it does not lie on the border of the degenerated surface S0,

as in this case l0 would not induce a generator (recall that we do not consider the

border lines as part of B0). Thus, the local neighborhood of p1, p2 in S
∗
0 looks

as in the following figure:

p1

p2

l0

S0
*

Figure 2.12. Local neighborhood of p1, p2.

Since there is a spanning subtree T ∗
0 (by Lemma 2.30), one of the neighboring

vertices to p2 has to be in Q, as otherwise, in the process of the construction of

T ∗
0 , we could not “terminate” the circle C whose center is the point p2. Denote

this vertex by p12 and delete an edge from the circle C (see the figure below).

p1

1
p2

p2

l0

S0
*

Figure 2.13. Local neighborhood of p1, p2, p
1
2. The dashed edge is the erased edge

when trying to eliminate the circle containing p2.
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However, now we have a new circle C1 containing the points p2, p
1
2. Thus there

is another point p22 in Q, neighbor to p2 or to p
1
2, as we have to terminate the

circle C1, and we continue as above. But since this process is finite (there are

finite number of points in Q), eventually we couldn’t erase one of the edges

from the circle C j (containing the points p2, p
1
2, . . . , p

j

2). This is due to the fact

that we would not find “new” points in Q s.t. one of the corresponding edges to

them can be erased. Thus we get a contradiction.

(II) Two of the points belong to P ′. We get a contradiction as in the first case,
since now we have two circles C and C ′, each around every point, which even-
tually could not be resolved.

Thus the union of all the generators of these Gx ’s (s.t. we identify the same

generators in G) is the set of the 2(n − 1) generators of G. We know that

G -
((

∗
x∈Q

Gx

)
/〈RIQ 〉 ∗

(
∗

x &∈Q
Gx

))
/〈Rrest〉,

Where RIQ (Rrest) is the set of relations identifying identical generators in dif-

ferent local fundamental groups for x ∈ Q (respectively the set of the other

relations, e.g., induced from identifying identical generators in different local

fundamental groups for x &∈ Q, or from the local fundamental groups of para-

sitic intersection points or from extra branch points). But the generators of G

are the generators of ∗
x∈Q

Gx , and thus

G -
((

∗
x∈Q

Gx

)
/〈RIQ ∪ RPar〉

)
/〈Rrest′ 〉.

Denoting GQ
.= ( ∗

x∈Q
Gx )/〈RIQ ∪ RPar〉 it is enough to prove that there is an

epimorphism B̃
(2)
n ! GQ .

Numerate the generators of GQ by {+i ,+i ′}n−1i=1 associated to the edges ET =
{ti }n−1i=1 in the tree T

∗
0 , and let {xi , xi ′}n−1i=1 be the generators of B̃

(2)
n . Define the

epimorphic map

α : B̃(2)
n ! GQ,

xi 2→ +i , xi ′ 2→ +i ′

(possibly after conjugation. see Remark 2.32). We have to prove that the rela-

tions in B̃
(2)
n hold in GQ . Since Gx - B̃

(2)
v(x)/Rv(x) for each x ∈ Q it is clear

that the relations in B̃
(2)
n of the form aba = bab hold in GQ . The commutator

relations which are not induced from the commutator relations in B̃
(2)
v(x), x ∈ Q

hold in GQ as the set of relations in GQ includes the set RPar.

(ii) Assume that % − m < n − 1. Again, there exist k ∈ N, k < m such that

% − k = n − 1. Previously, in Lemma 2.30, we chose k points from Q to
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construct T ∗
0 . Therefore we can continue as above. Note that by Remark 2.31,

even if the point p2 (in Lemma 2.36) will have two neighboring vertices ∈ Q,

we still could not resolve the circle C .

Remark 2.37. Recall that for a degeneratable surface S that satisfies all the con-

ditions, we denoted n = deg S, m = number of singular points p of B0 whose

local fundamental group is a quotient of B̃
(2)
v(p), and by m the number of vertices

in GraphS0 (see Definition 2.11). By the restrictions imposed by Remark 2.14 and

Theorem 2.22, we can bound % = 1
2
degB. Explicitly, for B to be a branch of

curve of degree 2% of a embedded–degeneratable surface s.t. G would be virtually

solvable, the following inequalities should be satisfied:

max(n,m + n) < % + 1 ≤ m + n. (2.1)

Remark 2.38. As can be seen from Subsection 2.3.1, Example 2.23 and Remark

2.37, the complete classification of smooth surfaces whose planar degeneration sat-

isfies the condition introduced in Theorem 2.22 is not yet known, though some new

restrictions are now clearer (e.g. inequality (2.1)). Moreover, [10, Section 8] has

found some restrictions on surfaces admitting planar degeneration with some spe-

cific conditions on the singularities of the degenerated surface. These conditions do

shed some light on our class of surfaces. For example, every singular point in the

degenerated surface, denoted in [10, Definition 3.5] as Em-point (m > 3), belongs

to the set Q (see Definition 2.9). Given a planar degeneration, [10, Theorem 8.4]

imposes conditions on the square of the canonical class of the surface, when the

degenerated surface has some specific singular points. Certainly this theorem can

be generalized to include more cases of singular points in the set Q and to the big-

ger classes of embedded–degeneratable surfaces. Moreover, [10, Proposition 8.6]

states that for every surface there might be a birational model of it that is degener-

atable into a union of planes with mild singularities pi (s.t. the local fundamental

group Gpi is known), though it is not clear whether if this model is even simply–

degeneratable (see Dentition 2.15).

Note also that all the surfaces in Example 2.23 are simply connected, and this

raises the conjecture whether the desired class of surfaces is contained in the class

of simply connected surfaces. Indeed, this is supported by that fact that if S is

a surface s.t. π1(S) contains a free group of rank 2, then S does not satisfy the
condition in Theorem 2.22 (as G is not virtually solvable). However, this is the

subject of an ongoing research.

3. Non simply connected scrolls

By [20, Proposition 4.13], for a projective complex surface S, if π1(S) is not vir-

tually solvable, then π1(CP2 − B) is not virtually solvable, where B is the branch
curve of S with respect to a generic projection. As Liedtke [20] points out, for S

a ruled surface over a curve of genus bigger than 1 , π1(S) contains a free group
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of rank 2. Therefore, for such an S, there does not exist a planar degeneration

with enough “good” singular points (i.e. points in the set Q. See definition 2.9).

However, in the next section we examine what would be a possible structure for

G = π1(C2 − B) for such a surface. Specifically, we consider the structure of this
group when the set Q is empty.

By Conjecture 2.25, the existence of points in the set Q would imply that G

would be a quotient of Ã(T )(2), where as in our case (see Thereom 3.35), G is a

quotient of A(T ) (where T is an associated graph to the degeneration of S), as in
Example 2.28(1). This strengthens Conjecture 2.26.

For the convenience of the reader, we begin with recalling the notions of the

Braid Monodromy Factorization (BMF) in subsection 3.1. We then investigate the

surface CP1 × Cg, where Cg is a curve of genus g ≥ 1, and the corresponding

fundamental group π1(C2 − Bg), in subsections 3.2 and 3.3. Using the results, we
compute the fundamental group of the Galois cover of these surfaces in Subsec-

tion 3.4.

3.1. Background on braid monodromy factorization

Recall that computing the braid monodromy is the main tool to compute fundamen-

tal groups of complements of curves. The reader who is familiar with this subject

can skip the following definitions to Subsection 3.2. We begin by defining the braid

monodromy associated to a curve.

Let D be a closed disk in R2, K ⊂ Int(D), K finite, n = #K . Recall that

the braid group Bn(D, K ) can be defined as the group of all equivalent diffeomor-
phisms β of D such that β(K ) = K , β|∂D = Id |∂D (two diffeomorphisms are

equivalent if they induce the same automorphism on π1(D − K , u)).

Definition 3.1. H(σ ) is a half-twist defined by σ .

Let a, b ∈ K , and let σ be a smooth simple path in I nt (D) connecting a with
b s.t. σ ∩ K = {a, b}. Choose a small regular neighborhood U of σ contained

in Int(D), s.t. U ∩ K = {a, b}. Denote by H(σ ) the diffeomorphism of D which
switches a and b by a counterclockwise 180◦ rotation and is the identity on D \U .
Thus it defines an element of Bn[D, K ], called the half-twist defined by σ .

Denote [A, B]= ABA−1B−1, 〈A, B〉 = ABAB−1A−1B−1. We recall Artin’s
presentation of the braid group:

Theorem 3.2. Bn is generated by the half-twists Hi of a sequence of paths

σi
n−1
i=1 (such that σi connected the i

th and the (i + 1)th points) and all the rela-
tions between H1, . . . , Hn−1 follow from:

[Hi , Hj ] = 1 if |i − j | > 1

〈Hi , Hj 〉 = 1 i f |i − j | = 1.

Assume that all of the points of K are on the X-axis (when considering D inR2). In
this situation, if a, b ∈ K , and za,b is a path that connects them, then we denote the

corresponding half-twist by Za,b = H(za,b). If za,b is a path that goes below the
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X-axis, then we denote it by Za,b, or just Za,b. If za,b is a path that goes above the

x-axis, then we denote it by Za,b. We also denote by
(c−d)

Za,b ( Z̄a,b
(c−d)

) the braid induced

from a path connecting the points a and b below (respectively above) the X-axis,

going above (respectively below) it from the point c till point d.

Definition 3.3. The braid monodromy with respect to C,π, u. Let C be a curve,

C ⊆ C2. Choose O ∈ C2, O &∈ C such that the projection f : C2 → C1
with center O will be generic when restricting it to C . We denote π = f |C and
degπ = deg C by m. Let N = {x ∈ C1

∣∣ #π−1(x) < m}. Take u /∈ N ,and let

C1u = f −1(u). There is a naturally defined homomorphism describing the motion
of the points in the fiber

π1(C1 − N , u)
ϕ−→ Bm[C1u, C1u ∩ C]

which is called the braid monodromy with respect to C,π, u, where Bm is the braid
group.

In fact, denoting by E a big disk in C1 s.t. E ⊃ N , we can also take the

path in E \ N not to be a loop, but just a non-self-intersecting path. This induces a
diffeomorphism between the models (D, K ) at the two ends of the considered path,
where D is a big disk in C1u , and K = C1u ∩ C ⊂ D.

Definition 3.4. ψT the Lefschetz diffeomorphism induced by a path T . Let T be a

path in E \ N connecting x0 with x1, T : [0, 1] → E \ N . There exists a contin-
uous family of diffeomorphisms ψ(t) : D → D, t ∈ [0, 1], such that ψ(0) = I d,

ψ(t)(K (x0)) = K (T (t)) for all t ∈ [0, 1], and ψ(t)(y) = y for all y ∈ ∂D. For em-
phasis we write ψ(t) : (D, K (x0)) → (D, K (T (t)). A Lefschetz diffeomorphism
induced by a path T is the diffeomorphism

ψT = ψ(1) : (D, K (x0)) →∼ (D, K (x1)).

Since ψ(t) (K (x0)) = K (T (t)) for all t ∈ [0, 1], we have a family of canonical
isomorphisms

ψν
(t) : Bp [D, K (x0)] →∼ Bp [D, K (T (t))] , for all t ∈ [0, 1].

We recall Artin’s theorem on the presentation of the Dehn twist of the braid group

as a product of braid monodromy elements of a geometric-base (a base of π1 =
π1(C1 − N , u) with certain properties; see [26] for definitions).

Theorem 3.5. Let C be a curve transversal to the line in infinity, and ϕ is a braid

monodromy of C,ϕ : π1 → Bm . Let δi be a geometric (free) base (called a g-base)
of π1, and "2 is the generator of Center(Bm). Then:

"2 =
∏

ϕ(δi ).

This product is also defined as the braid monodromy factorization (BMF) related

to a curve C .



ON FUNDAMENTAL GROUPS RELATED TO DEGENERATABLE SURFACES 585

Note that if x1, . . . , xn−1 are the generators of Bn , then we know that "2 =
(x1 · . . . · xn−1)n and thus deg("2) = n(n − 1).

So in order to find out what is the braid monodromy factorization of "2
p, we

have to find out what are ϕ(δi ), ∀i . We refer the reader to the definition of a skeleton
(see [27]) λx j , x j ∈ N , which is a model of a set of paths connecting points in the

fiber, s.t. all those points coincide when approaching A j =(x j , y j )∈ C , when we

approach this point from the right. To describe this situation in greater detail, for

x j ∈ N , let x ′
j = x j + α. So the skeleton in x j is defined as a system of paths

connecting the points in K (x ′
j ) ∩ D(A j , ε) when 0 < α 8 ε 8 1, D(A j , ε) is a

disk centered in A j with radius ε.
For a given skeleton, we denote by "〈λx j 〉 the braid by rotates by 180 degrees

counterclockwise a small neighborhood of the given skeleton. Note that if λx j is a
single path, then "〈λx j 〉 = H(λx j ).

We also refer the reader to the definition of δx0 , for x0 ∈ N (see [27]), which

describes the Lefschetz diffeomorphism induced by a path going below x0, for dif-

ferent types of singular points (tangent, node, branch; for example, when going

below a node, a half-twist of the skeleton occurs and when going below a tangent

point, a full-twist occurs).

We define, for x0 ∈ N , the following number: εx0 = 1, 2, 4 when (x0, y0) is
a branch/node/tangent point (respectively). Explicitly, in local coordinates (x, y)
(where (x0, y0) = (0, 0)), a branch is a singular point (with respect to the projec-
tion) with local equation y2 = x , a node – y2 = x2, and a tangent y(y − x2) = 0.

So we have the following statement (see [27, Proposition 1.5]):

Let γ j be a path below the real line from x j to u, s.t. %(γ j ) = δ j . So

ϕu(δ j ) = ϕ(δ j ) = "

〈
(λx j )

( 1∏

m= j−1
δxm

)〉εx j

.

When denoting ξx j = (λx j )

(
1∏

m= j−1
δxm

)
we get

ϕ(δ j ) = "〈(ξx j )〉
εx j .

Note that the last formula gives an algorithm to compute the needed factorization.

For a detailed explanation of the braid monodromy, see [26].

Assume that we have a curve C̄ in CP2 and its BMF. Then we can calculate
the groups π1(CP2−C) and π1(C2−C) (where C = C̄∩C2). Recall that a g-base
is an ordered free base of π1(D\F, v), where D is a closed disc, F is a finite set

in Int(D), v ∈ ∂D which satisfies several conditions; see [26, 27] for the explicit

definition.

Let {+i } be a g-base of G = π1(Cu − (Cu ∩ C), u), where Cu = C × u.

We cite now the Zariski-Van Kampen Theorem (for cuspidal curves) in order to

compute the relations between the generators in G.
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Theorem 3.6 (Zariski-Van Kampen (cuspidal curves version)). Let C be a cus-

pidal curve in CP2. Let C = C2 ∩ C . Let ϕ be a braid monodromy factorization

with respect to C and u. Let ϕ =
p∏
j=1

V
ν j
j , where Vj is a half-twist and ν j = 1, 2, 3.

For every j = 1 . . . p, let A j , Bj ∈ π1(Cu −C, u) be such that A j , Bj can be
extended to a g-base of π1(Cu − C, u) and (A j )Vj = Bj . Let {+i } be a g-base of
π1(Cu − C, u) corresponding to the {Ai , Bi }, where Ai , Bi are expressed in terms
of +i . Then π1(C2−C, u) is generated by the images of {+i } in π1(C2−C, u) and

the only relations are those implied from {V ν j
j }, as follows:






A j · B−1
j if ν j = 1

[A j , Bj ] = 1 if ν j = 2

〈A j , Bj 〉 = 1 if ν j = 3.

π1(CP2−C, ∗) is generated by {+i } with the above relations and one more relation∏
i

+i = 1.

The following figure illustrates how to find Ai , Bi from the half-twist Vi = H(σ ):

u0 u0
u0

1 2 3 4 5 6

BV AV

σ

σ

Figure 3.1.

So

AV = +−1
4 +6+4, BV = +1.

See [30] on how to induce the expressions corresponding to AV , BV .

3.1.1. Example of a BMF

We give here an example of computing a simple Braid Monodromy Factorization,

for the following configuration:

 1

 2

3  4
 a

b 

b'  

c 

Figure 3.2.
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We will need this factorization in Subsection 3.2, where it will be the factorization

of the first regeneration a certain singular point.

Proposition 3.7. The local braid monodromy factorization of the above configura-

tion is

ϕ = Z4abZ
4
b′c Z̃bb′ Z̃2ac

where the braids Z̃bb′, Z̃ac correspond to the following paths:

a b b c a b b c' '
Figure 3.3.

Proof. Let {p j }4j=1 be the singular points of the above configuration with respect
to π1 (the projection to the X-axis) as follows:
p1, p2 - the tangent points of the parabola and the lines La, Lc (denoted by a and c
in Figure 3.2).

p3 - the branch point of the parabola.

p4 - the intersection point of La, Lc.
Let E (respectively D) be a closed disk on the X-axis (respectively Y -axis).

Let N = {x(p j ) = x j |1 ≤ j ≤ 4}, s.t. N ⊂ E − ∂E . Let M be a real point

on the x-axis, s.t. x j 8 M,∀x j ∈ N , 1 ≤ j ≤ 4. There is a g-base %(γ j )
4
j=1 of

π1(E − N , u), s.t. each path γ j is below the real line and the values of ϕM with

respect to this base and E × D are the ones given in the proposition. We look for

ϕM(%(γ j )) for j = 1, · · · , 4. Choose a g-base %(γ j )
4
j=1 as above and put all the

data in the following table:

j λ j ε j δ j
1 〈a, b〉 4 "2〈a, b〉
2 〈b′, c〉 4 "2〈b′, c〉
3 〈b, b′〉 1 "

1/2
I R 〈b〉

4 〈a, c〉 2 −

So, we get the following:

ξx1 = za,b , ϕM(%(γ1)) = Z4ab

ξx2 = zb′,c , ϕM(%(γ2)) = Z4
b′c

ξx3 = a b b c'
"2<b′,c>−−−−−−→
"2<a,b>

'a b b c , ϕM(%(γ3)) = Z̃bb′

ξx4 =
b 
ba c '

"
1/2
I R <b>−−−−−→ a b b c    '

"2<b′,c>−−−−−−→
"2<a,b>

a b b c    ' , ϕM(%(γ4)) = Z̃ac
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3.1.2. Regeneration rules

We finish this subsection with the regeneration rules. Given a degeneration ρ :
S → ", the regeneration rules explain how the braid monodromy factorization

of the branch curve of S0 (under generic projection) changes when passing to the

braid monodromy factorization of the branch curve of St , t &= 0. The rules are

(see [29, pages 336-337]):

1. First regeneration rule: The regeneration of a branch point of any conic:

A factor of the braid monodromy of the form Zi, j is replaced in the regeneration

by Zi ′, j ·
( j)

Z i, j ′ .

2. Second regeneration rule: The regeneration of a node:

A factor of the form Z2i j is replaced by a factorized expression Z
2
i i ′, j := Z2

i ′ j ·Z2i j ,
Z2
i, j j ′ := Z2

i j ′ · Z2i j or by Z2i i ′, j j ′ := Z2
i ′ j ′ · Z2

i j ′ Z
2
i ′ j · Z2i j .

3. Third regeneration rule: The regeneration of a tangent point:

A factor of the form Z4i j in the braid monodromy factorized expression is re-

placed by

Z3
i, j j ′ := (Z3i j )

Z j j ′ · (Z3i j ) · (Z3i j )
Z−1
j j ′ .

3.2. The fundamental group related to CP1 × C1

We start by analyzing the degeneration of the surface CP1 × C1, where C1 is a

smooth curve of genus 1. Although this surface was already investigated in [7],

we present here a different degeneration, which can be generalized to surfaces of

the form CP1 × Cg (Cg is a smooth genus-g curve). This generalization will be

discussed in the next subsection but we give here a rough description of how this

degeneration is done. See also Construction 3.27.

Construction 3.8. We review the degeneration described in [9]. LetC be a smooth,

rational normal curve of degree n inCPn . Since C degenerates to a union of n lines
li (s.t. li ∩ li+1 = pt. for 1 ≤ i ≤ n − 1, li ∩ l j = ∅ for |i − j | > 1), the

smooth rational normal scroll S = C × CP1 ⊂ CP2n+1 degenerates to surface
S′ = ⋃n

i=1 Si such that each Si is a quadric (i.e. isomorphic to CP1 × CP1). Each
quadric Si meets S− Si either along one or two lines of the same ruling. Thus each

quadric Si degenerates to the union of two planes meeting along a line li , leaving

the other line(s) fixed. Therefore, in CP2n+1, the scroll S degenerates to a planar
surface S′′ of degree 2n. Assume n > 2 Choose now two disjoint lines %1, %4 in the
planes S1 and S4 such that S1 ∩ S2 ∩ S3 &∈ %1, S3 ∩ S4 ∩ S5 &∈ %4. As %1, %4 are

skew, they span a CP3 which we denote as &, such that & ∩ S′′ = %1 ∪ %4. Thus
there exists a smooth quadric Q in & such that %1, %4 are lines of the same ruling
on Q and Q ∩ S′′ = %1 ∪ %4. There, in &, Q degenerates to two planes P1, P4 s.t.
%i ∈ Pi . In [9, Construction 4.2] one proves that the planar surface S

′′ ∩ P1 ∩ P4
is indeed a degeneration CP1 × C1. See Figure 3.4 for the final degeneration when
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CP1 × CP1 is embedded with respect to the linear system (1, 3) (i.e. n = 3 in the

above notation).

Figure 3.4. The degeneration of CP1 × C1.

The dashed lines represent the attached degenerated quadric. Some of the planes

are intersecting other planes in lines. We numerate (according to [26]) the singular

points of this arrangement of lines by Vi , 1 ≤ i ≤ 8 and the lines of intersection by

Li , 1 ≤ i ≤ 8, as follows:

1  

 8 6 5  7

 1  2  5
 6

4 7 
 8

3

2 3 4
Figure 3.5. The numeration of the singular points (the larger numbers) and lines (the

smaller numbers) of the degenerated ramification curve of CP1 × C1.

Note that ∪Li is the degenerated ramification curve R0 with respect to a generic
projection. Thus, projecting the degenerated surface to CP2, we denote by B0 the
(degenerated) branch curve and the images of Vi by vi . We numerate the lines com-
posing B0 as before. Note that we have new singular points, beside the points vi ,
called parasitic intersection (see subsection 2.4.1). These points are created from

lines that do not intersect in CP9 but do intersect in CP2. The braid monodormy
factorization of the degenerated branch curve is known to be (see [26])&1

i=8C̃i"
2
i ,

where C̃i denotes the local braid monodromy factorization around the parasitic in-

tersection points and "2
i the local braid monodromy factorization around the point

vi . One can find the C̃i ’s according to [26, Theorem IX].

Remark 3.9. Since the regeneration of "2
i for the different points was already

done, we give here references to the final results. The points vi , i = 3, .., 8 are
3–points. (i.e., they are the images of the points vi which are locally the intersection
of three planes. see e.g., [29]) The factors that they contribute to the factorization

(i.e. their local BMFs) are either Z
(3)
a′,bb′ · Z̃aa′ or Z

(3)
aa′,b · Z̃bb′ (where vi = La ∩ Lb).

The point v1 is a 2–point and contributes to the factorization the factor Z1,1′ (see
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Notation 2.7 and Remark 2.34(I)). For the point v2, see a more explicit explanation
in the next remark.

Remark 3.10. In a small neighborhood of v2, the first line that regenerates is L3,
which turns into a conic (see [29]). The braid monodromy factorization of this

first regeneration is presented in Proposition 3.7. In the following regenerations we

use the regeneration rules (see Subsection 3.1.2): the tangent points (i.e., a braid

of the form Z4...) are regenerated into three cusps (three braids of the form Z3...)

and a node (a braid of the form Z2...) into four nodes. Explicitly, the factorization

Z423Z
4
3′5 Z̃33′ Z̃

2
25 is replaced by the factorization Z

(3)
22′,3Z

(3)
3′,55′ Z̃33′

(3)

Z222′,55′ .

Notation 3.11. Denote ϕ(a, b, c) = Z
(3)
aa′,bZ

(3)
b′,cc′ Z̃bb′

(b)

Z2aa′,cc′ where Z̃bb′ is as

Figure 3.3, when the points a and c are doubled.

Notation 3.12. B1 = the branch curve ofCP1×C1 embedded inCP9 with respect
to a generic projection.

From Remarks 3.10 and 3.9, we can induce the BMF of B1:

Theorem 3.13. The braid monodromy factorization of the branch curve B1 of a

generic projection of CP1 × C1 embedded in CP9 is:

"2 =
1∏

i=8
Ci · Hi ,

where

Ci = id, i = 1, 5, .., 8, C2 = D3 · D5, C3 = D6 · D7, C4 = D4 · D8

where

D3 = Z
2

11′,33′, D4 = Z211′,44′ · Z222′,44′, D5 = Z
2

11′,55′ · Z244′,55′,
D6 = &4

i=1Z
2

i i ′,66′
(5−5′)

, D7 = &5
i=1Z

2

i i ′,77′, D8 = &i=1,2,
3,5,6

Z
2

i i ′,88′

and
H1 = Z1,1′, Hi = Z

(3)
a′,bb′ · Z̃aa′ for i = 4, 5, 7, 8, Hi = Z

(3)
aa′,b · Z̃bb′ for i = 3, 6

(when vi = La ∩ Lb, a < b), where Z̃·, · is the braid induced from the following

motion:

Z̃aa′ :
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Z̃bb′ :

Z
(3)
a′,bb′ =

∏

q=−1,0,1
(Z3a′,b)Zq

b,b′
, Z

(3)
aa′,b =

∏

q=−1,0,1
(Z3a′,b)Zq

a,a′

and H2 = ϕ(2, 3, 5) where Z̃33′ (a factor in the factorization H2) is the braid

induced from the following motion:

We recall the definition of an equivalence relation on the braid monodromy factor-

ization. Let H be a group.

Definition 3.14 (Hurwitz moves). Let 9t = (t1, . . . , tm) ∈ Hm . We say that 9s =
(s1, . . . , sm) ∈ Hm is obtained from 9t by the Hurwitz move Rk (or 9t is obtained
from 9s by the Hurwitz move R−1

k ) if

si = ti for i &= k , k + 1 , sk = tk tk+1t−1k , sk+1 = tk .

Definition 3.15 (Hurwitz move on a factorization). Let H be a group t ∈ H. Let
t = t1 ·. . .·tm = s1 ·. . .·sm be two factorized expressions of t.We say that s1 ·. . .·sm
is obtained from t1 · . . . · tm by a Hurwitz move Rk if (s1, . . . , sm) is obtained from
(t1, . . . , tm) by a Hurwitz move Rk .

Definition 3.16. (1) Two factorizations are Hurwitz equivalent if they are obtained

from each other by a finite sequence of Hurwitz moves.

(2) Let g = g1 · . . . · gn be a factorized expression in a group H (gi ∈ H ), and

denote by ()h the conjugation by h ∈ H . We say that g is invariant under h if

gh
.= (g1)h · . . . · (gn)h is Hurwitz equivalent to g.
Let us examine the invariance relations on the braid monodromy factorization

from Theorem 3.13. From [29] we know that the expressions Ci , 1 ≤ i ≤ 8 and

Hj , 1 ≤ j ≤ 8, j &= 2 are invariant under Z
q

kk′, q ∈ Z, k = 1, 4, 6, 7, 8. Recall

also that the expressions of the form Z2
i i ′, j j ′ are invariant under Z

p

ii ′ Z
q

j j ′ and Z
(3)
i, j j ′

is invariant under Zk
j j ′ (k, p, q ∈ Z). Note that if σ ∩ [ j, j ′] = ∅ (where σ is a path

in a disc containing the points j, j ′ and [ j, j ′] is a line connecting j and j ′) then
H(σ ) is invariant under Zk

j j ′ (k ∈ Z).

Remark 3.17. Using these rules, we see that H2 is invariant under Z
p

22′ Z
q

55′ , and

therefore the whole factorization is invariant under Z
p1
11′ Z

p2
22′&

8
j=4Z

p j
j j ′, p j ∈ Z.
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As was explained, during the regeneration process, every generator + j is dou-

bled into two generators: + j and + j ′ , so π1(C2− B1) is generated by {+ j ,+ j ′}8j=1.
From now on, we denote the generator + j by j and the generator + j ′ by j

′. Let j
denote j or j ′, and e the unit element in π1(C2 − B1).

Notation 3.18. [a, b] = aba−1b−1, <a, b>= abab−1a−1b−1, ab = b−1ab.

Proposition 3.19. G1
.= π1(C2 − B1) is generated by { j, j ′}8j=1 and has the fol-

lowing relations:

(1) 1 = 1′;
(2) 〈6, 7〉 = 〈4, 8〉 = 〈1, 2〉 = 〈3, 4〉 = 〈5, 6〉 = 〈7, 8〉 = e;
(3) 7′ = 6−16′−176′6, 4 = 8′84′8−18′−1, 1 = 2′21′2−12′−1, 4′ = 3−13′−143′3,

5 = 6′65′6−16′−1, 7 = 8′87′8−18′−1;
(4) [1, 3] = [2, 4] = [1, 4] = [1, 5] = [4, 5] = e, [i, 6] = e, 1 ≤ i ≤ 4,

[i, 7] = e, 1 ≤ i ≤ 5, [i, 8] = e, 1 ≤ i ≤ 6, i &= 4;
(5) 〈2, 3〉 = 〈5, 3′〉 = e, 5′53′5−15′−1 = 32′232−12′−13−1, [323−1, 5] = e.

Proof. In the proof, we use the Van-Kampen theorem (Theorem 3.6), the complex

conjugation method and the invariance relations. Relation (1) is induced from the

braid Z11′ . Relations (2) and (3) are induced, using Van-Kampen and invariance,
from the factors Hi , 3 ≤ i ≤ 8. Relations (4) are induced from the parasitic inter-

section points – the factorsCi . Relations (5) are induced from the factors in H2.

Proposition 3.20. The following relations hold in G1:

(6) 〈2, 3〉 = 〈3, 5〉 = 〈2, 5〉 = e

(7) [2−132, 5] = e

Proof. By Proposition 3.19 ((5) and (3)), it is known that

e = 〈3′, 5〉 = 〈4−134′3−14, 5〉 =
[4,5]=e

〈34′3−1, 5〉 =
〈3,4′〉=e

〈4′−134′, 5〉 =
[4′,5]=e

〈3, 5〉.

Thus 〈3, 5〉 = e. Also, we have:

e = 〈2, 3〉 = 〈2, 4′43′4−14′−1〉 =
[4,2]=e

〈2, 3′〉 ⇒ 〈2, 3〉 = e.

From relation (5) we get 3′ = 5−15′−132′232−12′−13−15′5 and also

e = 〈3′, 5〉 = 〈5−15′−132′232−12′−13−15′5, 5〉 = 〈32′232−12′−13−1, 5′55′−1〉
=

Invariance Z55′
〈32′232−12′−13−1, 5′〉 =

〈2,3〉=e
〈32′3−1232′−13−1, 5′〉 =

[323−1,5′]=e
〈2, 5′〉
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and by invariance relations we get 〈2, 5〉 = e. This completes the proof of (6).
From (5) we have

e = [323−1, 5] = [2−132, 5] = [2−14′43′4−14′−12, 5] =
[4,2]=[4,5]=e

[2−13′2, 5].

Thus [2−132, 5] = e.

Our next task is to express the generators j ′ ( j = 1, 2, 3, 5, .., 8) by the gener-
ators 1 ≤ j ≤ 8 and 4′. This is easy: using (3), we get

(8) 1′ = 1, 2′ = 1−1212−11, 3′ = 4−134′3−14, 8′ = 4−184′8−14
7′ = 8−18′−178′8, 6′ = 7−167′6−17, 5′ = 6−16′−156′6.

Therefore, the group G is generated by the generators { j}8j=1∪{4′}. We note that all
the commutator and triple relations (i.e., (2), (4), (6), (7)) that involve the generators

j ′ where j = 1, 2, 3, 5, .., 8 can be reduced, since these j ′‘s are expressed in terms
of the other generators. Our task now is to reduce most of the relations coming

from the branch points, i.e. (3) and the second relation at (5). Notice that all of the

relations in (3) are already reduced, as we have used them to define the generators

j ′ (by (8)). However, one can see that, for example, in the second relation in (5) we
can substitute the generators j ′ using (8), till we get an expression containing only
the generators { j}8j=1 ∪ {4′}. Therefore, we get the following relation:

(9) (4′)3−145−16−17−18−14−184′−18−147−16−15−1 = (3)2−11−121−12−113−1 .

Notation 3.21. Denote relation (9) by ρ1.

Note that (9) can be described as a “global” relation, involving almost all the

generators of the group. We need only to find out what are the “local” relations,

involving only the generators 4, 4′, 3 and 8.

Proposition 3.22. The following relations hold in G1:

(10) 〈84′8−1, 4〉 = 〈34′3−1, 4〉 = e.
(11) [3−143, 84′8−1] = e.

Proof. Knowing that 4′ = 3−13′−143′3 we see that:

〈34′3−1, 4〉 = 〈33−13′−143′33−1, 4〉 = 〈3′, 4〉 =
rel.(2)

e.

The same is dome for the second relation, using 4′ = 8−18′−148′8. This proves
relation set (10).
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For relation (11), we use the relation 4 = 8′84′8−18′−1.

[3−143, 84′8−1] =[3−18′84′8−18′−13, 84′8−1] =
[3,8]=e

[8′83−14′38−18′−1, 84′8−1]

= [8−18′83−14′38−18′−18, 4′] =
Inv. Z8,8′

[8′3−14′38′−1, 4′]

= [3−14′3, 8′−14′8′] =
〈3,4〉=〈8′,4〉=e

[4′34′−1, 4′8′4′−1]

= [3, 8′] = e.

The last relation we want to induce concerns the fact that once the we have two

“circles” in the graph associated to the generators (see Figure 3.6 in Proposition

3.25), we ought to find a triple relation relating each two edges that intersect in one

vertex.

Proposition 3.23. The following relation holds in G1:

(12) 〈3−143, 56784′8−17−16−15−1〉 = e.

Proof. First, we prove that 〈3−143, 5〉 = e.

〈3−143, 5〉 =
〈3,4〉=e

〈434−1, 5〉 =
[5,4]=e

〈3, 5〉 = e.

Thus

〈3−143, 56784′8−17−16−15−1〉 = 〈5−1 · (3−143) · 5, 6784′8−17−16−1〉

= 〈3−143 · 5 · (3−143)−1, 6784′8−17−16−1〉

=
[6,3]=[7,3]=[6,4]=[7,4]=e

〈3−143 · (7−16−1567) · (3−143)−1, 84′8−1〉

=
rel. (11)

〈(7−16−1567)·, 84′8−1〉 =
〈5,6〉=e

〈7−1565−17, 84′8−1〉

=
[5,7]=[5,8]=[5,4′]=e

〈7−167, 84′8−1〉 =
〈6,7〉=[6,8]=[6,4′]=e

〈7, 84′8−1〉 = 〈7, 8〉 = e.

Definition 3.24. Let T be a graph with n vertices. In the spirit of [33] and [4],

denote by Â(T ) the following generalized Artin group. This is the group generated
by the edges u ∈ T subject to the following relations:

(i) uv = vu if u, v are disjoint.

(ii) uvu = vuv if u, v intersect in one vertex.
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(iii) [u, vwv−1] = e for u, v,w ∈ T which meet in only one vertex.

(iv) for u, v, v′, w ∈ T which intersect in the following way:

u v

v'

w

the edges satisfy the relations:

(1) 〈wv′w−1, v〉 = 〈uv′u−1, v〉 = e

(2) [u−1vu, wv′w−1] = e.

(v) For two circles in the graph T , embedded in each other in the following way

xn
xn−1

x1
x2

x3

y1

y2

xn−2

The edges satisfy the relation: 〈x−1
n y1xn, xn−1·...·x2x1y2x−1

1 x−1
2 ·...·x−1

n−1〉=e.

Summarizing propositions 3.19, 3.20, relation (9), 3.22 and 3.23 we get the follow-

ing:

Proposition 3.25. G1 - Â(T1)/ρ1, where T1 is the following graph:

1 2
3

5

8

7

4

4'

6
Figure 3.6.

Remark 3.26. Let T1, T2 be connected disjoint graphs. Then Â(T1∪T2) = Â(T1)×
Â(T2).
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3.3. The fundamental group related to CP1 × Cg, g > 1

In this subsection, we compute the BMF of the branch curve Bg ofCP1×Cg, g > 1

and the corresponding fundamental group. We show the connections between these

groups and the twisted Artin group defined earlier (see Definition 3.24). We begin

with the surface CP1 × C2.

Construction 3.27. As in Construction 3.8, we can build a degeneration of CP1 ×
C2. Embedding the rational scroll CP1 × CP1 with respect to the linear system
(1, 6), we degenerate it into S′′: a union of 12 planes Si . Choosing two pairs of
lines %1, %4 in S1, S4 and %7, %10 in S7, S10, we can attach to each pair a quadric Q j ,

j = 1, 7 such that Q j ∩ S′′ = % j ∪ % j+3. Degenerating each of the two quadrics
into two planes, the union of the 16 planes is a degenerated planar surface which is

the degeneration of CP1 × C2, as is proved in [9, Theorem 4.6]. See Figure 3.7 for

the degeneration.

Figure 3.7. Degeneration of CP1 × C2.

Repeating the process described in the previous subsection, we numerate the sin-

gularities vi , 1 ≤ i ≤ 16 of the degenerated surface CP1 × C2 and the lines of

intersection Li , 1 ≤ i ≤ 17 as follows:

1

1
2

3
5

4

6

7

8

9 10
11

12 14
13

15

16

17

9 10 11 12 1413 15 16

2 3 4 5 6 7 8

Figure 3.8. Numeration of singular points and lines of the degenerated ramification

curve of CP1 × C2.

Once again, we project the degenerated surface to CP2, compute the BMF of the
degenerated branch curve (= &1

i=16C̃i"
2
i ) and regenerate it.

Remark 3.28. The points vi , 3 ≤ i ≤ 16, i &= 6, 12 are 3-points, and their local

regenerated BMFs are either Z
(3)
a′,bb′ · Z̃aa′ or Z

(3)
aa′,b · Z̃bb′ (where vi = La ∩ Lb).

The point v1 contributes the factor Z1,1′ to the global BMF. The local regenerated
BMF of a neighborhood of the points v2, v6, v12 is computed as in Remark 3.10.
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Theorem 3.29. The braid monodromy factorization of the branch curve B2 of a

generic projection of CP1 × C2 embedded in CP17 is:

"2 =
1∏

i=16
Ci · Hi ,

where

Ci = id, i = 1, 9, ..., 16, C2 = D3 · D5, C3 = D6 · D7,
C4 = D4 · D8, C5 = D9 · D10 C6 = D11 · D12 · D14,
C7 = D15 · D16, C8 = D13 · D17

where

D3 = Z
2

11′,33′, D4= Z
2

11′,44′
(3−3′)

Z
2

22′,44′
(3−3′)

, D5=&2
i=1Z

2

i i ′,55′ · Z244′,55′,

D6 = &4
i=1Z

2

i i ′,66′
(5−5′)

, D7=&5
i=1Z

2

i i ′,77′, D8=&3
i=1Z

2

i i ′,88′
(7−7′)

·Z255′,88′
(7−7′)

Z
2

66′,88′,

D9 = &6
i=1Z

2

i i ′,99′
(7−8′)

D10=&8
i=1Z

2

i i ′,10 10′, D11=&9
i=1Z

2

i i ′,11 11′
(10−10′)

,

D12 = &10
i=1Z

2

i i ′,12 12′, D13=&11
i=1Z

2

i i ′,13 13′
(12−12′)

, D14=&10
i=1Z

2

i i ′,14 14′ Z
2
13 13′,14 14′,

D15 = &13
i=1Z

2

i i ′,15 15′
(14−14′)

, D16=&14
i=1Z

2

i i ′,16 16′,

D17 = &12
i=1Z

2

i i ′,17 17′
(16−16′)

· Z212 12′,17 17′
(16−16′)

Z
2

15 15′,17 17′

and

H1 = Z1,1′, Hi = Z
(3)
a′,bb′ · Z̃aa′ for i = 4, 8, 9, 11, 13, 15, 16,

Hi = Z
(3)
aa′,b · Z̃bb′ for i = 3, 5, 7, 10, 14,

Hi = ϕ(a, b, c), where i = 2, 6, 12 and vi is the intersection of the lines of
La, Lb, Lc, and Lb is regenerated first.

Let G2
.= π1(C2 − B2) be the fundamental group of the complement of the

branch curve.
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Proposition 3.30. G2 is isomorphic to a quotient of Â(T2), where T2 is the follow-
ing graph:

1 9 10 112
3 8

5 7

4

4'

6

12 16

14 17

13

13'

15
Figure 3.9.

Proof. The existence of the relations (i)-(v) as in Definition 3.24 is induced from

the braid monodormy factorization of B2, using the Van-Kampen theorem, as in

Propositions 3.19, 3.20, 3.22.

Notation 3.31. We introduce the following notations

(i) Let T be a connected planar graph, with no repeated edges, and the valence of

each vertex is ≤ 3. We denote these requirements by ⊗.
(ii) For a graph T = (E, V ), v ∈ V , denote by ET,v = Ev the set of all the edges

in T one of whose ends is v.

(iii) E0v = E \ Ev.

(iv) Let T be a graph satisfying ⊗. Denote by R(Ev) the following expression,
induced from the edges in Ev:

(A) Ev={u1,u2}, then R(Ev)=u1u2u1u
−1
2 u−1

1 u−1
2 , where:

u1 u2

v

(B) Ev = {u1, u2, u3}, then R(Ev) = u1u2u3u
−1
2 u−1

1 u2u
−1
3 u−1

2 ,

where:

u1
u2

u3
v

Definition 3.32. Let T1 = (V1, E1), T2 = (V2, E2) be two graphs satisfying ⊗.
Assume there exist two vertices v1 ∈ V1, v2 ∈ V2 such that the degree d(v1) = i <
3 and d(v2) ≤ 3− i . We create a new graph T1

⋃v2
v1
T2 by identifying the vertices v1

and v2. Note that T1
⋃v2

v1
T2 also satisfies ⊗. Let v be the identified vertex v1 = v2

in T1
⋃v2

v1
T2. For example, see the following figure:
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T1T1
v2

v2

v

v

1

v1

T2T2

Proposition 3.33.

Â
(
T1

v2⋃

v1

T2

)

=
{
Â(T1) ∗ Â(T2)

∣∣∣ [u1, u2] = e, u1 ∈ E0v1, u2 ∈ E2 or u2 ∈ E0v2, u1 ∈ E1
R(Ev) = e

}
.

Proof. We first note that the degree of v1 is less than 3, so the only possible cases
are:

(c)(b)(a)

v1 v2 v1 v2 v1 v2

Cases (b) and (c) are actually the same, so we consider only cases (a) and (b).

Since the edges of T1, T2 are not changed under the identification of v1 and v2, it

is obvious that the relations in Â(T1) and Â(T2) are satisfied in Â(T1
⋃v2

v1
T2). In

addition, for an edge u1 ∈ E1 such that u1 &∈ Ev1, u1 is disjoint from any edge u2∈
E2. Thus, in Â(T1

⋃v2
v1
T2), the generator corresponding to u1 commutes with any

generator corresponding to u2. The same is true for an edge u2 &∈ Ev2 and edges in

E1. We only have to take into account the relation induced from the identification of

v1 and v2. Consider case (a). Ev is a set of two adjacent edges u, w, intersecting at

v. So in Â(T1
⋃v2

v1
T2), by Definition (3.24)(ii), we would have the relation vwv =

wvw, or R(Ev) = e. We follow the same arguments for case (b).

Notation 3.34.

(i) Let T1 = (V1, E1) be the graph in proposition 3.25, T0 = (V0, E0) , and let
δ ∈ V1, α,β ∈ V0 be the following vertices:

δ α β

T1 T0
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(ii) For 1 < g, take g − 1 copies of T0, and denote by αi ,βi , 1 ≤ i ≤ g the

corresponding vertices in each T0. Let Tg
.= T1

⋃α1
δ T0

⋃α2
β1

. . .
⋃αg

βg−1 T0.

(iii) We now construct a degenerated model of CP1 × Cg, where Cg is a genus

g curve. Embed CP1 × CP1 by the linear system (1, 3g), degenerate it to
a union of 6g planes, attach g quadrics to g pairs of non–intersecting planes

and then degenerate the quadrics, as was done in Constructions 3.8 and 3.27.

The resulting degeneration should be composed from g “building blocks” as

in Figure 3.4. Explicitly

Figure 3.10. Degeneration of CP1 × Cg embedded in CP8g+1.

Denote by Sg this surface whose degeneration is as in Figure 3.11 above. Con-

sider a generic projection CP8g+1 → CP2 and its restriction to Sg, we denote
by Bg the branch curve and Gg = π1(C2−Bg) the corresponding fundamental
group.

We saw (Proposition 3.25) that G1 - Â(T1)/ρ1 and that G2 is a quotient of Â(T2).
Thus, by induction, we have the following

Theorem 3.35. Gg is isomorphic to a quotient of Â(Tg).

3.4. The fundamental group of the Galois cover of CP1 × Cg

In this subsection we find the fundamental group of the Galois cover of CP1 × Cg,

generalizing the results of [1], [2] and using the method outlined in [20]. We start

with reviewing the known facts on the fundamental group of the Galois cover of a

surface.

Let S be a projective surface of degree n. Given a generic projection π :
S → CP2, we define the Galois cover as the closure of the n-fold fibered product
SGal = S ×π . . . ×π S − " where " is the generalized diagonal. We denote by

SaffGal the affine part of SGal.

Let B be the branch curve of π : S → CP2. It is known that we have the
following exact sequences (see e.g., [25]):

0 → π1(S
aff
Gal) → π1(C2 − B)/〈+2 = 1〉 → Symn → 0,

0 → π1(SGal) → π1(CP2 − B)/〈+2 = 1〉 → Symn → 0.
(3.1)

Let δ = ∏
+i the product of all the standard topological generators of π1(C2 − B).

Recall that π1(CP2 − B) = π1(C2 − B)/〈δ = 1〉. Then, by [20, Proposition 5.10]
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and Theorem 3.35, we see that for the surface Sg (see Notation 3.34(iii))

H1((Sg)Gal) - Z2g(8g−1). (3.2)

We consider δ as an element in π1(S
aff
Gal). Denote Z = 〈δ〉 ∩ Z (see [20, Theorem

4.5]). Then we have the following exact sequence (see [20, Proposition 5.10]):

0 → Z/Z → π1((Sg)Gal) → Z2g(8g−1) → 0. (3.3)

In order to compute π1((Sg)Gal) we need the following definition.

Definition 3.36. The generalized Coxeter group Ĉ(T ) associated to a graph T is
defined as

Ĉ(T ) = Â(T )/〈+2 = 1〉
where + goes over all the generators of Â(T ).

Note that π1((Sg)Gal) is a subgroup of a quotient of Ĉ(Tg), by Theorem 3.35
and the short exact sequence (3.1).

Theorem 3.37.

π1((Sg)Gal) - Z2g(8g−1).

Proof. We will prove the theorem only for g = 1, where for the g > 1 the proof is

similar. Let us consider the following group

H = G1/〈+2 = 1,+4 = +4′ 〉 = Ĉ(T1)/〈+4 = +4′ 〉.

Examining the relations in G1, we see that the relation ρ1 becomes trivial under the
new added relations (see Notation 3.21 and Proposition 3.25). Therefore, the group

H is in fact isomorphic to the following Coxeter group H - CY (T ) (see [33] for
the definition of the Coxeter group CY (T )), where T is as in the figure below.

Figure 3.11. The graph T associated to the Coxeter group H .

Therefore, by [33, Theorem 6.1], H - Sym8$ A1,8 = Sym8$Z7 (see [33] for the
notation of At,n). As this group is infinite, its associated Coxeter element

∏
+i has

infinite order (see e.g. [16, page 175]). Thus its order is infinite also in the group

G1/〈+2 = 1〉 and thus in any subgroup of it, for example in π1((Sg)
aff
Gal). Therefore,

the order of δ ∈ π1(S
aff
Gal) is infinite, and Z = 〈δ〉 ∩ Z = Z. Considering the exact

sequence in (3.3), we are done.
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