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Homogenization of processes in nonlinear visco-elastic composites

AUGUSTO VISINTIN

Abstract. The constitutive behaviour of a multiaxial visco-elastic material is
here represented by the nonlinear relation

ε − A(x) :
∫ t

0
σ (x, τ ) dτ ∈ α(σ, x),

which generalizes the classical Maxwell model of visco-elasticity of fluid type.
Here α(·, x) is a (possibly multivalued) maximal monotone mapping, σ is the
stress tensor, ε is the linearized strain tensor, and A(x) is a positive-definite
fourth-order tensor. The above inclusion is here coupled with the quasi-static

force-balance law, − div σ = #f . Existence and uniqueness of the weak solution
are proved for a boundary-value problem.

Convergence to a two-scale problem is then derived for a composite ma-
terial, in which the functions α and A periodically oscillate in space on a short
length-scale. It is proved that the coarse-scale averages of stress and strain solve a
single-scale homogenized problem, and that conversely any solution of this prob-
lem can be represented in that way. The homogenized constitutive relation is
represented by the minimization of a time-integrated functional, and is rather dif-
ferent from the above constitutive law. These results are also retrieved via De
Giorgi’s notion of %-convergence. These conclusions are at variance with the
outcome of so-called analogical models, that rest on an (apparently unjustified)
mean-field-type hypothesis.

Mathematics Subject Classification (2010): 35B27 (primary); 49J40, 73E50,
74Q (secondary).

1. Introduction

In this work we deal with processes in nonlinear visco-elastic composite materials

of fluid type, and illustrate a method of homogenization based on the use of two

length-scales.

A nonlinear visco-elastic law. Throughout this paper we make the assumption

of infinitesimal displacements, and use the linearized strain-tensor ε. Denoting
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the stress-tensor by σ , we represent a visco-elastic behaviour of fluid type via a
constitutive relation of the form

ε − A(x) :
∫ t

0

σ (x, τ ) dτ ∈ α(σ, x); (1.1)

that is, the differential equation ∂ε/∂t + A(x) : σ = ∂ξ/∂t for some ξ ∈ α(σ, x),
coupled with the initial condition ε(0) = ξ(0) ∈ α(σ (0), x). Here α(·, x) is a (pos-
sibly multivalued) maximal monotone mapping in the space of symmetric second-

order tensors, A(x) is a positive-semidefinite fourth-order tensor, and “:” denotes
the contraction over two indices. (1.1) is of the form ε ∈ γ (σ, x) for a.e. x , with
γ (·, x) a maximal monotone operator in the space L2(0, T )9s (of tensor-valued map-
pings, see Section 2). This inclusion is tantamount to the variational inequality

(
ε −A(x) :

∫ t

0

σ (x, τ ) dτ − z

)
:(σ − v)≥0 ∀(v, z) such that z ∈ α(v, x). (1.2)

This accounts for a fluid type visco-elastic behaviour, for here ε may indefinitely
grow under constant stress. For a linear α(·, x) we thus retrieve the classical
Maxwell model of visco-elasticity, see e.g. [56, 76].

A two-scale homogenization program. In Section 2 we briefly discuss the rhe-

ological model, and outline the Fitzpatrick representation of maximal monotone

operators, see [42], which plays a key role in this work. Afterwards we formulate a

number of models along the following lines:

(i) Model of a macroscopically inhomogeneous but mesoscopically homogeneous

material

In Section 3 we couple the relation (1.1) with the quasi-static equilibrium equation

in a domain ) of R3 in a time interval ]0, T [,

−∇ ·σ = #f1 in )×]0, T [ (∇· := div), (1.3)

and with appropriate boundary-conditions. We formulate a boundary-value prob-

lem, P , in the framework of Sobolev spaces, and via standard techniques we prove

that it has one and only one solution (σ, ε).

(ii)Model of a mesoscopically inhomogeneous material

We then deal with a composite material, that by a classical procedure we replace

by a family of materials parameterized by the length-scale η << 1, in which the

constitutive data A and α periodically depend on x/η. The corresponding problem,
Pη, has the same structure as P , and thus has one and only one solution (ση, εη) for
any η. We also show that this family is uniformly bounded in appropriate function
spaces.

(iii) Two-scale model

In Section 4 we introduce a fine-scale variable y = x/η, that we may let range
through a reference set Y := [0, 1[3 because of the periodicity. We formulate a
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two-scale problem, P2, in which both the coarse- and fine-scale variables x and y

occur, and (1.1) is replaced by the two-scale constitutive law

ε(x,y,t)− A(y,t) :
∫ t

0

σ (x,y,τ ) dτ ∈α(σ (x,y,t),y) for (x, y, t) ∈ )×Y×]0, T [.
(1.4)

We then show that as η → 0 a suitable sequence of solutions of Pη two-scale

converges (in the sense of Nguetseng [ [73]]) to a solution of problem P2.

(iv) Scale-transformations of the constitutive law

This and the next two steps are the main concern of the present work. In view of

the homogenization of the two-scale problem, first in Section 5 we deal with the

homogenization of the constitutive relation. For this purpose we uncouple the two-

scale relation (1.4) from the force-balance equation (1.3), and drop the variable x .

From this cell problem we derive a coarse-scale relation of the form

+(σ̂ , ε̂) =
∫ T

0

σ̂ : ε̂ dt (1.5)

for the average fields σ̂ (t) :=
∫
Y

σ (y, t) dy and ε̂(t) :=
∫
Y

ε(y, t) dy (so-called up-
scaling), Here + is the infimum of a family of time-integral functionals, cf. (5.14),

and is convex, lower semicontinuous and coercive. We also show that, conversely,

all functions σ̂ (t) and ε̂(t) that satisfy this coarse-scale relation can be represented
as averages of suitable fields σ (y, t) and ε(y, t) that fulfill the two-scale law (1.4)
(so-called downscaling).

On the basis of a general result, see [90], we then express the relation (1.5) in

the form

ε̂ ∈ β(σ̂ ) a.e. in ]0, T [. (1.6)

Here β is a maximal monotone operator in the space L2(0, T )9s , hence also in

L2()×]0, T [)9s by an obvious identification. Although, as we saw, the inhomoge-
neous constitutive law may be presented by a first-order ordinary differential equa-

tion, this fails for the homogenized relation. This has a quite different formulation,

that may exhibit a long memory — and it may be expected that so it does.

(v) Single-scale homogenization of the two-scale problem (upscaling)

In Section 6 we extend the above direct and inverse scale-transformations to the

boundary-value problem. We derive a single-scale problem, P1, from the two-scale

problem P2, and show that the Y -average of any solution of P2 solves P1. So as

η → 0 a sequence of solutions of Pη single-scale converges to a solution of P1,

that thus represents the homogenized problem. This final formulation consists of

an initial-boundary-value problem for the system of (1.6) coupled with the balance

law (1.3).
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(vi) Inversion of the scale-transformation (downscaling)

Conversely, we show that any solution of the effective problem P1 is the Y -average

of a solution of problem P2. With a terminology mutuated from [40], this inverse

scale-trasformation defines a reconstruction operator, whereas the Y -average is a

compression operator,

(vii) Interpretation by %-convergence
Thanks to the variational formulation first of the monotone relation and then of

the whole problem, we are also able to retrieve the homogenization result via De

Giorgi’s notion of %-convergence. Concerning this issue, it may be noticed that the
representation of the %-limit is provided by the above construction.

These conclusions are at variance with the outcome of so-called analogical

models, that rest upon an (apparently unjustified) mean-field-type hypothesis.

Remarks. We have thus replaced the passage to the limit in Problem 3.1η by a

two-step procedure: first the derivation of the two-scale formulation, and then the

upscaling. Although a priori some loss of information might be expected because

of the integration with respect to the fine-scale variable y, it turns out that the two-

and single-scale problems convey equivalent information, albeit in different form.

The single-scale formulation is obviously more economical, in that it deals with a

more restricted number of independent variables, and is more prone to numerical

simulations. It may also be noticed that this single-scale constitutive relation is at

variance with customary models of visco-elasticity.

In this work we assume the multivalued mapping α(·, x) to be maximal mono-
tone, without any hypothesis of cyclical monotonicity. By means of the theory pio-

neered by Fitzpatrick [42], we are able to represent the maximal monotone relation

(1.1) in variational form:

Find such (σ, ε) that J (σ, ε) = inf J (= 0). (1.7)

In the next section we shall define the functional J , and briefly illustrate this deriva-

tion.

We are able to express the macroscopic behaviour of our system just in terms

of the coarse-scale fields σ̂ and ε̂. After a classical result of Marcellini [60], an
analogous conclusion is already known to hold for (stationary) minimization prin-

ciples; see e.g. [17, 18, 24, 30, 35]. On the other hand, the present homogenization

result applies to several evolutionary variational inequalities, that are not included

in that class.

This result rests on certain orthogonality properties, see the mutually orthogo-

nal spaces W and Z that are defined in (5.4). This is reminiscent of the analytical

structure that underlies Murat and Tartar’s theory of compensated compactness, cf.

e.g. [68, 69, 82, 83]. Similar orthogonality and convexity properties also occur in

other physical phenomena, e.g. in electromagnetism and heat conduction, see [88].

Literature. Elasticity and viscosity were dealt with in many monographs, see e.g.

[1, 6, 28, 38, 43, 48–50,55–57,71,77].
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A model of visco-elasticity was coupled with the equation of continuum dy-

namics in [15, 16, 57]; see also e.g. [44, 45, 79] for the associated homogenization.

It is well-known that nonlinear elasticity may be represented within the finite-strain

theory, see e.g. [13, 28, 34]: this might then be expected to provide an appropriate

framework for visco-elasticity, too, but no result in this direction is known to this

author.

Homogenization was addressed by a large literature, starting with the seminal

works of Babuška [10], Bensoussan, Lions and Papanicolaou [14], De Giorgi and

Spagnolo [37], Sanchez-Palencia [79], Tartar [82], and others. See e.g. [5, 12, 17,

18, 25, 33, 35, 52, 54, 66, 69, 74, 75].

The notion of two-scale convergence is due to Nguetseng [73] (see also the

seminal paper [7]), was further developed by Allaire [4], and then applied in a

large and increasing number of papers. See also the reformulation of Cioranescu,

Damlamian and Griso [31,32] via periodic unfolding, and the review paper [59].

Two-scale convergence was applied to the homogenization of the (stationary)

Hencky model of elasto-plasticity in [26], and of quasi-stationary processes for a

wide class of inelastic composite materials in [3, 72]. The two-scale homogeniza-

tion of quasi-static elasto-plastic processes with strain-hardening was dealt with

in [65], via what is known as the energetic approach to rate-independent evolution.

In [11] two-scale convergence was also applied to the study of %-convergence (for
the latter, see e.g. [17, 18, 35, 36]) for quasiconvex functionals; see also , [30].

After the seminal work of Fitzpatrick [42], the representation of monotone

operators has extensively been developed by several authors, for instance Burachik,

Martinez-Legaz, Svaiter, and others; see e.g. [22, 23, 61–63]. See also the theory

developed by Ghoussoub in [47].

The present work illustrates a method that may also be applied to a large num-

ber of variational inequalities that occur in continuummechanics, electromagnetism

and heat conduction. For instance, the homogenization of nonlinear extensions of

the Maxwell and Kelvin-Voigt models of visco-elasticity was studied in this way

in [85, 87], including the inertial term in the equation of continuum dynamics. A

relation of the form

σ − A−1(x) : ∂ε

∂t
∈ α−1(ε, x) (1.8)

accounts for a visco-elastic behaviour of solid-type, for here under constant stress ε
remains bounded. The homogenization of non-quasi-static processes in composites

of this type was dealt with in [89].

ACKNOWLEDGEMENTS. The author gratefully acknowledges several useful re-

marks of the anonymous reviewer.



616 AUGUSTO VISINTIN

2. The rheological model and Fitzpatrick representation

In this section we outline our model of visco-elasticity, and review some elements

of the Fitzpatrick theory.

First let us fix some notation. We shall mark vectors by an arrow, but use no

special symbol for second- and higher-order tensors. We shall denote by R9 the

linear space of 3×3 Cartesian tensors (or rather of their representation in a fixed
Cartesian reference system), and by R9s the linear subspace of symmetric tensors;

we shall also write L2())9s in place of L
2();R9s ), and use similar notation for other

spaces of tensor-valued functions. We shall denote the scalar product between two

vectors (i.e., the contraction over an index) by “·”, and that between two matrices
(i.e., the contraction over two indices) by “:”. Thus

u :v =
3∑

i, j=1
ui jvi j , (B :v)i j =

3∑

k,-=1
Bi jk-vk-,

u : B :v =
3∑

i, j,k,-=1
ui j Bi jk-vk- ∀u, v ∈ R9,∀B ∈ R34,

(A : B)i jmn =
3∑

k,-=1
Ai jk-Bk-mn ∀A, B ∈ R34 .

We define the spheric and deviatoric components of any v ∈ R9:

v(s) := 1

3

3∑

i=1
vi i I (I := {δi j }: 3×3-identity tensor), v(d) := v − v(s).

Rheological behaviour. We shall deal with mechanical processes in a continuum,

assuming that displacements are so small that we can identify the Euler and La-

grange coordinates. We shall denote the Cauchy stress tensor by σ , the displace-
ment field by #u, and use the linearized strain tensor

εi j := (∇s #u)i j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
for i, j = 1, 2, 3. (2.1)

In the literature a number of constitutive relations has been formulated in terms of σ ,
ε and ε̇ (by the dot we denote the partial time-derivative), cf. e.g. [1,2,43,49,56,76].
Here we just consider two basic behaviours:

(i) Linear viscosity

This may be represented by a law of the form

ε̇ = A :σ ; (2.2)
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here A is a symmetric and positive-semidefinite tensor of R3
4
, and

∑3
i=1 ε̇i i = 0:

Ai jk- = A jik- ∀i, j, k, -,
∑

i=1,2,3
Aiik- = 0 ∀k, -, (2.3)

Ai jk-vi jvk- ≥ 0 ∀v ∈ R9s . (2.4)

(ii) Nonlinear elasticity

We represent nonlinear elasticity by the relation

ε ∈ α(σ ) for a maximal monotone mapping α : R9s → P(R9s ) (2.5)

(by P(R9s ) we denote the power set). This also encompasses linear (possibly aniso-
tropic) elasticity, viz. ε = L :σ for some positive-definite fourth-order compliance
tensor L ∈ R3

4
such that Li jk- = L jik- for any i, j, k, - ∈ {1, 2, 3}. Although

the standard theory assumes that α admits a potential, namely, Li jk- = Lk-i j in the

linear case, here we shall not need this restriction.

The relation (2.5) is expressed in terms of the linearized strain tensor, ε, and
thus rests on the assumption of infinitesimal displacements. This relation might be

regarded as an approximation of a finite-displacement constitutive law. Although

such a model would be much more satisfactory from the mechanical point of view,

its analysis looks rather problematic; actually, so far that theory has been developed

for nonlinear elasticity just in the stationary framework.

Although the range of validity of (2.5) is necessarily confined to a neighbour-

hood of the origin (of R9s ), this relation might be regarded as an improvement over

the linear stress-strain relation ε = L : σ , because of its greater generality. For
instance, a mapping σ )→ B(σ ) :σ is maximal monotone in a neighbourhood V of
the origin, whenever B(0) is positive-definite and B(·) (∈ R9×9) is a continuously
differentiable tensor-function in V . In fact, for any σ1, σ2 ∈ R9s , by the mean-value
theorem there exists λ ∈ ]0, 1[ such that, setting σλ = λσ1+(1−λ)σ2 and denoting
by D the Jacobian derivative,

[B(σ1) :σ1 − B(σ2) :σ2] :(σ1 − σ2)

=(σ1 − σ2) : {D[B(σ ) :σ ]σ=σλ} :(σ1 − σ2)

=(σ1 − σ2) : {[DB(σλ)] :σλ + B(σλ)} :(σ1 − σ2).

(2.6)

This quantity is nonnegative whenever σ1 and σ2 are sufficiently close to 0, for then
the tensor B(σλ) is uniformly positive-definite in V and dominates

[DB(σλ)] :σλ = ∑3
i, j=1[∂B(σλ)/∂σi j ] :σλi j = O(σ ).

Further constitutive behaviours may be derived by composing the above proper-

ties via series and/or parallel arrangements. For instance, the serial combination

of the above elastic and viscous elements corresponds to the relation (1.1). On
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the other hand, the parallel arrangement of the same elements is represented by

the dual constitutive law (1.8). Strictly speaking, series and parallel arrangements

are meaningful only in the univariate setting; however, these relations may eas-

ily be extended to multivariate models, just by assuming the uniformity either of

stress or of strain, respectively; see e.g. [87]. For a linear α, (1.1) and (1.8) respec-
tively account for the classical Maxwell and Kelvin-Voigt models, that are idealized

representations respectively of the visco-elastic behaviour of fluid and solid mate-

rials [1, 2, 43, 49, 55, 56, 64, 76]. These relations encompass the basic elements (i)

and (ii) above; for instance, these are respectively retrieved from (1.1) by selecting

either α = 0 or A = 0.

The Fitzpatrick representation of maximal monotone operators. Fitzpatrick

established the following result.

Theorem 2.1 ([42]). Let B be a real Banach space, γ be an operator B → P(B′),
and set

fγ (ξ,ξ ′) := sup
{
〈ξ ′, ξ0〉+〈ξ ′

0, ξ〉−〈ξ ′
0, ξ0〉 : ξ0∈ B, ξ ′

0∈γ (ξ0)
}

∀(ξ, ξ ′)∈ B×B′.
(2.7)

γ is maximal monotone if and only if

fγ (ξ, ξ ′) ≥ 〈ξ ′, ξ〉 ∀(ξ, ξ ′) ∈ B×B′, (2.8)

fγ (ξ, ξ ′) = 〈ξ ′, ξ〉 ⇔ ξ ′ ∈ γ (ξ). (2.9)

The function fγ is convex and lower semicontinuous; nowadays it is called the

Fitzpatrick function associated to the operator γ .
Coming back to our model of visco-elasticity, for any x ∈ ), setting

ϕ(ξ, η, x) := sup
η0∈α(ξ0,x)

{
η :ξ0 − η0 :(ξ0 − ξ)

}
∀(ξ, η) ∈ (R9s )

2 (2.10)

and 1(x, t) :=
∫ t
0 σ (x, τ ) dτ , as α(·, x) is maximal monotone we thus have

ϕ(σ, ε − A(x) :1, x) + σ : A(x) :1 ≥ σ :ε ∀σ, ε, (2.11)

ϕ(σ, ε − A(x) :1, x) + σ : A(x) :1 = σ :ε ⇔ (1.1). (2.12)

By integrating over )×]0, T [, this system yields

J (σ, ε) :=
∫∫

)×]0,T [
[ϕ(σ, ε − A(x) :1, x) − σ :ε] dxdt

+ 1

2

∫

)
1 : A(x) :1 dx

∣∣∣
t=T

≥ 0 ∀σ, ε, (2.13)

J (σ, ε) = 0 ⇔ (1.1) in ) × ]0, T [. (2.14)

By (2.13), the latter statement also reads

J (σ, ε) = inf J ⇔ (1.1) in ) × ]0, T [; (2.15)

actually, by (2.12), the infimum of J necessarily vanishes, as α(·, x) is maximal
monotone. We may thus rewrite (1.1) in the form (1.7).
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3. Weak formulation, existence and uniqueness

In this section we provide the weak formulation of a boundary-value problem, that

accounts for quasi-static processes in an inhomogeneous visco-elastic material rep-

resented by the constitutive relation (1.1). We then prove existence and uniqueness

of the solution via classical techniques, see e.g. [38, 50, 71], in view of the ensuing

modelling of composite materials.

P.D.E. and constitutive relation. Let us fix any T > 0 and set At := A×]0, t[ for
any subset A ofR3 and any t ∈ ]0, T ]. Let us also assume that a load #f1 ∈ L1()T )3

and a traction #g ∈ L1(%1T ) are respectively applied to a domain ) of R3 and to

a part %1 of its boundary, whereas the remainder %0 of the boundary is kept fixed.
(We select this homogeneous condition just for the sake of simplicity.) We shall

neglect the inertia term, set the quasi-static force-balance equation

−∇ ·σ = #f1 in D′()T )3, (3.1)

and, denoting by #ν the outward-oriented unit normal vector on %1, prescribe the
boundary conditions

#u = #0 a.e. on %0T , (3.2)

σ ·#ν = #g a.e. on %1T . (3.3)

We fix any p, q such that 1 < q ≤ 2 ≤ p < +∞ and 1/p + 1/q = 1. We assume

that

ϕ : R9s×R9s×) → R ∪ {+∞} is a Borel function, and
ϕ(·, ·, x) represents a maximal monotone operator α(·, x), for a.e. x, (3.4)

∃c1, ..., c4 > 0 : ∀v, z ∈ R9s , for a.e. x ∈ ),

c1(|v|p + |z|q) − c2 ≤ ϕ(v, z, x) ≤ c3(|v|p + |z|q) + c4,
(3.5)

A ∈ L∞())3
4

, A fulfills (2.3) and (2.4) a.e. in ). (3.6)

The reader will notice that we specified some regularity hypotheses in terms of the

representative function, rather than the represented mapping α.

Functional framework. Henceforth we assume that the domain ) is bounded and

of Lipschitz class, that %0 is measurable and has positive bidimensional Hausdorff
measure. Denoting the trace operator by γ0, we also set

V :=
{
#v ∈ W 1,q())3 : γ0#v = #0 a.e. on %0

}
, ‖#v‖V := ‖∇s #v‖Lq ())9 . (3.7)

By the Korn and Poincaré inequalities (for the extension of the former to W 1,q())3

see e.g. [46,84]), V is a closed Banach subspace of W 1,q())3. Identifying the dual
space of Lq())3 with L p())3 and denoting the dual space of V by V ′, we get

V ⊂Lq())3, L p())3⊂V ′ with compact, continuous and dense injections. (3.8)
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We denote by 〈·, ·〉 the duality pairing between V ′ and V , define the linear and
continuous operator

∇· : L p())9s → V ′, 〈∇ ·w, #v〉 := −
∫

)
w :∇s #v dx ∀w∈L p())9s ,∀#v∈V, (3.9)

and assume that
#f ∈ L p(0, T ; V ′). (3.10)

Problem 3.1. (Weak formulation) Find (#u, σ ) such that, setting ε := ∇s #u,

#u ∈ Lq(0, T ; V ), σ ∈ L p()T )9s , (3.11)

ε − A(x) :
∫ t
0 σ (x, τ ) dτ ∈ α(σ, x) a.e. in )T , (3.12)

∫
) σ :∇s #v dx = 〈 #f , #v〉 ∀#v ∈ V, a.e. in ]0, T [. (3.13)

For any #f1 ∈ L p()T )3 and any #g ∈ L p(%1T )3, if we set

〈 #f , #v〉 =
∫

)

#f1 ·#v dxdτ +
∫

%1

#g ·γ0#v ds ∀#v ∈ V, a.e. in ]0, T [, (3.14)

then the hypothesis (3.10) is fulfilled. By (3.13), −∇ · σ = #f1 in D′())3, a.e. in
]0, T [. Thus ∇ ·σ ∈ L p()T )3 and this equation holds a.e. in )T .

Theorem 3.1 (Existence). Let 1 < q ≤ 2 ≤ p < +∞ be such that 1/p+1/q = 1.

If (3.4)-(3.6), (3.10) are fulfilled, then Problem 3.1 has a solution.

Proof.

(i) Approximation

Let us fix any m ∈ N and set

h := T

m
, #f nm := 1

h

∫ nh

(n−1)h
#f (t) dt in V ′, for n = 1, ...,m. (3.15)

Next we introduce a time-discretization of Problem 3.1.

Problem 3.1m . Find (#unm, σ nm) ∈ V × L p())9s for n = 1, ...,m such that, setting

εnm := ∇s #unm ,

εnm − hA(x) :
n∑

i=1
σ im ∈ α(σ nm, x) a.e. in ), (3.16)

∫

)
σ nm :∇s #v dx = 〈 #f nm, #v〉 ∀#v ∈ V . (3.17)
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We shall prove existence of a solution of this problem step by step, via the classical

theory of maximal monotone operators, cf. e.g. [19, 21, 58, 80, 91]. Let us set

Bnm(v, x) :=






α(v, x) + hA(x) :v ∀v∈R9s , for n=1

α(v, x) + hA(x) :v + hA(x) :
n−1∑

i=1
σ im ∀v∈R9s , for n=2, ...,m,

so that (3.16) also reads σ nm = (Bnm)−1(εnm, x) a.e. in ). The system (3.16), (3.17)
is then equivalent to the quasilinear elliptic problem

#unm ∈ V, −∇∗ ·
[
(Bnm)−1(∇s #unm, x)

]
= #f nm in V ′. (3.18)

The operator Bnm is maximal monotone, and the same applies to its inverse (Bnm)−1.
By the hypotheses on ϕ and A, the mapping Bnm is locally bounded. (B

n
m)−1 is then

coercive, in the sense that for any selection w ∈ Bnm(v, ·)
1

‖v‖V

∫

)
w :v dx → +∞ as ‖v‖V → +∞.

The equation (3.18) has then a solution #unm , and this determines εnm = ∇s #unm and
σ nm = (Bnm)−1(εnm). Thus Problem 3.1m has a solution.

For any family {vnm}n=1,...,m of functions ) → R, let us set

vm := piecewise-linear time-interpolate of v1m, ..., vmm , a.e. in ),

v̄m(·, t) := vnm a.e. in ),∀t ∈ ](n − 1)h, nh[, for n = 1, . . . ,m.
(3.19)

Defining the piecewise-linear interpolate1m(x, t) :=
∫ t
0 σ̄m(x,τ ) dτ for a.e. (x, t) ∈

)T and the corresponding piecewise-constant interpolate 1̄m , the system (3.16),

(3.17) reads

ε̄m − A(x) :1̄m ∈ α(σ̄m, x) a.e. in )T , (3.20)

−∇∗ ·σ̄m = #̄fm in V ′, a.e. in ]0, T [. (3.21)

(ii) A Priori estimates

By the Fitzpatrick property (2.12), the inclusion (3.20) is equivalent to

ϕ(σ̄m, ε̄m − A(x) :1̄m, x) = σ̄m : ε̄m − σ̄m : A(x) :1̄m a.e. in )T . (3.22)

Notice that (3.21) yields
∫
) σ̄m : ε̄m dx = 〈 #̄fm, #̄um〉 a.e. in ]0, T [. By integrating

(3.22) in space and time, we then get

1

2

∫

)
1̄m : A(x) :1̄m dx

∣∣∣
τ=t

+
∫∫

)t

ϕ(σ̄m, ε̄m − A :1̄m, x) dxdτ

=
∫ t

0

〈 #̄fm , #̄um〉dτ ∀t ∈ ]0, T ].
(3.23)



622 AUGUSTO VISINTIN

Denoting the volume of ) by |)|, by (3.5) and (3.10) we then have

c1

∫∫

)t

(
|σ̄m |p + |ε̄m − A(x) :1̄m |q

)
dxdτ

≤ ‖ #̄f ‖L p(0,T ;V ′)‖#̄um‖Lq (0,t;V ) + c2t |)| ∀t ∈ ]0, T ].
(3.24)

On the other hand, denoting by C1,C2, ... suitable constants independent of m, by
the Korn inequality and by (3.6), it is easy to see that

‖#̄um‖Lq (0,T ;V ) ≤ C1‖ε̄m‖Lq ()T )9,
∫∫

)t

|A(x) :1̄m |q dxdτ ≤C2

∫∫

)t

|σ̄m |q dxdτ ≤C3

(∫∫

)t

|σ̄m |p dxdτ

)q/p

.
(3.25)

We claim that then

‖#̄um‖Lq (0,T ;V ), ‖σ̄m‖L p()T )9 ≤ C2. (3.26)

Actually, by (3.24) and (3.25),

‖#̄um‖q
Lq (0,t;V ) ≤ C

q

1

∫∫

)t

|ε̄m |q dxdτ

≤ 2qCq

1 max{1,C3}
{(∫∫

)t

|σ̄m |p dxdτ

)q/p

+
∫∫

)t

(
|ε̄m − A(x) :1̄m |q

)
dxdτ

}

≤ 2qCq

1 max{1,C3}
{
1+

∫∫

)t

(
|σ̄m |p + |ε̄m − A(x) :1̄m |q

)
dxdτ

}

≤ 2qCq

1 max{1,C3}
{
1+ c−11

(
‖ #̄f ‖L p(0,T ;V ′)‖#̄um‖Lq (0,t;V ) + c2t |)|

)}
∀t ∈ ]0, T ].

(3.27)

The uniform estimate for um follows, and by (3.24) we then get the estimate for σm .

(iii) Passage to the limit

By the uniform estimates (3.26) there exist #u and σ such that, setting ε := ∇s #u, as
m → ∞ along a suitable sequence(1)

#̄um ⇀ #u in Lq(0, T ; V ), (3.28)

σ̄m ⇀ σ in L p()T )9, (3.29)

whence, setting 1(x, t) :=
∫ t
0 σ (x, τ ) dτ for a.e. (x, t) ∈ )T ,

A(x) :1̄m ⇀ A(x) :1 in L p()T )9, (3.30)

ε̄m ⇀ ε in Lq()T )9. (3.31)

(1)By→ and⇀ we shall denote strong and weak convergence, respectively.
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Notice that the left side of (3.23) is a convex and lower semicontinuous functional

of σ̄m and ε̄m . By passing to the limit in (3.21) and to the inferior limit in (3.23),
we then get (3.13) and

1

2

∫

)
σ : A(x) :σ dx

∣∣∣
τ=t

+
∫∫

)t

ϕ(σ, ε − A :1, x) dxdτ

≤
∫ t

0

〈 #f , #u〉dτ ∀t ∈ ]0, T ],
(3.32)

namely,

∫∫

)t

[
σ : A(x) :1 + ϕ(σ, ε − A(x) :1, x)

]
dxdτ ≤

∫ t

0

〈 #f , #u〉 dτ ∀t ∈ ]0, T ].
(3.33)

By the next Proposition we get (3.12), so that we can conclude that (σ, #u) solves
Problem 3.1.

Let us denote by IB the indicator function of any set B, i.e.,

IB(v) := 0 if v ∈ B, IB(v) := +∞ otherwise. (3.34)

Proposition 3.2. Under the hypotheses of Theorem 3.1, let us set

X #f :=
{
σ ∈ L p()T )9s : −∇ ·σ = #f in V ′, a.e. in ]0, T [

}
, (3.35)

J0(#u, σ ) :=
∫∫

)T

[
σ : A(x) :1 + ϕ(σ, ε − A(x) :1, x)

]
dxdt (3.36)

−
∫ T

0

〈 #f , #u〉 dt + IX #f (σ ) ∀(#u, σ ) ∈ Lq(0, T ; V )×L p()T )9s .

For any (#u, σ ) ∈ Lq(0, T ; V )×L p()T )9s , then

(#u, σ ) solves Problem 3.1 ⇔ J0(#u, σ ) = inf J0 = 0. (3.37)

Proof. For any (#u, σ ) ∈ Lq(0, T ; V )×X #f , 〈 #f , #u〉 =
∫
) σ : ε dx a.e. in ]0, T [.

Hence

J0(#u, σ )=
∫∫

)T

[
σ :(A(x) :1 − ε)+ ϕ(σ, ε − A(x) :1, x)

]
dxdt + IX #f (σ )

∀(#u, σ ) ∈ Lq(0, T ; V )×L p()T )9s .

(3.38)

It then suffices to notice that, by (2.11) and (2.12), the integrand is a.e. nonnegative,

and vanishes if and only if (3.12) is fulfilled.
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Theorem 3.3 (Uniqueness). Let the hypotheses of Theorem 3.1 be fulfilled and

(#u, σ ) be a solution of Problem 3.1. Assume that

either α(·, x) is strictly increasing for a.e. x ∈ ),

or A(x) is positive-definite for a.e. x ∈ ).
(3.39)

Then σ is uniquely determined. If α(·, x) is single-valued for a.e. x ∈ ), then #u is
also unique.

Proof. For i = 1, 2 let (#ui , σi ) be a solution of Problem 3.1, set εi := ∇s #ui ,
#̄u := #u1 − #u2, and define ε̄, σ̄ similarly a.e. in )T . Let us now write (3.12) for

i = 1, 2 multiply the difference of these inclusions by σ̄ , and integrate in space and
time. Selecting a suitable r̄ ∈ α(σ1, ·) − α(σ2, ·) a.e. in )T and setting 1̄(·, t) :=∫ t
0 σ̄ (·, τ ) dτ for a.e. t ∈ ]0, T [, this yields

∫∫

)t

σ̄ : ε̄ dxdτ ≥ 1

2

∫

)
1̄(x, t) : A(x) ::1̄(x, t) dx +

∫∫

)t

r̄ : σ̄ dxdτ

a.e. in ]0, T [.
(3.40)

On the other hand by selecting #v = #̄u in (3.13) we have
∫∫

)t
σ̄ : ε̄ dxdτ = 0. By

(3.39), we then infer that σ̄ = 0 a.e. in )T ; thus σ is uniquely determined. If

α(·, x) is single-valued for a.e. x ∈ ), then ε is also unique by (3.12). By the Korn
inequality the same then applies to #u.

Remark. Under the hypotheses of Theorem 3.1 the inclusion (3.12) might be refor-

mulated as ε ∈ A(σ ), for an operatorA that is maximal monotone in L2()T )9s . One
might then use the corresponding Fitzpatrick function. This reformulation would

not lead to a substantial modification of the above results.

4. Two-scale limit

In this section we deal with the asymptotic behaviour of a periodic composite ma-

terial. After briefly recalling the notion of two-scale convergence, we derive a two-

length-scale model by letting the functions α and A oscillate more and more rapidly
in space.

Two-scale weak formulation. By a classical procedure, first we introduce a ref-

erence volume element Y := [0, 1[3, and denote by Y the same set equipped with
the topological and differential structure of the unit torus. Any Y -periodic function

defined on R3 may thus be identified with a function defined on Y . We then fix a
positive parameter η << 1, assume that the constitutive functions ϕ and A depend
(ηY )-periodically on x ; the same then applies to the maximal monotone operator α
that is represented by ϕ. We accordingly replace the constitutive relation (1.1) by

ε − A(x/η) :1 ∈ α(σ, x/η) a.e. in )T (1(x, t) :=
∫ t
0σ (x, τ ) dτ ). (4.1)
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In order to enforce the Y -periodicity, we may equivalently set y = x/η modulus
Y , and let y range through the unit torus Y . We are thus induced to consider the
two-scale relation

ε − A(y) :1 ∈ α(σ, y) a.e. in )T ×Y . (4.2)

Like in (2.12), this inclusion is tantamount to the inequality

ϕ(σ, ε − A(y) :1, y) ≤ (ε − A(y) :1) :σ a.e. in )T ×Y .

As A and α explicitly depend on y but not on x , this inclusion may be interpreted as
the constitutive behaviour of a macroscopically homogeneous but mesoscopically

nonhomogeneous material. The next developments might trivially be extended to a

material that is also macroscopically inhomogeneous, just by allowing A and α to
depend explicitly on the pair (x, y).

For any integrable function v = v(y) we define the average component v̂ and
the fluctuating component ṽ:

v̂ :=
∫

Y
v(y) dy, ṽ := v − v̂ ∀v ∈ L1(Y). (4.3)

We shall assume that the hypotheses (3.4)–(3.6) hold with y ∈ Y in place of x ∈ ),
and that, instead of (3.10),

#f ∈ L p()T )3. (4.4)

We couple the inclusion (4.1) with the force-balance equation (3.13), that here reads
∫

)
σ :∇s #v dx =

∫

)

#f ·#v dx ∀#v ∈ V, a.e. in ]0, T [,

and formulate a single-length-scale problem, that we label by Problem 3.1η. This

only differs from Problem 3.1 in two respects: here the argument x is replaced by

x/η in the functions A and α, and the homogeneous Neumann condition is im-
plicitly assumed on %1T , in order to simplify the homogenization procedure. By
Theorem 3.1 for any η > 0 this problem has a solution (#uη, ση), and by (3.26)

‖#uη‖Lq (0,T ;V ), ‖ση‖L p()T )9 ≤ Constant (independent of η). (4.5)

Next we formulate a two-scale problem, that we shall then retrieve by passing to

the limit in Problem 3.1η.

Problem 4.1 (Two-scale formulation). Find

#u ∈ Lq(0, T ; V ), #u1 ∈ Lq
(
)T ;W 1,q(Y)3

)
, σ ∈ L p()T ×Y)9s , (4.6)

such that #̂u1 = #0 a.e. in )T , and, setting ε = ∇s #u + ∇s
y #u1 a.e. in )T ×Y ,

ε − A(y) :1 ∈ α(σ, y) a.e. in )T ×Y, (4.7)
∫

)
σ̂ :∇s #v dx =

∫

)

#f ·#v dx ∀#v ∈ V, a.e. in ]0, T [, (4.8)

∇y ·σ = #0 in D′(Y)3, a.e. in )T . (4.9)
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Two-scale convergence. In view of relating Problem 3.1η to Problem 4.1, we

briefly review the definition of two-scale convergence along the lines of [4, 73].

For any r ∈ ]1,+∞[ we say that a bounded sequence {uη} of Lr ()) (weakly)
two-scale converges to u ∈ Lr () × Y) in the latter space, and write uη ⇀

2
u,

whenever
∫

)
uη(x)v(x, x/η) dx →

∫∫

)×Y
u(x, y)v(x, y) dxdy ∀v ∈ D()×Y). (4.10)

We extend this definition to space- and time-dependent functions as follows. For

any r, s ∈ ]1,+∞[, any bounded sequence {uη} of Ls
(
0, T ; Lr ())

)
and any u ∈

Ls
(
0, T ; Lr ()×Y)

)
, we say that uη ⇀

2
u whenever

∫∫

)T

uη(x, t)v(x, x/η, t) dxdt →
∫∫∫

)T×Y
u(x, y, t)v(x, y, t) dxdydt

∀v ∈ D()T ×Y).

(4.11)

The extension to either vector- or tensor-valued functions is obvious. In view of

the next statements, we remind the reader that we assumed ) to be a (bounded)

Lipschitz domain.

Lemma 4.1 ([4, 73]). Let r ∈ ]1,+∞[ and {uη} be a bounded sequence of Lr ()).
Then there exists u ∈ Lr () × Y) such that, possibly extracting a subsequence,

uη ⇀
2

u in Lr () × Y). (4.12)

Lemma 4.2 ([86]). Let r ∈ ]1,+∞[, #u∈Lr ())9, and a sequence {#uη} ofW 1,r ())3

be such that #uη ⇀ #u in this space. Then there exists #u1 ∈ Lr
(
);W 1,r (Y)3

)
such

that #̂u1 = #0 a.e. in ), and, possibly extracting a subsequence,

∇s #uη ⇀
2

∇s #u + ∇s
y #u1 in Lr ()×Y)9. (4.13)

Lemma 4.3 ([4, 73]). Let r ∈ ]1,+∞[ and a bounded sequence {wη} of Lr ())9s
be such that {η∇ ·wη} is bounded in Lr ())3. Then there exists w ∈ Lr ()×Y)9s
such that ∇y ·w ∈ Lr ()×Y)3, and, possibly extracting a subsequence,

wη ⇀
2

w in Lr ()×Y)9s , η∇ ·wη ⇀
2

∇y ·w in Lr ()×Y)3. (4.14)

Derivation of Problem 4.1. Next we go back to Problem 3.1η and prove two-scale

convergence to a solution of Problem 4.1.

Theorem 4.4 (Existence and uniqueness). Let 1 < q ≤ 2 ≤ p < +∞ be such

that 1/p + 1/q = 1, and let the hypotheses (3.4)-(3.6) and (4.4) be fulfilled, here

with y ∈ Y in place of x ∈ ). For any η > 0 let (#uη, ση) be a solution of
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Problem 3.1η, and assume the uniform estimates (4.5) (in Section 3 we saw that

such a family of solutions exists). Then there exist #u, #u1, σ as in (4.6) such that,

setting εη = ∇s #uη and ε = ∇s #u + ∇s
y #u1, as η vanishes along a suitable sequence,

#uη ⇀ #u in Lq(0, T ; V ), (4.15)

ση ⇀
2

σ in L p()T ×Y)9, (4.16)

εη ⇀
2

ε in Lq()T ×Y)9. (4.17)

This entails that (#u, #u1, σ ) is a solution of Problem 4.1.

If moreover (3.39) (here with y in place of x) is fulfilled a.e. in Y , then σ
is uniquely determined. If α(·, y) is single-valued for a.e. y ∈ Y , then #u is also
unique.

Proof. (i) First we prove convergence and existence of a solution. By (4.5) and by

Lemmata 4.1 and 4.2, there exist #u, #u1, σ, ε such that (4.15)–(4.17) are fulfilled. By
taking η → 0 in (3.13)η (namely, (3.13) written for ση – we shall repeatedly use

this notation) we obviously retrieve (4.8). By Lemma 4.3 the equation (4.9) also

follows from (3.13)η. In view of deriving (4.7), let us notice that (3.33)η yields

∫∫

)T

[
ση : A(x/η) :1η + ϕ(ση, εη − A(x/η) :1η, x/η)

]
dxdt

≤
∫∫

)T

#f ·#uη dxdt.

(4.18)

As the semicontinuity properties of weak (single-scale) convergence take over to

weak two-scale convergence, see Section 1 of [88], we have

lim inf
η→0

∫∫

)T

ση : A(x/η) :1η dxdt ≥ 1

2

∫∫

)×Y
1 : A(y) :1 dxdy

∣∣∣
t=T

=
∫∫∫

)T×Y
σ : A(y) :1 dxdydt,

lim inf
η→0

∫∫

)T

ϕ(ση, εη − A(x/η) :1η, x/η) dxdt

≥
∫∫∫

)T×Y
ϕ(σ, ε − A(y) :1, y) dxdydt.

By passing to the inferior limit in (4.18) we then get

∫∫∫

)T×Y

[
σ : A(y) :1 + ϕ(σ, ε − A(y) :1, y)

]
dxdydt ≤

∫∫

)T

#f ·#u dxdt. (4.19)
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On the other hand by (4.8) and (4.9)

∫∫

)T

σ̂ : ε̂ dxdt =
∫∫

)T

#f ·#u dxdt, (4.20)

∫

Y
σ :ε dy =

∫

Y
σ :∇s #u dy +

∫

Y
σ :∇s

y #u1 dy

= σ̂ :
∫

Y
∇s #u dy = σ̂ : ε̂ a.e. in )T ,

(4.21)

so that (4.19) also reads

∫∫∫

)T×Y

{
σ : [A(y) :1 − ε] + ϕ(σ, ε − A(y) :1, y)

}
dxdydt ≤ 0. (4.22)

As by (2.13) the opposite inequality holds for any (σ, ε), this inequality is actually
an equality, and by (2.14) it is equivalent to (4.7). Thus Problem 4.1 has a solution.

The statement about uniqueness follows by the argument of Theorem 3.3.

5. Single-scale homogenization of the constitutive law

In view of homogenizing the complete Problem 4.1 in the next section, here we deal

with a cell problem, and integrate the constitutive relation (4.7) over the reference

volume element Y .
In the first part of this section we replace A(y) : 1(x, y, t) by S(x, y, t), and

regard the functions σ and S as mutually independent. After this replacement, in
(4.7) the coarse-scale variable x and the time t just play the role of parameters; we

then omit them, and deal with the stationary inclusion

ε(y) − S(y) ∈ α(σ (y), y) for a.e. y ∈ Y . (5.1)

Afterwards we shall reintroduce the space- and time-dependence, and replace S by

A(y) :1.
Throughout this section we still assume the hypotheses (3.4)–(3.6) with y ∈ Y

in place of x ∈ ), and with 1 < q ≤ 2 ≤ p < +∞, 1/p + 1/q = 1. We shall also

use the decomposition (4.3). Next we state a result that we shall apply afterwards.

Lemma 5.1. Let B1, B2 be real Banach spaces and B2 be also reflexive. Let a

function f : B1×B2 → ] − ∞,+∞] be prescribed, and define the function

g : B1 → [−∞,+∞] : ξ1 )→ inf { f (ξ1, ξ2) : ξ2 ∈ B2}.

Then:

(i) if f is convex then g is also convex;
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(ii) if f is sequentially weakly lower semicontinuous and “locally-in-B1 and

uniformly-in-B2 coercive”, in the sense that

∀ bounded set S ⊂ B1,∀M ∈ R,

the set {ξ2 ∈ B2 : f (ξ1, ξ2) ≤ M, ∀ξ1 ∈ S} is bounded, (5.2)

then g is also sequentially weakly lower semicontinuous.

(iii) If f is coercive, that is, {(ξ1, ξ2) ∈ B1×B2 : f (ξ1, ξ2) ≤ M} is bounded for
any M > 0, then g is also coercive.

Proof. (We reproduce the argument of [[87]] for the sake of completeness.)

(i) For any ξ ′
1, ξ

′′
1 ∈ B1, any ξ ′

2, ξ
′′
2 ∈ B2 and any λ ∈ ]0, 1[, the convexity of f

yields

g(λξ ′
1 + (1− λ)ξ ′′

1 ) ≤ f (λξ ′
1 + (1− λ)ξ ′′

1 , λξ ′
2 + (1− λ)ξ ′′

2 )

= f (λ(ξ ′
1, ξ

′
2) + (1− λ)(ξ ′′

1 , ξ ′′
2 ))

≤ λ f (ξ ′
1, ξ

′
2) + (1− λ) f (ξ ′′

1 , ξ ′′
2 ).

By taking the infimum with respect to ξ ′
2 and ξ ′′

2 , we then get

g(λξ ′
1 + (1− λ)ξ ′′

1 ) ≤ λg(ξ ′
1) + (1− λ)g(ξ ′′

1 ).

Thus g is convex.

(ii) Let us fix any sequence {ξ1n} in B1 that weakly converges to some ξ1 ∈ B1; thus

{ξ1n} is bounded. If L := lim infn→∞ g(ξ1n) = +∞ then trivially g(ξ1) ≤ L . Let

us then assume that L < +∞. By definition of g there exists a sequence {ξ2n} in
B2 such that

f (ξ1n, ξ2n) ≤ g(ξ1n) + 1/n ∀n ∈ N if L > −∞,

f (ξ1n, ξ2n) ≤ −n ∀n ∈ N if L = −∞.
(5.3)

By (5.2) the sequence {ξ2n} is bounded in B2, hence there exists ξ2 ∈ B2 such that

ξ2n → ξ2 weakly in B2, as n → ∞ along a further subsequence. By passing to the

limit in (5.3) along this subsequence, the sequential weak lower semicontinuity of

f then yields

g(ξ1) ≤ f (ξ1, ξ2) ≤ lim inf
n→∞ f (ξ1n, ξ2n) ≤ lim inf

n→∞ g(ξ1n).

(iii) The final statement about coerciveness is straightforward.
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Next we shall derive a relation for the average fields ε̂, σ̂ , Ŝ from the inclusion (5.1);
this integrated formulation will then turn out to be equivalent to the original one, in

a sense that we shall specify. We proceed through a number of steps.

(i) Let us first set

W := {η ∈ L p(Y)9s : η̂ = 0,∇ ·η = #0 in D′(Y)3},

Z := {ζ ∈ Lq(Y)9s : ζ̂ = 0, ζ = ∇s #v a.e. in Y , for some #v ∈ W 1,q(Y)3},
(5.4)

and note the orthogonality properties

∫

Y
η(y) :ζ(y) dy = 0 ∀η ∈ Z ,∀ζ ∈ W,

∫

Y
η̂ : ζ̃ (y) dy =

∫

Y
η̃ : ζ̂ (y) dy = 0 ∀η ∈ L p(Y)9,∀ζ ∈ Lq(Y)9,

(5.5)

whence
∫

Y
η(y) :ζ(y) dy = η̂ : ζ̂ ∀η ∈ R9s + Z ,∀ζ ∈ R9s + W. (5.6)

(ii) Defining ϕ as in (2.10), with y ∈ Y in place of x ∈ ), (2.11) and (2.12)
respectively yield

ϕ(σ, ε − S, y) ≥ σ :(ε − S) ∀(σ, ε, S) ∈ (R9s )
3, a.e. in Y, (5.7)

and, for any (σ, ε, S) ∈ (R9s + W )×(R9s + Z)×(R9s + W ),

(5.1) ⇔ ϕ(σ, ε − S, y) = σ :(ε − S) a.e. in Y . (5.8)

(iii) For any (σ, ε, S) ∈ (R9s + W )×(R9s + Z)×(R9s + W ), (5.7) yields

ϕ(σ, ε − S, y) + σ : S ≥ (σ̂ + σ̃ ) :(ε̂ + ε̃) a.e. in Y . (5.9)

By (3.5) the integral

5(σ, ε, S) :=
∫

Y

[
ϕ(σ, ε − S, y) + σ : S

]
dy (5.10)

is finite. By (5.6) and (5.9), we have

5(σ, ε, S) ≥ σ̂ : ε̂ ∀(σ, ε, S) ∈ (R9s + W )×(R9s + Z)×(R9s + W ). (5.11)

(iv) We claim that

(5.1) ⇔ 5(σ, ε, S) = σ̂ : ε̂. (5.12)
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The implication “⇒” follows from (5.8) by integration because of (5.6). Next we

derive the opposite implication. As
∫
Y σ : ε dy = σ̂ : ε̂ by (5.6), the equality

5(σ, ε, S) = σ̂ : ε̂ also reads
∫

Y

[
ϕ(σ, ε − S, y) + σ : S − σ :ε

]
dy = 0.

By (5.7) this integrand is pointwise nonnegative, therefore it vanishes a.e. in Y; by
(2.14) this is tantamount to (5.1).

(v) Next we introduce the dependence on time and replace S by A(y) :1 a.e. in YT ,
namely, we deal with the inclusion

ε(y, t) − A(y) :1(y, t) ∈ α(σ (y, t), y)

for a.e. (y, t) ∈ YT , with 1(y, t) :=
∫ t
0σ (y, τ ) dτ.

(5.13)

Let us define the functional

+[0,T ] : L p(0, T )9s×Lq(0, T )9s → R : (σ̄ , ε̄) )→

inf

{∫ T

0

5
(
σ̄ + σ̃ , ε̄ + ε̃, A(y) :

∫ t
0 [σ̄ (τ ) + σ̃ (y, τ )] dτ

)
dt :

σ̃ ∈ L p(0, T ;W ), ε̃ ∈ Lq(0, T ; Z)

}
.

(5.14)

(Most often we shall write + in place of +[0,T ].) This infimum is finite, by our

hypotheses on ϕ and A. The inequality (5.11) and the statement (5.12) respectively
yield

+(σ̄ , ε̄) ≥
∫ T

0 σ̄ : ε̄ dt ∀σ̄ ∈ L p(0, T )9s ,∀ε̄ ∈ Lq(0, T )9s , (5.15)

(5.13) ⇒ +(σ̂ , ε̂)
∫ T

0 σ̂ : ε̂ dt. (5.16)

(vi) Next we invert the latter implication. Let σ̄ ∈ L p(0, T )9s and ε̄ ∈ Lq(0, T )9s be
such that

+(σ̄ , ε̄) =
∫ T

0

σ̄ : ε̄ dt
(
or equivalently, +(σ̄ , ε̄) ≤

∫ T

0

σ̄ : ε̄ dt, by (5.15)
)
.

Let us define the Banach spaces B1 := L p(0, T )9s×Lq(0, T )9s , B2 := L p(0, T ;W )×
Lq(0, T ; Z), and the functional

F : B1×B2 → R : (σ̄ , ε̄, σ̃ , ε̃)

)→
∫ T

0

5
(
σ̄ + σ̃ , ε̄ + ε̃, A(y) :

∫ t
0 [σ̄ (τ ) + σ̃ (y, τ )] dτ

)
dt,

(5.17)
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so that (5.14) reads

+(σ̄ , ε̄) = inf
{
F(σ̄ , ε̄, σ̃ , ε̃) : σ̃ ∈ L p(0, T ;W ), ε̃ ∈ Lq(0, T ; Z)

}

∀(σ̄ , ε̄) ∈ L p(0, T )9s×Lq(0, T )9s .
(5.18)

Note that F is convex and lower semicontinuous, and by (3.5) it is locally uniformly

coercive in the sense of (5.2). Therefore the infimum of (5.14) is attained; namely,

there exist σ̃ ∈ L p(0, T ;W ) and ε̃ ∈ Lq(0, T ; Z) such that, setting σ = σ̄ + σ̃ ,

ε = ε̄ + ε̃ and 1 =
∫ t
0 [σ̄ (τ ) + σ̃ (y, τ )] dτ ,

+(σ̄ , ε̄) = F(σ̄ , ε̄, σ̃ , ε̃) =
∫ T

0

5(σ, ε, A(y) :1) dt =
∫ T

0

σ̄ : ε̄ dt. (5.19)

By (5.11) we then deduce that 5(σ, ε, A(y) : 1) = σ̄ : ε̄ a.e. in ]0, T [, and (5.12)
yields (5.13).

Finally, by Lemma 5.1 the functional + is also convex, lower semicontinuous

and coercive.

We have thus proved the next statement.

Theorem 5.2. Let 1 < q ≤ 2 ≤ p < +∞ be such that 1/p + 1/q = 1, assume

that the hypotheses (3.4)-(3.6) are fulfilled with y ∈ Y in place of x ∈ ), and define
+ as in (5.14). Then:

(i) The functional + is convex, lower semicontinuous and coercive.

(ii) +(σ̄ , ε̄) ≥
∫ T

0

σ̄ : ε̄ dt ∀σ̄ ∈ L p(YT )9s ,∀ε̄ ∈ Lq(0, T )9s . (5.20)

(iii) For any σ ∈ L p(0, T ;W + R9s ) and any ε ∈ Lq(0, T ; Z + R9s ), (using the
notation (4.3))

ε − A(y) :
∫ t

0

σ (y, τ ) dτ ∈ α(σ, y) a.e. in YT ⇒ +(σ̂ , ε̂) ≤
∫ T

0

σ̂ : ε̂ dt. (5.21)

The latter is actually an equality because of (5.20); it is thus equivalent to a null-
minimization problem:

+(σ̂ , ε̂) ≤
∫ T

0

σ̂ : ε̂ dt ⇔ J0(σ̂ , ε̂) = inf
L p(0,T )9s×Lq (0,T )9s

J0 = 0,

where J0(σ̄ , ε̄) := +(σ̄ , ε̄) −
∫ T

0

σ̄ : ε̄ dt ∀(σ̄ , ε̄) ∈ L p(0, T )9s×Lq(0, T )9s .

(5.22)
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(iv) Conversely, for any pair (σ̄ , ε̄) ∈ L p(0, T )9s×Lq(0, T )9s ,

+(σ̄ , ε̄) ≤
∫ T

0

σ̄ : ε̄ dt ⇒
{

∃(̃σ , ε̃) ∈ L p(0, T ;W )×Lq(0, T ; Z) such that

ε̄ + ε̃ − A(y) :
∫ t
0 [σ̄ (τ ) + σ̃ (y, τ )] dτ ∈ α(σ̄ + σ̃ , y) a.e. in YT .

(5.23)

(v) If (3.39) (here with y in place of x) is fulfilled a.e. in Y , then in part (iv) σ̃ is

uniquely determined. If α(·, y) is single-valued for a.e. y, then ε̃ is also unique.

The final statement can be checked by mimicking the uniqueness argument of Theo-

rem 4.4. The only difference is that here there is no dependence on the coarse-scale

variable x ∈ ).
Ahead in Theorem 5.4 we shall see that +(σ̄ , ε̄) ≤

∫ T

0 σ̄ : ε̄ dt defines a maxi-
mal monotone relation between σ̄ and ε̄. By Fitzpatrick’s Theorem 2.1 this entails
that inf J0 = 0, so that this inequality is equivalent to the minimization of J0 (that

is, the minimum necessarily vanishes).

Next we characterize the solution of the minimization problem (5.14). For the

sake of readability, in the next statement we shall denote by ∂iϕ the subdifferential

of ϕ with respect to the i th argument (i = 1, 2), and set 1(y, t) :=
∫ t
0σ (y, τ ) dτ .

Proposition 5.3. For any (σ, ε) ∈ L p(YT )9s ×Lq(YT )9s , using the notation (4.3),
(5.10) and (5.14),

+(σ̂ , ε̂) =
∫ T

0

5(σ, ε, A(y) :
∫ t
0σ (y, τ ) dτ ) dt < +∞ (5.24)

if and only if (σ, ε) ∈ L p(0, T ;R9s + W ) × Lq(0, T ;R9s + Z), and (dropping the
argument (σ, ε−A(y) :1, y))






∫∫

YT

[
∂1ϕ :(σ − w) − ∂2ϕ : A(y) :

∫ t
0 (σ − w)(y, τ ) dτ

+(σ − w) : A(y) :
∫ t
0σ (y, τ ) dτ

+σ : A(y) :
∫ t
0 (σ − w)(y, τ ) dτ

]
dydt ≤ 0 ∀w ∈ L p(0, T ;W ),∫∫

YT
∂2ϕ :(ε − z) dydt ≤ 0 ∀z ∈ Lq(0, T ; Z).

(5.25)

Remark. By part (iv) of Theorem 5.2, for any pair (σ̄ , ε̄) ∈ L p(0, T )9s×Lq(0, T )9s ,
setting ε = ε̄ + ε̃ and σ = σ̄ + σ̃ , the equation (5.25) determines the unknown
(̃σ , ε̃) ∈ L p(0, T ;W )×Lq(0, T ; Z). This defines a (possibly multivalued) operator

6 : L p(0, T )9s×Lq(0, T )9s → P
(
L p(0, T ;W )×Lq(0, T ; Z)

)
: (σ̄ , ε̄) )→ (̃σ , ε̃).

(5.26)
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In the terminology of [40],

Q : L p(0, T ;W + R9s )×Lq(0, T ; Z + R9s ) → L p(0, T )9s×Lq(0, T )9s :
(σ, ε) )→ (σ̂ , ε̂) is a compression operator,

R : L p(0, T )9s×Lq(0, T )9s →P
(
L p(0, T ;W + R9s )×Lq(0, T ; Z + R9s )

)
:

(σ̄ , ε̄) )→ (σ, ε) = (σ̄ , ε̄) + 6(σ̄ , ε̄) is a reconstruction operator,

(5.27)

(Clearly, here it is the information provided by the fine-scale fields σ̃ and ε̃ that
are either compressed or reconstructed.) Indeed Q ◦ R = I and R ◦ Q ⊃ I by

Theorem 5.2. Moreover R = Q−1 under the hypotheses of part (iv) of that theorem.

Next we express the coarse-scale constitutive behaviour via a maximal mono-

tone operator that acts in the space L p(0, T )9s , and may thus exhibit dependence on
the past (memory effect),

Theorem 5.4. Let 1 < q ≤ 2 ≤ p < +∞ be such that 1/p + 1/q = 1, assume

that the hypotheses (3.4)-(3.6) are fulfilled with y ∈ Y in place of x ∈ ), define the
functional + as in (5.14), and set

β[0,T ](σ̄ ) :=
{
ε̄ ∈ Lq(0, T )9s : +(σ̄ , ε̄) =

∫ T

0

σ̄ : ε̄ dt
}

∀σ̄ ∈ L p(0, T )9s . (5.28)

This defines a maximal monotone operator L p(0, T )9s → P
(
Lq(0, T )9s

)
.

The functional + thus represents the operator β[0,T ], that we shall also denote
by β.

Proof. (i) First we show that β is monotone, that is, for any (σ̄i , ε̄i ) ∈ L p(0, T )9s×
Lq(0, T )9s (i = 1, 2),

+(σ̄i , ε̄i ) ≤
∫ T

0

σ̄i : ε̄i dt (i = 1, 2) ⇒
∫ T

0

(σ̄1−σ̄2) :(ε̄1−ε̄2) dt ≥ 0. (5.29)

Here we use the argument of [42]. By the convexity of + and by (5.28)

+(1
2
(σ̄1 + σ̄2),

1
2
(ε̄1 + ε̄2)) ≤ 1

2
+(σ̄1, ε̄1) + 1

2
+(σ̄2, ε̄2)

≤ 1

2

∫ T

0

σ̄1 : ε̄1 dt + 1

2

∫ T

0

σ̄2 : ε̄2 dt.

On the other hand (5.20) yields

1

4

∫ T

0

(σ̄1 + σ̄2) :(ε̄1 + ε̄2) dt ≤ +(1
2
(σ̄1 + σ̄2),

1
2
(ε̄1 + ε̄2)).
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By the two latter formulas we get

1

4

∫ T

0

(σ̄1 + σ̄2) :(ε̄1 + ε̄2) dt ≤ 1

2

∫ T

0

(σ̄1 : ε̄1 + σ̄2 : ε̄2) dt,

that is,
∫ T

0 (σ̄1 − σ̄2) :(ε̄1 − ε̄2) dt ≥ 0.

(ii) The maximality follows from [90, Theorem 5.6].

Lemma 5.5. If the mapping ϕ(v, z, y) is strictly convex with respect to v (z, resp.)
for any z (v, resp.), uniformly for y ∈ Y , then the functional+(·, ε̄) (+(σ̄ , ·), resp.)
is strictly convex for any admissible ε̄ (σ̄ , resp.). If the mapping ϕ(·, ·, y) is strictly
convex uniformly for y ∈ Y , then the functional + is globally strictly convex.

Proof. Let us assume that ϕ(·, ·, y) is strictly convex uniformly for y ∈ Y , and
prove that + is globally strictly convex. This hypothesis entails that F (defined in

(5.17)) is globally strictly convex. For any pair (σ̄i , ε̄i ) ∈ Dom(+) (i = 1, 2) there
exist (̃σi , ε̃i ) such that, setting σi := σ̄i + σ̃i and εi := ε̄i + ε̃i , we have

(σ̄i , σ̃i , ε̄i , ε̃i ) ∈ Dom(F), +(σ̄i , ε̄i ) = F(σ̄i , σ̃i , ε̄i , ε̃i ) (i = 1, 2).

Let us now fix any λ ∈]0, 1[, set σ̄λ := λσ̄1 + (1 − λ)σ̄2, and define σ̃λ, ε̄λ, ε̃λ

similarly. If (σ̄1, ε̄1) 8= (σ̄2, ε̄2), by (5.18) and by the strict convexity of F we

deduce that

+(σ̄λ, ε̄λ) ≤ F(σ̄λ, σ̃λ, ε̄λ, ε̃λ) < λF(σ̄1, σ̃1, ε̄1, ε̃1) + (1− λ)F(σ̄2, σ̃2, ε̄2, ε̃2)

= λ+(σ̄1, ε̄1) + (1− λ)+(σ̄2, ε̄2).

The proof of the first statement is similar and is omitted.

Proposition 5.6. Let 1 < q ≤ 2 ≤ p < +∞ be such that 1/p + 1/q = 1, assume

that the hypotheses (3.4)-(3.6) are fulfilled with y ∈ Y in place of x ∈ ), and define
ϕ, + and β as in (2.10), (5.14) and (5.28). If the mapping ϕ(v, z, y) is strictly
convex with respect to z (v, respectively) for any v (z, respectively), uniformly for
y ∈ Y , then the operator β (β−1, respectively) is single-valued.

Proof. In view of proving that β is single-valued, let us assume that ϕ(v, ·, y) is
strictly convex for any v, uniformly for y ∈ Y . Let us fix any σ̄ ∈ Dom(β), any
λ ∈]0, 1[, any ε̄1, ε̄2 ∈ β(σ̄ ), and set ε̄λ := λε̄1 + (1 − λ)ε̄2. As by Lemma 5.5
+(σ̄ , ·) is strictly convex, if ε̄1 8= ε̄2 then

+(σ̄ , ε̄λ) < λ+(σ̄ , ε̄1) + (1− λ)+(σ̄ , ε̄2)

(5.28)= λ

∫ T

0

σ̄ : ε̄1 dt + (1− λ)

∫ T

0

σ̄ : ε̄2 dt =
∫ T

0

σ̄ : ε̄λ dt.

Thus +(σ̄ , ε̄λ) <
∫ T

0 σ̄ : ε̄λ dt , at variance with (5.20). We then conclude that the

operator β is single-valued.
The proof of the single-valuedness of β−1 is similar and is omitted.
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Causality. The upscaled relation β acts between spaces of time-dependent func-
tions. It may thus account for nonlocal dependence in time: whenever ε̄ ∈ β(σ̄ ),
for any τ ∈ [0, T ], a priori the tensor ε̄(τ ) might depend on the tensor-function σ̄
in the whole interval [0, T ]. This raises the issue of causality. However, because
(5.20), it is easily seen that (using the notation (5.14))

+[0,T ](σ̄ , ε̄) =
∫ T

0

σ̄ : ε̄ dt ⇒ +[0,τ ](σ̄ , ε̄) =
∫ τ

0

σ̄ : ε̄ dt ∀τ ∈ [0, T ]. (5.30)

We have thus proved the next statement.

Proposition 5.7 (Causality). Let β be defined as in (5.28). Then for any σ̄ ∈
L p(0, T )9s and any ε̄ ∈ Lq(0, T )9s ,

ε̄ ∈ β[0,T ](σ̄ ) ⇒ ε̄
∣∣
[0,τ ] ∈ β[0,τ ](σ̄

∣∣
[0,τ ]) ∀τ ∈ [0, T ], (5.31)

namely, ε̄[0,τ ] only depends on σ̄[0,τ ].

6. Single-scale homogenization of the whole problem

In this section we derive a single-scale problem, and show its equivalence to the

two-scale Problem 4.1, in a sense that we shall specify. This entails that if a se-

quence of solutions of Problem 3.1η two-scale converges to a solution of Prob-

lem 4.1, then it also single-scale converges to a solution of the homogenized coarse-

scale problem of this section. We also show that, conversely, any solution of the

latter problem can be retrieved in this way. We then retrieve these results via %-
convergence. Finally, we briefly discuss the significance of analogical models.

First we introduce the single-scale problem, and then relate it to the two-scale

formulation. We still assume that 1 < q ≤ 2 ≤ p < +∞, 1/p + 1/q = 1, that

the hypotheses (3.4)–(3.6) and (4.4) are fulfilled with y ∈ Y in place of x ∈ ), and
that the spaces W, Z and the functional+ are as in (5.4) and (5.14). We still denote

the average over Y by the hat, and use the bar to label several functions that might
occur as averages of functions that depend on y: for instance, σ̄ is a candidate to be
represented in the form σ̄ =

∫
Y σ (y) dy (=: σ̂ ). On the other hand this does not

apply to #u, which cannot be the average of any fine-scale field.

Problem 6.1. Find #u ∈ Lq(0, T ; V ) and σ̄ ∈ L p()T )9s such that, setting ε̄ :=
∇s #u,

ε̄ ∈ β(σ̄ ) in L2()T )9s , (6.1)∫

)
σ̄ :∇#v dx =

∫

)

#f ·#v dx ∀#v ∈ V, a.e. in ]0, T [. (6.2)
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By Theorem 5.4 the operator β is maximal monotone, the inclusion (6.1) is equiv-
alent to

+(σ̄ , ε̄) ≤
∫ T

0

σ̄ : ε̄ dt a.e. in ).

Moreover, by Theorem 5.2 this holds if and only if there exist σ̃ ∈ L p()T ;W ) and
ε̃ ∈ Lq()T ; Z) such that

ε̄ + ε̃ − A(y) :
∫ t
0 [σ̄ (τ ) + σ̃ (·, ·, τ )] dτ ∈ α(σ̄ + σ̃ , y) a.e. in )T ×Y . (6.3)

Problem 6.1 may thus be regarded as a homogenized version of Problem 4.1.

The next statement may be compared with Proposition 3.2.

Proposition 6.1. Let 1 < q ≤ 2 ≤ p < +∞, 1/p + 1/q = 1, assume that the

hypotheses (3.4)-(3.6) and (4.4) are fulfilled, here with y ∈ Y in place of x ∈ ).
Let us define X #f and its indicator function IX #f as in (3.34) and (3.35), and set

J1(#u, σ̄ ) :=
∫

)
+(σ̄ ,∇s #u) dx −

∫∫

)T

#f ·#u dxdt + IX #f (σ̄ )

∀(#u, σ̄ ) ∈ Lq(0, T ; V )×L p()T )9s .

(6.4)

Then

(#u, σ̄ ) solves Problem 6.1 ⇔ J1(#u, σ̄ ) = inf J1 = 0. (6.5)

Proof. It suffices to notice that
∫∫

)T

σ̄ :∇s #u dxdt =
∫∫

)T

#f ·#u dxdt ∀(#u, σ̄ ) ∈ Lq(0, T ; V )×X #f ,

that by part (ii) of Theorem 5.2

+(σ̄ , ε̄) ≥
∫ T

0

σ̄ : ε̄ dt a.e. in ), ∀σ̄ ∈ L p()T )9s ,∀ε̄ ∈ Lq()T )9s ,

and that the opposite inequality is tantamount to the inclusion (6.1).

Next we assume that α(·, y) is single-valued, that the hypotheses of Theo-
rem 5.2 are fulfilled, and establish a precise one-to-one relation between the so-

lutions of Problems 4.1 and 6.1, using the decomposition (4.3). By part (iv) of

Theorem 5.2, for any (#u, σ̄ ) ∈ Lq(0, T ; V )×L p()T )9s that satisfies (6.1) there ex-
ists (̃σ , ε̃) ∈ L p()T ;W )×Lq()T ; Z) such that ε := ∇s #u + ε̃ and σ := σ̄ + σ̃
fulfill the inclusion ε − A : σ ∈ α(σ, y) a.e. in )T ×Y . Moreover, by Lemma 4.2
there exists #u1 ∈ Lq

(
)T ;W 1,q(Y)3

)
such that #̂u1 = #0 a.e. in )T and ε̃ = ∇s

y #u1.
This defines a multivalued mapping

R0 : Lq(0, T ; V )×L p()T )9s

→ P
(
Lq(0, T ; V )×Lq

(
)T ;W 1,q(Y)3

)
×L p()T ×Y)9s

)
:

(#u, σ̄ ) )→ (#u, #u1, σ ).

(6.6)
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Theorem 6.2. Let 1 < q ≤ 2 ≤ p < +∞ be such that 1/p+ 1/q = 1, and let the

hypotheses (3.4) − (3.6) and (4.4) be fulfilled, here with y ∈ Y in place of x ∈ ).
Let also α(·, y) be single-valued for a.e. y ∈ Y . Then:
(i) If (#u, #u1, σ ) is a solution of Problem 4.1 (by Theorem 4.4 such a solution exists),
then (#u, σ̂ ) solves Problem 6.1.

(ii) Conversely, if (#u, σ̄ ) is a solution of Problem 6.1, then any (#u, #u1, σ )∈ R0(#u, σ̄ )
solves Problem 4.1.

(iii) If (3.39) (here with y in place of x) is fulfilled, then the solution of Problem 6.1
is unique.

Proof. (i) Let us remind the definitions (3.36) and (6.4) of the functionals J0 and

J1. If (#u, #u1, σ ) is a solution of Problem 4.1, then J0(#u, σ̂ ) = 0 by Propositions 3.2.

Hence J1(#u, σ̂ ) = 0 by the definition (5.14) of +. By Propositions 6.1, (#u, σ̂ ) thus
solves Problem 6.1.

(ii) This part follows from the definition of the operator R0.

(iii) By Theorem 4.4, Problem 4.1 has only one solution. The equivalence be-

tween Problems 4.1 and 6.1 then yields the uniqueness of the solution of the latter

problem.

Corollary 6.3. Let 1 < q ≤ 2 ≤ p < +∞ be such that 1/p + 1/q = 1, and

let the hypotheses (3.4)-(3.6) and (4.4) be fulfilled, here with y ∈ Y in place of

x ∈ ). Then there exist #u and σ̄ ∈ L p()T )9s such that, as η → 0 along a suitable

sequence,

#uη ⇀ #u in Lq(0, T ; V ), (6.7)

ση ⇀ σ̄ in L p()T )9. (6.8)

This entails that (#u, σ̄ ) is a solution of Problem 6.1. If (3.39) (here with y in place of
x) is fulfilled and α(·, y) is single-valued for a.e. y ∈ Y , then the whole sequences
converge.

Proof. Theorem 4.4 yields (4.15)–(4.17) as η → 0 along a suitable sequence. No-

tice that (6.7) coincides with (4.15), and (4.16) yields (6.8) for σ̄ = σ̂ . By part
(i) of Theorem 6.2 the pair (#u, σ̄ ) solves Problem 6.1. The final statement is a

direct consequence of the uniqueness of the solution, that is stated in part (iii) of

Theorem 6.2.

Remark. By Theorem 6.2 the average operator Q0 : (#u, #u1, σ ) )→ (#u, σ̂ )maps any
solution of Problem 4.1 to a solution of Problem 6.1, and the multivalued operator

R0 is its inverse. In the terminology of [40], Q0 is a compression operator and R0 is

a (multivalued) reconstruction operator, This may be compared with the definitions

(5.27), that concerned the constitutive relation.
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%-Convergence. The formulation of our evolution problem in terms of minimiza-
tion suggests the possibility of retrieving the above homogenization result via De

Giorgi’s notion of %-convergence (see e.g. [17, 18, 35, 36]).
Let us remind the definitions (3.36) and (6.4) of the functionals J0 and J1. For

any η > 0 let us replace x by x/η in Problem 3.1, and use the index η to label the
corresponding functional and any minimizer of the associated functional J0η; that

is,

J0η(#u, σ ) :=
∫∫

)T

[
ϕ
(
σ, ε − A(x/η) :

∫ t
0σ, x/η

)
+ σ : A(x/η) :

∫ t
0σ

]
dxdt

−
∫ T

0

〈 #f , #u〉 dt + IX #f (σ ) ∀(#u, σ ) ∈ Lq(0, T ; V )×L p()T )9s .

(6.9)

Theorem 6.4. Let the hypotheses of Theorem 4.4 be satisfied (so that the solution
of Problem 6.1 exists and is unique). The family {J0η} then %-converges weakly in

Lq(0, T ; V )×L p()T )9s to J1, that is, for any (#u, σ̄ ) ∈ Lq(0, T ; V )×L p()T )9s ,

∀{(#uη, ση)} ⊂ Lq(0, T ; V )×L p()T )9s ,

if #uη ⇀ #u in Lq(0, T ; V ) and ση ⇀ σ̄ in L p()T )9s ,

then lim inf
η→0

J0η(#uη, ση) ≥ J1(#u, σ̄ ),

(6.10)

∃{(#uη, ση)} ⊂ Lq(0, T ; V )×L p()T )9s such that

#uη ⇀ #u in Lq(0, T ; V ), ση ⇀ σ̄ in L p()T )9s , and

lim sup
η→0

J0η(#uη, ση) ≤ J1(#u, σ̄ ).
(6.11)

Proof. (i) Let us first check (6.10) and (6.11) for (#u, σ̄ ) equal to the solution of
Problem 6.1. The inferior-limit property (6.10) easily follows from the convexity

and lower semicontinuity of the function ϕ. For any η, let (#uη, ση) be the solution
of Problem 3.1η; as J0η(#uη, ση) = 0 and J1(#u, σ ) = 0, the condition (6.11) is also

fulfilled.

(ii) In view of proving the sequential weak %-convergence at any point

(#̄v, s̄) ∈ Dom(J1) = Lq(0, T ; V )×X #f (see (3.35)),

next we linearly perturb the functionals J0η and J1, in such a way that (#̄v, s̄) will
be a minimizer of the perturbed J1. As J1 is convex and finite on the whole affine

subspace Lq(0, T ; V )×X #f , and L
p(0, T ; V ′)×Lq()T )9s is the dual of the ambient

space Lq(0, T ; V )×L p()T )9s ,

∅ 8= ∂ J1(#̄v, s̄) ⊂ P
(
L p(0, T ; V ′)×Lq()T )9s

)
∀(#̄v, s̄)∈Lq(0, T ; V )×X #f . (6.12)
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We then select any - := (#-1, -2) ∈ ∂ J1(#̄v, s̄), and set

J
(-)
0η (#v, s) := J0η(#v, s) −

∫ T

0

〈#-1, #v〉 dt −
∫∫

)T

-2 :s dxdt,

J
(-)
1 (#v, s) := J1(#v, s) −

∫ T

0

〈#-1, #v〉 dt −
∫∫

)T

-2 :s dxdt

∀(#v, s) ∈ Lq(0, T ; V )×L p()T )9s .

(6.13)

The properties of these linearly perturbed functionals are analogous to those of J0η

and J1. By the definition of subdifferential, J
(-)
1 attains its minimum at (#̄v, s̄). By

part (i) of this argument, J
(-)
0η then weakly %-converges to J

(-)
1 at (#̄v, s̄). This is

tantamount to the weak %-convergence of J0η to J1 at the same point. As (#̄v, s̄)
is just any point of the domain of J1, the weak %-convergence of J0η to J1 in the

whole space Lq(0, T ; V )×L p()T )9s is thus established.

Analogical models. Several rheological laws, including (1.1) and (1.8), may be

represented via so-called analogical models, namely networks of elements that are

arranged in series and/or in parallel. Similar procedures are used in electrostatics, in

magnetostatics, in electromagnetism, and so on, see e.g. [1, 2, 43, 49, 56, 76]. Their

significance is not yet clear, and seems to be essentially heuristic.

Let us combine in series a finite family {Mj : j = 1, ..., N } of univariate mod-
els like (1.1), each one being characterized by two functions α j (·, x) and A j (x).
Each element Mj defines a mapping F j : ε j )→ σ j for any j . This arrangement is
associated to the following properties:

(i) mean-field hypothesis: ε j is independent of j and equals the strain ε of the
overall model;

(ii) additivity: σ = ∑N
j=1 σ j , that is,

σ = ∑N
j=1 F j (ε j ) = ∑N

j=1 F j (ε) =: F̂(ε). (6.14)

Finite parallel arrangements are governed by the dual properties: σ j is independent
of j , and the overall ε equals the sum of the ε j ’s. Both constructions take over
to a countable family of elements just by replacing finite sums by series. In the

continuous setting the index j may be replaced by the fine-scale variable y ∈ Y ,
and sums by integrals over the reference cell Y . A large class of univariate models
can be constructed by this procedure, and these constitutive relations take over to

the multivariate setting just by extending the properties (i) and (ii). In the latter case

the interpretation in terms of series and parallel arrangements obviously fails.

A comparison between the outcome of this construction and the above two-

and single-scale models seems natural. In general the constitutive relations that is

derived via homogenization need not be equivalent to those issued from analogical

models, for the latter rest on the (unjustified) a priori assumption that either the
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stress or the strain should be mesoscopically uniform, viz. independent of the fine-

scale variable y. This uniformity would hold if the solution (#uη, ση) of Problems
3.1η were such that either the family {εη := ∇#uη : η > 0} or {ση : η > 0}
satisfy a uniform estimate in a Sobolev space Wr,p(Y)9s for some r > 0 and p ≥ 1.

However, no estimate like that seems available, although −∇ ·ση = #f , and the
symmetrized gradient εη := ∇s #u fulfills a (second-order) compatibility equation.
Onemay thus expect that in general the material will exhibit a nontrivial mesoscopic

structure, that cannot be integrated simply by assuming either the above properties

(i) and (ii), or their dual formulation for parallel arrangements.
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tiques linéaires de Kelvin-Voigt, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 287–290.



HOMOGENIZATION OF PROCESSES 643

[45] G. FRANCFORT and P. SUQUET, Homogenization and mechanical dissipation in thermo-
viscoelasticity, Arch. Rational Mech. Anal. 96 (1986), 265–293.

[46] G. GEYMONAT, P. SUQUET, Functional spaces for Norton-Hoff materials, Math. Methods
Appl. Sci. 8 (1986), 206–222.

[47] N. GHOUSSOUB, “Self-dual Partial Differential Systems and their Variational Principles”,
Springer, 2009.

[48] M.E. GURTIN, The linear theory of elasticity, In: “Handbuch der Physik”, S. Flügge (ed.),
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