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Combinatorial realization of the Thom-Smale complex
via discrete Morse theory

ÉTIENNE GALLAIS

Abstract. In the case of smooth manifolds, we use Forman’s discrete Morse the-
ory to realize combinatorially any Thom-Smale complex coming from a smooth
Morse function by a pair triangulation-discrete Morse function. As an applica-
tion, we prove that any class of homologous vector fields on a smooth oriented
closed 3-manifold can be realized by a perfect matching on the Hasse diagram of
a triangulation of the manifold.

Mathematics Subject Classification (2010): 57R25 (primary); 57R05 (sec-
ondary).

1. Introduction

R. Forman defines a combinatorial analog of smooth Morse theory in [4–6] for
simplicial complexes and more generally for CW-complexes. Discrete Morse the-
ory has many applications (computer graphics [10], graph theory [3]). An important
problem is the research of optimal discrete Morse functions in the sense that they
have the minimal number of critical cells ([8,9,18] for the minimality of hyperplane
arrangements).

Thanks to a combinatorial Morse vector field V , Forman constructs a combina-
torial Thom-Smale complex (CV , ∂V ) whose homology is the simplicial homology
of the simplicial complex. The differential is defined by counting algebraically V -
paths between critical cells. Nevertheless, the proof of ∂V ◦ ∂V = 0 is an indirect
proof (see [5]). We give two proofs of ∂V ◦ ∂V = 0, one which focusses on the
geometry and another one which focusses on the algebraic point of view (compare
with [2] and [19]). In fact, the algebraic proof gives also the property that the com-
binatorial Thom-Smale complex is a chain complex homotopy equivalent to the
simplicial chain complex. After that, we investigate one step forward the relation
between the smooth Morse theory and the discrete Morse theory. We prove that any
Thom-Smale complex has a combinatorial realization. We use this to prove that any
class of homologous vector fields on a closed oriented 3-manifold can be realized
by a perfect matching on a triangulation of this manifold.
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This article is organised as follows. In Section 2, we recall the discrete Morse
theory from the viewpoint of combinatorial Morse vector field. Section 2.2.3 is de-
voted to the proofs of ∂V ◦ ∂V = 0 and that the Thom-Smale complex is a chain
complex homotopy equivalent to the simplicial chain complex. In Section 3, we
prove that any combinatorial Thom-Smale complex is realizable as a combinatorial
Thom-Smale complex. In Section 4, we obtain as a corollary the existence of trian-
gulations with perfect matchings on their Hasse diagram and prove that any class of
homologous vector fields on a closed oriented 3-manifold can be realized by such
complete matchings.

2. Discrete Morse theory

2.1. Combinatorial Morse vector field

First of all, instead of considering discrete Morse functions on a simplicial complex,
we will only consider combinatorial Morse vector fields. In fact, working with dis-
crete Morse functions or combinatorial vector fields is exactly the same [5, Theorem
9.3].

In the following, X is a finite simplicial complex and K is the set of cells of X .
A cell σ ∈ K of dimension k is denoted σ (k). Let < be the partial order on K given
by σ < τ iff σ ⊂ τ . Given a simplicial complex, one associates its Hasse diagram:
the set of vertices is the set of cells K , an edge joins two cells σ and τ if σ < τ and
dim(σ ) + 1 = dim(τ ).

Definition 2.1. A combinatorial vector field V on X is an oriented matching on the
associated Hasse diagram of X that is a set of edges M such that

(1) any two distincts edges of M do not share any common vertex,
(2) every edge belonging to M is oriented toward the top dimensional cell.

A cell which does not belong to any edge of the matching is said to be critical.

Remark 2.2. The original definition of a combinatorial vector field is the following
one: given a matching on the Hasse diagram define

V : K → K ∪ {0}
σ �→ V (σ ) =

{
τ iff (σ, τ ) is an edge of the matching and σ < τ,

0 otherwise.

We will use both these points of view in the following.

A V -path of dimension k is a sequence of cells γ : σ0, σ1, . . . , σr of dimension
k such that

(1) σi �= σi+1 for all i ∈ {0, . . . , r − 1},
(2) for every i ∈ {0, . . . , r − 1}, σi+1 < V (σi ).

A V -path γ is said to be closed if σ0 = σr , and non-stationary if r > 0.
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Definition 2.3. A combinatorial vector field V which has no non-stationary closed
path is called a combinatorial Morse vector field. In this case, the corresponding
matching is called a Morse matching.

The terminology Morse matching first appeared in [2].

Remark 2.4. Let V be a combinatorial (respectively combinatorial Morse) vector
field. It we remove an edge from the underlying matching, it remains a combina-
torial (respectively combinatorial Morse) vector field (there are two extra critical
cells).

2.2. The combinatorial Thom-Smale complex

2.2.1. Definition of the combinatorial Thom-Smale complex

The following data are necessary to define the combinatorial Thom-Smale complex
(see [5]). First, let X be a finite simplicial complex, K its set of cells and V a
combinatorial Morse vector field. Suppose that every cell σ ∈ K is oriented.

Let γ : σ0, σ1, . . . , σr be a V -path. Then the multiplicity of γ is given by the
formula

m(γ ) =
r−1∏
i=0

− < ∂V (σi ), σi >< ∂V (σi ), σi+1 > ∈ {±1}

where for every cell σ, τ , < σ, τ >∈ {−1, 0, 1} is the incidence number between
the cells σ and τ (see [11]) and ∂ is the boundary map when we consider X as a
CW-complex. In fact, one can think of the multiplicity as checking if the orientation
of the first cell σ0 moved along γ coincides or not with the orientation of the last
cell σr .

Let �(σ, σ ′) be the set of V -paths starting at σ and ending at σ ′ and Critk(V )

be the set of critical cells of dimension k.

Definition 2.5. The combinatorial Thom-Smale complex associated with (X, V ) is
(CV∗ , ∂V ) where:

(1) CV
k = ⊕

σ∈Critk(V ) Z.σ ,

(2) if τ ∈ Critk+1(V ) then

∂V τ =
∑

σ∈Critk(V )

n(τ, σ ).σ

where
n(τ, σ ) =

∑
σ̃<τ

< ∂τ, σ̃ >
∑

γ∈�(̃σ ,σ )

m(γ ).

Thus, this complex is exactly in the same spirit as the Thom-Smale complex for
smooth Morse functions (see Section 3): it is generated by critical cells and the
differential is given by counting algebraically V -paths.
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Theorem 2.6 (Forman [5]). ∂V ◦ ∂V = 0.

Theorem 2.7 (Forman [5]). (CV∗ , ∂V ) is homotopy equivalent to the simplicial
chain complex. In particular, its homology is equal to the simplicial homology.

We will give a direct proof of both of these theorems. The proof of Theorem
2.6 is done by looking at V -paths and understanding their contribution to ∂V ◦ ∂V .
Then, we prove Theorem 2.7 (which gives another proof of Theorem 2.6) using
Gaussian elimination (this idea first appears in [2], see also [19]).

2.2.2. Proof of Theorem 2.6

Let X be a simplicial complex, K be the set of its cells and Kn the set of cells of
dimension n. The proof is by induction on the number on edges belonging to the
Morse matching.

Initialization: matching with no edge. In this case, every cell is critical and
the combinatorial Thom-Smale complex coincides with the well-known simplicial
chain complex. Therefore, ∂V ◦ ∂V = 0.

Heredity: suppose the property is true for every matching with at most k edges
defining a combinatorial Morse vector field. Let V be a combinatorial Morse vec-
tor field with corresponding matching consisting of k + 1 edges. In particular, there
is no non-stationary closed V -path. Let (σ, τ ) be an edge of this matching with
σ < τ and let V be the combinatorial Morse vector field corresponding to the orig-
inal matching with the edge (σ, τ ) removed. By induction hypothesis ∂V ◦ ∂V = 0.
In particular, for every n ∈ N, every τ ∈ Kn+1 and every ν ∈ Kn−1 when there is a
cell σ1 ∈ Kn such that there is a V -path from an hyperface of τ to σ1 and another
V -path from an hyperface of σ1 to ν there exists another cell σ2 ∈ Kn with the same
property so that their contribution to ∂V ◦ ∂V are opposite.

First, we will prove that ∂V ◦ ∂V = 0 when the chain complex is with coeffi-
cients in Z/2Z and after we will take care of signs.

Suppose that the distinguished edge of the matching (σ,τ) is such that dim(σ )+
1 = dim(τ ) = n + 1. Therefore, CV

i = CV
i for i �= n, n + 1 and ∂V

|CV
i

= ∂V
|CV

i
for

i /∈ {n, n+1, n+2}. So we have ∂V ◦∂V (µ) = 0 for all µ ∈ K−(Kn∪Kn+1∪Kn+2).
Remark that it is also true for every σ ′ ∈ Critn(V ) that ∂V ◦ ∂V (σ ′) = 0 (since

with respect to V it is true and σ ′ �= σ ).
There are two cases left.

Case 1. Let τ ′ ∈ Critn+1(V ). To see that ∂V ◦ ∂V (τ ′) = 0 we must consider
two cases. First case is when the two V -paths which annihilates don’t go
through σ . Then, nothing is changed and contributions to ∂V ◦ ∂V (τ ′)
cancel by pair. The second case is when at least one the V -path which
cancel by pair for ∂V go through σ . The V -paths which go from τ ′ to ν

are of two types: those who go via σ and the others. Let τ ′ → σ2 → ν

be a juxtaposition of two V -paths which cancel with the juxtaposition of
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V -path τ ′ → σ → ν. Since ∂V ◦ ∂V (τ ) = 0, there must be a critical cell
σ1 such that the juxtaposition of V -paths τ → σ → ν and τ → σ1 → ν

cancels. Therefore, when considering ∂V , three juxtapositions of V -paths
disappear and one is created: τ ′ → (σ → τ) → σ1 → ν. It cancels with
τ ′ → σ2 → ν.
It may happens that two juxtapositions of V -paths go through σ but this
case works exactly in the same way.

Case 2. This case is similar to the previous case. Let ς be a cell in Kn+2. There
are two cases to see that ∂V ◦ ∂V (ς) = 0. The first case is when the
two V -paths whose contributions are opposite don’t go through τ . Then,
nothing is changed and contributions to ∂V ◦ ∂V (τ ′) cancel by pair. The
second case is when the V -path which disappears is replaced by exactly a
new one which goes through the edge (σ, τ ). The result follows similarly.

Note that to deal with this two cases we used the fact that there is no non-stationary
closed V -path (and so V -path). Now, let’s deal with the signs. We will only consider
the case 1. above, other cases work similarly. Denote n(α → β) (respectively
n(α → β)) the sign of the contribution in the differential ∂V (respectively ∂V ) of
a path going from α to β where both cells are critical of consecutive dimension.
While considering V , we have by induction hypothesis

n(τ ′ → σ2).n(σ2 → ν) = −n(τ ′ → σ).n(σ → ν) (2.1)

and
n(τ → σ1).n(σ1 → ν) = −n(τ → σ).n(σ → ν). (2.2)

Since the juxtaposition of the V -paths τ ′ → σ2 → ν don’t go through σ we have
that

n(τ ′ → σ2).n(σ2 → ν) = n(τ ′ → σ2).n(σ2 → ν). (2.3)

By definition of the multiplicity of paths we have

n(τ ′ → σ1) = n(τ ′ → σ).(− < ∂τ, σ >).n(τ → σ1). (2.4)

Combining equations (2.1)-(2.4) we obtain the following equalities

n(τ ′ →σ1).n(σ1 →ν) = n(τ ′ → σ).(− < ∂τ, σ >).n(τ → σ1).n(σ1 → ν)(2.4)
= n(τ ′ → σ).(− < ∂τ, σ >).n(τ → σ1).n(σ1 → ν)

= n(τ ′ → σ). < ∂τ, σ > .n(τ → σ).n(σ → ν) (2.2)
= (< ∂τ, σ > .n(τ → σ)).n(τ ′ → σ).n(σ → ν)

= n(τ ′ → σ).n(σ → ν) by definition
= −n(τ ′ → σ2).n(σ2 → ν) (2.1)
= −n(τ ′ → σ2).n(σ2 → ν) (2.3)

which concludes the proof of the theorem.
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2.2.3. Proof of Theorem 2.7

The main ingredient of the proof is thinking about combinatorial Morse vector field
as an instruction to remove acyclic complexes from the original simplicial chain
complex, as done by Chari [2, Proposition 3.3] or Sköldberg [19]. Given a matching
between two cells σ < τ , we would like to remove the following short complex
(which is acyclic)

0 → Z.τ
<∂τ,σ>−−−−→ Z.σ → 0

where ∂ is the boundary operator of the simplicial chain complex. To do this, we
use Gaussian elimination (see e.g. [1]):

Lemma 2.8 (Gaussian elimination). Let C = (C∗, ∂) be a chain complex over Z
freely generated. Let b1 ∈ Ci (respectively b2 ∈ Ci−1) be such that Ci = Z.b1 ⊕ D
(respectively Ci−1 = Z.b2 ⊕ E). If φ : Z.b1 → Z.b2 is an isomorphism of
Z-modules, then the four term complex segment of C

. . . → [
Ci+1

]
(
α

β

)
−−−→

[
b1
D

] (
φ δ

γ ε

)
−−−−→

[
b2
E

] (
µ ν

)
−−−−→ [

Ci−2
] → . . . (2.5)

is isomorphic to the following chain complex segment

. . . → [
Ci+1

]
(

0
β

)
−−−→

[
b1
D

] (
φ 0
0 ε − γφ−1δ

)
−−−−−−−−−−−→

[
b2
E

] (
0 ν

)
−−−−→ [

Ci−2
] → . . . (2.6)

Both these complexes are homotopy equivalent to the complex segment

. . . → [
Ci+1

] (
β

)
−−→ [

D
] (

ε − γφ−1δ
)

−−−−−−−−−→ [
E

] (
ν

)
−−→ [

Ci−2
] → . . . (2.7)

Here we used matrix notation for the differential ∂ .

Proof. Since ∂2 = 0 in C, we obtain φα + δβ = 0 and µφ + νγ = 0. By doing the

following change of basis A =
(

1 φ−1δ

0 1

)
on

[
b1
D

]
and B =

(
1 0

−γφ−1 1

)
on

[
b2
E

]
we see that the complex segments 2.5 and 2.6 are isomorphic. Then, we remove the

short complex 0 → [
b1

] φ→ [
b2

] → 0 which is acyclic.

Now, we are ready to prove Theorem 2.7.

Proof of Theorem 2.7. Like for the proof of Theorem 2.6, we make an induction on
the number of edges belonging to the matching defining the combinatorial Morse
vector field. Let X be a simplicial complex, K be the set of its cells.
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Initialization: matching with no edge. In this case, there is nothing to prove since
the combinatorial Thom-Smale complex is exactly the simplicial chain complex.

Heredity: suppose the property is true for every matching with at most k edges
defining a combinatorial Morse vector field. Let V be a combinatorial Morse vec-
tor field whose underlying matching consists of k + 1 edges. Let σ (n) < τ (n+1) be
an element of this matching and V be the combinatorial Morse vector field equal
to V with the matching σ < τ removed (it is actually a combinatorial Morse vec-
tor field). So, CV

i = CV
i for all i �= n, n + 1 and ∂V = ∂V when restricted to

CV
i for all i /∈ {n, n + 1, n + 2}. Moreover, we have the following equalities:

(∂V )|C
V
n+1 = (∂V )|C

V
n+1 and ∂V

|CV
n

= ∂V
|CV

n
. By induction hypothesis, the combina-

torial Thom-Smale complex (CV∗ , ∂V ) is a chain complex homotopy equivalent to
the simplicial chain complex of X . Thus, the combinatorial Thom-Smale complex
associated with V is equal to the one of V except on the following chain segment

(where ε = (∂V )
|CV

n

|CV
n+1

):

... →[
CV

n+2

]−→
(

α

∂V

)[
τ

CV
n+1

]
−→

(
<∂τ, σ> δ

γ ε

)[
σ

CV
n

]
−→(

µ ∂V
)[

CV
n−1

]→ ... (2.8)

Since X is a simplicial complex we have < ∂τ, σ >∈ {±1}. Applying Lemma 2.8,
we obtain the following new combinatorial chain complex which is homotopic to
the combinatorial Thom-Smale complex of V

... → [
CV

n+2

] (
∂V

)
−−−→ [

CV
n+1

] (
α

)
−−→ [

CV
n

] (
∂V

)
−−−→ [

CV
n−1

] → ... (2.9)

where α = ε − γ < ∂τ, σ > δ = ∂V . Thus, the only thing to prove is that α = ∂V

over CV
n+1. To do this, we investigate ∂V . There are two types of contributions.

First type correspond to V -paths which do not go through σ , and they are counted
in ε. Second type are V -paths which go through σ . They begin at an hyperface of a
critical cell τ ′ and go through σ : this is the contribution of δ. Then, they jump to τ :
this is the contribution of < ∂τ, σ >. Finally they begin at an hyperface of τ and
go to a critical cell in CV

n : this is the contribution of γ . It remains to check that the
sign is correct, but this is exactly the same as in the first proof of Theorem 2.6.

Corollary 2.9. Let X be a finite simplicial complex, C = (C∗, ∂) be the corre-
sponding simplicial chain complex and M be a matching (σi < τi )i∈I on its Hasse
diagram defining a combinatorial vector field V . Then the following properties are
equivalent:

(1) M is a Morse matching,
(2) for any sequence (σi1 < τi1), (σi2 < τi2), . . . , (σi|I | < τi|I |) such that i j �= ik if

j �= k, Gaussian eliminations can be performed in this order.
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In particular, any sequence of Gaussian eliminations corresponding to M lead to
the same chain complex which is the combinatorial Thom-Smale complex of V .

Proof.

1 ⇒ 2 This is an immediate consequence of the proof of Theorem 2.7 and the fact
that it leads to the Thom-Smale complex associated to (X, V ).

2 ⇒ 1 It is enough to show that there is no non-stationary closed path under the hy-
pothesis. Suppose there is a closed V -path γ : σ1, . . . , σr , σ1 and consider
any sequence of Gaussian elimination which coincides with (σ j < V (σ j ))

until step r . In particular, r ≥ 3 since X is a simplicial complex. Let V
be the corresponding combinatorial vector field. Let γ ′ : σ1, . . . , σr be the
V -path with length decrease by one. Then

< ∂r−1V (σr ), σr >=< ∂V (σr ), σr > +m(γ ′).

Since m(γ ′) = ±1, < ∂r−1V (σr ), σr > is not invertible over Z and the
Gaussian elimination cannot be performed (see Lemma 2.8). This is a con-
tradiction.

3. Relation between smooth and discrete Morse theories

In this section, we investigate the link between smooth and discrete Morse theories.
We first recall briefly the main ingredients of smooth Morse theory. In particular,
we describe the Thom-Smale complex and prove the following:

Theorem 3.1 (Combinatorial realization). Let M be a smooth closed oriented
Riemannian manifold and f : M → R be a generic Morse function. Suppose that
every stable manifold has been given an orientation so that the smooth Thom-Smale
complex is defined. Then, there exists a C1-triangulation T of M and a combinato-
rial Morse vector field V on it which realize the smooth Thom-Smale complex (after
a choice of orientation of each cells of T ) in the following sense:

(1) there is a bijection between the set of critical cells and the set of critical points,
(2) for each pair of critical cells σp and σq such that dim(σp) = dim(σq) + 1,

V -paths from hyperfaces of σp to σq are in bijection with integral curves of v

up to renormalization connecting q to p,
(3) this bijection induce an isomorphism between the smooth and the combinato-

rial Thom-Smale complexes.

Throughout this section, we follow conventions of Milnor ([12, 13]).
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3.1. Smooth Morse theory

Let M be a smooth closed oriented Riemannian manifold of dimension n. Given a
smooth function f : M → R, a point p ∈ M is said critical if D f (p) = 0. Let
Crit( f ) be the set of critical points. At a critical point p, we consider the bilinear
form D2 f (p). The number of negative eighenvalues of D2 f (p) is called the index
of p (denoted ind(p)). We denote Critk( f ) the set of critical points of index k.

Definition 3.2. A smooth map f : M → R is called a Morse function if at each
critical point p of f , D2 f (p) is non-degenerate.

More generally, a Morse function on a (smooth) cobordism (M; M0, M1) is a
smooth map f : M → [a, b] such that

(1) f −1(a) = M0, f −1(b) = M1,
(2) all critical points of f are interior (lie in M − (M0 ∪ M1)) and are non-

degenerate.

For technical reasons, we must consider the following object:

Definition 3.3. Let f be a Morse function on a cobordism (Mn; M0, M1). A vector
field v on Mn is a gradient-like vector field for f if

(1) v( f ) > 0 throughout the complement of the set of critical points of f ,
(2) given any critical point p of f there is a Morse chart in a neighbourhood U of

p so that

f (x) = f (p) −
k∑

i=1

x2
i +

n∑
i=k+1

x2
i

and v has coordinates v(x) = (−x1, . . . ,−xk, xk+1, . . . , xn).

Given any Morse function, there always exists a gradient-like vector field (see [13]).
In the following, we shall abreviate “gradient-like vector field” by “gradient”. Thus,
when needed, we will assume that we have chosen one.

Given any x0 ∈ M , we consider the following Cauchy problem{
γ ′(t) = v(γ (t))
γ (0) = x0

and call integral curve (denoted γx0 ) the solution of this Cauchy problem. The
stable manifold of a critical point p is by definition the set W s(p, v) := {x ∈
M | lim

t→+∞ γx (t) = p}. The unstable manifold of a critical point p is by definition the

set {x ∈ M | lim
t→−∞ γx (t) = p}. When stable and unstable manifolds are transverse

(this is called Morse-Smale condition), we called v a Morse–Smale gradient: such
gradient always exists in a neighbourhood of a gradient (see e.g. [16]). We shall
call a Morse function f generic if we have chosen for f a Morse–Smale gradient.
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To define the smooth Thom-Smale complex we need the following data:

• a generic Morse function f ,
• an orientation of each stable manifold.

Under these conditions, the number of integral curves of v up to renormalization
(that is γx ∼ γy iff there exists t ∈ R such that γx (t) = y) connecting two critical
points of consecutive index is finite. Moreover, when we consider an integral curve
from q to p where ind(p) = ind(q) + 1, it carries a coorientation induced by the
orientation of the stable manifold and the orientation of the integral curve. One can
move this coorientation from p to q along the integral curve and compare it with
the orientation of the stable manifold of q. This gives the sign which is carried by
the integral curve connecting q to p.

The Thom-Smale complex (C f∗ , ∂ f ) is defined as:

(1) C f
k = ⊕

p∈Critk( f ) Z.p,
(2) if p ∈ Critk( f ) then ∂p = ∑

q∈Critk−1( f ) n(p, q).q where n(p, q) is the alge-
braic number of integral curves up to renormalization connecting q to p.

Theorem 3.4. The homology of the Thom-Smale complex is equal to the singular
homology of M.

The proof of this theorem can be extracted from [13].

3.2. Elementary cobordisms

In this subsection, we will prove that we can realize combinatorially the smooth
Thom-Smale complex of any elementary cobordisms. Thus, by cutting the manifold
M into elementary cobordism we will obtain the first part of Theorem 3.1: there
exists a bijection between the set of critical cells and the set of critical points.

We will only consider C1-triangulation of manifolds for technical reasons (see
[21]). So, whenever we use the word triangulation it means C1-triangulation. A
triangulation of a n + 1-cobordism (Mn+1; M0, M1) is a triplet (T ; T0, T1) such
that T is a C1-triangulation of M , T0 (respectively T1) is a subcomplex of T which
is a C1-triangulation of M0 (respectively M1).

A combinatorial Morse vector field V on a triangulated n + 1-cobordism
(T ; T0, T1) is a combinatorial Morse vector field on T such that no cells of T1
is critical and every cell of T0 is critical.

Definition 3.5. Let V be a combinatorial Morse vector field on a triangulated n +
1-cobordism (T ; T0, T1). V satisfies the ancestor’s property if given any n-cell
σ0 ∈ T0, there exists an n-cell σ1 ∈ T1 and a V -path starting at σ1 and ending at σ0.

Remark 3.6. There is a key difference between integral curves up to renormaliza-
tion of a gradient v and V -paths. Given a point x ∈ M , there is only one solution
to the Cauchy problem. Moreover, the past and the future of a point pushed along
the flow is uniquely determined. A contrario given a cell σ , there are (in general)
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many V -paths starting at σ . The ancestor’s property characterises n + 1-cobordism
equipped with a combinatorial Morse vector field which knows its history in maxi-
mal dimension (n, n + 1).

To prove that elementary cobordism can be realized , we need a combinatorial
description of being a deformation retract. Let X be a simplicial complex and σ

be an hyperface of τ which is free (that is σ is a face of no other cell). In this
case, we say that X collapses to X − (σ ∪ τ) by an elementary collapsing and write
X ↘ X − (σ ∪τ). A collapsing is a finite sequence of such elementary collapsings.
In particular, a collapsing defines a matching on the Hasse diagram of the simplicial
complex. Moreover, one can prove that X − (σ ∪ τ) is a deformation retract of X .

Proposition 3.7. Let X be a simplicial complex and X0 be a subcomplex. Suppose
X ↘ X0. Then the matching given by this collapsing defines a combinatorial Morse
vector field whose set of critical cells is the set of cells of X0.

Proof. The only thing to check is that there is no non-stationary closed path. Since
elementary collapsings are performed by choosing a free hyperface of a cell, there
is no non-stationary closed path.

Let m = (a0, . . . , am) be the standard simplex of dimension m. The cartesian
product X = m × n is the cellular complex whose set of cells is {µ × ν} where
µ (respectively ν) is a cell of m (respectively n) (see [22]).

Proposition 3.8 ( [17, Proposition 2.9]). The cartesian product m × n has a
simplicial subdivision without any new vertex. More generally, the cartesian prod-
uct of two simplicial complexes has a simplicial subdivision without any new vertex.

Lemma 3.9. Let X1 = k be the standard simplicial complex of dimension k and
X0 be a simplicial subdivision of X1. Consider the CW-complex which is equal to
the cartesian product k × 1 and where we subdivide k × {0} so that it is equal
to X0. Then, there exists a simplicial subdivision X of this CW-complex such that
X |×{i} = Xi for i ∈ {0, 1}.

Moreover for i ∈ {0, 1} there exists a collapsing X ↘ Xi and the com-
binatorial Morse vector field associated Vi satisfies the ancestor’s property on
(X; Xi , Xi+1) ( j is the class in Z/2Z).

Proof. The simplicial subdivision and the collapsing is constructed by induction on
k. If k = 0, choose a new vertex in the interior of the simplex 0 × 1 and the
elementary collapsing 1 ↘ {i} gives the two collapsing 0 × 1 ↘ 0 × {i}
for i ∈ {0, 1}. In particular, the corresponding combinatorial Morse vector field
satisfies the ancestor’s property.

Suppose the lemma is true until rank k − 1. At rank k, let Y be the corre-
sponding CW-complex and x be a point in the interior of the cell of dimension
k + 1. By induction hypothesis Y|∂k×1 admits a simplicial subdivision. There-
fore, Y|∂(k×1) admits a simplicial subdivision denoted Z (just add the simplexes
k × {i} which are equal to Xi for i ∈ {0, 1}). The simplicial subdivision X is
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given by making the join of the simplicial subdivision of the boundary over {x}:
X = Z ∗ {x}.

Now, the collapsing X ↘ X0 is performed in three steps.

Step 1. The cell σ ∈ X1 of dimension k is the free hyperface of the cell σ ∗ {x}.
We do the following elementary collapsing:

X ↘ X − (σ ∪ σ ∗ {x}) (3.1)

Step 2. By induction hypothesis, X |∂k×1 ↘ X |∂k×{0}. Performing the join over
x induces the following collapsing:

X |∂k×1 ∗ {x} ↘ X |∂k×{0} ∗ {x} (3.2)

Step 3. It remains to collapse X0 ∗ {x} on X0. Let y be a vertex in X0 which is a
vertex of the original simplex X1. Since X0 is a simplicial subdivision of
k , there exists a collapsing X0 ↘ {y}. This collapsing gives the following
collapsing:

X0 ∗ {x} ↘ X0 ∪ ({y} × {0}) ∗ {x} ↘ X0 (3.3)

Combining collapsings (3.1), (3.2) and (3.3) gives X ↘ X0. The corresponding
combinatorial Morse vector field satisfies the ancestor’s property by construction.

The collapsing X ↘ X1 is constructed in the same way and conclusions of
lemma follows.

Remark 3.10. The proof of Lemma 3.9 is by induction. Let δ( j) be the j-th skele-
ton of k . Denote by X ( j) (respectively X ( j)

i ) the simplicial complex X |δ( j)×1

(respectively (Xi )|δ( j)×1 ). For i ∈ {0, 1}, the collapsing X ↘ Xi can be restricted

to X ( j) ↘ X ( j)
i for any 0 ≤ j ≤ k and the induced combinatorial Morse vector

field satisfies the ancestor’s property.

The next two lemmas are technical lemmas. The first one is the basic tool to
glue together triangulated cobordisms. The second one will be useful to construct
a combinatorial realization of a cobordism with exactly one critical point and is a
generalization of Lemma 3.9.

Lemma 3.11. Let (T M
i , T N

i ) be two C1-triangulations of the pair (M, N ) where
N k is a submanifold (possibly with boundary) of Mn (k ≤ n). Then, there exists a
C1-triangulation T of (M × [0, 1], N × [0, 1]) such that

(T|M×{i}, T|N×{i}) = (T M
i , T N

i )

for i ∈ {0, 1} and 2 collapsings

T ↘ T M
0 ∪ T|N×[0,1] (3.4)

T|N×[0,1] ↘ T N
0 . (3.5)

Moreover, the induced combinatorial Morse vector fields V satisfies the ancestor’s
property on the cobordisms (T|N×[0,1]; T N

0 , T N
1 ) and (T ; T M

0 , T M
1 ).
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Proof. First, suppose N = ∅. Both triangulations T0 and T1 are C1-triangulation of
the same manifold therefore they have a common simplicial subdivision T 1/2 [21]
(this is where we use the fact that triangulations are C1-triangulations). Subdivide
1 = [0, 1] in two standard simplexes [0, 1/2] and [1/2, 1]. Lemma 3.9 gives
a C1-triangulation of M × [0, 1/2] (respectively M × [1/2, 1]) denoted T [0,1/2]
(respectively T [1/2,1]). The union T [0,1/2] ∪ T [1/2,1] is a triangulation of M ×[0, 1]
denoted T . By construction, T|M×{i} = T M

i for i ∈ {0, 1} and we have the two
following collapsings:

T [1/2,1] ↘ T 1/2

T [0,1/2] ↘ T 0 .

Composing these two collapsings give the desired collapsing and Lemma 3.9 gives
the ancestor’s property.

In the case where the submanifold N is non-empty, the construction above
gives a triangulation T of the pair (M × [ 0, 1], N × [ 0, 1]) and we have
(T|M×{i}, T|N×{i}) = (T M

i , T N
i ) for i ∈ {0, 1}. The collapsing T ↘ T0 can

be restricted to T|N×[0,1]. We remove from the matching edges corresponding to
TN×[0,1] ↘ TN×{0} to obtain the desired collapsing. Again Lemma 3.9 give the
ancestor’s property.

Lemma 3.12. Let (m, n) be a pair of positive integers. Let n = (a0, . . . , an)

be the standard simplex of dimension n and δn−1 = (̂a0, . . . , an) be the hyperface
which does not contain a0. In particular n = {a0} ∗ δn−1. Then there exists a
simplicial subdivision X of the cartesian product m × n such that

• X |m×δn−1 is a simplicial subdivision without any new vertex given by Lemma 3.8,
• X |m×{a0} = m,
• X ↘ X |(∂m×n)∪(m×{a0}).

Moreover, for each simplex 1
i = (a0, ai ) (i �= 0),

• X |m×1
i

coincides with the simplicial complex given by Lemma 3.9,
• the collapsing X ↘ X |(∂m×n)∪(m×{a0}) restricted to X |m×1

i
coincides with

the collapsing of Lemma 3.9,
• the induced combinatorial Morse vector field satisfies the ancestor’s property

on (X |m×1
i
; X |m×{a0}, X |m×{ai }).

Proof. The proof is by induction on k = m + n > 0. At rank k = 1 there are two
cases. The case m = 0 and n = 1 is trivial: there is nothing to prove. The case
m = 1 and n = 0 is given by Lemma 3.9.

Suppose the lemma is true until rank k − 1. Let (m, n) ∈ N2 be such that
m + n = k. We will first subdivide the boundary of m × n . Since

∂(m × n) = (∂m × n) ∪ (m × ∂n)

= (∂m × n) ∪ (m × ({a0} ∗ ∂δn−1)) ∪ (m × δn−1)

we define for each cellular complex above a simplicial subdivision.
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• The simplicial subdivision of m × δn−1 is given by Proposition 3.8: in partic-
ular, we do not create any new vertex.

• The induction hypothesis gives a simplicial subdivision of

(∂m × ({a0} ∗ δn−1)) ∪ (m × ({a0} ∗ ∂δn−1)).

Let x be a point which is in the interior of the (m + n)-cell of m × n . The
simplicial subdivision X of m × n is given by making the cone over {x} of the
simplicial subdivision of the boundary of m × n .

By construction we have the following collapsing

X |{x}∗(m×δn−1) ↘ X |{x}∗∂(m×δn−1) (3.6)

which is realized by a downward induction on the dimension of cells of m ×
(δn−1 − ∂δn−1): every cell σ ∈ m × (δn−1 − ∂δn−1) is a free hyperface of {x} ∗σ .

The induction hypothesis says that there exits a simplicial subdivision Y of
u × v such that Y ↘ Y|(∂u×v)∪(u×{a0}) whenever u + v < k (a0 is the first
vertex of v). In fact, we have also the following collapsing since the construction
is made by induction:

Y ↘ Y|u×{a0}
Therefore, we have the following collapsings

X |∂m×({a0}∗δn−1) ↘ X |∂m×{a0} (3.7)

X |m×{a0}∗∂δn−1 ↘ X |m×{a0} . (3.8)

Collapsing (3.6) followed by the cone over x of the collapsing (3.7) and the cone
over x of the collapsing (3.8) give the following collapsing:

X ↘ X |(∂m×n)∪({x}∗(m×{a0})).

Finally there exists a collapsing {x} ∗ (m × {a0}) ↘ m × {a0} (by choosing a
vertex y ∈ m and considering the collapsing m ↘ {y}) which gives the result.

In case n = 1, this construction is the same as the one of Lemma 3.9.

Theorem 3.13. Let f be a generic Morse function on a cobordism (M; M0, M1)

with exactly one critical point p of index k. Then, there exists a C1-triangulation of
the cobordism (T ; T0, T1) such that

(1) the stable manifold of p is a subcomplex of T denoted T s
p and T ↘ T s

p ∪ T0,
(2) there is a cell σp of dimension ind(p) such that p ∈ σp ⊂ T s

p and T s
p − σp ↘

(T s
p ∩ T0).

In particular, the combinatorial Morse vector field given by these two collapsings
has exactly one critical cell σp outside cells of T0.
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Proof. Suppose a Morse–Smale gradient v for f is fixed. Let W s(p, v) be the
corresponding stable manifold of p. We follow the proof of Milnor which proves
that M0 ∪ W s(p, v) is a deformation retract of M (see the proof of Theorem 3.14
[12]). Let C be a (small enough) tubular neighbourhood of W s(p, v). The original
proof consists of two steps. First, M0 ∪C is a deformation retract of M : this is done
by pushing along the gradient lines of v. Then, M0 ∪ W s(p, v) is a deformation
retract of M0 ∪ C . We prove the theorem in two steps.

First step: construction of a good triangulation of C
The tubular neighbourhood C is diffeomorphic to Dk × Dn−k (for i ∈ N∗, Di is the
unit disk in Ri ). Thanks to this diffeomorphism, the stable manifold is identified
with Dk × {0} and the adherence of the unstable manifold is identified with {0} ×
Dn−k . Triangulate the stable manifold by the standard simplex k and denote σp
its interior (so T s

p = σ p).

We triangulate Dn−k by choosing an arbitrary triangulation of ∂ Dn−k = Sn−k−1

and considering Dn−k as the cone over its center {0}: this gives a triangulation of
Dn−k . The triangulation of σ p × Dn−k is the following one: choose a simplicial
subdivision of σ p ×∂ Dn−k without any new vertex given by proposition 3.8. Then,
triangulate the cartesian product σ p × Dn−k with the triangulation of σ p × ∂ Dn−k

already fixed thanks to Lemma 3.12:

• for each simplex ν ∈ ∂ Dn−k , the lemma constructs a triangulation of σ p ×({0}∗
ν),

• for each pair of simplexes (ν0, ν1) ∈ (∂ Dn−k)2, the simplicial subidivisions of
σ p × ({0} ∗ νi ) coincides over σ p × ({0} ∗ (ν0 ∩ ν1)).

Let T C be the triangulation of σ p × Dn−k constructed above. By construction, we
have the following collapsing

T C ↘ T s
p ∪ T C

|∂σ p×Dn−k . (3.9)

Second step: combinatorial realization of the first retraction
Let T0 be a triangulation of M0 which coincides over M0 ∩ C with the triangulation
above. Consider the following submanifolds with boundary: ∂C− = M0 ∩ C ,
MC

0 = M0 − Int(∂C−) and ∂C+ = ∂C − Int(∂C−). Let V be ∂C− ∩ ∂C+ : it is
diffeomorphic to ∂ Dk × ∂ Dn−k = Sk−1 × Sn−k−1 a manifold of dimension n − 2.

The manifold (∂C+, V ) is a manifold with boundary which is triangulated.
The gradient lines of v starting at any point of this manifold are transverse to it:
we push along the gradient lines of v the triangulation until it meets M1. It gives
a triangulation of (M∂C+

1 , MV
1 ) which is a submanifold of M1 with boundary. This

triangulation is C1 since pushing along the flow in this case is a diffeomorphism.
Then, we get a product cobordism (with boundary) with triangulation of the top and
the bottom already fixed: Lemma 3.11 gives a triangulation of this cobordism with
the desired collapsing.
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The same construction holds for (MC
0 , V ) (we suppose that the triangulation

of V × [0, 1] is the same as the one given above). Let T be the corresponding
triangulation of M . Then, we have the following collapsing

T ↘ T0 ∪ T C . (3.10)

Conclusion
The composition of collapsings (3.10) and (3.9) give

T ↘ T0 ∪ T s
p .

Since T s
p = σ p we get the following collapsing: T s

p − σp ↘ ∂T s
p . Thus a combi-

natorial Morse vector field which satisfies the conclusion of the theorem has been
constructed. Nevertheless, note that the triangulation above in not C1: the trian-
gulation of the stable manifold done by k gives only a topological triangulation.
To correct this, push the level M0 (denote this level M ′

0) along the gradient line a
little inside the cobordism so that the stable manifold can be C1-triangulated by the
standard simplex. Then, we endow the cobordism whose boundary is M0 ∪ M ′

0 with
a C1-triangulation given by Lemma 3.9.

Corollary 3.14. Let f be a generic Morse function on a Riemannian closed man-
ifold M. Then, there exists T a C1-triangulation of M and a combinatorial Morse
vector field V defined on T such that for every k ∈ N the set of critical poins of
index k is in bijection with the set of critical cells of dimension k.

Proof. Since the Morse function f is generic, we have that for any critical points
p �= q, f (p) �= f (q). Let a1 < a2 < . . . < al be the ordered set of critical values
of f . For each k ∈ {1, . . . , l}, let εk > 0 be small enough so that the cobordism

(Mak ; Mak− , Mak+ ) = (
f −1([ak − εk, ak + εk]); f −1(ak − εk), f −1(ak + εk)

)
is a cobordism with exactly one critical point. Define for k ∈ {1, . . . , l − 1} the
product cobordisms

(Mbk ;Mak−1+ ,Mak− )=(
f −1([ak−1+εk−1, ak−εk]); f −1(ak−1+εk−1), f −1(ak−εk)

)
.

The manifold M is equal to:

Ma1 ∪ Mb1 ∪ . . . ∪ Mbl−1 ∪ Mal .

Theorem 3.13 gives for k = 1, . . . , l a combinatorial realization of the cobordism
(Mak ; Mak− , Mak+ ). Lemma 3.11 gives a combinatorial realization of each cobordism
(Mbk ; Mak−1+ , Mak− ) for k = 1, . . . , l −1 (with the convention that Ma0 = ∅). Then,
we construct a C1-triangulation of M and define on it a combinatorial vector field.
It is in fact a combinatorial Morse vector field since along V -paths we only can go
down and the conclusion of the corollary follows.
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3.3. Proof of Theorem 3.1

Since f is generic, we use the Rearrangement Theorem [13, Theorem 4.8] to con-
sider g a generic self-indexed Morse function such that

• the set of critical points of index k of g coincides with the one of f for every
k ∈ N,

• for each pair of critical points p and q of successive index, the set of integral
curves up to renormalization connecting q to p for g is in bijection with the
corresponding set for f (we suppose here that Morse–Smale gradients have been
chosen for f and for g),

• this bijection induces an isomorphism between the Thom-Smale complexes of
f and g (we suppose that orientations of stable manifolds have been chosen).

Thus, we suppose that f : Mn → R is a generic self-indexed Morse function i.e.
for every k ∈ N, for every p ∈ Critk( f ), f (p) = k. In particular f (M) = [0, n].
We suppose whenever we need it that a Morse–Smale gradient v for f is given.

One more time, we will cut M in cobordisms (almost) elementary and control
combinatorially the behavior of V -paths. For i ∈ {0, . . . , n} choose 0 < εi < 1/2.
For i ∈ {0, . . . , n}, let (Mi ; Mi−,, Mi+) be the cobordism

( f −1([i − εi , i + εi ]); f −1(i − εi ), f −1(i + εi )).

Similarly, define (Mi,i+1; Mi+, Mi+1− ) the product cobordism equal to

( f −1([i + εi , i + 1 − εi+1]); Mi+, Mi+1− ).

Then
M = M0 ∪ M0,1 ∪ M1 ∪ . . . ∪ Mn−1,n ∪ Mn.

For all i ∈ {0, . . . , n}, (Mi ; Mi−, Mi+) is a cobordism with | Criti ( f )| critical points
of index i (maybe there is no critical point). The triangulation of M is constructed
in the following way:

(1) triangulation of cobordisms (Mi ; Mi−, Mi+) for all i ∈ {0, . . . , n} given by
Theorem 3.13,

(2) triangulation of cobordisms (Mi,i+1; Mi+, Mi+1− ) for all i ∈ {0, . . . , n} given
by Lemma 3.11.

Remark 3.15. Theorem 3.13 is proved in the case where there is exactly one crit-
ical point. This proof extends directly to the case of k critical points of the same
index under the condition that tubular neighbourhoods of stable manifolds are cho-
sen to be disjoints one from each other.

Let p be a critical point of index k and C(p) be a tubular neighbourhood
(small enough) of the stable manifold of p in the corresponding cobordism. Denote
∂C−(p) (respectively ∂C+(p)) the submanifold diffeomorphic to ∂ Dk × Dn−k (re-
spectively Dk × ∂ Dn−k). Denote σp the critical cell of dimension k corresponding
to p (see Theorem 3.13).
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Hypothesis on the triangulation of ∂C+(p)

(1) stable manifolds of critical points of index k + 1 intersect ∂C+(p) along a
subcomplex of dimension k and intersect σp ×∂ Dn−k along cells of dimension
k of the type σ × {ai } where ai is a vertex of ∂ Dn−k ,

(2) each integral curve up to renormalization γ from p to q ∈ Critk+1( f ) inter-
sects ∂C+(p) in the interior of a k-cell σγ ∈ σp × ∂ Dn−k ,

(3) given two distinct integral curves up to renormalization γ and γ ′ from p to
critical points of index k + 1 then σγ �= σγ ′ .

Remark 3.16. The first hypothesis is satisfied by choosing small enough εk and
since stable and unstable manifolds are transverse. For such a small enough εk the
last hypothesis will be satisfied. The second hypothesis is automatically satisfied if
the first hypothesis is satisfied.

In each triangulated cobordism (Mk; Mk−, Mk+), stable manifolds of critical
points of index k are subcomplexes. Following notations of Theorem 3.13, we have
the following collapsing

T s
p − σp ↘ ∂T s

p .

Using Lemma 3.11, we obtain the following collapsing

Mk−1,k ↘ Mk−1+
which can be restricted to the stable manifold of p since it is a submanifold of Mk−.
With respect to the stable manifold, the combinatorial Morse vector field satisfies
the ancestor’s property.

Let γ be an integral curve of v up to renormalization from q ∈ Critk−1( f ) to
p. It intersects ∂C+(q) in a point which by hypothesis belongs to a cell σq × {aγ }.
There is a 1 − 1 correspondance between the set of integral curves up to renormal-
ization from q to p (with ind(p) = ind(q) + 1) and V -paths from hyperfaces of σp
to σq given by γ ←→ σγ .

From σγ , there is a unique V -path ending at σq . Since V satisfies the ances-
tor’s property in the stable manifold and σγ is a cell of dimension k − 1 there is
an ancestor of σγ which is an hyperface of σp. This gives a V -path between an
hyperface of σp to σq which corresponds to γ .

We endow each critical cell with the orientation of the corresponding stable
manifold and every other cell is endowed with an arbitrary orientation.

By construction, the multiplicity of V -path coincides with the sign of the cor-
responding gradient path and the theorem follows.

4. Perfect matchings and homologous vector fields

In this section, we use Theorem 3.1 to prove the following: given a closed oriented
3-manifold and a class of homologous vector fields, there is a triangulation such
that a perfect matching on the Hasse diagram of the triangulation realizes this class
of homologous vector fields.
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4.1. Perfect matchings

Definition 4.1. A perfect matching on a graph is a matching such that every vertex
belongs to an edge of the matching.

As a corollary of Theorem 3.1 we obtain:

Corollary 4.2. Let M be a closed smooth manifold of dimension 3. Then there exits
a C1-triangulation of M such that a perfect matching on its Hasse diagram exists.

Proof. Since M is a closed smooth manifold of dimension 3 we have χ(M) = 0
where χ denotes the Euler characteristic. Take a pointed Heegaard splitting of M
(�g; α = (α1, . . . , αg), β = (β1, . . . , βg); z) of genus g so that there is an n-
uplets of intersection points x between the α’s and the β’s which defines a bijection
between the sets α and β. It is always possible to find such a pointed Heegaard
splitting after a finite number of isotopies of the α’s and β’s curves (see [7]). The
Morse function f corresponding to this Heegaard splitting has one critical point
of index 0 and 3 and g critical points of index 1 and 2. Denote the set of index 1
(respectively 2) critical points by {qi }g

i=1 (respectively {pi }g
i=1) where qi (respec-

tively pi ) corresponds to αi (respectively βi ) for all i ∈ {1, . . . , g}. The n-uplet of
intersection points x = (x1,i1, . . . , xn,in ) gives for each j ∈ {1, . . . , g} an integral
curve connecting q j to pi j . The point z gives an integral curve connecting the index
0 critical point to the index 3 critical point.

Take a combinatorial realization (T, V ) as given by Theorem 3.1 of (M, f ).
Then to each point xi, ji correspond now a V -path γ from an hyperface of the critical
cell σpi j

to σqi : we change the matching along this path so that both τpi j
and σqi

are no more critical cells. If γ : σ0, . . . , σr = σqi , then do the following:

• match σ0 with τ ,
• for every i ∈ {1, . . . , r} match σi with V (σi−1).

Now suppose that z belongs to the interior of a 2-cell τz (if not, subdivide T ).
Denote by ς the critical cell of dimension 3 and by υ the critical cell of dimension
0. There is by construction a V -path γ : τ0, . . . , τr = τz from an hyperface of ς

to τz since z is in the stable manifold of the index 3 critical point. We modify the
matching along γ this way:

• match τ0 with ς ,
• for every i ∈ {1, . . . , r} match τi with V (τi−1).

In fact, it is no more a matching since τz belongs to two edges of the matching.
Nevertheless, τz belongs to the unstable manifold of υ the critical cell of di-

mension 0. By the construction done in Theorem 3.1, the tubular neighbourhood
of the critical point of index 0 is equal to D3 = ∂ D3 ∗ {0}. The triangulation of
this tubular neighbourhood is given by making the cone over {0} = υ of a trian-
gulation of ∂ D3. We modify the matching as follows. Let ν denote the critical
0-cell and suppose τ z ∗ ν is the tetrahedron ABC D where A corresponds to ν. The
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collapsing ∂ D3 ∗ {0} ↘ {0} gives in particular the following matching on ABC D:
(BC D, ABC D), (BC, ABC) and (B, AB) (A is critical). Modify the matching by
(A, AB), (B, BC) and (ABC, ABC D). Then, BC D (which is τz) is critical. This
gives a perfect matching over T .

4.2. Euler structures and homologous vector fields

Throughout this subsection we use conventions of Turaev [20].

4.2.1. Combinatorial Euler structures

Perfect matchings have an interpretation as Euler chains. First, we recall Euler
structures as defined by Turaev [20]. Let (M, ∂ M) be a smooth manifold of dimen-
sion n and T be a C1-triangulation of M .

Suppose ∂ M = ∂0 M
∐

∂1 M be such that χ(M, ∂0 M) = 0 and let Ti be equal
to T|∂i M for i ∈ {0, 1}.

Denote K the set of cells of T and Ki the set of cells of Ti for i ∈ {0, 1}.
For each cell σ ∈ K , let sgn(σ ) be equal to (−1)dim(σ ) and pick aσ a point in the
interior of σ . An Euler chain in (T, T0) is a one-dimensional singular chain ξ in T
with the boundary of the form

∑
σ∈K−K0

sgn(σ )aσ . Since χ(M, ∂0 M) = 0, the set
of Euler chains is non-empty. Given two Euler chains ξ and η, the difference ξ − η

is a cycle. If ξ − η = 0 ∈ H1(M) then we say that ξ and η are homologous. A class
of homologous Euler chains in (T, T0) is called a combinatorial Euler structure on
(T, T0). Let Eul(T, T0) be the set of Euler structures on (T, T0). If ξ is an Euler
chain, denote by [ξ ] its class as a combinatorial Euler structure. Euler chains behave
well with respect to the subdivision of a triangulation: this allows us to consider the
set Eul(M, ∂0 M) of Euler structures on (M, ∂0 M). Taking ξ an element of this
set means choosing a triangulation (T, T0) of (M, ∂0 M) and considering an Euler
chain on (T, T0).

Remark 4.3. Let C be a perfect matching on a C1-triangulation (T,T0) of (M,∂0 M).
Then it defines an Euler chain [ξc] ∈ Eul(T, T0): orient every edge of the matching
from odd dimensional cells to even dimensional cells. Perfect matchings are special
Euler chains that do not pass through a cell more than one time.

4.2.2. Homologous vector fields

By a vector field on (M, ∂0 M) we mean (except in clearly mentioned case) a non-
singular continuous vector field of tangent vectors on M directed into M on ∂0 M
and directed outwards on ∂1 M . Since χ(M, ∂0 M) = 0, there exists such vector
fields on (M, ∂0 M).

Vector fields u and v on (M, ∂0 M) are called homologous if for some closed
ball B ⊂ Int(M) the restriction of the fields u and v are homotopic in the class
of non-singular vector fields on M − Int(B) directed into M on ∂0 M , outwards on
∂1 M , and arbitrarily on ∂ B. Denote by vect(M, ∂0 M) the set of homologous vector
fields on (M, ∂0 M) and the class of a vector field u is denoted by [u].
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4.2.3. The canonical bijection

Turaev proved the following:

Theorem 4.4 (Turaev [20]). Let (M, ∂0 M) be a smooth pair such that dim(M) ≥
2. For each C1-triangulation (T, T0) of the pair (M, ∂0 M) there exists a bijection

ρ : Eul(T, T0) → vect(M,∂0 M)

Let us recall the construction of Turaev in the case ∂ M = ∅. Let T be a C1-
triangulation of M and T ′ be the first barycentric subdivision of T . We recall the
definition of the vector field F1 with singularities on M . For a simplex a of the
triangulation T , let a denote its barycenter. If A =< a0, a1, . . . , a p > is a simplex
of the triangulation T ′, where a0 < a1 < . . . < ap are simplexes of T , then, at a
point x ∈ Int(A),

F1(x) =
∑

0≤i< j≤p

λi (x)λ j (x)(a j − x) .

Here λ0, λ1, . . . , λp are barycentric coordinates in A and a j − x is the image of the
tangent vector a j − x ∈ Tx A via the homeomorphism between T and M .

Every barycenter of each cell of T is a singular point of F1. Let M be a
matching on the Hasse diagram of T : in particular, every edge of the matching
connects two singular points. Turaev proved that the index of F1 in a neighbourhood
of every edge of the Hasse diagram (thought as embedded in M in the obvious way)
is equal to zero. Thus, if we think about combinatorial (not necessarily Morse)
vector field on T as a matching on its Hasse diagram, it encodes a desingularization
of the vector field F1 (where critical points of F1 remain if the corresponding cell is
critical). In the case of ξ an Euler chain, let Fξ denote an extension of F1 to a non-
singular vector field. Turaev proved that the homotopy [Fξ ] ∈ Vect(M) depends
only on [ξ ] ∈ Eul(T ). The map ρ is defined by ρ([ξ ]) = [Fξ ].

In the general case where ξ corresponds to a matching (instead of a perfect
matching), we still denote by ρ the map which assigns to ξ the vector field Fξ given
by the construction above.

We refer to [20] in the case ∂ M �= ∅.

4.3. M-realization of vector fields

Definition 4.5. Let [u] ∈ Vect(M, ∂0 M). A M-realization of [u] is a matching η

on the corresponding Hasse diagram of a C1-triangulation T of (M, ∂ M) such that
[η] = ρ([u]).
Theorem 4.6. Any class of homologous vector fields on a smooth oriented closed
Riemannian 3-manifold has an M-realization.
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This theorem is a step toward Heegaard–Floer homology [14, 15]. Recall the
first steps of the construction of Heegaard–Floer homology for closed, oriented 3-
manifolds. Choose a pointed Heegaard splitting M = U0 ∪� U1 (that is choose a
Morse function) and fix a Spinc-structure on M given by an n-uplets of intersection
points between the α’s and the β’s. Turaev proved that Spinc-structures are in bi-
jection with Euler structures (and so the set vect(M)). Thus, Theorem 4.6 together
with Theorem 3.1 give for a closed oriented 3-manifold a combinatorial realiza-
tion of both the Spinc-structure and the pointed Heegaard splitting. The hard part
remaining is to understand how holomorphic disks can be combinatorially realized.

The following two lemmas will be useful to prove Theorem 4.6.

Lemma 4.7. Let (M ×[0, 1]; M ×{0}, M ×{1}) be a smooth n +1 product cobor-
dism such that Ti is a C1-triangulation of M × {i} for i ∈ {0, 1}. Let (T ; T0, T1)

be any triangulation given by Lemma 3.11 and [ξ ] ∈ Eul(M × [0, 1], M × {0})
the Euler structure given by the combinatorial Morse vector field induced by T ↘
T0. Then ρ([ξ ]) ∈ vect(M × [0, 1], M × {0}) is homologous to the vector field
v : M × [0, 1] → T (M × [0, 1]) defined by v(x, t) = ((x, t), dt).

Proof. The construction of the collapsing T ↘ T0 defines a combinatorial Morse
vector field pointing downwards. Let ξ ∈ Eul(T, T0) be the corresponding Euler
chain. The map ρ : Eul(M ×[0, 1], M ×{0}) → vect(M ×[0, 1], M ×{0}) sends ξ

to a non-singular vector field on (M × [0, 1], M × {0}) which is, by definition of ρ,
by the construction of the triangulation and by the definition of the combinatorial
Morse vector field, homologous to the desired vector field.

Lemma 4.8. Let f be a generic Morse function on a cobordism (M; M0, M1) with
exactly one critical point p of index k and (T ; T0, T1) be a C1-triangulation of
the cobordism (T ; T0, T1) given by Theorem 3.13. Let ξ be the one singular chain
corresponding to the matching given by the combinatorial Morse vector field on T .
Then ρ(ξ) is homologous to the chosen Morse–Smale gradient of f outside a small
ball neighbourhood of the critical point p. Moreover, the index of ρ(ξ) at p is equal
to k.

Proof. We follow notations of Theorem 3.13. The two collapsings T ↘ T s
p ∪ T0

and T s
p − σp ↘ (T s

p ∩ T0) define a combinatorial Morse vector field with only one
critical cell. Let ξ be the corresponding one singular chain. Thus, the barycenter of
this cell (which is p) must be a critical point of ρ(ξ). It remains to check that outside
a small neighbourhood of p, ρ(ξ) is homologous to the Morse–Smale gradient v.
Since outside the tubular neighbourhood C of the stable manifold the triangulation
is constructed by pushing it along gradient lines of v, we can use Lemma 4.7 to
see that ρ(ξ) is homologous to v outside the tubular neighbourhood C of the stable
manifold. In a small ball neighbourhood (which is a Morse chart at p) of the critical
point p, the vector field F1 coincides with the Morse–Smale gradient v. Since
T C ↘ σp ∪ (T0 ∩ T C ), ρ(ξ) is homologous to v outside the Morse chart of p .
The fact that the index of ρ(ξ) at p is equal to k is a consequence of the definition
of F1.
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Proof of Theorem 4.6. We apply Theorem 3.1 to obtain a C1-triangulation of the
3-manifold and a combinatorial Morse vector field which realizes combinatorially
the Thom-Smale complex. Then, the construction done in Corollary 4.2 defines a
matching which in turns defines an Euler chain ξ . The map ρ sends ξ to a non-
singular vector field which is by construction homologous to the Morse–Smale gra-
dient of f . Thus, to prove the theorem for any [v] ∈ vect(M), it remains to find
a pointed Heegaard splitting (�g; α = (α1, . . . , αg), β = (β1, . . . , βg); z) of the
3-manifold M such that an n-uplet of intersection points x corresponds to a given
[v] ∈ vect(M). Finally, [15, Lemma 5.2] tells that any [v] ∈ vect(M) can be
realized in such a way. This concludes the proof.
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