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Integral pinching results
for manifolds with boundary

GIOVANNI CATINO AND CHEIKH BIRAHIM NDIAYE

Abstract. We prove that some Riemannian manifolds with boundary satis-
fying an explicit integral pinching condition are spherical space-forms. More
precisely, we show that three-dimensional Riemannian manifolds with totally
geodesic boundary, positive scalar curvature and an explicit integral pinching be-
tween the L2-norm of the scalar curvature and the L2-norm of the Ricci tensor
are spherical space-forms with totally geodesic boundary. Moreover, we also
prove that four-dimensional Riemannian manifolds with umbilic boundary, posi-
tive Yamabe invariant and an explicit integral pinching between the total integral
of the (Q, T )-curvature and the L2-norm of the Weyl curvature are spherical
space-forms with totally geodesic boundary. As a consequence, we show that a
certain conformally invariant operator, which plays an important role in Confor-
mal Geometry, is non-negative and has trivial kernel if the Yamabe invariant is
positive and verifies a pinching condition together with the total integral of the
(Q, T )-curvature. As an application of the latter spectral analysis, we show the
existence of conformal metrics with constant Q-curvature, constant T -curvature,
and zero mean curvature under the latter assumptions.

Mathematics Subject Classification (2010): 53C24 (primary); 53C20, 53C21,
53C25 (secondary).

1. Introduction

One of the most important questions about the relation between algebraic properties
of the full curvature tensor and the topology of manifolds is under which conditions
on its curvature tensor a Riemannian manifold is homeomorphic or diffeomorphic
to a space of constant sectional curvature, namely a space form. A model example
is the classical sphere theorem conjectured by Rauch [35], and which says that any
closed, simply connected and 1

4 -pinched Riemannian manifold is diffeomorphic to
the standard sphere. The topological version was proved by Berger [5] and Klin-
genberg [27]. Just recently the original conjecture has been settled by Brendle and
Schoen [6], using a result of Bohm and Wilking [7].

On the other hand, many sphere like theorems appeared in the literature in the
last 30 years in connection to the celebrated Ricci flow. Just to mention some of
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them which are related to our results, we start by recalling the pioneering work of
R. Hamilton [22]. Using the Ricci flow, he proved the following theorem.

Theorem 1.1 (Hamilton). If (M, g) is a closed three-dimensional Riemannian
manifold with positive Ricci curvature, then M is diffeomorphic to a spherical space
form, i.e. M admits a metric with constant positive sectional curvature.

Later C. Margerin [30] proved an optimal curvature characterization of the
smooth 4-sphere. We recall Margerin’s theorem in a form where the optimality
issue is not apparent, but enough for the link with our work. We define the weak
pinching quantity

W Pg = |Wg|2g + 2|Eg|2g
R2

g
,

where Wg denoting the Weyl tensor, Eg the trace-free Ricci tensor and | · |g the
usual norm of a tensor with respect to the metric g. Here is the result.

Theorem 1.2 (Margerin). Let (M, g) be a closed four-dimensional Riemannian
manifold with positive scalar curvature. If the pinching condition W Pg < 1

6 is
satisfied, then M is diffeomorphic to a spherical space form. Moreover, we get that
the manifold M is diffeomorphic to S4 or RP4.

Much later, Chang, Gursky and Yang [15] proved a remarkable improvement of
Margerin’s theorem with assumptions which are in integral form, and conformally
invariant too.

Theorem 1.3 (Chang-Gursky-Yang). Let (M, g) be a closed four-dimensional
Riemannian manifold with positive Yamabe invariant. If the curvatures satisfy∫

M

(
|Wg|2g + 2|Eg|2g − 1

6
R2

g

)
dVg < 0,

then M is diffeomorphic to a spherical space form. Moreover, we get that the man-
ifold M is diffeomorphic to S4 or RP4.

Notice that the integral pinching condition can be written in the following form
(for the definition of Qg , see below)∫

M
QgdVg >

1

8

∫
M

|Wg|2dVg.

Recently, the first author and Z. Djadli [9] proved an integral pinching theorem in
dimension three.

Theorem 1.4 (Catino-Djadli). Let (M, g) be a closed three-dimensional Rieman-
nian manifold with positive scalar curvature. If∫

M
|Ricg|2gdV ≤ 3

8

∫
M

R2
gdVg,

then M is diffeomorphic to a spherical space form.
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A slightly weaker version of this result was also obtained by Y. Ge, C.-S. Lin
and G. Wang [23].

On the other hand, the Ricci flow techniques have also been used to get sphere
like theorems for manifolds with boundary. An example which is of interest to us
is the following result of Shen [37].

Theorem 1.5 (Shen). If (M, g) is a compact three–dimensional Riemannian man-
ifold with totally geodesic boundary and positive Ricci curvature, then M admits a
metric with constant positive sectional curvatures in the interior and totally
geodesic boundary.

Using the Ricci flow for manifolds with boundary defined by Shen [37], a
very easy adaptation of the arguments of Margerin [30], immediately yields the
following theorem:

Theorem 1.6. Let (M, g) be a compact four-dimensional Riemannian manifold
with totally geodesic boundary and positive scalar curvature. If the pinching condi-
tion W Pg < 1

6 is satisfied, then M admits a metric with constant positive sectional
curvatures in the interior and totally geodesic boundary.

Our goal in this paper is to provide counterparts of the results of Chang-
Gursky-Yang and Catino-Djadli for manifolds with boundary. The first result we
will prove is the following:

Theorem 1.7. Let (M, g) be a compact three-dimensional Riemannian manifold
with totally geodesic boundary and positive scalar curvature. If∫

M
|Ricg|2g dVg ≤ 3

8

∫
M

R2
g dVg ,

then M admits a metric with constant positive sectional curvatures in the interior
and totally geodesic boundary.

In order to state our second result on four manifolds with boundary, we need
to recall some notions from Conformal Geometry. We start by recalling the Paneitz
operator and its associated curvature invariant called Q-curvature. In 1983, Paneitz
has discovered a conformally covariant differential operator on four dimensional
compact smooth Riemannian manifolds with smooth boundary (M, g) (see [33]).
To this operator, Branson [4] has associated a natural curvature invariant called Q-
curvature. They are defined in terms of Ricci tensor Ricg and scalar curvature Rg
of the manifold (M, g) as follows

P4
g ϕ = �2

gϕ + divg

((
2

3
Rgg − 2Ricg

)
dϕ

)
,

Qg = − 1

12

(
�g Rg − R2

g + 3|Ricg|2
)

,
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where ϕ is any smooth function on M , divg is the divergence and d is the de Rham
differential.

Similarly, Chang and Qing [13], have discovered a boundary operator P3
g de-

fined on the boundary of compact four dimensional smooth Riemannian manifolds
and a natural third-order curvature Tg associated to P3

g as follows

P3
g ϕ = 1

2

∂�gϕ

∂ng
+ �ĝ

∂ϕ

∂ng
− 2Hg�ĝϕ + (Lg)ab

(∇ĝϕ
)

a

(∇ĝϕ
)

b + ∇ĝ Hg.∇ĝϕ

+
(

F − Rg

3

)
∂ϕ

∂ng
.

Tg = − 1

12

∂ Rg

∂ng
+ 1

2
Rg Hg− < Gg, Lg > +3H3

g − 1

3
Tr(L3) + �ĝ Hg,

where ϕ is any smooth function on M , ĝ is the metric induced by g on ∂ M ,
Lg = (Lg)ab = − 1

2
∂gab
∂ng

is the second fundamental form of ∂ M , Hg = 1
3 tr(Lg) =

1
3 gab Lab ( ga,b are the entries of the inverse g−1 of the metric g) is the mean
curvature of ∂ M , Rk

bcd is the Riemann curvature tensor F = Ra
nan , Rabcd =

gak Rk
bcd ( ga,k are the entries of the metric g) and < Gg, Lg >= Ranbn(Lg)ab,

∂
∂ng

is the inward normal derivative with respect to g. We recall that (M, g) has
umbilic boundary if Lg = λg for some constant λ. If Lg = 0 we say that the
boundary is totally geodesic.

A remarkable property of the couple of operators (P4
g , P3

g ) is that, as the couple
Laplace-Beltrami operator and Neumann operator governs the transformation law
of the Gauss curvature and the geodesic curvature on compact surfaces with bound-
ary under conformal change of metric, (P4

g , P3
g ) does the same for (Qg, Tg) on

compact four dimensional smooth Riemannian manifolds with boundary. In fact,
after a conformal change of metric gu = e2ug we have that{

P4
gu

= e−4u P4
g ;

P3
gu

= e−3u P3
g ; and

{
P4

g u + 2Qg = 2Qgu e4u in M

P3
g u + Tg = Tgu e3u on ∂ M.

(1.1)

Another very important role played by the couple of curvatures (Qg, Tg) in Con-
formal Geometry is that they arise in the well-known Gauss-Bonnet-Chern formula.
More precisely∫

M

(
Qg + |Wg|2

8

)
dVg +

∮
∂ M

(T + Z)dSg = 4π2χ(M) (1.2)

where Wg and ZdSg (for the definition of Z see [13]) are pointwise conformally
invariant. Moreover, it turns out that Z vanishes when the boundary is totally
geodesic. Setting

κP4
g

=
∫

M
QgdVg, κP3

g
=

∮
∂ M

TgdSg,
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from (1.2), thanks to the fact that WgdVg and ZdSg are pointwise conformally
invariant, we have that κP4

g
+ κP3

g
is conformally invariant, and will be denoted by

κ(P4,P3) = κP4
g

+ κP3
g
. (1.3)

In addition to the conformally invariant quantity κ(P4,P3) of a compact four-dimen-
sional Riemannian manifold with boundary, there exists also the Yamabe invariant
of the conformal class [g] = {g̃ = e2ug, u ∈ C∞(M)} defined by the

Y (M, ∂ M, [g]) = inf
g̃∈[g],volg̃=1

∫
M

Rg̃dVg̃ +
∮

∂ M
Hg̃dSg̃. (1.4)

We recall that this invariant is defined for every compact Riemannian manifold with
boundary of dimension greater or equal to 3.

Now we are ready to state our result on four manifolds with boundary.

Theorem 1.8. Let (M, g) be a compact four-dimensional Riemannian manifold
with umbilic boundary. If Y (M, ∂ M, [g]) > 0 and if κ(P4,P3) > 1

8

∫
M |Wg|2dVg,

then M admits a metric with constant positive sectional curvatures in the interior
and totally geodesic boundary.

The couple (P4
g , P3

g ) gives rise to an operator defined on H ∂
∂n

=
{

u ∈ H2(M) :
∂u
∂ng

= 0
}

whose spectral property is very important for uniformization problems on

four manifolds with boundary. The latter operator that we denote by P4,3
g is defined

as follows

〈
P4,3

g u, v
〉

L2(M)
=

∫
M

(
�gu�gv + 2

3
Rg∇gu∇gv

)
dVg

− 2
∫

M
Ricg(∇gu, ∇gv)dVg − 2

∮
∂ M

Lg(∇ĝu, ∇ĝv)dSg,

for every u, v ∈ H ∂
∂n

.

As a byproduct of our analysis, we obtain the following spectral property
for P4,3

g .

Theorem 1.9. Let (M, g) be a compact four-dimensional Riemannian manifold
with umbilic boundary. Assuming Y (M, ∂ M, [g]) > 0 and κ(P4,P3) + 1

6 Y (M, ∂ M,

[g])2 > 0, then P4,3
g is non-negative and ker P4,3

g � R .

A direct consequence of Theorem 1.9 is the existence of constant Q-curvature
and constant T -curvature conformal metrics on four-manifolds which verify the
assumptions of Theorem 1.9
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Corollary 1.10. Let (M, g) be a compact four-dimensional Riemannian manifold
with umbilic boundary. Assuming Y (M, ∂ M, [g]) > 0 and κ(P4,P3) + 1

6 Y (M,

∂ M, [g])2 > 0, then M carries a metric conformal to g with constant Q-curvature,
constant T -curvature and zero mean curvature.

Proofs of Theorem 1.7 and Theorem 1.8 rely on the solution of some bound-
ary value problems for fully nonlinear equations. Following [26] we will use the
continuity method proving a priori estimates on the solutions to our equations. As
a consequence of our work in dimension four, analising the spectral property of a
certain operator, we will show that this operator is non-negative and with trivial
kernel (Theorem 1.9). As a byproduct, we will prove then existence of conformal
metrics with constant Q-curvature, constant T -curvature and zero mean curvature
under certain conformally invariant assumptions (Corollary 1.10).

The plan of the paper is the following: in Section 2 we will introduce some
notations, set up the boundary value problem; in Section 3 and 4 we will prove
Theorem 1.7 and Theorem 1.8 on three and four manifolds respectively; finally
Section 5 will be devote to the proof of Theorem 1.9 and Corollary 1.10.

2. Preliminaries and notation

In this section, we give some notation and preliminaries like the notion of k-th
symmetric elementary functions and some of their properties, the notion of σk-
curvature of a Riemannian manifold, and some Moser-Trudinger type inequalities.
For this end, let (M, g) be a compact, smooth, n-dimensional Riemannian manifold
with boundary. We will denote by νg the inner normal vector field with respect to
the metric g and by ∂ν = ∂

∂ng
the inward normal derivative. Moreover Lg and Hg

will be the second fundamental form

Lg,ab = −1

2

∂gab

∂ng
,

and the mean curvature normalized, i.e.

Hg = 1

n − 1
gab Lg,ab.

Given a section A of the bundle of symmetric 2–tensors, we can use the metric to
raise an index and view A as a tensor of type (1, 1), or equivalently as a section of
End(T M). This allows us to define σk(g−1 A) the k-th elementary function of the
eigenvalues of g−1 A. More precisely we define:

Definition 2.1. Let (λ1, · · · , λn) ∈ Rn . We view the k-th elementary symmetric
function as a function on Rn:

σk(λ1, · · · , λn) =
∑

1≤i1<···<ik≤n

λi1 · · · λik ,
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and we define

+

k =
⋂

1≤ j≤k

{σ j (λ1, · · · , λn) > 0} ⊂ Rn.

For a symmetric linear transformation A : V → V , where V is an n-dimensional
inner product space, the notation A ∈ 
+

k will mean that the eigenvalues of A lie in
the corresponding set. We note that this notation also makes sense for a symmetric
2-tensor on a Riemannian manifold. If A ∈ 
+

k , let σ
1/k
k (A) = {σk(A)}1/k .

Definition 2.2. Let A : V → V , where V is an n-dimensional inner product space.
The (k − 1)-th Newton transformation associated with A is

T(k−1)(A) =
k−1∑
j=0

(−1)k−1− jσ j (A)Ak−1− j .

Also, for t ∈ R we define the linear transformation

Lt (A) = T(k−1)(A) + 1 − t

n − 2
σ1(T(k−1)(A)) · I .

We have the following list of properties (the proofs can be found in [8])

Lemma 2.3.

(i) 
+
k is an open convex cone with vertex at the origin, and we have the following

sequence of inclusions


+
n ⊂ 
+

n−1 ⊂ · · · ⊂ 
+
1 .

(ii) If A ∈ 
+
k , then Tk−1(A) is positive definite. Hence for all t ≤ 1, Lt (A) is

positive definite.
(iii) We have the identities

Tk−1(A)i j Ai j = k σk(A) ,

Tk−1(A)ll = (n − k + 1)σk−1(A) .

(iv) If A ∈ 
+
k , then

σk−1(A) ≥ k

n − k + 1

(
n

k

) 1
k

σk(A)
(k−1)

k .

(v) If A and B are symmetric linear transformations, A, B ∈ 
+
k , then ∀ρ ∈

[0, 1], ρ A + (1 − ρ)B ∈ 
+
k , and

σ
1
k

k (ρ A + (1 − ρ)B) ≥ ρσ
1
k

k (A) + (1 − ρ)σ
1
k

k (B) .

In particular this gives the concavity of the function σ
1
k

k in the cone 
+
k .
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Next we give a lemma about the variation of the σk functional.

Lemma 2.4. If A : R → Hom(V, V ), then

d

ds
σk(A)(s) =

∑
i, j

T(k−1)(A)i j (s)
d

ds
(A)i j (s) ,

i.e., the (k − 1)-th Newton transformation is what arises when we differentiate σk .

We choose the tensor (here t is a real number)

At
g = 1

n − 2

(
Ricg − t

2(n − 1)
Rgg

)
,

where Ricg and Rg denote the Ricci and the scalar curvature of g respectively.
Note that for t = 1, A1

g is the classical Schouten tensor, namely A1
g = Ag :=

1
n−2 (Ricg − 1

2(n−1)
Rgg), see [1]. Hence, with our notations, σk(g−1 At

g) denotes

the k-th elementary symmetric function of the eigenvalues of g−1 At
g .

Now, we give a lemma which shows that metrics g1, such that At
g1

belong to
the positive cone of order 2, verify also additional pointwise algebraic inequalities.
More precisely, we have:

Lemma 2.5. If for some metric g1 on M we have At
g1

∈ 
+
2 , then

−At
g1

+ σ1(g
−1
1 At

g1
)g1 > 0,

At
g1

+ n − 2

n
σ1(g

−1
1 At

g1
)g1 > 0.

We will be concerned with the following equation for a conformal metric g̃ =
e−2ug: {

σ
1/k
k (g−1 At

u) = f e2u in M,

∂νu = 0 on ∂ M .
(2.1)

Where f is a positive function on M . Let σ1(g−1 A1
g) be the trace of A1

g with respect
to the metric g. We have the following formula for the transformation of At

g under
this conformal change of metric:

At
g̃ = At

g + ∇2
gu + 1 − t

n − 2
(�gu)g + du ⊗ du − 2 − t

2
|∇gu|2gg . (2.2)

Since

At
g = A1

g + 1 − t

n − 2
σ1(g

−1 A1
g)g ,
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this formula follows easily from the standard formula for the transformation of the
Schouten tensor [36]:

A1
g̃ = A1

g + ∇2
gu + du ⊗ du − 1

2
|∇gu|2gg . (2.3)

Using this formula we may write (2.1) with respect to the background metric g

σk

(
g−1

(
At

g + ∇2
gu + 1−t

n−2
(�gu)g + du ⊗ du− 2−t

2
|∇gu|2gg

))1/k

= f (x)e2u .

Now, we discuss the ellipticity properties of equation (2.1).

Proposition 2.6 (Ellipticity property). Let u ∈ C2(M) be a solution of equa-
tion (2.1) for some t ≤ 1 and let g̃ = e−2ug. Assume that At

g̃ ∈ 
+
k . Then the

linearized operator at u, Lt : C2,α(M) ∩ {∂νu = 0 on ∂ M} → Cα(M), is elliptic
and invertible (0 < α < 1).

Proof. Define the operator

Ft [u, ∇gu, ∇2
gu] = σk(g

−1 At
g̃) − f (x)ke2ku ,

so that solutions of the equation (2.1) are exactly the zeroes of Ft . Define the
function us = u + sϕ, then the linearization at u of the operator Ft is defined by

Lt (ϕ) = d

ds
Ft

[
us, ∇gus, ∇2

gus

] ∣∣∣
s=0

= d

ds

(
σk

(
g−1 At

g̃

)) ∣∣∣
s=0

− d

ds

(
f (x)ke2kus

) ∣∣∣
s=0

.

From Lemma 2.4 we have

d

ds

(
σk

(
g−1 At

g̃

)) ∣∣∣
s=0

= Tk−1

(
g−1 At

g̃

)
i j

d

ds

((
At

g̃

)
i j

) ∣∣∣
s=0

.

We compute

d

ds

((
At

g̃

)
i j

) ∣∣∣
s=0

= (∇2
gϕ)i j + 1 − t

n − 2
(�gϕ)gi j −(2−t)∇gu ·∇gϕ gi j +2du⊗dϕ .

Easily we have also

d

ds

(
f (x)ke2kus

)
)

∣∣∣
s=0

= 2k f (x)ke2ku ϕ .

Putting all together, we conclude

Lt (ϕ) = Tk−1

(
g−1 At

g̃

)
i j

((
∇2

gϕ
)

i j
+ 1 − t

n − 2

(
�gϕ

)
gi j

)
− 2k f (x)ke2ku ϕ + · · ·
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where the last terms denote additional ones witch are linear in ∇gϕ. The first term
of the linearization is exactly the one defined in Definition 2.2, i.e.

Lt
(

At
g̃

)
i j

= Tk−1

(
At

g̃

)
i j

+ 1 − t

n − 2
Tk−1

(
At

g̃

)
pp

δi j .

So finally, we have

Lt (ϕ) = Lt
(

At
g̃

)
i j

(
∇2

gϕ
)

i j
− 2k f (x)ke2ku ϕ + · · ·

Since At
g̃ ∈ 
+

k , by Lemma 2.3, we have that the tensor Lt (At
g̃) is positive definite.

So, the linearized operator at any solution u must be elliptic. Note also that, by the
previous formula, the operator is of the form

Lt (ϕ) = E(ϕ) − c(x)ϕ ,

where E(ϕ) is a second order linear elliptic operator and c(x) is a strictly positive
function on M , since c(x) = 2k f (x)ke2ku and f (x) > 0. This allows us to invert
this operator between the Hölder spaces C2,α(M) ∩ {∂νu = 0 on ∂ M} and Cα(M)

(see for instance [24]).

Next, we recall some Moser-Trudinger type inequalities which will be used to
prove Corollary 1.10.

Proposition 2.7. Assume (M, g) is a compact four-dimensional Riemannian man-
ifold with boundary such that P4,3

g is a non-negative operator with KerP4,3
g � R.

Then we have that for all α < 16π2 there exists a constant C = C(M, g, α) such
that ∫

M
e

α(u−ū)2〈
P4,3

g u,u
〉
L2(M) dVg ≤ C,

for all u ∈ H ∂
∂n

, and hence

log
∫

M
e4(u−ū) ≤ C + 4

α

〈
P4,3

g u, u
〉

L2(M)
∀u ∈ H ∂

∂n
,

where ū = 1
Volg(M)

∫
M udVg, and Volg(M) = ∫

M dVg.

The latter proposition can be found in [31] together with its proof. The second
inequality that we are going to state is a trace analogue of the previous one. Its
proof can be found [32].

Proposition 2.8. Assume P4,3
g is a non-negative operator with KerP4,3

g � R.
Then we have that for all α < 12π2 there exists a constant C = C(M, g, α) such
that ∮

∂ M
e

α(u−ū∂ M )2〈
P4,3

g u,u
〉
L2(M,g) dSg ≤ C, (2.4)
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for all u ∈ H ∂
∂n

, and hence

log
∮

∂ M
e3(u−ū∂ M )dSg ≤ C + 9

4α

〈
P4,3

g u, u
〉

L2(M,g)
∀u ∈ H ∂

∂n
. (2.5)

where ū∂ M = 1
Volg(∂ M)

∮
∂ M udSg, and Volg(∂ M) = ∮

∂ M dSg.

Now, we give a lemma (whose proof can be found in [31]) which will be used
together with the above Moser-Trudinger type inequalities in order to prove Corol-
lary 1.10. It says that under the assumptions KerP4,3

g � R and P4,3
g non-negative,

the map

u ∈ H ∂
∂n

−→ ||u||P4,3
g

=
〈
P4,3

g u, u
〉 1

2

L2(M)

induces an equivalent norm to the standard norm of H2(M) on {u ∈ H ∂
∂n

ū = 0}.
More precisely we have the following:

Lemma 2.9. Suppose KerP4,3
g � R and P4,3

g non-negative then we have that
|| · ||P4,3

g
is an equivalent norm to || · ||H2 on {u ∈ H ∂

∂n
ū = 0}.

Now we give a technical lemma which will be used to prove the above theo-
rems.

Lemma 2.10. Let (M, g) be a compact n-dimensional Riemannian manifold with
totally geodesic boundary. Assuming u ∈ C2(M) with ∂u

∂ng
= 0, then

∂|∇gu|2g
∂ng

= 0,

and
Ag(ν, ∇gu) = 0.

Proof. First of all, using the fact that ∂u
∂ng

= 0, we derive

|∇gu|2 = gab∂au∂bu.

Thus we infer

∂
(|∇gu|2)
∂ng

= ∂gab

∂ng
∂au∂bu + 2gab ∂(∂au)

∂ng
∂bu.

Next, using the fact that Lg = 0, one has ∂gab

∂ng
= 0. Moreover from the trivial

identity ∂(∂au)
∂ng

= ∂a

(
∂u
∂ng

)
, we infer

∂(∂au)

∂ng
= 0.
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Thus, we obtain
∂

(|∇gu|2)
∂ng

= 0.

This prove the first point. For the second one, we have

Ag(ν, ∇gu) = 1

n − 2

(
Ricg(ν, ∇gu) − 1

2(n − 1)
Rg

∂u

∂ng

)
.

Thus, we get

Ag(ν, ∇gu) = 1

n − 2
Ricν,a∂au.

Now using the Codazzi-Mainardi equation, we get

Ricν,a = ∇b Lg,ab − ∇a Hg = 0.

So, we obtain.
Ag(ν, ∇gu) = 0.

This completes the proof of the lemma.

3. Three manifolds with boundary

In this section, we present the proof of Theorem 1.7. We will prove a more general
theorem so that Theorem 1.7 will be a direct corollary. In fact, we have:

Theorem 3.1. Let (M, g) be a compact three-dimensional Riemannian manifold
with totally geodesic boundary and positive scalar curvature. There exists a positive
constant C = C(diam(M, g), ‖∇2 Rm‖) such that if

∫
M

σ2(g
−1 A1

g) dVg + C

(
7

10
− t0

)
Y (M, [g])2 > 0 ,

for some t0 ≤ 2/3, then there exists a conformal metric g̃ = e−2ug with Rg̃ > 0,
σ2(g−1 At0

g̃ ) > 0 pointwise and totally geodesic boundary. Moreover, we have the
inequalities

(3t0 − 2)Rg̃ g̃ < 6Ricg̃ < 3(2 − t0)Rg̃ g̃ . (3.1)

Throughout the sequel, (M, g) will be a compact 3-dimensional Riemannian man-
ifold with totally geodesic boundary and with positive scalar curvature. Since M is
compact and Rg > 0, there exists t0 > δ > −∞ such that Aδ

g is positive definite

(i.e. Ricg − δ
4 Rgg > 0 on M). Note that δ only depends on ‖Rmg‖.
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For t ∈ [δ, t0], consider the path of equations (in the sequel we use the notation
At

ut
:= At

gt
for gt given by gt = e−2ut g)

{
σ

1/2
2

(
g−1 At

ut

) = f e2ut in M,

∂νut = 0 on ∂ M .
(3.2)

where f = σ
1/2
2 (g−1 Aδ

g) > 0. Note that u ≡ 0 is a solution for t = δ.
We use the continuity method. Define

S =
{

t ∈ [δ, t0] | ∃ a solution ut ∈ C2,α(M) of (3.2) with At
ut

∈ 
+
2

}
.

Clearly, with our choice of f , u ≡ 0 is a solution for t = δ. Since Aδ
g is positive

definite, then δ ∈ S . Hence S �= ∅. Let t ∈ S , and ut be a solution. By Proposi-
tion 2.6, the linearized operator at ut , Lt : C2,α(M)∩{∂νu = 0 on ∂ M} → Cα(M),
is invertible. The implicit function theorem tells us that S is open. To prove that
S is close we need to establish a priori C2,α estimates for solutions of the equation
(3.2). To do this, we start by proving an upper bound estimate for solutions of (3.2).

Proposition 3.2 (Upper bound). Let ut ∈ C2(M) be a solution of (3.2) for some
t ∈ [δ, t0]. If gt = e−2ut g ∈ 
+

2 , then ut ≤ δ̄, where δ̄ depends only on ‖Rmg‖.

Proof. From Lemma 2.3 (iv), we have
√

3σ
1/2
2 ≤ σ1, so for all p ∈ M

√
3 f e2ut ≤ σ1

(
g−1 At

ut

)
.

Let p ∈ M be a maximum of ut . Since the gradient terms vanish at p (this is true
also if p ∈ ∂ M , since ∂νut = 0 on ∂ M) we have (�ut )(p) ≤ 0. Then, using (2.2),
we have

√
3 f (p)e2ut (p) ≤ σ1(g

−1 At
ut

)(p)

= σ1(g
−1 At

g)(p) + (4 − 3t)(�ut )(p)

≤ σ1(g
−1 At

g)(p)

≤ σ1(g
−1 Aδ

g)(p).

Since M is compact, we have ut ≤ δ̄, for some δ̄ depending only on ‖Rmg‖.

Next, we are going to show that solutions of (3.2) which verify upper-bound
estimates enjoy also gradient ones:

Proposition 3.3 (Gradient estimate). Let ut ∈ C3(M) be a solution of (3.2) for
some δ ≤ t ≤ t0. Assume that ut ≤ δ̄. Then ‖ ∇gu ‖g,∞< C1, where C1 depends
only on ‖∇ Rmg‖ and δ̄.
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Proof. Let H := |∇gu|2g . If the maximum of H is in the interior, then ∇g H =
0 and ∇2

g H is negative semi-definite. If the maximum of H is at the boundary,

then by Lemma 2.10, ∂ H
∂ng

= 0. Thus, we also have that ∇g H = 0 and ∇2
g H is

negative semi-definite. Interior gradient estimates for equation (3.2) were proved
in [26, Proposition 4.1]. We remark that the same proof works for boundary gradient
estimates. The reason is that, as we showed, at the maximal point once we have
∇g H = 0 and ∇2

g H is negative semi-definite, then the rest of computations in [26]
is the same regardless of the point being in the interior or on the boundary.

As we proved before, there exist two constants δ̄ and C1 depending only on
‖∇ Rmg‖ such that all solutions of (3.2) for some δ ≤ t ≤ t0, satisfying ut ≤ δ̄

satisfy ‖ ∇gu ‖∞< C1. Consider now the following quantity:

I (M, ∂ M, g) := inf
g′=e−2ϕg , |∇gϕ|≤C1 , Hg′=0

(∫
M

R2
g′e−ϕdVg′

)
.

We let, for g′ = e−2ϕg

i(g′) :=
∫

M
R2

g′e−ϕdVg′ .

As one can easily check, if two metrics g1 and g2 are homothetic, then i(g1) =
i(g2). So, we have

I (M, ∂ M, g) = inf
g′=e−2ϕg , Vol′g(M)=1 and |∇gϕ|g≤C1 , Hg′=0

(∫
M

R2
g′e−ϕdVg′

)
.

Concerning I (M, ∂ M, g), we have the following lemma.

Lemma 3.4. There exists a positive constant C = C(‖∇ Rmg‖) such that

I (M, ∂ M, g) ≥ C (Y (M, ∂ M, [g]))2 .

Proof. As we have seen

I (M, ∂ M, g) = inf
g′=e−2ϕg , Vol′g(M)=1 and |∇gϕ|g≤C1 , Hg′=0

(∫
M

R2
g′e−ϕ dVg′

)
.

Take ϕ ∈ C∞(M) such that, for g′ = e−2ϕg, Vol′g(M) = 1 and such that |∇gϕ|g ≤
C1 where C1 is given by Proposition 3.3. Since Vol′g(M) = 1, if p is a point where
ϕ attains its minimum we have

e−3ϕ(p)Volg(M) ≥ 1,

and then, there exists C0 depending only on (M, g) such that ϕ(p) ≤ C0. Now,
using the mean value theorem, it follows since |∇gϕ|g is controlled by a constant
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depending only on (M, g), that max ϕ ≤ C ′
0 where C ′

0 depends only on (M, g).
Using this, we clearly have that∫

M
R2

g′e−ϕ dVg′ ≥ e−C ′
0

∫
M

R2
g′ dVg′ .

Using Hölder inequality and the definition of the Yamabe invariant, since Hg′ = 0,
we get (recall that Vol′g(M) = 1)

∫
M

R2
g′ dVg′ ≥ (Y (M, ∂ M, [g]))2 ,

and then I (M, ∂ M, g) ≥ e−C ′
0 (Y (M, ∂ M, [g]))2. This ends the proof.

We will prove a lower bound for a solution to the equation (3.2) following
in [9, section 3]. Since we are dealing with manifolds with boundary we have to
compute the conformal deformation of the integral of σ2 in this context. Here is the
formula.

Lemma 3.5. For a conformal metric g̃ = e−2ug, we have the following integral
transformation∫

M
σ2(g̃

−1 A1
g̃)e

−4u dVg =
∫

M
σ2(g

−1 A1
g) dVg + 1

8

∫
M

Rg|∇gu|2g dVg

−1

4

∫
M

|∇gu|4g dVg + 1

2

∫
M

�gu|∇gu|2g dVg

−1

2

∫
M

A1
g(∇gu, ∇gu) dVg

+1

4

∮
∂ M

∂νu
(

Rg + 2�gu − 2|∇gu|2g
)

dSg

−
∮

∂ M
A1

g(ν, ∇gu) dSg − 1

4

∮
∂ M

∂ν |∇gu|2g dSg.

In particular, if the boundary of M is totally geodesic and ∂νu = 0, we get∫
M

σ2(g̃
−1 A1

g̃)e
−4u dVg =

∫
M

σ2(g
−1 A1

g) dVg + 1

8

∫
M

Rg|∇gu|2g dVg

−1

4

∫
M

|∇gu|4g dVg + 1

2

∫
M

�gu|∇gu|2g dVg

−1

2

∫
M

A1
g(∇gu, ∇gu) dVg.

Proof. For the computations, we will follow in [9, Section 3]. The final formula
will be the same as in [9], but with some extra terms coming from the boundary.
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Denote σ̃1 = σ1(g̃−1 A1
g̃), σ1 = σ1(g−1 A1

g), σ̃2 = σ2(g̃−1 A1
g̃), σ2 = σ2(g−1 A1

g).
We have

2σ̃2 = σ̃1
2 − |A1

g̃|2g̃ .

By equation (2.3), we have

σ̃1e−2u = σ1 + �gu − 1

2
|∇gu|2g ,

so

σ̃1
2e−4u = σ 2

1 + (�gu)2 + 1

4
|∇gu|4g + 2σ1�gu − �gu|∇gu|2g − σ1|∇gu|2g .

After an easy computation, we get

|A1
g̃|2g̃ e−4u = |A1

g|2g + |∇2
gu|2g + 3

4
|∇gu|4g − σ1|∇gu|2g − �gu|∇gu|2g

+ 2(A1
g)i j∇2 i j

g u + 2(A1
g)i j∇ i

gu∇ j
g u + 2∇2

g i j u∇ i
gu∇ j

g u .

Putting all together, we obtain

2σ̃2e−4u = 2σ2 + (�gu)2 − |∇2
gu|2g − 1

2
|∇gu|4g + 2σ1�gu

− 2(A1
g)i j∇2 i j

g u − 2(A1
g)i j∇ i

gu∇ j
g u − 2∇2

g i j u∇ i
gu∇ j

g u .

Now, by simple computation, we have the following identities

−2
∫

M
(A1

g)i j∇2 i j
g u dVg = −2

∫
M

σ1�gu dVg + 2
∮

∂ M
∂νu σ1 dSg

− 2
∮

∂ M
A1

g(ν, ∇gu) dSg ,

−2
∫

M
∇2

i j u∇ i
gu∇ j

g u dVg =
∫

M
�gu|∇gu|2g dVg −

∮
∂ M

∂νu |∇gu|2g dSg ,

where we integrated by parts and we used the Schur’s lemma,

2∇ j
g (Ricg)i j = ∇i Rg ,

for the first identity. Finally we get

2
∫

M
σ̃2e−4u dVg = 2

∫
M

σ2 dVg

+
∫

M

[
(�gu)2 − |∇2

gu|2g − 1

2
|∇gu|4g + �gu|∇gu|2g

−2A1
g(∇gu, ∇gu)

]
dVg

+
∮

∂ M
∂νu

(
1

2
Rg − 2A1

g(ν, ∇gu) − |∇gu|2g
)

dSg ,



INTEGRAL PINCHING RESULTS FOR MANIFOLDS WITH BOUNDARY 801

Now, integrating the Bochner formula

1

2
�g|∇gu|2g = |∇2

gu|2g + Ricg(∇gu, ∇gu) dVg + ∇i u, ∇ i (�gu) ,

we get

1

2

∮
∂ M

∂ν |∇gu|2g dSg =
∫

M

[
|∇2

gu|2g − (�gu)2 + Ricg(∇gu, ∇gu)
]

dVg

+
∮

∂ M
∂νu �gu dSg.

Using the definition of the Schouten tensor A1
g , we get the first point of the lemma.

Now, if the boundary is totally geodesic and ∂νu = 0 on ∂ M , then by
Lemma 2.10 we have that all the boundary terms must vanish. Thus the second
point of the lemma is proved. This completes the proof.

Since (M, g) has totally geodesic boundary, the boundary terms don’t effect
the conformal transformation of the integral of σ2. Hence, following in [9, Section
3] and using Lemma 3.4, we obtain the lower bound.

Proposition 3.6 (Lower Bound). Assume that for some t ∈ [δ, t0], t0 ≤ 2/3, the
following estimate holds∫

M
σ2

(
g−1 A1

g

)
dVg + C

(
7

10
− t

)
(Y (M, ∂ M, [g])2 = µt > 0, (3.3)

for some C depending only on ‖∇ Rmg‖. Then there exists δ depending only on
diamg(M) and ‖∇ Rmg‖ such that if ut ∈ C2(M) is a solution of (3.2) and if
At

ut
∈ 
+

2 then ut ≥ δ.

We have the following C2,α estimate for solutions of the equation (3.2).

Proposition 3.7 (C2,α estimate). Let ut ∈ C4(M) be a solution of (3.2) for some
δ ≤ t ≤ t0, t0 ≤ 2/3, satisfying δ < ut < δ̄, and ‖ ∇ut ‖g,∞< C1. Then, if
At

ut
∈ 
+

2 , for 0 < α < 1, ‖ ut ‖C2,α≤ C2, where C2 depends only on δ, δ̄, C1 and
‖∇2 Rmg‖.

Proof. The interior C2 estimate follows from the work of Chen [11] and the bound-
ary C2 estimate follows from [12, Theorem 6 (b)]. With the C2 estimate at hand, we
obtain high-order estimate (in particular C2,α one) from the works of Evans [19],
Krylov [28] and Lions-Trudinger [29].

Since we proved C2,α estimates for solutions of the equation (3.2), by the
classical Ascoli-Arzela’s Theorem, we have that S is closed, therefore S = [δ, t0].
In particular t0 ∈ S . Hence the metric
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g̃ = e−2ut0 g then satisfies σ2

(
At0

g̃

)
> 0, Rg̃ > 0 and Lg̃ = 0. Furthermore, by

Lemma 2.5 we have that the metric g̃ satisfies

(3t0 − 2)Rg̃ g̃ < 6 Ricg̃ < 3(2 − t0)Rg̃ g̃. (3.4)

Hence the proof of Theorem 3.1 is complete.
Now we are going to give the proof of Theorem 1.7.

Proof of Theorem 1.7. First of all from Rg > 0 and Lg = 0, we infer Y (M, ∂ M,

[g])> 0. On the other hand, one can easily check that

σ2

(
g−1 Ag

)
= 3

16
|Rg|2 − 1

2
|Ricg|2.

Thus, we have
∫

M σ2(g−1 Ag)≥ 0 is equivalent to
∫

M |Ricg|2dVg ≤ 3
8

∫
M |Rg|2dVg .

Hence we can apply Theorem 3.1 with t0 = 2
3 and get the existence of a metric g̃

conformal to g such that Ricg̃ > 0 and Lg̃ = 0. Hence appealing to Theorem 1.5,
we have the proof of Theorem 1.7 is complete.

4. Four manifolds with boundary

In this section, we give the proof of Theorem 1.8. As for the case of 3-manifolds,
we are going to prove a more general theorem from which Theorem 1.8 becomes a
direct application.

Theorem 4.1. Let (M, g) be a compact four-dimensional Riemannian manifold
with umbilic boundary and 0 ≤ α ≤ 1. If Y (M, ∂ M, [g]) > 0, and

1

2
κ(P4,P3) − α

16

∫
M

|Wg|2g dVg + 1

24
(1 − t0)(2 − t0)Y (M, ∂ M, [g])2 > 0 ,

for some t0 ≤ 1, then there exists a conformal metric g̃ = e−2ug whose curvature
satisfies

Rg̃ > 0, σ2(g̃
−1 At0

g̃ ) − α

16
|Wg̃|2g̃ > 0, and Hg̃ = 0 .

This implies the pointwise inequalities

(t0 − 1)Rg̃ g̃ < 2Ricg̃ < (2 − t0)Rg̃ g̃.

Throughout the sequel, (M, g) will be a compact 4-dimensional Riemannian man-
ifold with umbilic boundary and with positive Yamabe invariant Y (M, ∂ M, [g]).
Since all the hypothesis on the metric g are conformally invariant, then by a result
of Escobar, see [18], we can choose in the conformal class the Yamabe metric, i.e. a
metric with positive constant scalar curvature and zero mean curvature. Moreover,
since umbilicity is also conformally invariant, we have that the boundary must be
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totally geodesic. Hence, from now on, (M, g) will be a compact four-manifold
with totally geodesic boundary, positive constant scalar curvature and satisfying the
integral pinching condition.

On the other hand, since M is compact and Rg > 0, there exist t0 > δ > −∞,
δ < 0 such that Aδ

g is positive definite (i.e. Ric − δ
6 R > 0 on M). Moreover we can

choose δ so small such that

σ
1/2
2

(
g−1 Aδ

g

)
−

√
α

4
|Wg|g > 0 .

Note that δ depends only on ‖Rm‖.
Now we define a subclass of the positive cone of order 2 which will be useful

in our arguments:

Definition 4.2. For a conformal metric g̃ = e−2ug, we define the set

�+
g̃ =

{
t ∈ [δ, t0] | At

g̃ ∈ 
+
2 and σ

1/2
2

(
g−1 At

g̃

)
−

√
α

4
|Wg|g > 0

}
.

In particular if t ∈ �+
g̃ then At

g̃ ∈ 
+
2 .

We point out that δ ∈ �+
g .

For t ∈ [δ, t0], consider the path of equations (in the sequel we use the notation
At

ut
:= At

gt
for gt given by gt = e−2ut g)

{
σ

1/2
2

(
g−1 At

ut

) −
√

α

4 |Wg|g = f e2ut in M,

∂νu = 0 on ∂ M .
(4.1)

where f (x) = σ
1/2
2

(
g−1 Aδ

g

)
−

√
α

4 |Wg|g > 0. Note that u ≡ 0 is a solution of

(4.1) for t = δ.
As for the tree-dimensional case, we use the continuity method. Define

S =
{

t ∈ [δ, t0] | ∃ a solution ut ∈ C2,α(M) of (4.1) with t ∈ �+
ut

}
.

Clearly, with our choice of f , u ≡ 0 is a solution for t = δ. Since δ ∈ �+
g , then

δ ∈ S . Hence, we have S �= ∅. Let t ∈ S , and ut be a solution. By Proposition 2.6,
the linearized operator at ut , Lt : C2,α(M) ∩ {∂νu = 0 on ∂ M} → Cα(M), is
invertible (note that the additional term in the right hand side of the equation does
not effect linearization). The implicit function theorem tells us that S is open. To
prove that S is close we need to establish a priori C2,α estimates for solutions of
the equation (4.1). To do so, we start by establishing upper-bound estimate as for
the case of 3-manifolds.

Proposition 4.3 (Upper bound). Let ut ∈ C2(M) be a solution of (4.1) for some
t ∈ [δ, t0], with t ∈ �+

ut
. Then ut ≤ δ̄, where δ̄ depends only on ‖Rmg‖.
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Proof. From Lemma 2.3 (iv), we have 4√
6
σ

1/2
2 ≤ σ1, so for all p ∈ M

4√
6

√
α

4
|Wg|g + 4√

6
f e2ut ≤ σ1

(
g−1 At

ut

)
.

Let p ∈ M be the maximum of ut , then (this is true also if p ∈ ∂ M , since ∂νu = 0
on ∂ M) we have (�ut )(p) ≤ 0. Then, using (2.2), we have

4√
6

√
α

4
(|Wg|g)(p) + 4√

6
f (p)e2ut (p) ≤ σ1(g

−1 At
ut

)(p)

= σ1(g
−1 At

g)(p) + (3 − 2t)(�ut )(p)

≤ σ1(g
−1 At

g)(p)

≤ σ1(g
−1 Aδ

g)(p) .

This implies

4√
6

f (p)e2ut (p) ≤ σ1(g
−1 Aδ

g)(p) − 4√
6

√
α

4
(|Wg|g)(p) ,

where the last term has positive sign. Since M is compact, this implies ut ≤ δ, for
some δ depending only on ‖Rm‖.

Following the previous section, once we have an upper bound of the solution,
from Proposition 3.3, we get gradient estimates. Now we are going to establish the
lower-bound estimates. To do that we need the following lemma.

Lemma 4.4. If ĝ is a Riemannian metric on M conformal to g such that Lĝ = 0,
then ∫

M
σ2(ĝ

−1 Aĝ) = 1

2
κ(P4,P3).

Proof. First of all, one can easily check that the following holds

Qĝ = 2σ2(ĝ
−1 Aĝ) − 1

12
�ĝ Rĝ.

Thus integrating this equation and using the divergence theorem, we get∫
M

QĝdVĝ = 2
∫

M
σ2(ĝ

−1 Aĝ)dVĝ + 1

12

∮
∂ M

∂ Rĝ

∂nĝ
dSĝ.

On the other hand, since Lĝ = 0, then

Tĝ = − 1

12

∂ Rĝ

∂nĝ
.
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Thus we obtain

∫
M

QĝdVĝ = 2
∫

M
σ2(ĝ

−1 Aĝ)dVĝ −
∮

∂ M
TĝdSĝ.

Hence, we get ∫
M

σ2(ĝ
−1 Aĝ) = 1

2
κ(P4,P3).

This completes the proof of the lemma.

Proposition 4.5 (Lower bound). Assume that for some t ∈ [δ, t0] the following
estimate holds

1

2
κ(P4,P3)−

α

16

∫
M

|Wg|2g dVg + 1

24
(1−t)(2−t)Y (M, ∂ M, [g])2 = µt > 0 . (4.2)

Then there exist δ depending only on diam(M, g) and ‖∇2 Rm‖ such that if ut ∈
C2(M) is a solution of (4.1) and if t ∈ �+

ut
then ut ≥ δ.

Proof. Since At
g = A1

g + 1−t
2 σ1(A1

g)g, we easily have

σ2(At
g) = σ2(A1

g) + 3

2
(1 − t)(2 − t)σ1(A1

g)
2 .

Letting g̃ = e−2ut g, since ut is a solution of equation (4.1), we have

f 2e4ut +
√

α

2
f |Wg|ge2ut = σ2(g

−1 At
ut

) − α

16
|Wg|2g .

The left–hand side can be estimated by

f 2e4ut +
√

α

2
f |Wg|ge2ut ≤ C ′e2ut ,

where the positive constant C ′ depends only on ‖Rm‖. So we get

C ′e2ut ≥ σ2(g
−1 At

ut
) − α

16
|Wg|2g

= e−4ut

(
σ2(g̃

−1 A1
ut

) + 1

24
(1 − t)(2 − t)R2

g̃

)
− α

16
|Wg|2g .
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Integrating this with respect to dVg , we obtain

C ′
∫

M
e2ut dVg ≥

∫
M

σ2(g̃
−1 A1

ut
) dVg̃ − α

16

∫
M

|Wg|2g dVg

+ 1

24
(1 − t)(2 − t)

∫
M

R2
g̃ dVg̃

= 1

2
κ(P4,P3) − α

16

∫
M

|Wg|2g dVg + 1

24
(1 − t)(2 − t)

∫
M

R2
g̃ dVg̃

≥ 1

2
κ(P4,P3) − α

16

∫
M

|Wg|2g dVg

+ 1

24
(1 − t)(2 − t)Y (M, ∂ M, [g])2 = µt > 0 ,

where we have used Lemma 4.4, and the fact that for any conformal metric g′ ∈ [g],
if Hg′ = 0, then ∫

M
R2

g′ dVg′ ≥ Y (M, ∂ M, [g])2 .

This gives
max

M
ut ≥ log µt − C(diam(M, g), ‖Rm‖) .

Since, as already remarked maxM |∇gut |g ≤ C1 by the same arguments as the ones
of Proposition 3.3 , then we have the Harnack inequality

max
M

ut ≤ min
M

ut + C(diam(M, g), ‖∇2 Rm‖) ,

by simply integrating along a geodesic connecting points at witch ut attains its
maximum and minimum. Combining this two inequalities, we obtain

ut ≥ min
M

ut ≥ log µt − C =: δ ,

where C depends only on diam(M, g) and ‖∇2 Rm‖.

Once we have C0 and C1 estimates, using the same arguments as the ones of
Proposition 3.7, we get C2,α estimates. Thus we are ready to apply the continuity
method as in the 3-dimensional case, and conclude the proof of Theorem 4.1.

Now we are ready to present the proof of Theorem 1.8.

Proof of Theorem 1.8. First of all, since Y (M, ∂ M, [g]) > 0, and κ(P4,P3) >
1
8

∫
M |Wg|2dVg , then we can apply Theorem 4.1 with t0 = 1 and α = 1 and get

the existence of a metric g̃ conformal to g such that

σ2

(
g−1 Ag̃

)
>

1

16
|Wg|2, and Lg̃ = 0.
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This is equivalent to

σ2

(
g̃−1 Ag̃

)
>

1

16
|Wg̃|2, and Lg̃ = 0.

On the other hand, one can check easily that the following holds

σ2

(
g̃−1 Ag̃

)
= 1

96
R2

g̃ − 1

8
|Eg̃|2.

Thus, we obtain
1

6
R2

g̃ − 2|Eg̃|2 > |Wg̃|2.
So rearranging the latter inequality, we get the Margerin’s weak pinching condition,
namely

W Pg̃ <
1

6
.

Hence, applying Theorem 1.6, we conclude the proof of Theorem 1.8.

5. Principal eigenvalue of P4,3
g and applications

In this section, we provide the proof of Theorem 1.9 and Corollary 1.10. We start
by giving a proposition which will be used for the proof of Theorem 1.9.

Proposition 5.1. Let (M, g) be a compact four-dimensional Riemannian manifold
with boundary such that Lg = 0. Assuming Ricg ≤ Rgg, then we have P4,3

g is a

non-negative operator and ker P4,3
g � R.

Proof. First of all, since Lg = 0, then for every u ∈ H ∂
∂n

, we have

〈
P4,3

g u, u
〉

L2(M)
=

∫
M

(�gu)2dVg+2

3

∫
M

Rg|∇gu|2dVg−2
∫

M
Ricg(∇gu, ∇gu)dVg.

Now we recall the Bochner identity

1

2
�g(|∇gu|2) = |∇2

gu|2 + Ricg(∇gu, ∇gu)+ < ∇gu, ∇g(�gu) > .

Integrating the latter formula, applying the divergence theorem and integrating by
parts, we get

−1

2

∮
∂ M

∂(|∇gu|2)
∂ng

dSg =
∫

M
|∇2

gu|2dVg +
∫

M
Ricg(∇gu, ∇gu) −

∫
M

(�gu)2dVg

−
∮

∂ M

∂u

∂ng
�gudSg.
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Recalling that u ∈ H ∂
∂n

, then ∮
∂ M

∂u

∂ng
�gudSg = 0.

Using Lemma 2.10, we obtain

∂
(|∇gu|2)
∂ng

= 0.

Hence, we get∫
M

|∇2
gu|2dVg +

∫
M

Ricg(∇gu, ∇gu) =
∫

M
(�gu)2dVg.

Now, using the latter formula, we have〈
P4,3

g u, u
〉

L2(M)
= −1

3

∫
M

(�gu)2dVg + 4

3

∫
M

|∇2
gu|2dVg + 2

3

∫
M

Rg|∇gu|2dVg

− 2

3

∫
M

Ricg(∇gu, ∇gu)dVg.

Next, setting

∇̄g
2
u = ∇2

gu − 1

4
�gg;

we get〈
P4,3

g u, u
〉

L2(M)
= 4

3

∫
M

|∇̄2
gu|2dVg + 2

3

∫
M

(Rgg − Ricg)(∇gu, ∇gu)dVg.

So using the hypothesis Rgg − Ricg ≥ 0, we infer〈
P4,3

g u, u
〉

L2(M)
≥ 4

3

∫
M

|∇̄2
gu|2dVg.

Hence, we obtain P4,3
g is a non-negative operator. So to finish the proof of the

proposition, it remains only to show that the kernel is constituted only by con-
stants. In order to do that, we assume that there exists a non constant function
u ∈ H ∂

∂n
such that P4,3

g u = 0, and argue for a contradiction. From the fact that

u ∈ kerP4,3
g , we infer that

∇2
gu − 1

4
�gg = 0.

Now calling the doubling of M by DM , and the reflected metric by ḡ, we have that
ḡ is C2,α . Next we reflect u across ∂ M and call the reflection by u DM . Thus, we
obtain an element in H2(DM) verifying

∇2
ḡu DM − 1

4
�ḡ ḡ = 0.
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Thus using a result of Tashiro [38], we infer that (DM, ḡ) is conformally diffeo-
morphic to S4. Thus (M, g) is also conformally diffeomorphic to S4+. So we derive
the existence of a metric g̃ conformal to g on M which is Einstein, of constant pos-
itive scalar curvature, and Lg̃ = 0. Hence using the conformal invariance of P4,3

g ,
we get

4

3

∫
M

|∇̄2
g̃u|2dVg̃ + 1

2
Rg̃

∫
M

|∇g̃u|2dVg̃ = 0.

Thus, we obtain u is constant and reach a contradiction. This completes the proof
of the proposition.

Having this at hand, we are ready to give the proof of Theorem 1.9.

Proof of Theorem 1.9. Applying Theorem 4.1 with t0 = 0, and α = 0, we get the
existence of a metric g̃ conformal to g such that

Ricg̃ ≤ Rg̃ g̃, and Lg̃ = 0.

Hence appealing to Proposition 5.1, we obtain that P4,3
g̃ is non-negative and

ker P4,3
g̃ � R. Now recalling that the non-negativity of the operator P4,3

g and the
triviality of its kernel are conformally invariant properties, we have that the proof
of Theorem 1.9 is complete.

Next, we are going to present the proof of Corollary 1.10.

Proof of Corollary 1.10. Due to (1.1), the existence of constant Q-curvature, con-
stant T -curvature ad zero mean curvature metrics conformal to the background one
g is equivalent to solving the following (BVP)




P4
g u + 2Qg = 2Q̄e4u in M;

P3
g u + Tg = T̄ e3u on ∂ M;
∂u

∂ng
= 0 on ∂ M.

(5.1)

Where Q̄ and T̄ are constant real numbers. On the other hand it is easy to see that
critical points of the functional

I I (u) =
〈
P4,3

g u, u
〉

L2(M)
+ 4

∫
M

QgudVg +
∮

∂ M
TgudSg

− κP4
g

log
∫

M
e4udVg − 4

3

(
κ(P4,P3) − κP4

g

)
log

∮
∂ M

e3udSg;

are weak solution of (5.1), hence from standard elliptic regularity theory, they are
smooth solutions. Thus to prove the corollary, we will prove the existence of critical
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points. More precisely, under our assumption, we will prove the existence of a min-
imizer. To do so, we first point out that the functional I I is invariant by translation
by constant, and can also be written in the following form

I I (u) =
〈
P4,3

g u, u
〉

L2(M)
+ 4

∫
M

Qg(u − ū)dVg +
∮

∂ M
Tg(u − ū∂ M )dSg

− κP4
g

log
∫

M
e4(u−ū)dVg − 4

3

(
κ(P4,P3)−κP4

g

)
log

∮
∂ M

e(3u−ū∂ M )dSg.

(5.2)

Now exploiting this way of writing I I , we have if κP4
g

≤ 0, then by Jensen’s
inequality, we obtain

I I (u) ≥
〈
P4,3

g u, u
〉

L2(M)
+ 4

∫
M

Qg(u − ū)dVg +
∮

∂ M
Tg(u − ū∂ M )dSg .

Hence, using Cauchy inequality, trace theorem, Sobolev embedding, Poincaré in-
equality, and Lemma 2.9, we get

I I (u) ≥ γ ||u − ū||H2 − C

for some γ > 0 and some large C . Next if κP4
g

> 0, we use Proposition 2.7 and
Proposition 2.8 to obtain

I I (u) ≥
〈
P4,3

g u, u
〉

L2(M)
+ 4

∫
M

Qg(u − ū)dVg +
∮

∂ M
Tg(u − ū∂ M )dSg

+
(

− 4

α1
κP4

g
− 3

α2

(
κ(P4,P3) − κP4

g

)) 〈
P4,3

g u, u
〉

L2(M)
− Cα1,α2;

(5.3)

for α1 < 16π2 and α2 < 12π2, and Cα,α2 a constant depending only on α1, α2 and
(M, g). To continue the proof we need the following rigidity result.

Lemma 5.2. Let (M, g) be a compact four-dimensional Riemannian manifold with
umbilic boundary. Assuming that Y (M, ∂ M, [g]) ≥ 0, we have κ(P4,P3) ≤ 4π2

and equality holds if and only if (M, g) is conformally diffeomorphic to S4+ with
its standard metric.

Proof. Since Y (M, ∂ M, [g]) ≥ 0 and (M, g) has umbilic boundary, then by a result
of Escobar [18], we can take the Yamabe metric g̃ which has constant non-negative
scalar curvature and such that Lg̃ = 0. On the other hand, still by a result of
Escobar [18], we have that

Y (M, ∂ M, [g]) = Rg̃Volg̃(M)
1
2 ≤ Y (S4+, S3, [gS]) = 8

√
3π;

and equality holds if and only if (M, g) is conformally diffeomorphic to (S4+, gS).
Now using Lemma 4.4, we have

κ(P4,P3) = 2
∫

M
σ2(g̃

−1 Ag̃)dVg̃.
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On the other hand, we have also

σ2(g̃
−1 Ag̃) = 1

96
R2

g̃ − 1

8
|Eg̃|2.

Thus, we arrive to

κ(P4,P3) = 1

4

∫
M

(
1

12
R2

g̃ − |Eg̃|2dVg̃

)
≤ 1

48
R2

g̃Volg̃(M) ≤ 192

48
π2 = 4π2

and equality holds if and only if (M, g) is conformally diffeomorphic to (S4+, gS).
This completes the proof of the lemma.

Now coming back to our proof, we have that, since Y (M, ∂ M, [g]) > 0, and
(M, g) has an umbilic boundary, then by Lemma 5.2 κ(P4,P3) ≤ 4π2 and equality
holds if and only if (M, g) is conformally diffeomorphic to S4+ with its standard
metric. Hence, we can assume that κ(P4,P3) < 4π2, otherwise there is noting to do.
Thus taking α1 close to 16π2 and α2 close to 12π2, and using Cauchy inequality,
trace theorem, Sobolev embedding, Poincaré inequality, and Lemma 2.9, we get

I I (u) ≥ γ0||u − ū||H2 − C0;
for some γ0 > 0 and some large C0. Hence in any case we obtain

I I (u) ≥ γ||u − ū||H2 − C1 (5.4)

for some γ1 > 0 and some large C1. From this, and the fact that I I is invariant by
translation by constant, we have the existence of a minimizer un such that∫

M
e4un dVg = 1. (5.5)

Thus by the coercivity property (5.4), we have

||un − ūn||H2 ≤ C.

On the other hand, using Proposition 2.7, we infer

log
∫

M
e4(un−ūn)dVg ≤ C . (5.6)

So using (5.5), (5.6) and Jensen’s inequality we infer

|ūn| ≤ C.

Thus, we arrive to
||un||H2 ≤ C . (5.7)
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Hence up to a subsequence, we have

un ⇀ u in H2.

Furthermore, we have u ∈ H ∂
∂n

. On the other hand, it is easy to see that I I is

weakly lower semicontinuous on H2. Thus we have u is a minimizer of I I . This
completes the proof of Corollary 1.10.
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