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On a stronger Lazer-McKenna conjecture
for Ambrosetti-Prodi type problems

JUNCHENG WEI AND SHUSEN YAN

Abstract. We consider an elliptic problem of Ambrosetti-Prodi type involving
critical Sobolev exponent on a bounded smooth domain. We show that if the
domain has some symmetry, the problem has infinitely many (distinct) solutions
whose energy approach to infinity even for a fixed parameter, thereby obtaining
a stronger result than the Lazer-McKenna conjecture.
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1. Introduction

Elliptic problems of Ambrosetti-Prodi type have the following form:{
−�u = g(u) − s̄ϕ1(x), in �,

u = 0, on ∂�,
(1.1)

where g(t) satisfies limt→−∞ g(t)
t = ν < λ1, limt→+∞ g(t)

t = µ > λ1, λ1 is
the first eigenvalue of −� with Dirichlet boundary condition and ϕ1 > 0 is the
first eigenfunction. Here µ = +∞ and ν = −∞ are allowed. It is well-known
that the location of µ, ν with respect to the spectrum of (−�, H1

0 (�)) plays an
important role in the multiplicity of solutions for problem (1.1). See for example
[3, 8, 9, 18–20, 23–26, 31–34]. In the early 1980s, Lazer and McKenna conjectured
that if µ = +∞ and g(t) does not grow too fast at infinity, (1.1) has an unbounded
number of solutions as s̄ → +∞. See [24].

In this paper, we will consider the following special case:{
−�u = u2∗−1+ + λu − s̄ϕ1, in �,

u = 0, on ∂�,
(1.2)
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where � is a bounded domain in RN with C2 boundary, N ≥ 3, λ < λ1, s̄ > 0,
u+ = max(u, 0) and 2∗ = 2N/(N − 2).

It is easy to see that (1.2) has a negative solution

us̄ = − s̄

λ1 − λ
ϕ1,

if λ < λ1. Moreover, if us̄ + u is a solution of (1.2), then u satisfies

{
−�u = (u − sϕ1)

2∗−1+ + λu, in �,

u = 0, on ∂�,
(1.3)

where s = s̄
λ1−λ

> 0.

Let us recall some recent results on the Lazer-McKenna conjecture related to
(1.3). Firstly, Dancer and the second author proved in [12, 13] that for N ≥ 2 and
λ ∈ (−∞, λ1), the Lazer-McKenna conjecture is true if the critical exponent in
(1.3) is replaced by sub-critical one. In the critical case, it was proved in [27,28,36]
that if N ≥ 6 and λ ∈ (0, λ1), then (1.3) has unbounded number of solutions as
s → +∞. The solutions constructed for (1.3) concentrate either at the maximum
points of the first eigenfunction [27], or at some boundary points of the domain [36]
as s → +∞. On the other hand, Druet proves in [21] that the conditions N ≥ 6
and λ ∈ (0, λ1) are necessary for the existence of the peak-solutions constructed
in [27, 36]. More precisely, the result in [21] states that if N = 3, 4, 5, or N ≥ 6
and λ ≤ 0, then (1.3) has no solution us , such that the energy of us is bounded as
s → +∞. This result suggests that it is more difficult to find solutions for (1.3) in
the lower dimensional cases N = 3, 4, 5, or in the case λ ≤ 0 and N ≥ 6.

Note that all the results just mentioned state that (1.3) has more and more
solutions as the parameter s → +∞. But for fixed s > 0, it is hard to estimate
how many solutions (1.3) has. (In the critical case, for fixed s, it is even unknown
if there is a solution.)

In this paper, we will deal with (1.3) in the lower dimensional cases N =
4, 5, 6, or N ≥ 7 and λ ≤ 0, assuming that the domain � satisfies the following
symmetry condition:

(S1): If x = (x1, · · · , xN ) ∈ �,
then, for any θ ∈ [0, 2π ], (r cos θ, r sin θ, x3, · · · , xN ) ∈ �, where r =√

x2
1 + x2

2 ;

(S2): If x = (x1, · · · , xN ) ∈ �,
then, for any 3 ≤ i ≤ N , (x1, x2, x3, · · · , −xi , · · · , xN ) ∈ �.
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The main result of this paper is the following:

Theorem 1.1. Suppose that � satisfies (S1) and (S2). Assume that one of the
following conditions holds:

(i) N = 4, 5, λ < λ1 and s > 0;
(ii) N = 6, λ < λ1 and s > |λ|s0 for some s0 > 0, which depends on � only;

(iii) N ≥ 7, λ = 0 and s > 0.

Then, (1.3) has infinitely many distinct solutions whose energy can approach to
infinity.

The result in Theorem 1.1 is stronger than the Lazer-McKenna conjecture.
Note that in Theorem 1.1, the constant s is fixed. In fact, all the parameters are
fixed. This gives a striking contrast to the results in [27, 36], where s is regarded as
a parameter which needs to tend to infinity in order to obtain the results there. As
far as the authors know, this seems to be the first such result for Ambrosetti-Prodi
type problems. We believe Theorem 1.1 should be true in any general domain and
hence we pose the following stronger Lazer-McKenna conjecture:

Stronger Lazer-McKenna Conjecture: Let s be fixed and λ < λ1. Then problem
(1.3) has infinitely many solutions.

We are not able to obtain similar result for the cases N = 3, and N ≥ 7 and
λ < 0. But we have the following weaker result for N ≥ 7 and λ < 0, which gives
a positive answer to the Lazer–McKenna conjecture in this case:

Theorem 1.2. Suppose that � satisfies (S1) and (S2), and N ≥ 7, λ < λ1. Then,
the number of distinct solutions for (1.3) is unbounded as s → +∞.

Problem (1.3) is a bit delicate in the case N = 3. When s = 0, Brezis and
Nirenberg [7] proved that (1.3) has a least energy solution if λ ∈ (0, λ1), while
for N = 3, this result holds only if λ ∈ (λ∗, λ1) for some λ∗ > 0 (if � is a ball,
λ∗ = λ1

4 ). The main reason for this difference is that the function defined in (1.4)
does not decay fast enough if N = 3. Similarly, the main reason that we are not
able to prove Theorem 1.1 for N = 3 is that the function defined in (1.7) does not
decay fast enough.

In the Lazer and McKenna conjecture, the parameter s is large. Let us now
consider the other extreme case: s → 0+. Using the same argument as in [7], we
can show that for λ ∈ (λ∗, λ1), λ∗ = 0 if N = 4, λ∗ > 0 if N = 3, (1.3) has a least
energy solution if s > 0 is small. We can obtain more in the case N = 3.

Theorem 1.3. Suppose that � satisfies (S1) and (S2), and N = 3, λ < λ1. Then,
the number of the solutions for (1.3) is unbounded as s → 0+.

Note that the result in Theorem 1.3 is not trivial, because if λ < λ∗, we can not
find even one solution by using the method in [7]. Moreover, we show that (1.3)
has more and more solutions as s → 0+ for all λ < λ1 if N = 3.
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The readers can refer to [6, 10, 11, 17] for results on the Lazer-McKenna con-
jecture for other type of nonlinearities.

In Theorems 1.1-1.3, we have assumed that N ≥ 3. When N = 2, M. del
Pino and Munoz [17] proved the Lazer-McKenna conjecture when the right hand
nonlinearity is eu (which is still subcritical in R2). The authors believe that when
N = 2, results similar to Theorems 1.1-1.3 may be true if the right hand nonlin-
earity is of the critical type, i.e., h(u)eu2

. When N = 1, the critical exponent is
N+2
N−2 = −3. In this case, some form of Lazer-McKenna conjecture may be true
if the right hand nonlinearity is −u−3. We refer to [1] and [2] for discussions on
critical nonlinearities in dimensions N = 1, 2.

Before we close this section, let us outline the proof of Theorems 1.1 and 1.2
and discuss the conditions imposed in these two theorems.

For any x̄ ∈ RN , µ > 0, denote

Uµ,x̄ (y) = (N (N − 2))
N−2

4
µ(N−2)/2

(1 + µ2|y − x̄ |2)(N−2)/2
. (1.4)

Then, Uµ,x̄ satisfies −�Uµ,x̄ = U 2∗−1
µ,x̄ . In this paper, we will use the following

notation: U = U1,0.
Let

ε = s
2

N−2

k2
, µ = 


ε
, 
 ∈ [δ, δ−1]

and k ≥ k0, where δ > 0 is a small constant, and k0 > 0 is a large constant, which
is to be determined later.

Using the transformation u(y) �→ ε− N−2
2 u

( y
ε

)
, we find that (1.3) becomes

−�u =
(

u − sε
N−2

2 ϕ1(εy)
)2∗−1

+ + λε2u, in �ε,

u = 0, on ∂�ε,
(1.5)

where �ε = {y : εy ∈ �}. Let

�ε(y) = ε
N−2

2 ϕ1(εy).

For ξ ∈ �ε, we define W
,ξ as the unique solution of{ −�W − λε2W = U 2∗−1

,ξ in �ε,

W = 0 on ∂�ε.
(1.6)

Let y = (y′, y′′) ∈ RN , where y′ = (y1, y2), and y′′ = (y3, · · · , yN ). Define

Hs =
{

u : u ∈ H1(�ε), u is even in yh, h = 3, · · · , N , u(r cos θ, r sin θ, y′′)

= u

(
r cos

(
θ + 2π j

k

)
, r sin

(
θ + 2π j

k

)
, y′′

)
, j = 1, . . . , k − 1

}
,
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and

x j =
(

r

ε
cos

2( j − 1)π

k
,

r

ε
sin

2( j − 1)π

k
, 0

)
, j = 1, · · · , k,

where 0 is the zero vector in RN−2.
Let

Wr,
(y) =
k∑

j=1

W
,x j . (1.7)

We are going to construct a solution for (1.3), which is close to Wr,
 for some
suitable 
 and r and large k.

Theorem 1.1 is a direct consequence of the following result:

Theorem 1.4. Under the same conditions as in Theorem 1.1, there is an integer
k0 > 0, such that for any integer k ≥ k0, (1.5) has a solution uk of the form

uk = Wrk ,
k (y) + ωk,

where ωk ∈ Hs, and as k → +∞, rk → r0 > 0, 
k → 
0 > 0, ‖ωk‖L∞ → 0.

On the other hand, if N ≥ 7 and λ < 0, we have the following weaker result:

Theorem 1.5. Suppose that N ≥ 7 and λ < λ1. Then there is a large constant

s0 > 0, such that for any s > s0, and integer k satisfying s
(2−2θ)(N−4)
(N−6)(N−2) ≤ k ≤

s
(2−θ)(N−4)
(N−6)(N−2) , where θ > 0 is a fixed small constant, (1.5) has a solution uk,s of the

form
uk,s = Wrk ,
k (y) + ωk,s,

where ωk,s ∈ Hs, and as s → +∞, rk → r0 > 0, 
k → 
0 > 0, ‖ωk,s‖L∞ → 0.

Since s
(2−θ)(N−4)
(N−6)(N−2) − s

(2−2θ)(N−4)
(N−6)(N−2) → +∞ as s → +∞, Theorem 1.2 is a direct

consequence of Theorem 1.5. Let us point out that in the case N ≥ 7 and λ ∈
(0, λ1), the solutions in Theorem 1.5 are different from those constructed in [27,36],
where the energy of the solutions remains bounded as s → +∞.

It is easy to see that Theorem 1.3 is a direct consequence of the following
result:

Theorem 1.6. Suppose that N = 3 and λ < λ1. Then there is a small constant
s1 > 0 and a large constant k0 > 0 (independent of s), such that for any s ∈ (0, s1),
and integer k satisfying

k0 ≤ k ≤ Cs− 2τ
1−2τ , (1.8)

for some τ ∈ (0, 4
11 ), then (1.5) has a solution uk,s of the form

uk,s = Wrk ,
k (y) + ωk,s,

where ωk,s ∈ Hs, and as s → 0, rk → r0 > 0, 
k → 
0 > 0, ‖ωk,s‖L∞ → 0.
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Let make a few remarks on the conditions imposed on Theorems 1.1 and 1.2.
It is easy to see that the first eigenfunction ϕ1 ∈ Hs . In this paper, we denote

ϕ̄(r) = ϕ1(r, 0).

The functional corresponding to (1.5) is

I (u) = 1

2

∫
�ε

(
|Du|2 − λε2u2

)
− 1

2∗

∫
�ε

(u − s�ε)
2∗
+ , u ∈ Hs .

Let � be a connected component of the set � ∩ {y3 = · · · = yN = 0}. Then, by
(S1), there are r2 > r1 ≥ 0, such that

�̄ =
{

y : r1 ≤
√

y2
1 + y2

2 ≤ r2, y3 = · · · = yN = 0

}
.

If N = 4, 5, then N−2
2 < 2. We obtain from Proposition A.3,

I (Wr,
) = k

(
A0 + A2sϕ̄(r)ε

N−2
2



N−2

2

− A3ε
N−2k N−2

r N−2
N−2
+ O

(
ε

(N−2)(1+σ)
2

))
. (1.9)

It is easy to see that the function

r
N−2

2 ϕ̄(r), r ∈ [r1, r2], (1.10)

has a maximum point r0, satisfying r0 ∈ (r1, r2), since r
N−2

2
i ϕ̄(ri ) = 0, i = 1, 2. As

a result,
A2sϕ̄(r)



N−2

2

− A3

r N−2
N−2
, (r, 
) ∈ (r1, r2) × (δ, δ−1),

has a maximum point (r0, 
0), where


0 =
(

2A3

A2sr N−2
0 ϕ̄(r0)

) 2
N−2

,

for any fixed s > 0. Thus, I (Wr,
) has a maximum point in (r1, r2) × (δ, δ−1), if
k > 0 is large.

If N = 6, then N−2
2 = 2. Thus, we find from Proposition A.3,

I (Wr,
) = k

(
A0 + (−λA1 + A2sϕ̄(r))

ε2


2
− A3ε

4k4

r4
4
+ O

(
ε2+σ

))
. (1.11)

Let
g(r) = r2(A2sϕ̄(r) − A1λ), r ∈ [r1, r2]. (1.12)
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It is easy to see that we can always choose a constant s0 > 0, such that if s > |λ|s0,
then g(r) has a maximum point r0, satisfying g(r0) > 0, r0 ∈ (r1, r2). As a result,

−λA1 + A2sϕ̄(r)


2
− A3

r4
4
, (r, 
) ∈ (r1, r2) × (δ, δ−1),

has maximum point (r0, 
0), where


0 =
(

2A3

(−λA1 + A2sϕ̄(r0))r4
0

) 1
2

,

for any fixed s > 0. Thus, I (Wr,λ) has a maximum point in (r1, r2) × (δ, δ−1), if
k > 0 is large.

If N ≥ 7 and λ = 0, then Proposition A.3 gives

I (Wr,
) = k

(
A0 + A2sϕ̄(r)ε

N−2
2



N−2

2

− A3ε
N−2k N−2

r N−2
N−2
+ O

(
ε

(N−2)(1+σ)
2

))
, (1.13)

So, we are in the same situation as the case N = 4, 5.
On the other hand, if N ≥ 7, then N−2

2 > 2. Thus ε
N−2

2 is a higher order term
of ε2. Thus if λ �= 0, then for each fixed s > 0, we have

I (Wr,
) = k

(
A0 − λA1ε

2


2
− A3ε

N−2k N−2

r N−2
N−2
+ O

(
ε2+σ

))
, (1.14)

But

−λA1


2
− A3

r N−2
N−2
, (r, 
) ∈ (r1, r2) × (δ, δ−1),

does not have a critical point even if λ < 0. So, we don’t know whether I (Wr,
)

has a critical point. Thus, to obtain a solution for (1.3), we need to let s change so
that

ε2 � sε
N−2

2 , ε � 1. (1.15)

If (1.15) holds, then

I (Wr,
) = k

(
A0 + A2ϕ̄(r)sε

N−2
2



N−2

2

− A3ε
N−2k N−2

r N−2
N−2
+ O

(
(sε

N−2
2 )1+σ

))
. (1.16)

So, we are in a similar situation as λ = 0. Note the (1.15) implies

k � s
2(N−4)

(N−2)(N−6) , k  s
1

N−2 ,

which gives an upper bound for k. Therefore, in this case, we are not able to obtain
the existence of infinitely many solutions even if s > 0 is large.
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In the case N = 3, for fixed s > 0, some estimates which are valid for N ≥ 4
may not be true due to the slow decay of the function Wr,
. Under the condition

s ≤ Ck− 1
2τ

+1 for some τ ∈ (0, 4
11 ), we can recover all these estimates. But the

condition s ≤ Ck− 1
2τ

+1 imposes an upper bound (1.8) for the number of bubbles k.
The energy of the solutions obtained in Theorems 1.4 and 1.5 is very large

because k must be large. This result is in consistence of the result in [21].
Finally, let us point out that the eigenvalue ϕ1 is not essential in this paper. We

can replace ϕ1 by any function ϕ, satisfying ϕ > 0 in �, ϕ = 0 on ∂� and ϕ ∈ Hs .
We will use the reduction argument as in [4,5,14–16,29,30] and [38] to prove

the main results of this paper. Unlike those papers, where a parameter always ap-
pears in some form, in Theorem 1.4, s is a fixed positive constant. To prove The-
orem 1.4, the number of the bubbles k is used as a parameter to carry out the
reduction. Similar idea has been used in [35, 37].

2. The reduction

In this section, we will reduce the problem of finding a k-peak solution for (1.3) to
a finite dimension problem.

Let

‖u‖∗ = sup
y

(
k∑

j=1

1

(1 + |y − x j |) N−2
2 +τ

)−1

|u(y)|, (2.1)

and

‖ f ‖∗∗ = sup
y

(
k∑

j=1

1

(1 + |y − x j |) N+2
2 +τ

)−1

| f (y)|, (2.2)

where τ ∈ (0, 1) is a constant, such that

k∑
j=2

1

|x j − x1|τ ≤ C. (2.3)

Recall that ε = s
2

N−2

k2 , and

k∑
j=2

1

|x j − x1|τ ≤ Cετ kτ
k∑

j=2

1

jτ
≤ Cετ k.

In order to achieve (2.3), we need to choose τ according to whether s > 0 is fixed
or not. We choose τ as follows:

τ =
{

1
2 , in Theorems 1.4 and 1.5;
the number in (1.8), in Theorem 1.6.

(2.4)
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Let

Yi,1 = ∂W
,xi

∂

, Zi,1 = −�Yi,1 − λε2Yi,1 = (2∗ − 1)U 2∗−2


,xi

∂U
,xi

∂

,

and

Yi,2 = ∂W
,xi

∂r
, Zi,2 = −�Yi,2 − λε2Yi,2 = (2∗ − 1)U 2∗−2


,xi

∂U
,xi

∂r
.

We consider


−�φk −λε2φk −(2∗−1)
(
Wr,
−s�ε

)2∗−2
+ φk =h+

2∑
j=1

k∑
i=1

c j Zi, j , in �ε,

φk ∈ Hs,〈
k∑

i=1
Zi, j , φk

〉
= 0, j = 1, 2,

(2.5)

for some number c j , where 〈u, v〉 = ∫
�ε

uv.
We need the following result, whose proof is standard.

Lemma 2.1. Let f satisfy ‖ f ‖∗∗ < ∞ and let u be the solution of

−�u − λε2u = f in �ε, u = 0 on ∂�ε,

where λ < λ1. Then we have

|u(y)| ≤ C
∫

�ε

| f (z)|
|z − y|N−2

dz.

Next, we need the following lemma to carry out the reduction.

Lemma 2.2. Assume that φk solves (2.5) for h = hk. If ‖hk‖∗∗ goes to zero as k
goes to infinity, so does ‖φk‖∗.

Proof. We argue by contradiction. Suppose that there are k → +∞, h = hk ,

k ∈ [δ, δ−1], and φk solving (2.5) for h = hk , 
 = 
k , with ‖hk‖∗∗ → 0, and
‖φk‖∗ ≥ c′ > 0. We may assume that ‖φk‖∗ = 1. For simplicity, we drop the
subscript k.

By Lemma 2.1,

|φ(y)| ≤C
∫

�ε

1

|z − y|N−2
W 2∗−2

r,
 |φ(z)| dz

+ C
∫

�ε

1

|z − y|N−2

(
|h(z)| +

∣∣∣∣∣
2∑

j=1

k∑
i=1

c j Zi, j (z)

∣∣∣∣∣
)

dz
(2.6)
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Using Lemma B.4 and B.5, there is a strictly positive number θ such that

∣∣∣∣
∫

�ε

1

|z − y|N−2
W 2∗−2

r,
 φ(z) dz

∣∣∣∣ ≤ C‖φ‖∗
k∑

j=1

1

(1 + |y − x j |) N−2
2 +τ+θ

. (2.7)

It follows from Lemma B.3 that

∣∣∣∣
∫

�ε

1

|z−y|N−2
h(z)dz

∣∣∣∣≤C‖h‖∗∗
∫
RN

1

|z−y|N−2

k∑
j=1

1

(1+|z−x j |) N+2
2 +τ

dz

≤ C‖h‖∗∗
k∑

j=1

1

(1 + |y − x j |) N−2
2 +τ

,

(2.8)
and

∣∣∣∣∣
∫

�ε

1

|z− y|N−2

k∑
i=1

Zi, j (z)dz

∣∣∣∣∣≤C
k∑

i=1

∫
RN

1

|z−y|N−2

1

(1+|z −xi |)N+2
dz

≤ C
k∑

i=1

1

(1 + |y − xi |) N−2
2 +τ

.

(2.9)

Next, we estimate c j . Multiplying (2.5) by Y1,l and integrating, we see that c j
satisfies

〈
2∑

j=1

k∑
i=1

Zi, j ,Y1,l

〉
c j =

〈
−�φ−λε2φ− (2∗− 1)W 2∗−2

r,
 φ, Y1,l

〉
− 〈

h, Y1,l
〉
. (2.10)

It follows from Lemma B.2 that

∣∣〈h,Y1,l
〉∣∣≤C‖h‖∗∗

∫
RN

1

(1+|z −x1|)N−2−β

k∑
j=1

1

(1+|z−x j |) N+2
2 +τ

dz ≤C‖h‖∗∗,

since β > 0 can be chosen as small as desired.
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On the other hand,

〈
−�φ − λε2φ − (2∗ − 1)W 2∗−2

r,
 φ, Y1,l

〉

=
〈
−�Y1,l − λε2Y1,l − (2∗ − 1)W 2∗−2

r,
 Y1,l , φ
〉

= (2∗ − 1)
〈
U 2∗−2


,x1
∂lU
,x1 − W 2∗−2

r,
 Y1,l , φ
〉
,

(2.11)

where ∂l = ∂
 if l = 1, ∂l = ∂r if l = 2.
By Lemmas B.1,

|φ(y)| ≤ C‖φ‖∗.

We consider the cases N ≥ 6 first. Note that 4
N−2 ≤ 1 for N ≥ 6. Using Lem-

mas A.1 and B.2, noting that

|W 2∗−2
r,
 − W 2∗−2


,x1
| ≤

k∑
j=2

W 2∗−2

,x j

,

and

ε ≤ C

1 + |z − x1| ,

we obtain∣∣∣∣ 〈U 2∗−2

,x1

∂lU
,x j − W 2∗−2
r,
 Y1,l , φ

〉 ∣∣∣∣
≤C‖φ‖∗

∫
�ε

1

(1 + |z − x1|)N−2−β

k∑
i=2

1

(1 + |z − xi |)4−β
dz

+ C‖φ‖∗
∫

�ε

U 2∗−2

,x1

(
εN−2+ |λ|ε2

(1+|y−x j |)N−4−β

)
k∑

j=1

1

(1+|z−x j |) N−2
2 +τ

+ C‖φ‖∗
∫

�ε

U
,x1

(
εN−2+ |λ|ε2

(1+|y−x j |)N−4−β

)2∗−2 k∑
j=1

1

(1+|z−x j |) N−2
2 +τ

≤C‖φ‖∗
k∑

j=2

1

|x1−x j |1+σ
+o(1)‖φ‖∗ =o(1)‖φ‖∗.

(2.12)
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For N = 3, 4, 5, we have 4
N−2 > 1. By Lemmas B.1, B.2,

∣∣∣∣ 〈U 2∗−2

,x1

∂lU
,x j − W 2∗−2
r,
 Y1,l , φ

〉 ∣∣∣∣
≤C

∫
�ε

W 2∗−3

,x1

k∑
j=2

W
,x j |Y1,lφ| + C
∫

�ε

( k∑
j=2

W
,x j

) 4
N−2 |Y1φ|

+ C‖φ‖∗
∫

�ε

U 2∗−2

,x1

(
εN−2+ |λ|ε2

(1+|y−x j |)N−4−β

)
k∑

j=1

1

(1+|z−x j |) N−2
2 +τ

+ C‖φ‖∗
∫

�ε

U
,x1

(
εN−2+ |λ|ε2

(1+|y−x j |)N−4−β

)2∗−2 k∑
j=1

1

(1+|z−x j |) N−2
2 +τ

≤C‖φ‖∗
∫

�ε

1

(1 + |z − x1|)4−β

k∑
j=2

1

(1 + |z − x j |)N−2−β

+ C
∫

�ε

( k∑
j=2

U 1−β

,x j

) 4
N−2 |Y1,lφ| + o(1)‖φ‖∗

≤C‖φ‖∗
∫

�ε

1

(1 + |z − x1|)N−2−β

( k∑
j=2

U 1−β

,x j

) 4
N−2

k∑
i=1

1

(1 + |y − xi |) N−2
2 +τ

+ o(1)‖φ‖∗.
(2.13)

Let

� j =
{

y = (y′, y′′) ∈ �ε :
〈

y′

|y′| ,
x j

|x j |
〉

≥ cos
π

k

}
.

If y ∈ �1, then

k∑
j=2

U 1−β

,x j

≤ 1

(1 + |y − x1|)N−2−τ−(N−2)β−θ

k∑
j=2

1

|x j − x1|τ+θ

= o(1)
1

(1 + |y − x1|)N−2−τ−(N−2)β−θ
,

and
k∑

i=1

1

(1 + |y − xi |) N−2
2 +τ

≤ C

(1 + |y − x1|) N−2
2

.



THE LAZER-MCKENNA CONJECTURE 435

So, we obtain

∫
�1

1

(1 + |z − x1|)N−2−β

(
k∑

j=2

U 1−β

,x j

) 4
N−2 k∑

i=1

1

(1 + |y − xi |) N−2
2 +τ

= o(1)

∫
�1

1

(1 + |z − x1|)N+ N+2
2 − 4(τ+θ)

N−2 −4β
= o(1),

since N+2
2 − 4(τ+θ)

N−2 − 4β > 0, if β > 0 and θ > 0 are small.
If y ∈ �l , l ≥ 2, then

k∑
j=2

U 1−β

,x j

≤ C

(1 + |y − xl |)N−2−τ−(N−2)β
,

and
k∑

i=1

1

(1 + |y − xi |) N−2
2 +τ

≤ C

(1 + |y − xl |) N−2
2

.

As a result,

∫
�l

1

(1 + |z − x1|)N−2

(
k∑

j=2

U 1−β

,x j

) 4
N−2 k∑

i=1

1

(1 + |y − xi |) N−2
2 +τ

≤C
∫

�l

1

(1 + |z − x1|)N−2

1

(1 + |y − xl |)4−4β− 4τ
N−2 + N−2

2

≤ C

|xl − x1| N+2
2 − 4τ

N−2 −θ−4β
,

where θ > 0 is a fixed small constant.
Since τ = 1

2 for N ≥ 4, and τ < 1
2 for N = 3, we find that for θ > 0 and

β > 0 small, N+2
2 − 4τ

N−2 − θ − 4β > τ . Thus

∫
�ε

1

(1 + |z − x1|)N−2

(
k∑

j=2

U 1−β

,x j

) 4
N−2 k∑

i=1

1

(1 + |y − xi |) N−2
2 +τ

≤o(1) + C
k∑

l=2

1

|xl − x1| N+2
2 − 4τ

N−2 −θ
= o(1).

So, we have proved∣∣∣∣ 〈U 2∗−2

,x1

∂lU
,x j − W 2∗−2
r,
 Y1, φ

〉 ∣∣∣∣ = o(1)‖φ‖∗.
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But there is a constant c̄ > 0,〈
2∑

j=1

k∑
i=1

Zi, j , Y1,l

〉
= c̄δl j + o(1).

Thus we obtain that
cl = o(‖φ‖∗) + O(‖h‖∗∗).

So,

‖φ‖∗ ≤


o(1) + ‖hk‖∗∗ +

k∑
j=1

1

(1+|y−x j |)
N−2

2 +τ+θ

k∑
j=1

1

(1+|y−x j |)
N−2

2 +τ


 . (2.14)

Since ‖φ‖∗ = 1, we obtain from (2.14) that there is R > 0, such that

‖φ(y)‖BR(xi ) ≥ c0 > 0, (2.15)

for some i . But φ̄(y) = φ(y − xi ) converges uniformly in any compact set of RN+
to a solution u of

�u + (2∗ − 1)U 2∗−2

,0 u = 0 (2.16)

for some 
 ∈ [δ, δ−1], and u is perpendicular to the kernel of (2.16). So, u = 0.
This is a contradiction to (2.15).

From Lemma 2.2, using the same argument as in the proof of [14, Proposi-
tion 4.1], we can prove the following result :

Proposition 2.3. There exists k0 > 0 and a constant C > 0, independent of k,
such that for all k ≥ k0 and all h ∈ L∞(�ε), problem (2.5) has a unique solution
φ ≡ Lk(h). Besides,

‖Lk(h)‖∗ ≤ C‖h‖∗∗, |c j | ≤ C‖h‖∗∗. (2.17)

Moreover, the map Lk(h) is C1 with respect to 
.

Now, we consider


−�
(
Wr,
 + φ

) − λε2(Wr,
 + φ) = (
Wr,
 + φ − s�ε

)2∗−1
+

+
2∑

j=1

k∑
i=1

c j Zi, j , in �ε,

φ ∈ Hs,〈
k∑

i=1
Zi, j , φ

〉
= 0, j = 1, 2.

(2.18)
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We have:

Proposition 2.4. There is an integer k0 > 0, such that for each k ≥ k0, r1 ≤ r ≤
r2, δ ≤ 
 ≤ δ−1, where δ is a fixed small constant, (2.18) has a unique solution φ,
satisfying

‖φ‖∗ ≤ C(sε
N−2

2 )
1
2 +σ + C |λ|ε1+σ ,

where σ > 0 is a fixed small constant. Moreover, 
 → φ(
) is C1.

Rewrite (2.18) as


−�φ − λε2φ − (2∗ − 1)(Wr,
 − s�ε)
2∗−2+ φ = N (φ) + lk

+
2∑

j=1

k∑
i=1

c j Zi, j , in �ε,

φ ∈ Hs,〈
k∑

i=1
Zi, j , φ

〉
= 0, j = 1, 2,

(2.19)

where

N̄ (φ) = (
Wr,
 − s�ε + φ

)2∗−1
+ −(Wr,
−s�ε)

2∗−1+ −(2∗−1)(Wr,
−s�ε)
2∗−2+ φ,

and

lk =
(

W 2∗−1
r,
 −

k∑
j=1

U 2∗−1

,x j

)
+ (Wr,
 − s�ε)

2∗−1+ − W 2∗−1
r,
 .

In order to use the contraction mapping theorem to prove that (2.19) is uniquely
solvable in the set on which ‖φ‖∗ is small, we need to estimate N (φ) and lk .

Lemma 2.5. We have

‖N̄ (φ)‖∗∗ ≤ C‖φ‖min(2∗−1,2)∗ .

Proof. We have

|N̄ (φ)| ≤



C |φ|2∗−1, N ≥ 6;
C

(
W

6−N
N−2

r,
 φ2 + |φ|2∗−1
)

, N = 3, 4, 5.

Firstly, we consider N ≥ 6. We have

|N̄ (φ)| ≤C‖φ‖2∗−1∗
( k∑

j=1

1

(1 + |y − x j |) N−2
2 +τ

)2∗−1

≤C‖φ‖2∗−1∗
k∑

j=1

1

(1 + |y − x j |) N+2
2 +τ

( k∑
j=1

1

(1 + |y − x j |)τ
) 4

N−2

≤C‖φ‖2∗−1∗
k∑

j=1

1

(1 + |y − x j |) N+2
2 +τ

,

(2.20)
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where we use the inequality

k∑
j=1

a j b j ≤
( k∑

j=1

a p
j

) 1
p
( k∑

j=1

bq
j

) 1
q

,
1

p
+ 1

q
= 1, a j , b j ≥ 0, j = 1, . . . , k,

and
k∑

j=1

1

(1 + |y − x j |)τ ≤ C +
k∑

j=2

C

|x1 − x j |τ ≤ C.

which follows from Lemma B.1.
For N = 3, 4, 5, similarly to the case N ≥ 6, we have

|N̄ (φ)|

≤C‖φ‖2∗
( k∑

j=1

1

(1 + |y − x j |)N−2−β

) 6−N
N−2

( k∑
j=1

1

(1 + |y − x j |) N−2
2 +τ

)2

+ C‖φ‖2∗−1∗
k∑

j=1

1

(1 + |y − x j |) N+2
2 +τ

≤C‖φ‖2∗
( k∑

j=1

1

(1 + |y − x j |) N−2
2 +τ

)2∗−1

+ C‖φ‖2∗−1∗
k∑

j=1

1

(1 + |y − x j |) N+2
2 +τ

≤C‖φ‖2∗
k∑

j=1

1

(1 + |y − x j |) N+2
2 +τ

.

(2.21)

Next, we estimate lk .

Lemma 2.6. We have

‖lk‖∗∗ ≤ C
(

sε
N−2

2

) 1
2 +σ + C |λ|ε1+σ ,

where σ > 0 is a fixed small constant.

Proof. Recall

� j =
{

y = (y′, y′′) ∈ �ε :
〈

y′

|y′| ,
x j

|x j |
〉

≥ cos
π

k

}
.

From the symmetry, we can assume that y ∈ �1. Then,

|y − x j | ≥ |y − x1|, ∀ y ∈ �1.
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Thus, for y ∈ �1, by Lemma A.1,

|lk | ≤ C

(1 + |y − x1|)4−β

k∑
j=2

1

(1 + |y − x j |)N−2−β

+ C

(
k∑

j=2

1

(1 + |y − x j |)N−2−β

)2∗−1

+ C
k∑

j=1

1

(1 + |y − x j |)4−β

(
εN−2 + |λ|ε2

(1 + |y − x j |)N−4−β

)

+ CW
2∗−1− 1

2 − 2σ
N−2

r,
 s
1
2 + 2σ

N−2 ε
N−2

4 +σ .

(2.22)

Here, we have used the inequality: for any bounded a > 0 and b > 0, α ∈ (0, 1]:
|(a − b)2∗−1+ − a2∗−1| ≤ Ca2∗−1−αbα.

Let us estimate the first term of (2.22). Using Lemma B.2, we obtain

1

(1 + |y − x1|)4−β

1

(1 + |y − x j |)N−2−β

≤C

(
1

(1+|y− x1|) N+2
2 +τ

+ 1

(1 + |y − x j |) N+2
2 +τ

)
1

|x j − x1| N+2
2 −τ−2β

≤C
1

(1 + |y − x1|) N+2
2 +τ

1

|x j − x1| N+2
2 −τ−2β

, j > 1.

(2.23)

Since N+2
2 − τ − 2β > 1, we find

1

(1 + |y − x1|)4−β

k∑
j=2

1

(1 + |y − x j |)N−2−β

≤C
1

(1 + |y − x1|) N+2
2 +τ

(kε)
N+2

2 −τ−2β

≤C
(

sε
N−2

2

) 1
2 +σ 1

(1 + |y − x1|) N+2
2 +τ

.

(2.24)

Here we have used

(kε)
N+2

2 −τ−2β = O

((
sε

N−2
2

) 1
2 +σ

)
, (2.25)

for some small σ > 0.
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In fact, if s > 0 is fixed (as in Theorem 1.4), then k = 1√
ε

and τ = 1
2 . As a

result,

(kε)
N+2

2 −τ−2β = O
(
ε

N+2
4 − τ

2 −β
)

= O
(
ε

N−2
4 +σ

)
.

So, we obtain (2.25).
If N ≥ 7, then τ = 1

2 , and

s
(2−2θ)(N−4)
(N−6)(N−2) ≤ k ≤ s

(2−θ)(N−4)
(N−6)(N−2) . (2.26)

But

(kε)
N+2

2 −τ−2β =
(

s
2

N−2

k

) N+2
2 −τ−2β

= s
N+1−4β

N−2

k
N+1−4β

2

and (
sε

N−2
2

) 1
2 +σ =

(
s2

k N−2

) 1
2 +σ

Thus, we see that (2.25) is equivalent to

s
3−4β
N−2 −2σ ≤ Ck

3
2 −2β−(N−2)σ . (2.27)

Using (2.26), we find (2.27) holds.
For N = 3, k = s√

ε
. Thus,

(kε)
5
2 −τ−2β = (sε

1
2 )

5
2 −τ−2β ≤ C(sε

1
2 )

1
2 +σ .

So, we obtain (2.25).
Now, we estimate the second term of (2.22).
Using Lemma B.2 again, we find for y ∈ �1,

1

(1 + |y − x j |)N−2−β
≤ 1

(1 + |y − x1|) N−2−β
2

1

(1 + |y − x j |) N−2−β
2

≤ C

|x j − x1| N−2
2 −β− N−2

N+2 τ

(
1

(1 + |y − x1|) N−2
2 + N−2

N+2 τ
+ 1

(1 + |y − x j |) N−2
2 + N−2

N+2 τ

)

≤ C

|x j − x1| N−2
2 −β− N−2

N+2 τ

1

(1 + |y − x1|) N−2
2 + N−2

N+2 τ
.

(2.28)
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Suppose that N ≥ 5. Then N−2
2 − β − N−2

N+2τ > 1 since τ < 1. Then (2.28) gives
for y ∈ �1

(
k∑

j=2

1

(1 + |y − x j |)N−2−β

)2∗−1

≤C (kε)
N+2

2 −τ−(2∗−1)β 1

(1 + |y − x1|) N+2
2 +τ

=C
(

sε
N−2

2

) 1
2 +σ 1

(1 + |y − x1|) N+2
2 +τ

.

(2.29)

If N = 3, 4, then (2.28) gives

(
k∑

j=2

1

(1 + |y − x j |)N−2−β

)2∗−1

≤C
(

kε
N−2

2 − N−2
N+2 τ−β

)2∗−1 1

(1 + |y − x1|) N+2
2 +τ

=Ck
N+2
N−2 ε

N+2
2 −τ−(2∗−1)β 1

(1 + |y − x1|) N+2
2 +τ

.

(2.30)

If N = 4, then

k
N+2
N−2 ε

N+2
2 −τ−(2∗−1)β = k3ε3− 1

2 −(2∗−1)β ≤ Cε1−(2∗−1)β ≤ Cε
1
2 +σ .

Hence for N = 4,

( k∑
j=2

1

(1 + |y − x j |)2

)2∗−1

≤
k∑

i=1

Cε
N−2

4 +σ

(1 + |y − xi |) N+2
2 +τ

.

For N = 3, we have

k5ε
5
2 −τ−(2∗−1)β = k2τ+2(2∗−1)βs5−2τ−2(2∗−1)β .

But

(sε
1
2 )

1
2 +σ = s1+2σ

k
1
2 +σ

.
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So, k5ε
5
2 −τ−(2∗−1)β ≤ C(sε

1
2 )

1
2 +σ is equivalent to

k ≤ Cs
− 8−4τ−4σ−4(2∗−1)β)

1+4τ+2σ+4(2∗−1)β) (2.31)

Since k ≤ Cs− 2τ
1−2τ , we see that (2.31) is valid if

8 − 4τ

1 + 4τ
>

2τ

1 − 2τ
.

Thus, if τ ∈ (0, 4
11 ), (2.31) holds. Hence for N = 3, we also have

( k∑
j=2

1

(1 + |y − x j |)2

)2∗−1

≤
k∑

i=1

C(sε
N−2

2 )
1
2 +σ

(1 + |y − xi |) N+2
2 +τ

.

Note that for y ∈ �1,

Wr,
(y) ≤ C

(1 + |y − x1|)N−2−τ−β
.

We claim that (
N + 2

N − 2
− 1

2
− 2σ

N − 2

)
(N − 2 − τ) ≥ N + 2

2
+ τ, (2.32)

if N ≥ 3.
In fact, (2.32) is equivalent to

τ <
4(N − 2)

3N + 2
,

which is true, since τ = 1
2 if N ≥ 4, τ < 4

11 if N = 3.
Thus, we obtain

s
1
2 + 2σ

N−2 ε
N−2

4 +σ W
N+2
N−2 − 1

2 − 2σ
N−2

r,
 ≤ Cs
1
2 + 2σ

N−2 ε
N−2

4 +σ C

(1 + |y − x j |) N+2
2 +τ

.

Finally,

k∑
j=1

1

(1 + |y − x j |)4

|λ|ε2

(1 + |y − x j |)N−4−β
=

k∑
j=1

|λ|ε2

(1 + |y − x j |)N−β

≤ C |λ|ε2
k∑

j=1

1

(1 + |y − x j |) N+2
2 +τ

,
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and

k∑
j=1

1

(1 + |y − x j |)4
εN−2 ≤ CεN−2− N−6

2 −τ
k∑

j=1

1

(1 + |y − x j |) N+2
2 +τ

=Cε
N+2

2 −τ
k∑

j=1

1

(1 + |y − x j |) N+2
2 +τ

≤ C(kε)
N+2

2 −τ
k∑

j=1

1

(1 + |y − x j |) N+2
2 +τ

≤C(sε
N−2

2 )
1
2 +σ

k∑
j=1

1

(1 + |y − x j |) N+2
2 +τ

.

Combining all the above estimates, we obtain the result.

Now, we are ready to prove Proposition 2.4.

Proof of Proposition 2.4. Let us recall that

ε = s
2

N−2

k2
.

Let

EN =
{

u : u ∈ C(�ε), ‖u‖∗ ≤ √
sε

N−2
4 ,

∫
�ε

k∑
i=1

Zi, j u = 0, j = 1, 2

}

Then, (2.19) is equivalent to

φ = A(φ) =: L(N̄ (φ)) + L(lk).

Now we prove that A is a contraction map from EN to EN . Using Lemma 2.5, we
have

‖Aφ‖∗ ≤ C‖N̄ (φ)‖∗∗ + C‖lk‖∗∗ ≤ C‖φ‖min(2∗−1,2)∗ + C‖lk‖∗∗
≤ C(

√
sε

N−2
4 )min(2∗−1,2) + C‖lk‖∗∗

≤ C(
√

sε
N−2

4 )1+σ + C‖lk‖∗∗.

(2.33)

Thus, by Lemma 2.6, we find that A maps EN to EN .
Next, we show that A is a contraction map.

‖A(φ1) − A(φ2)‖∗ = ‖L(N̄ (φ1)) − L(N̄ (φ2))‖∗ ≤ C‖N̄ (φ1) − N̄ (φ2)‖∗∗.

Using

|N̄ ′(t)| ≤
{

C |t |2∗−2, N ≥ 6;
C

(
W

6−N
N−2 |φ| + |φ|2∗−2

)
, N = 3, 4, 5,
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we can prove that

‖A(φ1) − A(φ2)‖∗ ≤ C‖N̄ (φ1) − N̄ (φ2)‖∗∗
≤ C

(
‖φ1‖min(1,2∗−2)∗ + ‖φ2‖min(1,2∗−2)∗

)
‖φ1 − φ2‖∗

≤ 1

2
‖φ1 − φ2‖∗.

Thus, A is a contraction map.
It follows from the contraction mapping theorem that there is a unique φ ∈ EN ,

such that
φ = A(φ).

Moreover, it follows from (2.33) that

‖φ‖∗ ≤ C(
√

sε
N−2

4 )1+σ + C‖lk‖∗∗.

So, the estimate for ‖φ‖∗ follows from Lemma 2.6.

3. Proof of the main results

Let
F(r, 
) = I

(
Wr,
 + φ

)
,

where φ is the function obtained in Proposition 2.4, and let

I (u) = 1

2

∫
�ε

(|Du|2 − λε2u2) − 1

2∗

∫
�ε

(u − s�ε)
2∗
+ .

Using the symmetry, we can check that if (r, 
) is a critical point of F(
), then
Wr,
 + φ is a solution of (1.3).

Proposition 3.1. We have

F(r, 
) = k

(
A0 + A2ϕ̄(r)sε

N−2
2



N−2

2

− A3k N−2εN−2

r N−2
N−2

+ O
(
(sε

N−2
2 )1+σ + (kε)(N−2)(1+σ)

) )
, N = 3, 4;

and

F(r, 
) = k

(
A0 − A1λε2


2
+ A2ϕ̄(r)sε

N−2
2


(N−2)/2
− A3k N−2εN−2

r N−2
N−2

+O

(
|λ|ε2+σ +

(
sε

N−2
2

)1+σ+ (kε)(N−2)(1+σ)

))
, N ≥5.

where the constant Ai > 0, i = 0, 1, 2 are positive constants, which are given in
Proposition A.3.



THE LAZER-MCKENNA CONJECTURE 445

Proof. There is t ∈ (0, 1), such that

F(r, 
) = I (Wr,
) + 〈
I ′ (Wr,


)
, φ

〉 + 1

2
D2 I

(
Wr,
 + tφ

)
(φ, φ)

=I (Wr,
)−
∫

�ε

lkφ+
∫

�ε

(
|Dφ|2+ ε2µφ2− (2∗− 1)

(
Wr,
− s�ε + tφ

)2∗−2
+ φ2

)

=I (Wr,
) − (2∗ − 1)

∫
�ε

((
Wr,
 − s�ε + tφ

)2∗−2
+ − (Wr,
 − s�ε)

2∗−2+
)

φ2

+
∫

�ε

N (φ)φ

=I (Wr,
) − (2∗ − 1)

∫
�ε

((
Wr,
 − s�ε + tφ

)2∗−2
+ − (Wr,
 − s�ε)

2∗−2+
)

φ2

+ O

(∫
�ε

|N̄ (φ)||φ|
)

.

(3.1)

But∫
�ε

|N̄ (φ)||φ|

≤C‖N̄ (φ)‖∗∗‖φ‖∗
∫

�ε

k∑
j=1

1

(1 + |y − x j |) N+2
2 +τ

k∑
i=1

1

(1 + |y − xi |) N−2
2 +τ

.

(3.2)

Using Lemma B.2, we find

k∑
j=1

1

(1 + |y − x j |) N+2
2 +τ

k∑
i=1

1

(1 + |y − xi |) N−2
2 +τ

=
k∑

j=1

1

(1 + |y − x j |)N+2τ
+

k∑
j=1

∑
i �= j

1

(1 + |y − x j |) N+2
2 +τ

1

(1 + |y − xi |) N−2
2 +τ

≤
k∑

j=1

1

(1 + |y − x j |)N+2τ
+ C

k∑
j=1

1

(1 + |y − x j |)N+ 1
2 τ

k∑
i=2

1

|xi − x1| 3
2 τ

≤C
k∑

j=1

1

(1 + |y − x j |)N+ 1
2 τ

,

Thus, we obtain∫
�ε

|N̄ (φ)||φ| ≤ Ck‖N̄ (φ)‖∗∗‖φ‖∗ ≤ Ck‖φ‖2∗ ≤ Ck

(
|λ|ε2+σ +

(
sε

N−2
2

)1+σ
)

.



446 JUNCHENG WEI AND SHUSEN YAN

Now (
Wr,
 − s�ε + tφ

)2∗−2
+ − (

Wr,
 − s�ε

)2∗−2
+

=




O
(
|φ|2∗−2

)
, N ≥ 6;

O

(
W

6−N
N−2

r,
 |φ| + |φ|2∗−2
)

, N = 3, 4, 5.

Thus, we have∣∣∣∣
∫

�ε

((
Wr,
 − s�ε + tφ

)2∗−2
)

−
((

Wr,
 − s�ε

)2∗−2
)

φ2
∣∣∣∣

≤ C‖φ‖2∗
∗

∫
�ε

(
k∑

j=1

1

(1 + |y − x j |) N−2
2 +τ

)2∗

,

if N ≥ 6. If N = 3, 4, 5, noting that N − 2 > N−2
2 + τ , we obtain

∣∣∣∣
∫

�ε

((
Wr,
 − s�ε + tφ

)2∗−2
)

−
((

Wr,
 − s�ε

)2∗−2
)

φ2
∣∣∣∣

≤C
∫

�ε

W
6−N
N−2

r,
 |φ|3 + C
∫

�ε

|φ|2∗ ≤ ‖φ‖3∗
∫

�ε

(
k∑

j=1

1

(1 + |y − x j |) N−2
2 +τ

)2∗

.

Let η̄ > 0 be small. Using Lemma B.2, if y ∈ �1, then

k∑
j=2

1

(1 + |y − x j |) N−2
2 +τ

≤
k∑

j=2

1

(1 + |y − x1|) N−2
4 + 1

2 τ

1

(1 + |y − x j |) N−2
4 + 1

2 τ

≤C
1

(1 + |y − x1|) N−2
2 + 1

2 η̄

k∑
j=2

1

|x j − x1|τ− 1
2 η̄

≤ Cε−η̄ 1

(1 + |y − x1|) N−2
2 + 1

2 η̄
.

As a result,

(
k∑

j=1

1

(1 + |y − x j |) N−2
2 +τ

)2∗

≤ Cε−2∗η̄ 1

(1 + |y − x1|)N+2∗ 1
2 η̄

, y ∈ �1.

Thus ∫
�ε

(
k∑

j=1

1

(1 + |y − x j |) N−2
2 +τ

)2∗

≤ Ckε−2∗η̄.
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So, we have proved∣∣∣∣
∫

�ε

((
Wr,
 − s�ε + tφ

)2∗−2
)

−
((

Wr,
 − s�ε

)2∗−2
)

φ2
∣∣∣∣

≤Ckε−2∗η̄‖φ‖min(3,2∗)∗ ≤ Ckε−2∗η̄
(

|λ|ε1+σ +
(

sε
N−2

2

) 1
2 +σ

)min(3,2∗)

≤Ck

(
|λ|ε2+σ +

(
sε

N−2
2

)1+σ
)

(3.3)

Combining (3.1), (3.2) and (3.3), we find

F(r, 
) = I (Wr,
) + kO

(
|λ|ε2+σ +

(
sε

N−2
2

)1+σ
)

. (3.4)

Proof of Theorems 1.4, 1.5 and 1.6. We just need to prove that F(r, 
) has a criti-
cal point.

Firstly, we consider the cases N �= 6. It follows from (3.4) and Proposition A.3
that

F(r, 
) = k

(
A0 + A2ϕ̄(r)sε

N−2
2


(N−2)/2
− A3k N−2εN−2

r N−2
N−2

+O

(
(kε)(N−2)(1+σ) +

(
sε

N−2
2

)1+σ
))

.

Let

F̄(r, 
) = A2ϕ̄(r)


(N−2)/2
− A3

r N−2
N−2
, (r, 
) ∈ [r1, r2] × [δ, δ−1].

Then, F̄(r, 
) has a maximum point at (r0, 
0), where


0 =
(

2A3

A2r N−2
0 ϕ̄(r0)

) 2
N−2

,

and r0 is a maximum point of r
N−2

2 ϕ̄(r) = r
N−2

2 ϕ1(r, 0). So, if δ > 0 is small,
(r0, 
0) is an interior point of [r1, r2] × [δ, δ−1]. Thus, if k > 0 is large, F(r, 
)

attains its maximum in the interior of [r1, r2] × [δ, δ−1]. As a result, F(r, 
) has a
critical point in [r1, r2] × [δ, δ−1].

If N = 6, then

F(r, 
) = k

(
A0 + −λA1ε

2 + A2ϕ̄(r)sε2


2
− A3k4ε4

r4
4

+ O
(
(kε)4(1+σ) + (sε2)1+σ

) )
.
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Let

F̄(r, 
) = −λA1s−1 + A2ϕ̄(r)


2
− A3

r4
4
, (r, 
) ∈ [r1, r2] × [δ, δ−1].

It is easy to see that there is an s0 > 0, such that if s > |λ|s0, then

ϕ̃(r) =: r
N−2

2

(
−λA1s−1 + A2ϕ̄(r)

)
, r ∈ [r1, r2]

has a maximum point r0 ∈ (r1.r2) and ϕ̃(r0) > 0. Then, F̄(r, 
) has a maximum
point at (r0, 
0), where


0 =
(

2A3

r4
0 ϕ̃(r0)

) 1
2

.

So, we can prove that F(r, 
) has a critical point in [r1, r2] × [δ, δ−1].

A. Appendix

In this section, we will expand I (Wr,
). We always assume that d(x̄ j , ∂�) ≥ c0 >

0, where x̄ j = εx j . Denote
ϕ̄(r) = ϕ1(r, 0).

First, let us recall that W
,ξ is the solution of

{ −�W − λε2W = U 2∗−1

,ξ in �ε,

W = 0 on ∂�ε.
(A.1)

Let
ψ
,ξ = U
,ξ − W
,ξ .

Then, { −�ψ
,ξ − λε2ψ
,ξ = −λε2U
,ξ in �ε,

ψ
,ξ = U
,ξ , on ∂�ε.
(A.2)

To calculate I (Wr,
), we need to estimate ψ
,ξ .
Decompose ψ
,ξ as follows

ψ
,ξ = ψ
,ξ,1 + ψ
,ξ,2,

where ψ
,ξ,1 is the solution of

{ −�ψ
,ξ,1 − λε2ψ
,ξ,1 = −λε2U
,ξ in �ε,

ψ
,ξ = 0, on ∂�ε,
(A.3)
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and ψ
,ξ,2 is the solution of{ −�ψ
,ξ,2 − λε2ψ
,ξ,2 = 0, in �ε,

ψ
,ξ = U
,ξ , on ∂�ε.
(A.4)

Since
U
,ξ ≤ CεN−2, on ∂�ε,

it is easy to see that
|ψ
,ξ,2| ≤ CεN−2. (A.5)

Let ψ̄
,ξ,ε be the solution of{ −�ψ − λε2ψ = U
,ξ in �ε,

ψ = 0, on ∂�ε,
(A.6)

Then, we can check that

|ψ̄
,ξ,ε(y)| ≤ C lnm(2 + |y − ξ |)
(1 + |y − ξ |)N−4

, (A.7)

where m = 1 if N = 4, otherwise, m = 0. Thus, we have

Lemma A.1. We have

ψ
,ξ = −λε2ψ̄λ,ξ,ε + O(εN−2).

where ψ̄λ,ξ,ε is the solution of (A.6). Moreover,

|W
,ξ | ≤ C | ln ε|mU
,ξ ,

where m = 1 if N = 4, otherwise, m = 0.

Proof. We only need to show

|W
,ξ | ≤ C | ln ε|mU
,ξ ,

which follows from (A.7) and ε ≤ C
1+|y−ξ | .

Proposition A.2. We have

I
(
W
,x j

) = A0 + A2ϕ̄(r)sε
N−2

2



N−2

2

+ O
(
(sε

N−2
2 )1+σ

)
, N = 3, 4,

and

I
(
W
,x j

)= A0− A1λε2


2
+ A2ϕ̄(r)sε

N−2
2



N−2

2

+O

(
|λ|ε2+σ +

(
sε

N−2
2

)1+σ
)

, N ≥5;
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where

A0 = 1

2

∫
RN

|DU |2 − 1

2∗

∫
RN

U 2∗
, A2 =

∫
RN

U 2∗−1,

A1 = 1

2

∫
RN

U 2, N ≥ 5,

and σ is some positive constant.

Proof. Write

I (u) = Ĩ (u) − 1

2∗

∫
�ε

(
(u − s�ε)

2∗
+ − |u|2∗)

,

where

Ĩ (u) = 1

2

∫
�ε

|Du|2 − 1

2
λε2

∫
�ε

u2 − 1

2∗

∫
�ε

|u|2∗
.

By Lemma A.1, we have

Ĩ
(
W
,x j

) = 1

2

∫
�ε

U 2∗−1

,x j

W
,x j − 1

2∗

∫
�ε

W 2∗

,x j

= A0 + 1

2

∫
�ε

U 2∗−1

,x j

ψ
,x j + O

(∫
�ε

U 2∗−1−σ

,x j

ψ1+σ

,x j

)

= A0 + 1

2

∫
�ε

U 2∗−1

,x j

ψ
,x j + O
(
|λ|ε2(1+σ) + ε(N−2)(1+σ)

)
.

(A.8)

On the other hand,∫
�ε

(
W
,x j − s�ε

)2∗
+ −

∫
�ε

(W
,x j )
2∗

= − 2∗
∫

RN
U 2∗−1sε

N−2
2 


− N−2
2

j ϕ̄(r) + O
(
(sε

N−2
2 )1+σ

)
.

(A.9)

For N = 3, 4, by Lemma A.1 and (A.7),∫
�ε

U 2∗−1

,x j

ψ
,x j = O(εN−2 + ε2) = O
(
(sε

N−2
2 )1+σ

)
. (A.10)

Here, we have used ε = s2

k2 = 1
k s

√
ε = (s

√
ε)1+σ if N = 3. So, the result for

N = 3, 4 follows from (A.8)–(A.10).
Suppose that N ≥ 5. Let ψ̄
,ξ be the solution of

{ −�ψ = U
,ξ in RN ,

ψ(|y|) → 0, as |y| → +∞.
(A.11)
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Then,

|ψ̄
,ξ | ≤ C

(1 + |y − ξ |)N−4
,

and

|ψ̄
,ξ − ψ̄
,ξ,ε| ≤ Cε2 lnm(2 + |y − ξ |)
(1 + |y − ξ |)N−6

,

where m = 1 if N = 6, otherwise, m = 0. Thus,∫
�ε

U 2∗−1

,x j

ψ
,x j = −λε2
∫
RN

U 2∗−1

,x j

ψ̄
,x j + O
(
εN−2 + |λ|ε4| ln ε|

)

= −λε2
∫
RN

U 2 + O
(
εN−2 + |λ|ε4| ln ε|

)
.

(A.12)

So we obtain the result for N ≥ 5.

Proposition A.3. We have

I (Wr,
) = k

(
A0 + A2ϕ̄(r)sε

N−2
2



N−2

2

− A3k N−2εN−2

r
N−2

+ O
(
(kε)(N−2)(1+σ) + (sε

N−2
2 )1+σ

) )
, N = 3, 4;

and

I
(
Wr,λ

) = k

(
A0 − A1λε2


2
+ A2ϕ̄(r)sε

N−2
2


(N−2)/2
− A3k N−2εN−2

r N−2
N−2

+ O

(
(kε)(N−2)(1+σ) + |λ|ε2+σ +

(
sε

N−2
2

)1+σ
) )

, N ≥ 5.

Proof. By using the symmetry, we have∫
�ε

|DWr,
|2 − λε2
∫

�ε

W 2
r,
 =

k∑
j=1

k∑
i=1

∫
�ε

U 2∗−1

,xi

W
,x j

=k

(∫
�ε

U 2∗

,x1

+
∫

�ε

U 2∗−1

,x1

ψ
,x1 +
k∑

i=2

∫
�ε

U 2∗−1

,x1

U
,xi

+O

(
k∑

i=2

1

|xi − x1|N−2+σ

))

=k

(∫
RN

U 2∗ +
∫

�ε

U 2∗−1

,x1

ψ
,x1 +
k∑

i=2

B0


N−2|xi − x1|N−2

+O

(
k∑

i=2

1

|xi − x1|N−2+σ

))
,

(A.13)
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where B0 > 0 is a constant.
Let

� j =
{

y = (y′, y′′) ∈ �ε :
〈

y′

|y′| ,
x j

|x j |
〉

≥ cos
π

k

}
.

Then,
|y − xi | ≥ |y − x j |, ∀y ∈ � j .

We have

1

2∗

∫
�ε

(
Wr,
 − s�ε

)2∗
+ = k

2∗

∫
�1

(
Wr,
 − s�ε

)2∗
+

= k

2∗

(∫
�1

(
W
,x1 − s�ε

)2∗
+ + 2∗

∫
�1

k∑
i=2

(
W
,x1 − s�ε

)2∗−1
+ W
,xi

+O


∫

�1

W 2∗−2

,x1

(
k∑

i=2

W
,xi

)2






= k

2∗

(∫
RN

U 2∗ − 2∗
∫

�ε

U 2∗−1

,x1

ψ
,x1 − 2∗ A2ϕ̄(r)sε
N−2

2


(N−2)/2

+ 2∗
∫

�1

k∑
i=2

U 2∗−1

,x1

U
,xi + O

(∫
�1

U 2∗−2

,x1

s�ε

k∑
i=2

U
,xi

+
∫

�1

U 2∗−2

,x1

(
k∑

i=2

U
,xi

)2

+ (sε
N−2

2 )1+σ + |λ|ε2+σ







= k

2∗

( ∫
RN

U 2∗ − 2∗
∫

�ε

U 2∗−1

,x1

ψ
,x1 − 2∗ A2ϕ̄(r)sε
N−2

2



N−2

2

+
k∑

i=2

2∗B0


N−2|xi − x1|N−2

+ O
(
(kε)(N−2)(1+σ) + (sε

N−2
2 )1+σ + |λ|ε2+σ

) )
.

(A.14)

Since

|x j − x1| = 2|x1| sin
2( j − 1)π

k
, j = 2, . . . , k,

we can prove

k∑
j=2

1

|x j − x1|N−2
= B4(εk)N−2 + O

(
(kε)(1+σ)(N−2)

)
. (A.15)

Thus, the result follows from (A.13), (A.14) and (A.15).
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B. Appendix

Firstly, we gives a few lemmas, whose proof can be found in [35, 37].

Lemma B.1. For any α > 0,

k∑
j=1

1

(1 + |y − x j |)α ≤ C

(
1 +

k∑
j=2

1

|x1 − x j |α
)

,

where C > 0 is a constant, independent of k.

For each fixed i and j , i �= j , consider the following function

gi j (y) = 1

(1 + |y − x j |)α
1

(1 + |y − xi |)β , (B.1)

where α ≥ 1 and β ≥ 1 are two constants. Then, we have

Lemma B.2. For any constant 0 ≤ σ ≤ min(α, β), there is a constant C > 0, such
that

gi j (y) ≤ C

|xi − x j |σ
(

1

(1 + |y − xi |)α+β−σ
+ 1

(1 + |y − x j |)α+β−σ

)
.

Lemma B.3. For any constant 0 < σ < N − 2, there is a constant C > 0, such
that ∫

RN

1

|y − z|N−2

1

(1 + |z|)2+σ
dz ≤ C

(1 + |y|)σ .

Let us recall that

ε = s
2

N−2

k2
.

For the constant τ ∈ (0, 1) defined is (2.4),

k∑
j=2

1

|x j − x1|τ ≤ Cετ kτ
k∑

j=2

1

jτ
≤ Cετ k ≤ C,

and for any θ > 0,
k∑

j=2

1

|x j − x1|τ+θ
= o(1).
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Lemma B.4. Suppose that N ≥ 4. There is a small θ > 0, such that

∫
RN

1

|y − z|N−2
W

4
N−2

r,
 (z)
k∑

j=1

1

(1 + |z − x j |) N−2
2 +τ

dz

≤C
k∑

j=1

1

(1 + |y − x j |) N−2
2 +τ+θ

,

where Wr,
 is defined in (1.7).

Proof. Recall that

� j =
{

y = (y′, y′′) ∈ �ε :
〈

y′

|y′| ,
x j

|x j |
〉

≥ cos
π

k

}
.

For z ∈ �1, we have |z − x j | ≥ |z − x1|. Using Lemma B.2, we obtain

k∑
j=2

1

(1 + |z − x j |)N−2−β
≤ 1

(1 + |z − x1|) 1
2 (N−2−β)

k∑
j=2

1

(1 + |z − x j |) 1
2 (N−2−β)

≤ C

(1 + |z − x1|)N−2−β−τ

k∑
j=2

1

|x j − x1|τ

≤ C

(1 + |z − x1|)N−2−β−τ
,

Thus,

W
4

N−2
r,
 (z) ≤ C

(1 + |z − x1|)4− 4(τ+β)
N−2

.

As a result, for z ∈ �1, using Lemma B.2 again, we find that for θ > 0 small,

W
4

N−2
r,
 (z)

k∑
j=1

1

(1 + |z − x j |) N−2
2 +τ

≤ C

(1 + |z − x1|)2+ N−2
2 +τ+2−τ− 4(τ+β)

N−2

.

Since θ =: 2 − τ − 4(τ+β)
N−2 > 0 if N ≥ 4 and β > 0 is small, we obtain

∫
�1

1

|y − z|N−2
W

4
N−2

r,
 (z)
k∑

j=1

1

(1 + |z − x j |) N−2
2 +τ

dz

≤
∫

�1

1

|y − z|N−2

C

(1 + |z − x1|)2+ N−2
2 +τ+θ

dz ≤ C

(1 + |y − x1|) N−2
2 +τ+θ

,
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which gives ∫
�ε

1

|y − z|N−2
W

4
N−2

r,
 (z)
k∑

j=1

1

(1 + |z − x j |) N−2
2 +τ

dz

=
k∑

i=1

∫
�i

1

|y − z|N−2
W

4
N−2

r,
 (z)
k∑

j=1

1

(1 + |z − x j |) N−2
2 +τ

dz

≤
k∑

i=1

C

(1 + |y − xi |) N−2
2 +τ+θ

.

The above proof does not work for N = 3 because

2 − τ − 4τ

N − 2
< 0 (B.2)

if N = 3 and τ = 1
2 . The choice of τ ∈ (0, 1) should ensure

k∑
j=2

1

|x j − x1|τ ≤ Cετ k ≤ C.

The above relation shows that τ can be chosen smaller if ε becomes smaller, which
in turn will make 2 − τ − 4τ

N−2 > 0. Noting that ε = s2

k2 , we find that if s → 0+,

then ε = o( 1
k2 ). We have

Lemma B.5. Suppose that N = 3, the parameter s > 0 and the integer k satisfy

s ≤ Ck− 1
2τ

+1,

for some τ ∈ (0, 2
5 ). Then, there is a small θ > 0, such that

∫
R3

1

|y − z|W 4
r,
(z)

k∑
j=1

1

(1 + |z − x j |) 1
2 +τ

dz

≤ C
k∑

j=1

1

(1 + |y − x j |) 1
2 +τ+θ

.

Proof. The proof of this lemma is similar to that of Lemma B.4. We only need to
use that for τ < 2

5 ,
2 − 5τ > 0,

and
ετ k = s2τ k1−2τ ≤ C.

Thus, we omit the details.
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