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Reconstruction of an unknown inclusion by thermography

VICTOR ISAKOV, KYOUNGSUN KIM AND GEN NAKAMURA

Abstract. We establish a probe type reconstruction scheme for identifying an
inclusion inside a heat conductive medium by nondestructive testing called ther-
mography. For the one space dimension, this has been already achieved by Y.
Daido, H. Kang and G. Nakamura. The present paper shows that their result can
be generalized to higher space dimension.

Mathematics Subject Classification (2010): 35R30.

1. Introduction

Thermography is a nondestructive testing to extract the information of unknown
cracks, cavities and inclusions inside a heat conductor. This is a typical inverse
problem in industrial and medical engineering. The information we want to know
via thermography are their size, location etc. The procedure of thermography is to
apply a heat flux (sometimes called thermal load) to the surface of the heat conduc-
tor and measure the resulting temperature over certain time. This procedure can be
repeated several times and we can superpose the measured data. For more details,
we refer [3, 16, 17].

In this paper, we are concerned with a mathematical study of thermography.
In particular, we want to recover an unknown inclusion inside a heat conductor by
thermography. Under some mathematically idealized situation, we will provide a
mathematically rigorous scheme to reconstruct the unknown inclusion by boundary
measurements. In the rest of this introduction, we first introduce several notations
used throughout this paper to formulate our inverse problem and refer to the known
results on the problem.

Let � be a bounded domain in Rn (1 ≤ n ≤ 3) with C2 boundary if n ≥ 2.
We consider a heat conductor � with an inclusion D such that D ⊂ �, � \ D
is connected and ∂ D is of class C1,α (0 < α < 1) for simplicity. Let the heat
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conductivity γ (x) in � be given as follows:

γ (x) =
{

1 for x ∈ � \ D,

k for x ∈ D,
(1.1)

where k is a positive constant which is not 1. That is, by using the characteristic
function χD of D, γ (x) is given as γ (x) = 1+(k −1)χD . This is the most simplest
case for the heat conductivity. We will comment later at the end of this section on
more general case for the heat conductivity.

For simplicity, we denote B × (T1, T2) and B × (0, T ) by B(T1,T2) and BT ,
respectively, for a set B. Hq(�), H p(∂�) and Hq,r (�T ) with q, r ∈ Z+ := N∪{0}
and p = 1

2 denote the usual Sobolev spaces, where q and r in Hq,r (�T ) denote the
regularity with respect to x and t , respectively. Also, for an open set U ⊂ Rn+1,
q, r ∈ Z+, Hq,r (U ) is defined likewise Hq,r (�T ). That is, g ∈ Hq,r (U ) if the norm

||g||Hq,r (U ) :=


 ∑

|α|+2k≤q
k≤r

∫
U

∣∣∣∂α
x ∂k

t g
∣∣∣2

dtdx




1/2

is finite. A function f (x, t) is said to be in L2((0, T ); X) if f (·, t) takes a value in
a Hilbert space X for almost all t ∈ (0, T ) and

|| f ||2L2((0,T );X)
=

∫ T

0
|| f (·, t)||2X dt < ∞.

Let W (�T ) := {v ∈ L2((0, T ); H1(�)); ∂tv ∈ L2((0, T ); (H1(�))∗)}, where
(H1(�))∗ is the dual space of H1(�).

In this paper, we also use the Hörmander’s notation for function spaces to
handle the mixed type boundary condition. Namely, when X is an ambient space,
let Y be a subspace of X where ∂Y �= ∅ and ∂Y is of Lipschitz class. Then a
space H

p
(Y ) consists of distributions which have extension to X and we shall write

Ḣ p(Y ) for a space of distributions in H p(X) supported by Y . It is well known that
there are dualities. For dual spaces (H

p
(Y ))∗, (Ḣ p(Y ))∗ of H

p
(Y ), Ḣ p(Y ), we use

Ḣ−p(Y ) := (H
p
(Y ))∗, H

−p
(Y ) := (Ḣ p(Y ))∗.

(See Hörmander’s book [10].)
Let ∂� consist of two parts. Namely,

∂� = �D ∪ �N ,

where �D and �N are open subsets of ∂� such that �D ∩ �N = ∅ and for n = 3,
the boundaries ∂�D of �D and ∂�N of �N are C2 if they are nonempty.
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Now consider a boundary value problem to find a unique weak solution u =
u( f, g) ∈ L2((0, T ); H1(�)) which satisfies


PDu(x, t) := ∂t u(x, t) − divx (γ (x)∇x u(x, t)) = 0 in �T

u(x, t) = f (x, t) on �D
T , ∂νu(x, t) = g(x, t) on �N

T ,

u(x, 0) = 0 for x ∈ �

(1.2)

for a given f ∈ L2((0, T ); H
1
2 (�D)) and g ∈ L2((0, T ); Ḣ− 1

2 (�N )). In another
words, by assuming the initial temperature of a heat conductive medium � is 0 and
the temperature on �D

T is f , it is to determine the temperature u = u( f, g) induced
in �T after applying the heat flux g on �N

T . Here ∂νu = ∇u · ν with outward unit
normal vector ν to ∂�.

It is well known that the boundary value problem (1.2) is well posed( [19]).
That is, there exists a unique solution u = u( f, g) ∈ L2((0, T ); H1(�)) to (1.2).
Further, if �D �= ∅, and f (·, t) = 0 = g(·, t) (t > T ′) with 0 < T ′ < T ,
then u( f, g) has the decaying property. That is u( f, g) decays exponentially after
t = T ′. Based on the fact that (1.2) is well posed, we define the Neumann-to-

Dirichlet map �D as follows. For fixed f ∈ L2((0, T ); H
1
2 (�D)), define

�D : L2((0, T ); Ḣ− 1
2 (�N )) → L2((0, T ); H

1
2 (�N ))

g �→ u( f, g)|�N
T
.

Now, we take the Neumann-to-Dirichlet map �D as measured data. Then, our in-
verse problem is to reconstruct the unknown inclusion D from �D . This means that
by fixing the temperature on �D to f , we repeat conducting a measurement many
times which puts a heat flux g on �N and measure the corresponding temperature
on �N over the time interval (0, T ). Taking the map �D as measured data is of
course impractical. However, when �D �= ∅ and f = 0, we can actually repeat the
aforementioned measurement many times due to the decaying property of u( f, g).
We can even superpose the measured data to generate �D approximately.

The uniqueness and stability of identifying D from �D has been already pro-
ved in [7] and [6], respectively. Further, as for the reconstruction Y. Daido, H. Kang,
and G. Nakamura [4] gave a reconstruction scheme for one space dimensional case.
It is an analogue of the probe method which was introduced by M. Ikehata [11] to
identify the shape of unknown inclusion in a stationary heat conductive medium.
They developed a theory how to adapt the probe method for the stationary heat
conductive case in one space dimension to the dynamical heat conductive case in
one space dimension. We will call their theory dynamical probe method.

The main purpose of this paper is to generalize the result of [4] to higher di-
mension in the case that the inclusion D does not depend on t . The new ingredients
of this paper are the followings:

(i) We slightly modified the definition of the indicator function introduced in [4]
for our purpose. Here, the indicator function is a mathematical testing machine
to identify D and it is defined in terms of the measured data �D .
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(ii) We gave an explicit form for the dominant part of the reflected solution, which
is the key to analyze the behavior of the indicator function.

More precisely, indicator function is defined in (2.14) as a limit of a pre-indicator
function which is defined in Definition 2.3. By finding a special function called
reflected solution (you can find it after Lemma 2.4), we can see that it is enough
to know the behavior of the reflected solution to know that of indicator function
(Theorem 2.8). For the reflected solution w(y,s), we decompose it in terms of some
fundamental solutions as follows:

w(y,s)(x, t) = {E(x, t; y, s) − �−(	(x), t; 	(y), s)} + {�−(	(x), t; 	(y), s)

− �(	(x), t; 	(y), s)} + {�(	(x), t; 	(y), s) − �(x, t; y, s)}
+ {�(x, t; y, s) − V(y,s)(x, t)}.

Meanings of each function in this decomposition are explained in Section 3. Spe-
cially, the second brace is the dominant part of the reflected solution, which is
analyzed in Lemma 3.4.

We would like to remark here that it is possible to develop the dynamical
probe method for the heat conductivities of general forms. They can be a piecewise
Cµ (0 < µ < 1) smooth anisotropic conductivity with discontinuity everywhere
across ∂ D. These further development will be published elsewhere.

The rest of this paper is organized as follows. In Section 2, we will state
our main result. Its proof is given in Section 3. appendix includes some detailed
computations we postponed in Section 3.

ACKNOWLEDGEMENTS. We would like to thank the referee for many useful
comments to improve our paper.

2. Main result

For (y, s), (y, s′) ∈ R3 × R, let �(x, t; y, s) and �∗(x, t; y, s′) for (x, t) ∈ �T be

�(x, t; y, s) =




1

[4π(t − s)]n/2
exp

[
−|x − y|2

4(t − s)

]
, t > s,

0, t ≤ s,

(2.1)

�∗(x, t; y, s′) =




0, t ≥ s′,
1

[4π(s′ − t)]n/2
exp

[
− |x − y|2

4(s′ − t)

]
, t < s′. (2.2)

Then, P∅�(x, t; y, s) := (∂t − �x )�(x, t; y, s) = 0 if (x, t) �= (y, s) and
P∗

∅�∗(x, t; y, s′) := (−∂t − �x )�
∗(x, t; y, s′) = 0 if (x, t) �= (y, s′). Let
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G(x, t; y, s) be a solution of



P∅G(x, t; y, s) = δ(x − y)δ(t − s) in �T ,

G(·, ·; y, s) = 0 on �D
T ,

G(x, t; y, s) = 0 for x ∈ �, t ≤ s

and G∗(x, t; y, s′) a solution of



P∗

∅G∗(x, t; y, s′) = δ(x − y)δ(t − s′) in �T ,

G∗(·, ·; y, s′) = 0 on �D
T ,

G∗(x, t; y, s′) = 0 for x ∈ �, t ≥ s′

such that

G(x, t; y, s) − �(x, t; y, s), G∗(x, t; y, s′) − �∗(x, t; y, s′) ∈ C∞(�T ).

Now we prove Runge’s approximation theorem. We follow the lines in [4]. But
we need a slight modification because we are dealing with mixed type boundary
condition.

Theorem 2.1. For T ′
0 < T0 < T1 < T ′

1, let U be an open subset of �(T ′
0,T ′

1) such
that 


∂U is Lipschitz;
U ⊂ �(T ′

0,T ′
1) and (�(T ′

0,T ′
1) \ U ) ∩ {t = θ}

are connected for all θ ∈ (T ′
0, T ′

1).

(2.3)

For further reference, we say U satisfies property (R) in �(T ′
0,T ′

1) if U satisfies (2.3).

Then, for any open subset V of �(T ′
0,T ′

1) such that U ⊂ V ⊂ V ⊂ �(T ′
0,T ′

1) and any

v ∈ H2,1(V ) satisfying

{
P∅v = 0 in V,

v(x, t) = 0 for all (x, t) ∈ V with T ′
0 < t ≤ T0,

(2.4)

there exists a sequence {v j } ⊂ H2,1(�(T ′
0,T ′

1)) such that



P∅v j = 0 in �(T ′

0,T ′
1),

v j = 0 on �D × (T ′
0, T ′

1),

v j (x, t) = 0 for all (x, t) ∈ � × (T ′
0, T0],

(2.5)

and v j converges to v in L2(U ) as j → ∞.
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Proof. Let X be the collection of all v ∈ H2,1(V ) satisfying (2.4), and Y be the
collection of all u ∈ H2,1(�(T ′

0,T ′
1)) satisfying (2.5). We prove that Y is dense in X

in L2(U ) norm, in other words, that if f ∈ L2(U ) satisfies ( f, u)L2(U ) = 0 for all
u ∈ Y , then ( f, v)L2(U ) = 0 for all v ∈ X .

Suppose that f ∈ L2(U ) satisfies ( f, u)L2(U ) = 0 for all u ∈ Y . Define F by

F :=
{

f in U,

0 in �(T ′
0,T ′

1) \ U .

Then there exists a unique w ∈ H2,1(�(T ′
0,T ′

1)) satisfying



P∗

∅w = F in �(T ′
0,T ′

1),

w = 0 on ∂�(T ′
0,T ′

1),

w(x, T ′
1) = 0 for x ∈ �.

(2.6)

(For a solvability of (2.6), see, for example, [19].) For any u ∈ Y , we have

0 =
∫

U
u f =

∫
�(T ′

0,T ′
1)

uP∗
∅w dxdt =

∫
�(T ′

0,T ′
1)

(uP∗
∅w − wP∅u) dxdt

=
∫

∂�(T ′
0,T ′

1)

(w∂νu − u∂νw) dσdt = −
∫

∂�(T ′
0,T ′

1)

u∂νw dσdt.

Then we obtain ∂νw = 0 on (∂� \ �D)(T ′
0,T ′

1), since u|∂�(T ′
0,T ′

1)
∈ L2((T ′

0, T ′
1);

H
1
2 (∂�)) can be taken arbitrarily except the condition u = 0 on �D × (T ′

0, T ′
1).

Then using the unique continuation property (cf. [12]), we get

w = 0 on �(T ′
0,T ′

1) \ U . (2.7)

Let v ∈ X . Then, by (2.7), we have

(v, f )L2(U ) =
∫

U
v f =

∫
U

(vP∗
∅w − wP∅v)dxdt

=
∫

∂U
(w∂νv − v∂νw) = 0.

Here, we extended the meaning of ∂ν to denote the outer normal derivative on ∂U .
This completes the proof.
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Remark 2.2. An analogous theorem can be obtained for the dual problem corre-
sponding to the operator P∗

∅ . By the interior regularity [14, Theorem 7.13], we also
have the convergence v j → v in H2,1(U ) if we shrink U a little bit.

Let f ∈ L2((0, T ); H
1
2 (�D)) and g ∈ L2((0, T ); Ḣ− 1

2 (�N )). For arbitrarily
given ε > 0, let us consider two points (y, s) and (y, s′) in �(−ε,T +ε) with s �= s′.
Then by Theorem 2.1 and Remark 2.2, we can select two sequences of functions
{v j0

(y,s)} and {ψ j0
(y,s′)} in H2,1(�(−ε,T +ε)) such that




P∅v j0
(y,s) = 0 in �(−ε,T +ε),

v
j0
(y,s) = 0 on �D × (−ε, T + ε),

v
j0
(y,s)(x, t) = 0 if − ε < t ≤ 0,

v
j0
(y,s) → G(·, ·; y, s) in H2,1(U ) as j → ∞,

and 


P∗
∅ψ

j0
(y,s′) = 0 in �(−ε,T +ε),

ψ
j0
(y,s′) = 0 on �D × (−ε, T + ε),

ψ
j0
(y,s′)(x, t) = 0 if T ≤ t < T + ε,

ψ
j0
(y,s′) → G∗(·, ·; y, s′) in H2,1(U ) as j → ∞

for each open set U in �(−ε,T +ε) which satisfies property (R) with T ′
0 = −ε, T ′

1 =
T + ε and does not contain (y, s) and (y, s′).

Let v and ψ be functions such that

P∅v = 0 in �(−ε,T +ε),

v = f on �D × (−ε, T + ε),

∂νv = 0 on �N × (−ε, T + ε),

v(x, 0) = 0 for x ∈ �,



P∗

∅ψ = 0 in �(−ε,T +ε),

ψ = 0 on �D × (−ε, T + ε),

∂νψ = g on �N × (−ε, T + ε),

ψ(x, T ) = 0 for x ∈ �.

For j = 1, 2, · · · , we define

{
v

j
(y,s) := v + v

j0
(y,s)

ψ
j
(y,s′) := ψ + ψ

j0
(y,s′).

(2.8)

Then sequences {v j
(y,s)}, {ψ j

(y,s′)} are to be sequences of approximate functions sat-
isfying {

v
j
(y,s) → V(y,s) := v + G(·, ·; y, s)

ψ
j
(y,s′) → �(y,s′) := ψ + G∗(·, ·; y, s′)

in H2,1(U ) as j → ∞.
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Definition 2.3. Let (y, s), (y, s′) ∈ �T be such that s �= s′, and {v j
(y,s)}, {ψ j

(y,s′)} ⊂
H2,1(�(−ε,T +ε)) be sequences of approximate functions given in (2.8). Then, we
define the pre-indicator function I (y, s′; y, s) as follows.

I (y, s′; y, s) = lim
j→∞

∫
�N

T

(�∅ − �D)(∂νv
j
(y,s)|�N

T
) ∂νψ

j
(y,s′)|�N

T
dσx dt

whenever the limit exists.

This pre-indicator function will be used later to define an indicator function
which is a mathematical testing machine to identify the unknown inclusion.

For approximate functions {v j
(y,s)} ⊂ H2,1(�(−ε,T +ε)) given in definition a-

bove, let u j
(y,s) := u( f, ∂νv

j
(y,s)|�N

T
) and w

j
(y,s) := u j

(y,s) − v
j
(y,s). Then, w

j
(y,s)

satisfies the following mixed boundary value problem



PDw

j
(y,s) = (k − 1)div(χD∇xv

j
(y,s)) in �T ,

w
j
(y,s) = 0 on �D

T , ∂νw
j
(y,s) = 0 on �N

T ,

w
j
(y,s)(x, 0) = 0 for x ∈ �.

The derivation of Lemma 3.2 in [4] gives the following result.

Lemma 2.4 ([4]). Let (y, s) ∈ (� \ D)T . Then the sequence {w j
(y,s)} has a limit

w(y,s) in W (�T ) satisfying



PDw(y,s) = (k − 1)div(χD∇V(y,s)) in �T ,

w(y,s) = 0 on �D
T , ∂νw(y,s) = 0 on �N

T ,

w(y,s)(x, 0) = 0 for x ∈ �.

(2.9)

We call w(y,s) the reflected solution.

Proposition 2.5. For (y, s), (y, s′) ∈ (� \ D)T such that s �= s′, we have

I (y, s′; y, s) = (k − 1)

∫
DT

∇(w(y,s) + V(y,s)) · ∇�(y,s′)dxdt.

Remark 2.6. The proofs of this proposition and the next theorem look similar to
those in [4]. The differences of proofs happen because we are dealing with the
mixed boundary value problem.



RECONSTRUCTION OF AN UNKNOWN INCLUSION BY THERMOGRAPHY 733

Proof of Proposition 2.5. For simplicity, we drop the subscripts (y, s) and (y, s′).
By the definition of Neumann to Dirichlet map, we have∫

�N
T

(�∅ − �D)(∂νv
j )∂νψ

j =
∫

�N
T

(v j − u j )∂νψ
j = −

∫
�N

T

w j∂νψ
j

= −
∫

∂�T

w j∂νψ
j = −

∫
�T

(∇w j · ∇ψ j + w j�ψ j )

= −
∫

�T

[(γ − (k − 1)χD)∇w j · ∇ψ j + w j�ψ j ]

=−
∫

∂�T

γ ∂νw
jψ j +

∫
�T

[∇ · (γ∇w j )ψ j +(k − 1)χD∇w j · ∇ψ j −∂tw
jψ j ]

=
∫

�T

[−(k − 1)∇ · (χD∇v j )ψ j + (k − 1)χD∇w j · ∇ψ j ]

= (k − 1)

∫
DT

∇(v j + w j ) · ∇ψ j .

Let U ⊂ �(−ε,T +ε) be an open set with property (R) in �(−ε,T +ε), (y, s), (y, s′) �∈
U and DT ⊂ U . Since u j = v j + w j → V + w in H1,0(U ), we have∫

�N
T

(�∅ − �D)(∂νv
j )∂νψ

j → (k − 1)

∫
DT

∇(V + w) · ∇� dxdt as j → ∞.

This completes the proof.

Moreover, we can derive the following representation for pre-indicator func-
tion.

Theorem 2.7. For (y, s), (y, s′) ∈ (� \ D)T with s �= s′, we have

I (y, s′; y, s) = −
∫

�N
T

w(y,s)∂νψdσx dt −
∫

�s′
[∂tw(y,s)G

∗(·, ·; y, s′)

+ ∇w(y,s) · ∇G∗(·, ·; y, s′)]dxdt.

Proof. For ϕ ∈ W (�T ) with ϕ(x, T ) = 0 for all x ∈ � and ϕ|�D
T

= 0, we have∫
�T

(−w∂tϕ + ∇w · ∇ϕ) =
∫

�T

[∂twϕ + (γ − (k − 1)χD)∇w · ∇ϕ]

=
∫

�T

∂twϕ +
∫

∂�T

γ ∂νwϕ −
∫

�T

[∇ · (γ∇w)ϕ + (k − 1)χD∇w · ∇ϕ]

=
∫

�T

(k − 1)∇ · (χD∇V )ϕ − (k − 1)

∫
DT

∇w · ∇ϕ

= −(k − 1)

∫
DT

∇(V + w) · ∇ϕ.
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That is, ∫
�T

(−w∂tϕ + ∇w · ∇ϕ) = −(k − 1)

∫
DT

∇(V + w) · ∇ϕ (2.10)

for all ϕ ∈ W (�T ) with the properties ϕ(x, T ) = 0 and ϕ|�D
T

= 0. Let us consider

an open ball Br (y, s) of radius r > 0 centered at (y, s) in Rn+1 and use Br for
Br (0, 0) for brevity. For 0 < r < R < ∞, let η ∈ C∞

0 (Rn+1) be such that
0 ≤ η ≤ 1, η ≡ 1 on Br , supp(η) ⊂ BR , and |∇xη| ≤ C

R−r . For ε > 0, let

ηε(x, t) := η
( x − y

ε
,

t − s′

ε2

)
.

Since (y, s′) �∈ DT , there is ε0 such that ηε = 0 in DT for all 0 < ε < ε0. From
now on we suppose that ε < ε0 and fix an open set E with supp(ηε) ⊂ E ⊂ E ⊂
(� \ D)T . We can further assume that (y, s) �∈ E by taking smaller ε0. Substitute
ϕ = (1 − ηε)� in (2.10). Then we have RHS of (2.10) = −I (y, s′; y, s) and

LHS of (2.10)=
∫

�T

[−w∂t�+∇w ·∇�]+
∫

�T

[w∂t (ηε�)−∇w ·∇(ηε�)]. (2.11)

By the way, we have∫
�T

[−w∂t� + ∇w · ∇�] =
∫

�T

[−w∂tψ + ∇w · ∇ψ]

+
∫

�T

[−w∂t G
∗ + ∇w · ∇G∗]

=
∫

�T

[−w∂tψ − w�ψ] +
∫

∂�T

w∂νψ

+
∫

�s′
[∂twG∗ + ∇w · ∇G∗]

=
∫

�N
T

w∂νψ +
∫

�s′
[∂twG∗ + ∇w · ∇G∗].

For the second term in (2.11), we have∫
�T

[w∂t (ηε�) − ∇w · ∇(ηε�)] =
∫

�T

w∂t (ηεψ) − ∇w · ∇(ηεψ)

+
∫

�T

w∂t (ηεG∗) − ∇w · ∇(ηεG∗)

= −
∫

�T

[∂twηεψ + ∇w · ∇ηεψ + ∇w · ∇ψηε]

−
∫

�s′
[∂twηεG∗+∇w ·∇ηεG∗+∇w ·∇G∗ηε].
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Since ψ, ∇ψ, G∗, ∇G∗ ∈ L1(�T ) and w ∈ C∞(E), we can see that each term
below ∫

�T

∂twηεψ,

∫
�T

∇w · ∇ψηε,

∫
�s′

∂twηεG∗,
∫

�s′
∇w · ∇G∗ηε

goes to zero as ε → 0. Set Qr := {(x, t) ∈ Rn+1 : |x − y|2
r2

+ (s′ − t)2

r4
≤ 1}.

Then, we have∣∣∣∣
∫

�T

∇w · ∇ηεψ

∣∣∣∣ =
∣∣∣∣
∫

E
∇w · ∇ηεψ

∣∣∣∣
≤ C

ε(R − r)
||ψ ||L2(�T ) sup

E
|∇w|

[∫
(QεR\Qεr )∩�T

dxdt

]1/2

= C ′ε−1ε
n
2 +1 = C ′′ε

n
2 → 0 as ε → 0.

Finally, for the term

∫
�s′

∇w · ∇ηεG∗ =
∫

E∩�s′
∇w · ∇ηεG∗

=
∫

E∩�s′
∇w · ∇ηε(G

∗ − �∗) +
∫

E∩�s′
∇w · ∇ηε�

∗

= I1 + I2,

we get

|I1| ≤ C

ε(R − r)
sup

E
|∇w| sup

E∩�s′
|G∗ −�∗|

∫
(QεR\Qεr )∩�s′

dxdt = C ′ε−1εn+2 → 0

as ε → 0 and

|I2| ≤ sup
E

|∇w| C

ε(R − r)

∫
(QεR\Qεr )∩�s′

�∗dxdt

≤ C ′ε−1
∫

(BR\Br )∩{0<τ<s′}
1

(4πε2τ)n/2
exp

[
− |ξ |2

4τ

]
εn+2dξdτ

= C ′′ε → 0 as ε → 0.

This completes the proof.

Finally, we have the following representation formula for the pre-indicator
function in terms of the reflected solution.
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Theorem 2.8. For (y, s), (y, s′) ∈ (� \ D)T with s �= s′, we have

I (y, s′; y, s) = −w(y,s)(y, s′) −
∫

�N
T

w(y,s)(x, t)∂ν�(y,s′)(x, t)dσx dt. (2.12)

Proof. For an arbitrary positive constant ε, let G∗
ε(x, t; y, s′) = G∗(x, t; y, s′ + ε).

To begin with, we prove the following:

I (y, s′; y, s) = −
∫

�N
T

w∂νψ − lim
ε→0

∫
�s′

(∂twG∗
ε + ∇w · ∇G∗

ε). (2.13)

Choose δ > 0 sufficiently small so that Bδ(y, s′) ∩ DT = ∅. Let η be a smooth cut-
off function supported in Bδ(y, s′) such that η ≡ 1 near (y, s′). Then by Theorem
2.7 we have

I (y, s′; y, s) +
∫

�N
T

w∂νψ +
∫

�s′
(∂twG∗

ε + ∇w · ∇G∗
ε)

=
∫

�s′
η[∂tw(G∗

ε − G∗) + ∇w · ∇(G∗
ε − G∗)]

+
∫

�s′
(1 − η)[∂tw(G∗

ε − G∗) + ∇w · ∇(G∗
ε − G∗)]

=: I1 + I2.

Since (1−η)(G∗
ε − G∗) = (1−η)[(G∗

ε −�∗
ε )− (G∗ −�∗)+ (�∗

ε −�∗)] is smooth
in �s′ and tends to zero as ε → 0 together with its derivatives, we have

|I2| ≤ ||∂tw||L2((0,s′);(H1(�))∗)||(1 − η)(G∗
ε − G∗)||H1,0(�s′ )

+ ||∇xw||L2(�s′ )||(1 − η)∇x (G
∗
ε − G∗)||L2(�s′ ),

and hence |I2| → 0 as ε → 0.
On the other hand, w is smooth in Bδ(y, s′) and ∇x (G∗

ε − G∗) converges to 0
in L1(Bδ(y, s′)) as ε → 0. It then follows that

|I1| ≤ C(||G∗
ε − G∗||L1(Bδ(y,s′)) + ||∇x (G

∗
ε − G∗)||L1(Bδ(y,s′))) → 0

as ε → 0.
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Thus we have (2.13). By integration by parts, we get∫
�s′

(∂twG∗
ε + ∇w · ∇G∗

ε) =
∫

�s′
(−w∂t G

∗
ε − w�G∗

ε)

+
∫

�

w(x, s′)G∗
ε(x, s′; y, s′)dx +

∫
∂�s′

w∂νG∗
ε

=
∫

�

w(x, s′)G∗(x, s′; y, s′ + ε) +
∫

∂�s′
w∂νG∗

ε

=
∫

�

w(x, s′)(G∗(x, s′; y, s′ + ε)

− �∗(x, s′; y, s′ + ε))

+
∫

�

w(x, s′)�∗(x, s′; y, s′ + ε) +
∫

∂�T

w∂νG∗
ε .

Note that for any ε > 0

G∗(x, s′; y, s′ + ε) − �∗(x, s′; y, s′ + ε)

is C∞(�T ) and goes to G∗(x, s′; y, s′) − �∗(x, s′; y, s′) = 0 as ε → 0. Since
�∗(x, s′; y, s′ + ε) = �(x, ε; y, 0) and �(x, ε; y, 0) is the forward heat kernel, we
have

lim
ε→0

∫
�

w(x, s′)�(x, ε; y, 0)dx = w(y, s′).

Therefore, we get

I (y, s′; y, s) = −
∫

�N
T

w(y,s)(x, t)∂νψ(x, t)dσx dt − w(y,s)(y, s′)

−
∫

�N
T

w(y,s)(x, t)∂νx G∗(x, t; y, s′)dσx dt

= −w(y,s)(y, s′) −
∫

�N
T

w(y,s)(x, t)∂νx �(y,s′)(x, t)dσx dt.

Now we are ready to define the indicator function.

Definition 2.9. Let C := {c(λ) ; 0 ≤ λ ≤ 1} be a non-selfintersecting C1 curve in
� which joins c(0), c(1) ∈ ∂�. We call such a curve C a needle. Then, for each
c(λ) ∈ � and each fixed s ∈ (0, T ), we define the indicator function J (c(λ), s) by

J (c(λ), s) := lim
ε→0

lim inf
δ↓0

|I (c(λ − δ), s + ε2; c(λ − δ), s)| (2.14)

whenever the limit exists.
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C

Ω

c (0)

c (0)

c (1)

λ− δ )

c
c (

(
λ

λ
)

)

D

−δ

Theorem 2.10 (Main result). Let C be given as in Definition 2.9 above. Then, for
a fixed s ∈ (0, T ), we have the followings.

(i) If the curve C is in � \ D except c(0) and c(1), then J (c(λ), s) < ∞ for all λ,
0 ≤ λ ≤ 1.

(ii) If C ∩ D �= ∅, let λs (0 < λs < 1) be such that c(λs) ∈ ∂ D and c(λ) ∈
� \ D (0 < λ < λs). Namely, c(λs) is the point at which c first hits ∂ D. We
call c(λs) the first hitting point. Then,

λs = sup{ 0 < λ < 1 ; J (c(λ′), s) < ∞ for any 0 < λ′ < λ }. (2.15)

Remark 2.11. Based on Theorem 2.10, we can in principle reconstruct D as fol-
lows. We first draw many needles which could intersect with D. Then, Theorem
2.10 says that by observing the behavior of the indicator function along each nee-
dle, we can extract the first hitting points for each needle. Then, if we consider
some surface which is very close to these first hitting points, this surface will be
an approximate reconstruction of ∂ D. The numerical implementation of this recon-
struction scheme has been already given for the two space dimensional case [18].

3. Proof of Theorem 2.10

The proof for the case n = 1 is basically given in [4]. Since the rest of the cases
can be handled in the same way, we will give the proof only for the case n = 3.

Let (y, s) ∈ �T . First of all, by Theorem 2.8, we can analyze the behavior
of the indicator function J (c(λ), s) by the behavior of the reflected solution. If y
is not on the boundary of D, then w(y,s) is bounded due to the interior regularity
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estimate (see, for example [8]). So we only need to know the behavior of w(y,s)
when y approaches the boundary of D along the curve C .

To start with, let E(x, t; y, s) := w(y,s)(x, t) + V(y,s)(x, t). Then, E is obvi-
ously a fundamental solution for the operator PD . Further, let C be as in Defini-
tion 2.9.

Now let P = c(λ0) ∈ ∂ D for some λ0. Since ∂ D is C1,α (0 < α < 1), there
is a C1,α diffeomorphism 	 : R3 → R3 which transforms P to the origin O in R3,
	(D) ⊂ R3− = {x = (x1, x2, x3) ∈ R3; x3 < 0}. This 	 is the same as that in the
paper of G. Alessandrini and M. Di Cristo [1]. For reader’s convenience, we will
give the definition of 	 in details. To start with, let P = (p1, p2, p3) = (p′, p3) ∈
∂ D. Since ∂ D is of class C1,α , there exist positive constants r , L and a map φ

under which we have

D ∩ Br (P) = {x ∈ Br (P) : x3 < p3 + φ(x ′)}, (3.1)

where φ is a C1,α function on Br (p′) ⊂ R2 satisfying φ(p′) = |∇φ(p′)| = 0 and
||φ||C1,α(Br (p′)) ≤ Lr . Here the norm is defined as

||φ||C1,α(Br (p′)) = ||φ||L∞(Br (p′)) + r ||∇φ||L∞(Br (p′)) + r1+α|∇φ|α,Br (p′). (3.2)

Then, let θ ∈ C∞(R) be such that 0 ≤ θ ≤ 1, θ(t) = 1 for |t | < 1, θ(t) = 0 for
|t | > 2 and | dθ

dt | ≤ 2. We consider the following change of variables ξ = 	(x)

defined by 


ξ ′ = x ′ − p′

ξ3 = x3 − p3 − φ(x ′)θ
( |x ′ − p′|

r1

)
θ

(
x3 − p3

r1

)
,

(3.3)

where r1 = r
2 min{1, (8L)−1/α}. Then it can be easily verified that the Jacobian

matrix of 	 at P equals the identity matrix.
Let us proceed to our proof. Let �− be the fundamental solution for the opera-

tor ∂t −div((1+(k−1)χ−)∇) in R4 with the characteristic function χ− of the space
R3− such that �−(x, t; y, s) = 0 for t ≤ s. For this operator, we can explicitly com-
pute the reflected solution W (ξ, t; η, s) with ξ = 	(x), η = 	(y) of �(ξ, t; η, s)
given as W (ξ, t; η, s) = �−(ξ, t; η, s) − �(ξ, t; η, s). As a consequence, we can
have estimate W (ξ, t; η, s) as ξ = η → O and t ↓ s. Hence, in order to see the
behavior of w(y,s)(x, t) as x = y → P and t ↓ s, we compare w(y,s)(x, t) with
W (	(x), t; 	(y), s). More precisely, we decompose w(y,s) as follows:

w(y,s)(x, t) = E(x, t; y, s) − V(y,s)(x, t)

= {E(x, t; y, s) − �−(	(x), t; 	(y), s)}
+ {�−(	(x), t; 	(y), s) − �(	(x), t; 	(y), s)}
+ {�(	(x), t; 	(y), s) − �(x, t; y, s)}
+ {�(x, t; y, s) − V(y,s)(x, t)}.

(3.4)
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From the definition of V(y,s)(x, t), we can see that it has the same singularity with
�(x, t; y, s) and so the difference �(x, t; y, s) − V(y,s)(x, t) is bounded. The third
term is directly calculated because of the explicit definition of � which is given in
(2.1). In Lemma 3.6, we get the integral representation of the second term. This is
obtained from Laplace transform and Fourier transform. This term is the dominant
part in the behavior of w(y,s)(x, t).

Let ε > 0 be given. We take x = y = y(δ) = c(λ0 − δ) ∈ C \ D so that
y(δ) → P (δ ↓ 0). Then, as δ ↓ 0, ξ = η → 	(P) = O .

Remark 3.1. When t > s, the definition of � gives us the fact

�(y, t; y, s) = 1

(4π(t − s))3/2
.

So, the third parenthesis is zero if we take x = y and t = s + ε2.

As for the fourth term, we have the following lemma.

Lemma 3.2. We have
�(x, t; y, s) − V(y,s)(x, t)

is C∞ at (y, s) and so bounded in some closed neighborhood of (y, s).

Proof. Note that

�(x, t; y, s) − V(y,s)(x, t) = �(x, t; y, s) − G(x, t; y, s) − v(x, t)

and �(x, t; y, s) − G(x, t; y, s) ∈ C∞(�T ). By the definition of the function G∗,
we have, for (x, t) ∈ �T ,

v(x, t) = −
∫

∂�t

v(z, τ )∂νz G∗(z, τ ; x, t)dσzdτ

=
∫

∂�t

v(z, τ )∂νz (�
∗ − G∗)(z, τ ; x, t)dσzdτ

−
∫

∂�t

v(z, τ )∂νz �
∗(z, τ ; x, t)dσzdτ.

Since �∗(x, t; y, s) − G∗(x, t; y, s) is C∞(�T ), we can conclude that v is smooth
at (y, s).

Next, we will estimate the remaining terms in (3.4) in the forthcoming lemmas:

E(	−1(ξ), t; 	−1(η), s) − �−(ξ, t; η, s) in Lemma 3.3,

�−(ξ, t; η, s) − �(ξ, t; η, s) in Lemma 3.6.

To begin with, we put Ẽ(ξ, t; η, s) := E(	−1(ξ), t; 	−1(η), s). Then, we have the
following.
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Lemma 3.3. If y approaches the boundary of D, then there is a positive constant
C such that

lim sup
δ↓0

|(Ẽ − �−)(ξ, s + ε2; η, s)| ≤ Cεα−3, (3.5)

where C does not depend on ε.

Proof. Note that Ẽ satisfies

[∂t − ∇ξ · ((1 + (k − 1)χ−)M(ξ)∇ξ )]Ẽ(ξ, t; η, s) = δ(ξ − η)δ(t − s)

in R3 × R1,where M(ξ) = J J T with J = ∂ξ
∂x (	−1(ξ)) and Ẽ(ξ, t; η, s) = 0 for

t ≤ s. (Here, J T is the transpose matrix of J .) Then R̃(ξ, t; η, s) := Ẽ(ξ, t; η, s)−
�−(ξ, t; η, s) satisfies

R̃(ξ, t; η, s) = ∇ξ · ((1 + (k − 1)χ−)(M − I )∇ξ )Ẽ(ξ, t; η, s)

in R3 × R1.
Now, let �∗− be the fundamental solution for −∂t − divξ ((1 + (k − 1)χ−)∇ξ )

such that �∗−(ξ, t; z, τ ) = 0 for t ≥ τ . Choose a ball Br (O) with a radius r centered
at the origin so that 	(�) ⊂ Br (O). Then, we have the following representation:

R̃(ξ, t; η, s) =
∫ t

s

∫
Br (O)

(1 + (k − 1)χ−)(I − M)∇z Ẽ(z, τ ; η, s)

· ∇z�
∗−(z, τ ; ξ, t)dzdτ (3.6)

+
∫ t

s

∫
∂ Br (O)

(1 + (k − 1)χ−)[ ∂

∂νz
R̃(z, τ ; η, s)�∗−(z, τ ; ξ, t)

− R̃(z, τ ; η, s)
∂

∂νz
�∗−(z, τ ; ξ, t)]dσzdτ. (3.7)

Note that the integration (3.7) is finite by the choice of Br (O).

For analyzing the behavior of R̃, we need to know the estimate of gradients of
Ẽ and �∗−. That is we need the estimates:

|∇z Ẽ(z, τ ; η, s)| ≤ c1(τ − s)−2 exp

[
− |z − η|2

c2(τ − s)

]
, (3.8)

|∇z�
∗−(z, τ ; ξ, t)| ≤ c3(t − τ)−2 exp

[
− |z − ξ |2

c4(t − τ)

]
(3.9)

for some constants ci > 0 (1 ≤ i ≤ 4). For the derivation of these estimates, we
gave some comment and references right after the end of the present proof.

To proceed further, we use the estimate |M(z)− I | ≤ C |z|α (|z| < r) for some
constant C > 0, because ∂ D is C1,α . Note that as y approaches the ∂ D (that is,
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δ ↓ 0), ξ = η → O . By using the Fatou lemma, the lim supδ↓0 of the absolute
value of the integration (3.6) can be bounded from above by a constant multiple of
the following:

∫ t

s

∫
|z|<r

|z|α|∇z Ẽ(z, τ ; O, s)||∇z�
∗−(z, τ ; O, t)|dzdτ =: F.

Now let us substitute t = s + ε2. From (3.8) and (3.9), we have

F =
∫ s+ε2

s

∫
|z|<r

|z|α|∇z Ẽ(z, τ ; O, s)||∇z�
∗−(z, τ ; O, t)|dzdτ

≤ C1

∫ s+ε2

s

∫
|z|<r

|z|α(τ − s)−2(s + ε2 − τ)−2

· exp

[
− ε2|z|2

C2(τ − s)(s + ε2 − τ)

]
dzdτ

≤ C3ε
−6

∫ 1

0

∫
R3

|z|α(µ(1 − µ))−2 exp

[
− |z|2

C2ε2µ(1 − µ)

]
dzdµ

≤ C4ε
α−3

∫ 1

0

∫
R3

(µ(1 − µ))
α−1

2 |ζ |α exp

[
−|ζ |2

C2

]
dζdµ

≤ C5ε
α−3

with some constants Ci > 0 (1 ≤ i ≤ 5). Thus we can conclude that F ≤ Cεα−3.
Finally, we obtain

lim sup
δ↓0

|R̃(ξ, s + ε2; η, s)| ≤ Cεα−3

for some positive constant C which does not depend on ε.

The estimates (3.8) and (3.9) are proved in [5]. For the reader’s convenience,
we write down the results proved there.

Let D be a bounded domain in Rn, n = 2, 3, with a C1,α boundary (0 <

α < 1) and let Dm , 1 ≤ m ≤ L , be a finite number of disjoint subdomains of
D, each with a C1,α boundary. Furthermore, suppose that D = ∪L

m=1 Dm . Let
A(m) ∈ Cµ(Dm) (0 < µ < 1) be a symmetric, positive definite matrix-valued
function, and define

A(x) = A(m)(x), x ∈ Dm, 1 ≤ m ≤ L .

Under these assumptions, authors in [5] proved the following Theorem 3.4 and
Proposition 3.5.
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Theorem 3.4 ([5]). Let 0 < r < T , r Q ⊂ D and u ∈ W (r Q × (−r2, r2)) be a
solution of (∂t − ∇ · A∇)u = 0 in r Q × (−r2, r2). Then, there exists a constant
c > 0 such that for any 0 < ρ < r/2 and (x, t) ∈ (r − 2ρ)Q × (−r2 + 4ρ2, r2),
we have

||∇x u||L∞(ρQ(x)×(−ρ2+t,t)) ≤ c

ρn/2+2
||u||L2(2ρQ(x)×(−4ρ2+t,t)),

where Q(x) := {y = (y1, · · · , yn) ∈ Rn : |xi − yi | < 1, 1 ≤ i ≤ n} with
x = (x1, · · · , xn) and Q := Q(0).

It is well known that there exists a fundamental solution �(x, t; y, s) of the
operator ∂t − ∇ · A∇ with the estimate

�(x, t; y, s) ≤ C

[4π(t − s)]n/2
e− |x−y|2

C(t−s) χ[s,∞) (t, s ∈ R, t > s, a.e. x, y ∈ D),

which is positive for t > s, where C > 0 is a constant which depends only on A, n
and χ[s,∞) is the characteristic function of [s, ∞) (See [2]). As an application of
Theorem 3.4, they derived the estimate of ∇x� by combining the scaling argument
of Di Cristo-Vessella [6], that is,

Proposition 3.5 ([5]). Let �(x, t;y, s) be the previous fundamental solution. Then,
there exists a constant C > 0 depending only on A and n such that

|∇x�(x, t; y, s)| ≤ C

(t − s)
n+1

2

e− |x−y|2
C(t−s)

for any t, s ∈ R, t > s and almost every x, y ∈ D.

Now put

W (ξ, t; η, s) := �−(ξ, t; η, s) − �(ξ, t; η, s).

Let us denote W (ξ, t; η, s) for ±ξ3 > 0 by W ±(ξ, t; η, s). Then, we have the
following lemma.

Lemma 3.6. If y approaches the boundary of D, then there is a nonzero constant
C which does not depend on ε such that

lim
δ↓0

W +(ξ, s + ε2; η, s) = Cε−3.

Because the proof is little bit tedious, we will explain the outline of it in advance. W
satisfies (3.10) which can be expressed as a transmission problem (3.11). At first,
we apply Laplace transform to (3.11) with respect to t and then apply Fourier trans-
form to it with respect to ξ ′ = (ξ1, ξ2). Then, we can get the ordinary differential
equation with respect to ξ3. This ordinary differential equation is solved explicitly.
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To this explicitly expressed solution, we apply inverse Laplace transform and then
inverse Fourier transform. From these elementary calculations, we finally get the
integral representation of the solution (See (3.13)). It can be justified that this is the
solution to the original problem (3.11) we want. (You can find this justification in
appendix.) So, W is given as an inverse Laplace-Fourier transform with respect to
the Fourier variable ζ ′ of ξ ′ and Laplace variable τ of t . We first reduce the inverse
Laplace transform to an integral along a segment joining the two branch cuts of
integrand. Then, the integration with respect to ζ ′ can be computed explicitly if we
let ξ = η → 0 and t = s + ε2. At this point, W is given as ε−3 times an integral
over (0, 1) which turns out to be a nonzero constant. Now, let us start the proof of
Lemma.

Proof. We first note that{
∂t�−(ξ, t; η, s) − ∇ξ · (1 + (k − 1)χ−)∇ξ�−(ξ, t; η, s) = δ(ξ − η)δ(t − s)
∂t�(ξ, t; η, s) − �ξ�(ξ, t; η, s) = δ(ξ − η)δ(t − s)

in R3 × R1.
Then, for any ϕ in C∞

0 (R3 × (0, ∞)), we have∫ ∞

0

∫
R3

[∂t Wϕ + (1 + (k − 1)χ−)∇W · ∇ϕ]dξdt

=
∫ ∞

0

∫
R3

[∂t�−ϕ + (1 + (k − 1)χ−)∇�− · ∇ϕ]dξdt

−
∫ ∞

0

∫
R3

[∂t�ϕ + (1 + (k − 1)χ−)∇� · ∇ϕ]dξdt

= ϕ(η, s) − ϕ(η, s) −
∫ ∞

0

∫
R3

(k − 1)χ−∇� · ∇ϕdξdt

= −
∫ ∞

0

∫
R3

(k − 1)χ−∇� · ∇ϕdξdt.

Thus, W satisfies

∂t W (ξ, t; η, s) − ∇ξ · ((1 + (k − 1)χ−)∇ξ W (ξ, t; η, s))

= (k − 1)∇ξ · (χ−∇ξ�(ξ, t; η, s)).
(3.10)

Let us analyze the behavior of W . Let �̂ be the Laplace transform of � with respect
to t , that is,

�̂(ξ, τ ; η, s) =
∫ ∞

0
e−tτ�(ξ, t; η, s)dt.

Thus, �̂ satisfies

τ �̂(ξ, τ ; η, s) − �ξ �̂(ξ, τ ; η, s) = e−τ sδ(ξ − η) in R3.
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Now, we denote � for ±(ξ3 − η3) > 0 by �±. For ϕ ∈ C∞
0 (R3), we have

0 =
∫
R3

[τ �̂ϕ + ∇�̂ · ∇ϕ − e−τ sδ(ξ − η)ϕ]dξ

=
∫
R3

τ �̂ϕdξ +
∫

{ξ3−η3>0}
∇�̂+ · ∇ϕdξ +

∫
{ξ3−η3<0}

∇�̂− · ∇ϕdξ

−
∫

{ξ3−η3=0}
e−τ sδ(ξ ′ − η′)ϕ(ξ ′, η3)dξ ′

=
∫
R3

τ �̂ϕdξ −
∫

{ξ3−η3=0}
∂�̂+

∂ξ3
ϕdξ ′ −

∫
{ξ3−η3>0}

��̂+ϕdξ

+
∫

{ξ3−η3=0}
∂�̂−

∂ξ3
ϕdξ ′ −

∫
{ξ3−η3<0}

��̂−ϕdξ

−
∫

{ξ3−η3=0}
e−τ sδ(ξ ′ − η′)ϕ(ξ ′, η3)dξ ′

=
∫

{ξ3−η3>0}
[τ �̂+ − ��̂+]ϕdξ +

∫
{ξ3−η3<0}

[τ �̂− − ��̂−]ϕdξ

+
∫

{ξ3−η3=0}

[
∂�̂−

∂ξ3
− ∂�̂+

∂ξ3
− e−τ sδ(ξ ′ − η′)

]
ϕdξ ′.

Therefore, we have the following transmission problem:


��̂± − τ �̂± = 0 in {±(ξ3 − η3) > 0},
�̂+ − �̂− = 0 on {ξ3 − η3 = 0},
∂�̂+

∂ξ3
− ∂�̂−

∂ξ3
= −e−τ sδ(ξ ′ − η′) on {ξ3 − η3 = 0}.

Let φ± be the Fourier transforms of �̂± for ξ ′ = (ξ1, ξ2). From now on, we use
ζ ′ = (ζ1, ζ2) to denote the Fourier variable associated with ξ ′. Then, we have



∂2φ±

∂ξ2
3

− (|ζ ′|2 + τ)φ± = 0 in {±(ξ3 − η3) > 0},
φ+ − φ− = 0 on {ξ3 − η3 = 0},
∂φ+

∂ξ3
− ∂φ−

∂ξ3
= −e−τ se−iη′·ζ ′

on {ξ3 − η3 = 0}.

This is an ordinary differential equation in R3 with transmission boundary condi-
tions on {ξ3 − η3 = 0}. So, proper calculations give us


φ+(ζ ′, ξ3) = 1

2�(ζ ′, τ )
exp(−τ s − iη′ · ζ ′ − (ξ3 − η3)�(ζ ′, τ ))

φ−(ζ ′, ξ3) = 1

2�(ζ ′, τ )
exp(−τ s − iη′ · ζ ′ + (ξ3 − η3)�(ζ ′, τ )),
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where �2(ζ ′, τ ) = |ζ ′|2 + τ and real part �� of � > 0. Thus we obtain the
representation of �̂±:

�̂±(ξ, τ ; η, s) = 1

(2π)2

∫
R2

eiξ ′·ζ ′
φ±(ζ ′, ξ3)dζ ′

= 1

8π2

∫
R2

1

�(ζ ′, τ )
e−τ s+i(ξ ′−η′)·ζ ′∓(ξ3−η3)�(ζ ′,τ )dζ ′.

Note that W satisfies the following transmission problem:


∂t W
+ − �W + = 0 in {ξ3 > 0},

∂t W
− − k�W − = (k − 1)��− in {ξ3 < 0},

W + − W − = 0 on {ξ3 = 0},
∂W +

∂ξ3
− k

∂W −

∂ξ3
= (k − 1)

∂�−

∂ξ3
on {ξ3 = 0},

W +(ξ, 0) = 0 in {ξ3 > 0}, W −(ξ, 0) = 0 in {ξ3 < 0}.

(3.11)

Let Ŵ ± be the Laplace transform of W ± with respect to t . Then we get


τ Ŵ + − �Ŵ + = 0 in {ξ3 > 0},
τ (Ŵ − + �̂−) − k�(Ŵ − + �̂−) = 0 in {ξ3 < 0},
Ŵ + − Ŵ − = 0 on {ξ3 = 0},
∂Ŵ +

∂ξ3
− k

∂Ŵ −

∂ξ3
= (k − 1)

∂�̂−

∂ξ3
on {ξ3 = 0}.

(3.12)

By the same method that we used to obtain the representation of �̂±, we can obtain
the representation of Ŵ ±. In other words, Ŵ + and Ŵ − have the representations:

Ŵ +(ξ, τ ; η, s)= 1

8π2

∫
R2

� − k�k

�(� + k�k)
exp[−sτ +i(ξ ′− η′)·ζ ′−(ξ3+ η3)�]dζ ′,

Ŵ −(ξ, τ ; η, s) = 1

4π2

∫
R2

1

� + k�k
exp[−sτ + i(ξ ′ − η′) ·ζ ′ + ξ3�k −η3�]dζ ′

− 1

8π2

∫
R2

1

�
exp[−sτ + i(ξ ′ − η′)· ζ ′ + (ξ3 − η3)�]dζ ′,

where

�2 := �(ζ ′, τ )2 = |ζ ′|2 + τ, �� > 0,

�2
k := �k(ζ

′, τ )2 = |ζ ′|2 + τ/k, ��k > 0.

Therefore, by the inversion formula for the Laplace transform, we have

W +(ξ, t; η, s) = 1

2π i

∫ σ+i∞

σ−i∞
etτ Ŵ +(ξ, τ ; η, s)dτ

= 1

4π2

∫
R2

ei(ξ ′−η′)·ζ ′
h(ζ ′, t)dζ ′,

(3.13)
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where σ > 0 and

h(ζ ′, t) = 1

4π i

∫ σ+i∞

σ−i∞
� − k�k

�(� + k�k)
e(t−s)τ−(ξ3+η3)�dτ (3.14)

(in appendix, we show that W ± obtained from this derivation satisfy (3.11).)
Since the case k < 1 can be handled in the same way as the case k > 1, we

assume k > 1 from now on. Performing a contour integration with appropriate
branch cuts for the multi-valued functions � and �k in (3.14)(see appendix), we
have

h(ζ ′, t) =
√

k − 1

4π

∫ 1

0

|ζ ′|√
r

exp
[
−(t − s)|ζ ′|2(kr − r + 1)

]
(3.15)

×
[√

r − i
√

k(1 − r)√
r + i

√
k(1 − r)

exp{i(ξ3 + η3)
√

(k − 1)r |ζ ′|} (3.16)

+
√

r + i
√

k(1 − r)√
r − i

√
k(1 − r)

exp{−i(ξ3 + η3)
√

(k − 1)r |ζ ′|}
]

dr. (3.17)

Hence, W +(ξ, t; η, s) becomes

W +(ξ,t;η,s)=
√

k−1

16π3

∫ 1

0

1√
r

[√
r − i

√
k(1 − r)√

r + i
√

k(1 − r)
I++

√
r + i

√
k(1 − r)√

r − i
√

k(1 − r)
I−

]
dr

=
√

k−1

16π3

∫ 1

0

[
(k + 1)r − k√
r(r +k(1−r))

(I++ I−)−2i

√
k(1 − r)

r +k(1−r)
(I+− I−)

]
dr,

where

I± =
∫
R2

|ζ ′|ei(ξ ′−η′)·ζ ′
exp

[
−(t−s)|ζ ′|2(kr −r +1)±i(ξ3 + η3)

√
(k−1)r |ζ ′|

]
dζ ′.

Now let δ ↓ 0 and set t = s + ε2. Then, ξ = η → O and (t − s)(kr − r + 1) > 0.
Thus we have

lim
δ↓0

I± =
∫
R2

|ζ ′| exp[−ε2(kr − r + 1)|ζ ′|2]dζ ′

= 2π

∫ ∞

0
ρ2e−(kr−r+1)ε2ρ2

dρ

= 1

2

(
π

kr − r + 1

) 3
2

ε−3.

Therefore we have

lim
δ↓0

W +(ξ, s + ε2; η, s) =
√

k − 1

16π
√

πε3
H,
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where

H =
∫ 1

0

(k + 1)r − k√
r(r + k(1 − r))(kr − r + 1)3/2

dr.

In order to estimate |H | from above and below, we note the following estimates:

−k ≤ (k + 1)r − k ≤ 1, 1 ≤ r + k − kr ≤ k, 1 ≤ kr − r + 1 ≤ k.

Then we have

|H | ≤
∫ 1

0

k√
r

dr = 2k < ∞.

To show that H �= 0, we write H as the sum of the following terms

H1 =
∫ k

k+1

0

(k + 1)r − k√
r(r + k(1 − r))(kr − r + 1)3/2

dr,

H2 =
∫ 1

k
k+1

(k + 1)r − k√
r(r + k(1 − r))(kr − r + 1)3/2

dr.

Then, we have

−H1 =
∫ k

k+1

0

k − (k + 1)r√
r(r + k(1 − r))(kr − r + 1)3/2

dr

≥
∫ k

k+1

0

k − (k + 1)r(
k

k+1

)1/2
k

(
k2+1
k+1

)3/2
dr = k1/2(k + 1)

2(k2 + 1)3/2
,

and for H2 we have

H2 ≤
∫ 1

k
k+1

(k + 1)r − k(
k

k+1

)1/2 (
k2+1
k+1

) 3
2

dr = k + 1

2k1/2(k2 + 1)3/2
.

Thus, we have

H = H1 + H2 ≤ − k1/2(k + 1)

2(k2 + 1)3/2
+ k + 1

2k1/2(k2 + 1)3/2

= − (k + 1)(k − 1)

2k1/2(k2 + 1)3/2
< 0,

since we assumed that k > 1. This completes the proof.

By combining results in this section, we conclude that

lim inf
δ↓0

|w(y(δ),s)(y(δ), s + ε2)| ≥ Cε−3,

for some positive constant C which does not depend on ε. That is, the reflected
solution blows up as the point approaches the boundary of the inhomogeneity. Fur-
thermore, to get the blow up property we only use the perturbation in time.
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A. Appendix

In this appendix, we will provide the proofs for the two facts which we need in
Section 3. They are

(i) W ± solve the transmission problem (3.11),
(ii) formula (3.15).

1. Proof of the fact that W ± are the solution to (3.11).

To verify this, we apply the method used in [13]. Note that

W +(ξ, t) = 1

2π i

∫ σ+i∞

σ−i∞
etτ Ŵ +(ξ, τ )dτ,

W −(ξ, t) = 1

2π i

∫ σ+i∞

σ−i∞
etτ Ŵ −(ξ, τ )dτ,

(A.1)

where

Ŵ +(ξ, τ ) = 1

8π2

∫
R2

� − k�k

�(� + k�k)
exp

[−sτ + i(ξ ′ − η′) · ζ ′ − (ξ3 + η3)�
]

dζ ′

=: 1

8π2

∫
R2

f (ξ, ζ ′, τ )dζ ′,

Ŵ −(ξ, τ ) = 1

4π2

∫
R2

1

� + k�k
exp

[−sτ + i(ξ ′ − η′) · ζ ′ + ξ3�k − η3�
]

dζ ′

− 1

8π2

∫
R2

1

�
exp

[−sτ + i(ξ ′ − η′) · ζ ′ + (ξ3 − η3)�
]

dζ ′

=: F1 + F2.

Let τ = σ + iθ , where τ ∈ �σ0 := {σ + iθ ∈ C : σ ≥ σ ′
0 > σ0 > 0}. Then,

� = [|ζ ′|2 + τ ]1/2 = [(|ζ ′|2 + σ)2 + θ2]1/4eiα/2,

where α = tan−1 θ

|ζ ′|2+σ
. Since σ > 0, (|ζ ′|2 + σ)2 + θ2 ≥ max{|ζ ′|4, |τ |2}. Thus

�� ≥ C max{|ζ ′|, |τ |1/2} (A.2)

for some positive constant C . Moreover, since (|ζ ′|2 + σ)2 + θ2 ≤ 2(|ζ ′|4 + |τ |2),
we have

(|ζ ′|2 + σ)2 + θ2 ≤
{

4|ζ ′|4 if |ζ ′| ≥ |τ |1/2

4|τ |2 if |ζ ′| < |τ |1/2.
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In another words, we have

�� ≤
{

C1|ζ ′| if |ζ ′| ≥ |τ |1/2

C1|τ |1/2 if |ζ ′| < |τ |1/2 (A.3)

for some positive constant C1. So we will divide the domain of integration R2 in
two parts {ζ ′ ∈ R2 : |ζ ′| ≥ √|τ |} and {ζ ′ ∈ R2 : |ζ ′| <

√|τ |}. For �k =√|ζ ′|2 + τ/k, we can get similar results as those for �.
At first, let us consider Ŵ +. Let ξ3 ∈ [a, b] ⊂ (0, ∞). Then,

�[(ξ3 + η3)�] = (ξ3 + η3)�� ≥ C max{(a + η3)|ζ ′|, (a + η3)|τ |1/2}
for some positive constant C . Thus, by (A.2), (A.3) and change of variables, we
have

|Ŵ +(ξ, τ )| ≤ C0

∫
|ζ ′|≥|τ |1/2

|ζ ′|
|ζ ′|2 exp[−sσ0 − C(a + η3)|ζ ′|]dζ ′

+ C0

∫
|ζ ′|<|τ |1/2

|τ |1/2

|τ | exp[−sσ0 − C(a + η3)|τ |1/2]dζ ′

= C ′
0e−sσ0

∫ ∞

|τ |1/2
e−C(a+η3)r dr + C ′

0

|τ |1/2
e−sσ0−C(a+η3)|τ |1/2

∫ |τ |1/2

0
rdr

= C ′
[

1

a + η3
+ |τ |1/2

]
e−sσ0−C(a+η3)|τ |1/2

.

For j ∈ {1, 2}, we have

∂ξ j f = iζ j
� − k�k

�(� + k�k)
exp

[−sτ + i(ξ ′ − η′) · ζ ′ − (ξ3 + η3)�
]
.

Thus, we can find some constant C0 such that

|∂ξ j f | ≤




C0|ζ ′| |ζ ′|
|ζ ′|2 e−sσ0−C(a+η3)|ζ ′| if |ζ ′| ≥ |τ |1/2

C0|ζ ′| |τ |1/2

|τ | e−sσ0−C(a+η3)|τ |1/2
if |ζ ′| < |τ |1/2.

Therefore, we obtain∫
R2

|∂ξ j f |dζ ′

≤ C0

∫
|ζ ′|≥|τ |1/2

e−sσ0−C(a+η3)|ζ ′|dζ ′ + C0

|τ |1/2
e−sσ0−C(a+η3)|τ |1/2

∫
|ζ ′|<|τ |1/2

|ζ ′|dζ ′

= C ′[ 1

(a + η3)2
+ |τ |1/2

a + η3
+ |τ |

]
e−sσ0−C(a+η3)|τ |1/2

.
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When j, l ∈ {1, 2}, we have

∂ξ j ∂ξl f = (iζ j )(iζl)
� − k�k

�(� + k�k)
exp

[
− sτ + i(ξ ′ − η′) · ζ ′ − (ξ3 + η3)�

]
.

Hence,

∫
R2

|∂ξ j ∂ξl f |dζ ′

≤ C0

∫
|ζ ′|≥|τ |1/2

|ζ ′|2 |ζ ′|
|ζ ′|2 e−sσ0−C(a+η3)|ζ ′|dζ ′

+ C0

∫
|ζ |<|τ |1/2

|ζ ′|2 |τ |1/2

|τ | e−sσ0−C(a+η3)|τ |1/2
dζ ′

= C ′
[

1

(a + η3)3
+ |τ |1/2

(a + η3)2
+ |τ |

a + η3
+ |τ |3/2

]
e−sσ0−C(a+η3)|τ |1/2

.

Similarly, we get

∫
R2

|∂ξ3 f |dζ ′ ≤ C ′
[

1

(a + η3)2
+ |τ |1/2

a + η3
+ |τ |

]
e−sσ0−C(a+η3)|τ |1/2

,

∫
R2

|∂2
ξ3

f |dζ ′ ≤C ′
[

1

(a + η3)3
+ |τ |1/2

(a + η3)2
+ |τ |

a + η3
+|τ |3/2

]
e−sσ0−C(a+η3)|τ |1/2

.

Consequently, for ξ ∈ R2 × [a, b] ⊂ R2 × (0, ∞) and τ ∈ �σ0 , we have

|Ŵ +(ξ, τ )|≤ C ′
[

1

a + η3
+ |τ |1/2

]
e−sσ0−C(a+η3)|τ |1/2

,

|∂ξ j Ŵ
+(ξ, τ )|≤ C ′

[
1

(a + η3)2
+ |τ |1/2

a + η3
+ |τ |

]
e−sσ0−C(a+η3)|τ |1/2

,

|∂2
ξ j

Ŵ +(ξ, τ )|≤C ′
[

1

(a + η3)3
+ |τ |1/2

(a+η3)2
+ |τ |

a+η3
+|τ |3/2

]
e−sσ0−C(a+η3)|τ |1/2

(A.4)
for j = 1, 2, 3.

Next, we consider Ŵ −. Let ξ3 ∈ [c, d] ⊂ (−∞, 0). Then, there is a positive
constant C such that

�[ξ3�k − η3�] = ξ3��k − η3�� ≤ C min{(d − η3)|ζ ′|, (d − η3)|τ |1/2}.
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Note that η3 > 0. If we carry out similar calculations as we did for Ŵ +, we have

|Ŵ −(ξ, τ )| ≤ C ′
[

1

η3 − d
+ |τ |1/2

]
e−sσ0−C(η3−d)|τ |1/2

,

|∂ξ j Ŵ
−(ξ, τ )| ≤ C ′

[
1

(η3 − d)2
+ |τ |1/2

η3 − d
+ |τ |

]
e−sσ0−C(η3−d)|τ |1/2

,

|∂2
ξ j

Ŵ −(ξ, τ )| ≤ C ′
[

1

(η3 − d)3
+ |τ |1/2

(η3 − d)2
+ |τ |

η3 − d
+ |τ |3/2

]
e−sσ0−C(η3−d)|τ |1/2

(A.5)
for j = 1, 2, 3.

Now, we show that W ± satisfy (3.11). Note that �̂−(ξ, τ ) = −F2(ξ, τ ). Since
we know ∫ ∞

σ0

rme−α
√

r dr < ∞ for m = 0,
1

2
, 1,

3

2
, α > 0,

if we apply this fact to G(ξ, τ ) = Ŵ ±, ∂ξ j Ŵ
±, ∂2

ξ j
Ŵ ±, �̂−, ∂ξ j �̂

−, ∂2
ξ j

�̂−, then
we have ∫ ∞

σ0

|G(ξ, τ )|d|τ | < ∞.

Note that Ŵ ± satisfy (3.12). Taking into account (A.4) for W + which allow to put
the operator ∂t − �ξ in the integrand of the improper integral, we have

(∂t − �ξ)W +(ξ, t) = (∂t − �ξ)
1

2π i

∫ σ+i∞

σ−i∞
etτ Ŵ +(ξ, τ )dτ

= 1

2π i

∫ σ+i∞

σ−i∞
etτ (τ − �ξ)Ŵ +(ξ, τ )dτ = 0.

Similarly, from the facts (A.5), we have

(∂t − k�ξ)W −(ξ, t) = (∂t − k�ξ)
1

2π i

∫ σ+i∞

σ−i∞
etτ Ŵ −(ξ, τ )dτ

= 1

2π i

∫ σ+i∞

σ−i∞
etτ (τ − k�ξ)Ŵ −(ξ, τ )dτ

= 1

2π i

∫ σ+i∞

σ−i∞
etτ (k�ξ − τ)�̂−(ξ, τ )dτ

= (k�ξ − ∂t )
1

2π i

∫ σ+i∞

σ−i∞
etτ �̂−(ξ, τ )dτ

= (k�ξ − ∂t )�
−(ξ, t) = (k − 1)�ξ�

−(ξ, t).
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To verify that W ± satisfy the boundary condition, it is necessary to take the limit
ξ3 → 0 in the integrand of (A.1). (For precise explanation, see [13, page 465].)

lim
ξ3→0+ W +(ξ, t) = 1

2π i

∫ σ+i∞

σ−i∞
etτ lim

ξ3→0+ Ŵ +(ξ, τ )dτ

= 1

2π i

∫ σ+i∞

σ−i∞
etτ lim

ξ3→0− Ŵ −(ξ, τ )dτ = lim
ξ3→0− W −(ξ, t).

lim
ξ3→0+

∂

∂ξ3
W +(ξ, t) = lim

ξ3→0+
1

2π i

∫ σ+i∞

σ−i∞
etτ ∂

∂ξ3
Ŵ +(ξ, τ )dτ

= 1

2π i

∫ σ+i∞

σ−i∞
etτ lim

ξ3→0+
∂

∂ξ3
Ŵ +(ξ, τ )dτ

= 1

2π i

∫ σ+i∞

σ−i∞
etτ lim

ξ3→0−

(
k

∂

∂ξ3
Ŵ −(ξ, τ ) + (k − 1)

∂

∂ξ3
�̂−(ξ, τ )

)
dτ

= lim
ξ3→0−

1

2π i

∫ σ+i∞

σ−i∞
etτ

(
k

∂

∂ξ3
Ŵ −(ξ, τ ) + (k − 1)

∂

∂ξ3
�̂−(ξ, τ )

)
dτ

= lim
ξ3→0−

[
k

∂

∂ξ3
W −(ξ, τ ) + (k − 1)

∂

∂ξ3
�−(ξ, τ )

]
.

To verify that W ± satisfy the initial conditions, we consider, for N > 0, the integral

W +
N (ξ, t) := 1

2π i

∫
γ

etτ Ŵ +(ξ, τ )dτ,

where γ = −�N + CN is a closed contour given as Figure A.1.

i N

−i N

σ + N

CN

�N

σ
�τ

�τ

Figure A.1. Contour γ .

By Cauchy’s theorem, we have

1

2π i

∫
γ

Ŵ +(ξ, τ )dτ = 0.
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Note that

|Ŵ +(ξ, τ )| ≤ C ′
[

1

a + η3
+ |τ |1/2

]
e−sσ0−C(a+η3)|τ |1/2

,

for a, η3, C > 0. Thus∫
CN

|Ŵ +(ξ, τ )|dτ ≤ C ′′
∫ π

2

− π
2

(
1

a + η3
+

√
2(σ 2 + N 2)

)
e−sσ0−C(a+η3)N 1/2

Ndθ

= C ′′′N
(

1

a + η3
+

√
2(σ 2 + N 2)

)
e−sσ0−C(a+η3)N 1/2

→ 0 as N → ∞.

Here we used
N ≤ |τ | = |σ + Neiθ | ≤

√
2(σ 2 + N 2).

Hence we have

lim
t→0

W +(ξ, t) = lim
N→∞

1

2π i

∫
�N

Ŵ +(ξ, τ )dτ

= lim
N→∞

1

2π i

∫
CN

Ŵ +(ξ, τ )dτ = 0.

By the same argument, we can also get

lim
t→0

W −(ξ, t) = 0.

2. Proof of formula (3.15).

W + was given by formula (3.13):

W +(ξ, t) = 1

(2π)2

∫
R2

ei(ξ ′−η′)·ζ ′
h(ζ ′, t)dζ ′,

where

h(ζ ′, t) = 1

4π i

∫ σ+i∞

σ−i∞
� − k�k

�(� + k�k)
e(t−s)τ−(ξ3+η3)�dτ,

with σ > 0 and

�2 := �(ζ ′, τ )2 = |ζ ′|2 + τ, �� > 0,

�2
k := �k(ζ

′, τ )2 = |ζ ′|2 + τ/k, ��k > 0.

We denote the integrand in h(ζ ′, t) by g(τ ). That is,

g(τ ) =
√

τ + |ζ ′|2 − √
k
√

τ + k|ζ ′|2√
τ + |ζ ′|2(√τ + |ζ ′|2 + √

k
√

τ + k|ζ ′|2)
· exp[(t − s)τ − (ξ3 + η3)

√
τ + |ζ ′|2].
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Because of the square root, g(τ ) is a multi-valued function and its branch points
are −|ζ ′|2 and −k|ζ ′|2. A convenient choice for the branch cut is the line segment
lying along the real axis running between τ = −k|ζ ′|2 and τ = −|ζ ′|2.

Now we shall convert the line integral running from σ − i∞ to σ + i∞ into
a closed contour so that we can apply the residue theorem. Figure A.2 shows the
contour which we will use. The contribution from the arcs ABC and J K L are
negligibly small by Jordan’s lemma. The contribution from the line segment C D
cancels the contribution from I J . Consequently the dumbbell-shaped contour inte-
gral shown in Figure A.3 is equivalent to the contour ABC DE FG H I J K L shown
in Figure A.2. Because there are no singularities inside the closed contour, the value
given by the contour integral shown in Figure A.3 must equal the negative of the
integral from σ − i∞ to σ + i∞.

A
B

C D E F

GHI
J

K
L

�τ

�τ

−k|ζ ′|2

−|ζ ′|2

σ

Figure A.2. Contour.

−k|ζ ′|2 −|ζ ′|2 �τ

�τ

C1
C2

C3

C4

Figure A.3. Dumbbell-shaped contour.
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Along C1, τ + k|ζ ′|2 = εeiθ , and dτ = iεeiθdθ so that∫
C1

g(τ )dτ

= lim
ε→0

∫ 0

2π

√−k|ζ ′|2 + εeiθ + |ζ ′|2 − √
k
√

εeiθ/2√−k|ζ ′|2+εeiθ + |ζ ′|2(√−k|ζ ′|2+εeiθ +|ζ ′|2+√
k
√

εeiθ/2)

× exp[(t − s)(−k|ζ ′|2 + εeiθ ) − (ξ3 + η3)

√
−k|ζ ′|2 + εeiθ + |ζ ′|2]iεeiθdθ

= lim
ε→0

∫ 0

2π

iεeiθ (
√

εeiθ + (k − 1)|ζ ′|2eπ i − √
k
√

εeiθ/2)√
εeiθ + (k − 1)|ζ ′|2eπ i (

√
εeiθ + (k − 1)|ζ ′|2eπ i + √

k
√

εeiθ/2)

× exp[−(t − s)(k|ζ ′|2 − εeiθ ) − (ξ3 + η3)

√
εeiθ + (k − 1)|ζ ′|2eπ i ]dθ

= 0.

Along C3, τ + |ζ ′|2 = εeiθ and dτ = iεeiθdθ so that∫
C3

g(τ )dτ = lim
ε→0

∫ −π

π

√
εeiθ/2 − √

k
√

εeiθ − |ζ ′| + k|ζ ′|2√
εeiθ/2(

√
εeiθ/2 + √

k
√

εeiθ − |ζ ′| + k|ζ ′|2)

× exp[(t − s)(−|ζ ′|2 + εeiθ ) − (ξ3 + η3)
√

εeiθ/2]iεeiθdθ

= lim
ε→0

∫ −π

π

i
√

εeiθ/2(
√

εeiθ/2 − √
k
√

εeiθ + (k − 1)|ζ ′|)√
εeiθ/2 + √

k
√

εeiθ + (k − 1)|ζ ′|

× exp[−(t − s)(|ζ ′|2 − εeiθ ) − (ξ3 + η3)
√

εeiθ/2]dθ = 0.

Along C2, τ + k|ζ ′|2 = re0i , τ +|ζ ′|2 = ((k − 1)|ζ ′|2 − r)eπ i and dτ = dr so that∫
C2

g(τ )dτ

=
∫ (k−1)|ζ ′|2

0

√
(k − 1)|ζ |2 − reπ i/2 − √

k
√

r√
(k − 1)|ζ |2 − reπ i/2(

√
(k − 1)|ζ |2 − reπ i/2 + √

k
√

r)

× exp[(t − s)(−k|ζ ′|2 + r) − (ξ3 + η3)

√
(k − 1)|ζ |2 − reπ i/2]dr

= −i
∫ 1

0

√
k − 1|ζ ′|(√r + i

√
k
√

1 − r)√
r(

√
r − i

√
k
√

1 − r)

× exp[−(t − s)|ζ ′|2(1 + (k − 1)r) − i(ξ3 + η3)
√

(k − 1)r |ζ ′|]dr.
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Along C4, τ + k|ζ ′|2 = re0i , τ + |ζ ′|2 = ((k − 1)|ζ ′|2 − r)e−π i , dτ = dr and∫
C4

g(τ )dτ

=
∫ 0

(k−1)|ζ ′|2

√
(k − 1)|ζ ′|2 − re−π i/2 − √

k
√

r√
(k − 1)|ζ ′|2 − re−π i/2(

√
(k − 1)|ζ ′|2 − re−π i/2 + √

k
√

r)

× exp[(t − s)(−k|ζ ′|2 + r) − (ξ3 + η3)

√
(k − 1)|ζ ′|2 − re−π i/2]dr

= −i
∫ 1

0

√
k − 1|ζ ′|(√r − i

√
k
√

1 − r)√
r(

√
r + i

√
k
√

1 − r)

× exp[−(t − s)|ζ ′|2(1 + (k − 1)r) + i(ξ3 + η3)
√

(k − 1)r |ζ ′|]dr.

Thus, we have

h(ζ ′, t) =
√

k − 1

4π

∫ 1

0

|ζ ′|√
r

exp
[
−(t − s)|ζ ′|2(kr − r + 1)

]

×
[√

r − i
√

k(1 − r)√
r + i

√
k(1 − r)

exp{i(ξ3 + η3)
√

(k − 1)r |ζ ′|}

+
√

r + i
√

k(1 − r)√
r − i

√
k(1 − r)

exp{−i(ξ3 + η3)
√

(k − 1)r |ζ ′|}
]

dr.
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