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Abstract. In this paper we study the questions of existence and uniqueness
of solutions for equations of type −div a(x, Du) + γ (u) � µ1, posed in an
open bounded subset � of RN , with nonlinear boundary conditions of the form
a(x, Du)·η+β(u) � µ2. The nonlinear elliptic operator div a(x, Du) is modeled
on the p-Laplacian operator �p(u) = div (|Du|p−2 Du), with p > 1, γ and β

are maximal monotone graphs in R2 such that 0 ∈ γ (0) ∩ β(0) and the data µ1
and µ2 are measures.
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1. Introduction

The purpose of this paper is to establish existence and uniqueness of solutions for a
degenerate elliptic problem with nonlinear boundary condition of the form

(Sγ,β
µ1,µ2

)




−div a(x, Du) + γ (u) � µ1 in �

a(x, Du) · η + β(u) � µ2 on ∂�,

where � is a bounded domain in RN with smooth boundary ∂�, the function
a : � × RN → RN is a Carathéodory function with growth of order p − 1
(p > 1) with respect to the gradient, satisfying the classical Leray-Lions con-
ditions, η is the unit outward normal on ∂� and µ1, µ2 are measures such that
µ1 = µ1 �, µ2 = µ2 ∂� and µ1 + µ2 is a diffuse measure (it does not
charge sets of zero p-capacity). The nonlinearities γ and β are maximal monotone
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graphs in R2 (see, e.g., [16]), 0 ∈ γ (0) ∩ β(0), satisfying rather general assump-
tions. In particular, they may be multivalued and this allows to include the Dirichlet
condition (taking β to be the monotone graph D defined by D(0) = R) and the non
homogeneous Neumann boundary condition (taking β to be the monotone graph
N defined by N (r) = 0 for all r ∈ R) as well as many other nonlinear fluxes on
the boundary that occur in some problems in Mechanics and Physics (see, e.g., [25]
or [15]). Note also that, since γ may be multivalued, problems of type (Sγ,β

µ1,µ2) ap-
pear in various phenomena with changes of state like the multiphase Stefan problem
(cf. [21]) and in the weak formulation of the mathematical model of the so called
Hele-Shaw problem (cf. [23] and [26]).

In the particular case a(x, ξ) = ξ, the problem (Sγ,β
µ1,µ2) reads

(Lγ,β
µ1,µ2

)




−�u + γ (u) � µ1 in �

∂ηu + β(u) � µ2 on ∂�,

where ∂ηu simply denotes the outward normal derivative of u. For this kind of
problems in the homogeneous case, µ2 ≡ 0, the pioneering works are the paper by
H. Brezis [15], in which problem (Lγ,β

µ1,0
) is studied for γ the identity, β a maximal

monotone graph and µ1 ∈ L2(�), and the paper by H. Brezis and W. Strauss
[20], in which problem (Lγ,β

µ1,0
) is studied for µ1 ∈ L1(�) and γ , β continuous

nondecreasing functions from R into R with γ ′ ≥ ε > 0. These works were
extended by Ph. Bénilan, M. G. Crandall and P. Sacks [9] to the case of any γ and
β maximal monotone graphs in R2 such that 0 ∈ γ (0) ∩ β(0).

In [1, 2] and [4], the results of [9] are extended by proving the existence and
uniqueness of weak (or entropy/renormalized) solutions for the general nonhomo-
geneous problem (Sγ,β

φ,ψ), with φ ∈ L1(�) and ψ ∈ L1(∂�), which is quite different
from the homogeneous case. The arguments of the proofs are very connected to the
nature of the nonlinearities γ and β. More precisely, the following cases are studied
separately,

(A) D(γ ) = R and, D(β) = R or div a(x, Du) = �p(u),

(B) ψ ≡ 0 and, D(β) = R or div a(x, Du) = �p(u),

(C) R �= D(γ ) ⊂ D(β) (the obstacle problem).

For the case where the data φ and ψ are Radon measures, the problem is again dif-
ferent. Our aim in this paper is to extend some of the above results to this situation.
There is a large literature on elliptic problems with measure data, mainly for the
homogeneous Dirichlet problem and γ ≡ 0, that is, for the problem

(S0,D
µ,0 )




−div a(x, Du) = µ in �

u = 0 on ∂�.
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In the linear case, existence and uniqueness of solutions of (S0,D
µ,0 ) was obtained by

G. Stampacchia [32] by duality techniques. In the nonlinear case the first attempt
to solve problem (S0,D

µ,0 ) was done by L. Boccardo and T. Gallouët, who proved

in [11] and [12] the existence of weak solutions of (S0,D
µ,0 ) under the assumption

p > 2− 1
N . On the question of uniqueness, even for the particular case µ ∈ L1(�),

the definition of weak solution is not enough in order to get uniqueness. It was
necessary to find some extra conditions on the distributional solutions of (S0,D

µ,0 ) in
order to ensure both existence and uniqueness. This was done by Ph. Bénilan et al.,
for the case of measures in L1(�), by introducing the concept of entropy solution
in [6], and by P. L. Lions and F. Murat in an unpublished paper where the concept of
renormalized solution was introduced. For diffuse measures, that is, for measures
in L1(�)+ W −1,p′

(�), the problem was solved by L. Boccardo, T. Gallouët and L.
Orsina in [13] in the framework of entropy solutions, and for general measures by
G. Dal Maso et al. in [22] in the framework of renormalized soltuions.

The study of the homogeneous Dirichlet problem for the Laplacian and γ �≡ 0
was initiated by Ph. Bénilan and H. Brezis in 1975 (see [7]) for the particular case
γ (r) = gp(r) := |r |p−1r . They proved the existence of weak solutions of problem

(Lγ,D
µ,0 )




−�u + γ (u) = µ in �

u = 0 on ∂�,

for any measure µ if p < N
N−2 (N ≥ 2), and non existence if p ≥ N

N−2 (N ≥ 3) for

µ = δa , with a ∈ �. Problem (Lγ,D
µ,0 ) was also studied by P. Baras and M. Pierre [5].

Recently it has been studied by H. Brezis, M. Marcus and A. C. Ponce in [18], where
the general case of a continuous nondecreasing nonlinearity γ (r), γ (0) = 0, is dealt
with (see also [10,33] for the particular case γ (r) = er −1). The same problem has
been studied by H. Brezis and A. C. Ponce [19] in the case Dom(γ ) �= R closed.
The case Dom(γ ) �= R open has been studied by L. Dupaigne, A. C. Ponce and A.
Porretta [24].

The study of nonlinear equations involving measures as boundary condition
was initiated by A. Gmira and L. Veron [27]. They proved the existence of weak
solutions of problem

(GV )




−�u + |u|q−1u = 0 in �

u = µ on ∂�,

for any Radon measure µ on ∂� in the subcritical case 1 < q < N+1
N−1 . In the

supercritical case, q ≥ N+1
N−1 , existence of solutions no longer holds; for instance,

the problem has no solution if the measure µ is concentrated at a single point. M.
Marcus and L. Veron in [30] characterized the Radon measures µ on ∂� for which
problem (GV ) has solution in the supercritical case, these measures are those that
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are absolutely continuous respect to the Bessel capacity C 2
q ,q ′ on ∂�. In the last

years an extensive study of removable singularities and boundary traces for this type
of problems has been done by M. Marcus and L. Veron (see [31] and the references
therein).

The study of reduced measures initiated in [18] by H. Brezis, M. Marcus and
A. C. Ponce for problem (Lγ,D

µ,0 ) has been developed in [19] by H. Brezis and A. C.
Ponce for problems of the form


−�u + γ (u) = 0 in �

u = µ on ∂�,

where γ : R → R is a nondecreasing continuous function with γ (r) = 0 for all
r ≤ 0. In that paper the authors make the observation that in all the above problems
the equation in � is nonlinear but the boundary conditions is the usual Dirichlet
boundary condition. They also point out that it would be interesting to investigate
problems with nonlinear boundary conditions of type

(Lg1,β

0,µ )




−�u + u = 0 in �

∂u

∂η
+ β(u) � µ on ∂�,

where β is a maximal monotone graph in R2. Observe that this problem is a partic-
ular case of our general problem.

Let us briefly summarize the contents of the paper. In Section 2 we fix the
notation and give some preliminaries. Section 3 deals with the different concepts
of solution we use. The next section is dedicated to establish the existence and
uniqueness results. Finally, the last section is devoted to the particular case of
Dirichlet boundary conditions.

ACKNOWLEDGEMENTS. This work has been performed during the visit of the sec-
ond author to the Universitat de València and the visits of the first, third and fourth
authors to the Université de Picardie Jules Verne. They thank these institutions
for their support and hospitality. The authors have been partially supported by the
Spanish MEC and FEDER, project MTM2008-03176.

2. Preliminaries

Throughout the paper, � ⊂ R is a bounded domain with smooth boundary ∂�,

p > 1, γ and β are maximal monotone graphs in R2 such that 0 ∈ γ (0) ∩ β(0) and
the Carathéodory function a : � × RN → RN satisfies
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(H1) there exists � > 0 such that a(x, ξ) · ξ ≥ �|ξ |p for a.e. x ∈ � and for all
ξ ∈ RN ,

(H2) there exists σ > 0 and � ∈ L p′
(�) such that |a(x, ξ)| ≤ σ(�(x) + |ξ |p−1)

for a.e. x ∈ � and for all ξ ∈ RN , where p′ = p
p−1 ,

(H3) (a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2) > 0 for a.e. x ∈ � and for all ξ1, ξ2 ∈
RN , ξ1 �= ξ2.

The hypotheses (H1)-(H3) are classical in the study of nonlinear operators in diver-
gence form (cf., [29]). The model example of a function a satisfying these hypothe-
ses is a(x, ξ) = |ξ |p−2ξ . The corresponding operator is the p-Laplacian operator
�p(u) = div(|Du|p−2 Du).

For 1 ≤ p < +∞, L p(�) and W 1,p(�) denote respectively the standard
Lebesgue space and Sobolev space, and W 1,p

0 (�) is the closure of D(�) in
W 1,p(�). For u ∈ W 1,p(�), we denote by u or τ(u) the trace of u on ∂� in the

usual sense and by W
1
p′ ,p

(∂�) the set τ(W 1,p(�)). Recall that Ker(τ ) = W 1,p
0 (�).

We denote by LN the N -dimensional Lebesgue measure of RN and by HN−1

the (N − 1)-dimensional Hausdorff measure.
For an open bounded set U of RN , we define the p-capacity relative to U ,

C p(., U ), in the following classical way. For any compact subset K of U ,

C p(K , U ) = inf

{∫
U

|Du|p ; u ∈ C∞
c (U ), u ≥ χ K

}
,

where χ K is the characteristic function of K ; we will use the convention that inf ∅ =
+∞. The p-capacity of any open subset O ⊂ U is defined by

C p(O, U ) = sup
{
C p(K ) ; K ⊂ O compact

}
.

Finally, the p-capacity of any Borel set A ⊂ U is defined by

C p(A, U ) = inf
{
C p(O) ; O ⊂ A open

}
.

A function u defined on U is said to be capp-quasi-continuous in A ⊂ U if for
every ε > 0, there exists an open set Bε ⊆ U with C p(Bε, U ) < ε such that
the restriction of u to A \ Bε is continuous. It is well known that every function
in W 1,p(U ) has a capp-quasi-continuous representative, whose values are defined
capp-quasi everywhere in U , that is, up to a subset of U of zero p-capacity. When
we are dealing with the pointwise values of a function u ∈ W 1,p(U ), we always
identify u with its capp-quasi-continuous representative.

We denote

sign0(r) :=




1 if r > 0,

0 if r = 0,

−1 if r < 0,

sign+
0 (r) :=

{
1 if r > 0,

0 if r ≤ 0.
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For k > 0,
Tk(r) := max{−k, min{r, k}}, r ∈ R

and
T +

k (r) := min{r+, k}, r ∈ R.

In [6], the authors introduce the set

T 1,p(�) = {u : � −→ R measurable such that Tk(u) ∈ W 1,p(�) ∀k > 0}.
They also prove that for a given u ∈ T 1,p(�), there exists a unique (up to a.e.
equivalence) measurable function v : � → RN such that

DTk(u) = vχ {|v|<k} ∀k > 0.

This function v will be denoted by Du. It is clear that if u ∈ W 1,p(�), then
v ∈ L p(�) and v = Du in the usual sense.

As in [1], T 1,p
tr (�) denotes the set of functions u in T 1,p(�) satisfying the

following conditions, there exists a sequence un in W 1,p(�) such that

(a) un converges to u a.e. in �,
(b) DTk(un) converges to DTk(u) in L1(�) for all k > 0,
(c) there exists a finite measurable function v on ∂�, such that un converges to v

a.e. in ∂�.

The function v is the trace of u in the generalized sense introduced in [1]. In the
sequel, the trace of u ∈ T 1,p

tr (�) on ∂� will be denoted by tr(u) or u. Let us recall
that in the case u ∈ W 1,p(�), tr(u) coincides with the trace of u, τ(u), in the usual
sense, and

Ker(tr) = T 1,p
0 (�),

the space introduced in [6] to study (Sγ,D
φ,0 ). Moreover, for every u ∈ T 1,p

tr (�) and

k > 0, τ(Tk(u)) = Tk(tr(u)). If φ ∈ W 1,p(�) ∩ L∞(�), then u − φ ∈ T 1,p
tr (�)

and tr(u − φ) = tr(u) − τ(φ).
Let us remark that if u ∈ T 1,p(�), then u has a capp-quasi-continuous rep-

resentative, which will be denoted by u; the capp-quasi-continuous representative
can be infinite on a set of positive p-capacity (see [22]). If in addition the function
u ∈ T 1,p(�) is assumed to satisfy the estimate∫

�

|DTk(u)|p dx ≤ C(k + 1) ∀ k > 0,

where C is independent of k, then the capp-quasi-continuous representative of u is
capp-quasi every where finite (see [22]).

From now on, � is assumed to be a bounded domain in RN with ∂� of class
C1. Then, � is an extension domain (see [17]), so we can fix an open bounded
subset U� of RN such that � ⊂ U�, and there exists a bounded linear operator
E : W 1,p(�) → W 1,p

0 (U�) for which

(i) E(u) = u a.e in � for each u ∈ W 1,p(�),
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(ii) ‖E(u)‖
W 1,p

0 (U�)
≤ C‖u‖W 1,p(�), where C is a constant depending only on p

and �.

We call E(u) an extension of u to U�. If u ∈ W 1,p(�), 1 < p ≤ ∞, it is possible
to give a pointwise definition of the trace τ(u) of u on ∂� in the following way
(see [34]), as E(u) ∈ W 1,p

0 (U�), every point of U�, except possibly a set of zero
p-capacity, is a Lebesgue point of E(u). Since p > 1, the sets of zero p-capacity
are of HN−1-measure zero and therefore E(u) is defined HN−1-almost everywhere
on ∂�, so τ(u) = E(u) on ∂�. This definition is independent of the open set U�

and also of the extension E(u). We denote τ(u) by u in the rest of the paper.

Lemma 2.1. Assume � is a bounded domain in RN with ∂� of class C1. Given
u ∈ T 1,p(�) there exists u ∈ T 1,p

0 (U�) such that

Tk(u) = E[Tk(u)] for all k > 0.

Proof. To prove this result we need to recall the construction of the extension op-
erator E : W 1,p(�) → W 1,p

0 (U�) given in [17]. For x = (x1, . . . xN ) ∈ RN , we
write

x = (x ′, xN ), with x ′ ∈ RN−1, x ′ = (x1, . . . , xN−1),

and we set

|x ′| =
(

N−1∑
i=1

x2
i

) 1
2

.

We denote

Q = {(x ′, xN ) ∈ RN−1 × R : |x ′| < 1, |xN | < 1},
Q+ = {(x ′, xN ) ∈ RN−1 × R : |x ′| < 1, 0 < xN < 1}

and
Q0 = {(x ′, xN ) ∈ RN−1 × R : |x ′| < 1, xN = 0}.

Let R : Q → Q the reflection operator defined by

R(x ′, xN ) :=
{

(x ′, xN ) if xN ≥ 0
(x ′, −xN ) if xN < 0 .

Since ∂� is of class C1, there exist open sets Ui ⊂ U�, i = 1, ..., k, such that

∂� ⊂
k⋃

i=1

Ui ,

and bijective functions Gi : Q → Ui such that Gi ∈ C1(Q), Gi
−1 ∈ C1(Ui ),

Gi (Q+) = Ui ∩ � and Gi (Q0) = Ui ∩ ∂�. Moreover, there exists a partition
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of unity {θi }i=0,1,...,k subordinate to ∂� and U1, . . . Uk (see [17]), that is, θi ∈
C∞(RN ), 0 ≤ θi ≤ 1,

k∑
i=0

θi = 1 in RN ,




supp(θi ) is compact and supp(θi ) ⊂ Ui , i = 1, . . . , k

supp(θ0) ⊂ RN \ ∂�, and θ0|� ∈ C∞
c (�).

Given w ∈ W 1,p(�), for x ∈ U�, we have, setting U0 = �, F0 = I and Fi =
Gi ◦ R ◦ G−1

i , i = 1, 2, ..., k,

E(w)(x) =
∑

i∈{0,1,...,k}:x∈Ui

θi (x)w (Fi (x)) . (2.1)

Fix u ∈ T 1,p(�). First, observe that by (2.1), we have

|E[Th(u)](x)| ≤ h ∀ h > 0. (2.2)

Let us prove that

A := {x ∈ U� : |E[Th(u)](x)| ≥ h, ∀ h > 0}
is an LN -null set. Obviously, if

A� := {x ∈ � : |E[Th(u)](x)| ≥ h, ∀ h > 0} ,

we have LN (A�) = 0. On the other hand, by (2.1) and (2.2), it is easy to see that

A \ A� ⊂
k⋃

i=1

(Gi ◦ R ◦ G−1
i )(A� ∩ Ui ).

Consequently, LN (A) = 0. Therefore, we can define LN -almost everywhere the
function u : U� → R by

u(x) := E[Th(u)](x), if x is such that |E[Th(u)](x)| < h,

which is well defined by (2.2) and verifies the lemma.

Let U be an open subset of RN . We set by Mb(U ) the space of all Radon
measures in U with bounded total variation. We recall that for a measure µ ∈
Mb(U ) and a Borel set A ⊂ U , the measure µ A is defined by (µ A)(B) =
µ(B ∩ A) for any Borel set B ⊂ U . If a measure µ ∈ Mb(U ) is such that
µ = µ A for a certain Borel set A, the measure µ is said to be concentrated on
A. For µ ∈ Mb(U ), we denote by µ+, µ− and |µ| the positive part, negative part
and the total variation of the measure µ, respectively. By µ = µa + µs we denote
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the Radon-Nikodym decomposition of µ relatively to LN . For simplicity, we write
also µa for its density respect to LN , that is, for the function f ∈ L1(U ) such that
µa = f LN U .

Let V be an open subset of RN . For a given measure ν ∈ Mb(U ) and a
continuous function f : U → V , the push-forward measure f #ν is the Radon
measure in V defined by

〈 f #ν, ϕ〉 :=
∫

U
ϕ ◦ f dν ∀ ϕ ∈ Cc(V ).

We denote by Mp
b (U ) the space of all diffuse Radon measures in U , i.e., mea-

sures which do not charge sets of zero p-capacity. In [13] it is proved that µ ∈
Mb(U ) belongs to Mp

b (U ) if and only if it belongs to L1(U )+ W −1,p′
(U ), where

W −1,p′
(U ) = [W 1,p

0 (U )]∗. Moreover, if u ∈ W 1,p(U ) and µ ∈ Mp
b (U ), then u

is measurable with respect to µ. If u further belongs to L∞(U ), then u belongs to
L∞(U, dµ), hence to L1(U, dµ).

We define

M
p
b (�) := {

µ ∈ Mp
b (U�) : µ is concentrated on �

}
.

This definition is independent of the open set U�. Note that for u ∈ W 1,p(�) ∩
L∞(�) and µ ∈ M

p
b (�), we have

〈µ, E(u)〉 =
∫

�

u dµ +
∫

∂�

u dµ;

on the other hand, there exists f ∈ L1(U�) and F ∈ (L p′
(U�))N such that µ =

f + div(F), therefore, we also can write

〈µ, E(u)〉 =
∫

U�

f E(u) dx −
∫

U�

F · DE(u) dx .

Note that, if f ∈ L1(�) and g ∈ L1(∂�) then f LN � + gHN−1 ∂� is a
diffuse measure concentrated in �. Now, if p > N − k, 1 ≤ k < N − 1, and M
is a k-rectifiable subset of ∂�, then Hk M is a diffuse measure concentrated in
∂� which is not an L1 function in ∂� (see, [28, Theorem 2.26] or [34, Theorem
2.6.16]).

Let ϑ be a maximal monotone graph in R × R. For r ∈ N, the Yosida approx-
imation ϑr of ϑ is given by ϑr = r(I − (I + 1

r ϑ)−1). The function ϑr is maximal
monotone and Lipschitz. We recall the definition of the main section ϑ0 of ϑ

ϑ0(s) :=




the element of minimal absolute value of ϑ(s) if ϑ(s) �= ∅,

+∞ if [s, +∞) ∩ Dom(ϑ) = ∅,

−∞ if (−∞, s] ∩ Dom(ϑ) = ∅.
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We have that |ϑr | is increasing in r , if s ∈ Dom(ϑ), ϑr (s) → ϑ0(s) as r → +∞,
and if s /∈ Dom(θ), |ϑr (s)| → +∞ as r → +∞.

We set

ϑ(r+) := inf ϑ(]r, +∞[), ϑ(r−) := sup ϑ(] − ∞, r [)
for r ∈ R, where we use the conventions inf ∅ = +∞ and sup ∅ = −∞. It is easy
to see that

ϑ(r) = [ϑ(r−), ϑ(r+)] ∩ R for r ∈ R.

Moreover,
J (ϑ) := {θ ∈ Dom(ϑ) : ϑ(r−) < ϑ(r+)} (2.3)

is a countable set.
We shall denote ϑ− := inf Ran(ϑ) and ϑ+ := sup Ran(ϑ). If 0 ∈ Dom(ϑ),

jϑ(r) = ∫ r
0 ϑ0(s)ds defines a convex lower semi-continuous function such that

ϑ = ∂ jϑ . If j∗ϑ is the Legendre transformation of jϑ then ϑ−1 = ∂ j∗ϑ .
To finish these preliminaries, let us recall some of the results obtained in [2]

for the case of integrable functions that will be used afterward.
We set

V 1,p(�) :=
{
φ∈ L1(�) : ∃M >0 such that

∫
�

|φv|≤ M‖v‖W 1,p(�) ∀v∈W 1,p(�)

}

and

V 1,p(∂�)

:=
{
ψ ∈ L1(∂�) : ∃M > 0 such that

∫
∂�

|ψv|≤ M‖v‖W 1,p(�) ∀v∈W 1,p(�)

}
.

V 1,p(�) is a Banach space endowed with the norm

‖φ‖V 1,p(�) := inf

{
M > 0 :

∫
�

|φv| ≤ M‖v‖W 1,p(�) ∀v ∈ W 1,p(�)

}
,

and V 1,p(∂�) is a Banach space endowed with the norm

‖ψ‖V 1,p(∂�) := inf

{
M > 0 :

∫
∂�

|ψv| ≤ M‖v‖W 1,p(�) ∀v ∈ W 1,p(�)

}
.

Observe that, Sobolev embedding and Trace theorems imply, for 1 ≤ p < N ,

L p′
(�) ⊂ L(N p/(N−p))′(�) ⊂ V 1,p(�)

and
L p′

(∂�) ⊂ L((N−1)p/(N−p))′(∂�) ⊂ V 1,p(∂�).

For the maximal monotone graphs γ and β, we shall denote

R+
γ,β := γ+LN (�) + β+HN−1(∂�), R−

γ,β := γ−LN (�) + β−HN−1(∂�).

We will suppose R−
γ,β < R+

γ,β and we will write Rγ,β :=]R−
γ,β,R+

γ,β [.



DEGENERATE ELLIPTIC EQUATIONS 777

Theorem 2.2 ([2]). Assume Dom(β) = R. For any φ ∈ V 1,p(�) such that
∫
�

φ ∈
Rγ,β, there exists a weak solution [u, z, w] ∈ W 1,p(�) × V 1,p(�) × V 1,p(∂�) of

(Sγ,β

φ,0 ), that is,

∫
�

a(x, Du) · Dv +
∫

�

zv +
∫

∂�

wv =
∫

�

φv, ∀ v ∈ W 1,p(�).

Moreover,
‖z±‖L1(�) + ‖w±‖L1(∂�) ≤ ‖φ±‖L1(�).

Theorem 2.3 ([2]). For any φ ∈ V 1,p(�) there exists a weak solution [u, z] ∈
W 1,p

0 (�) × V 1,p(�) of (Sγ,D
φ,0 ), that is,

∫
�

a(x, Du) · Dv +
∫

�

zv =
∫

�

φv, ∀ v ∈ W 1,p
0 (�),

and
‖z±‖L1(�) ≤ ‖φ±‖L1(�).

3. The concepts of solution

We introduce the following concepts of solution for problem (Sγ,β
µ1,µ2).

Definition 3.1. Let µ1, µ2 measures, µ1 = µ1 � and µ2 = µ2 ∂�, such that
µ1 + µ2 ∈ M

p
b (�). A triple of functions [u, z, w] ∈ W 1,p(�) × L1(�) × L1(∂�)

is a weak solution of problem (Sγ,β
µ1,µ2) if z(x) ∈ γ (u(x)) a.e. in �, w(x) ∈

β(u(x)) a.e. in ∂� and∫
�

a(x, Du) · Dv dx +
∫

�

zv dx +
∫

∂�

wv dHN−1 =
∫

�

v dµ1 +
∫

∂�

v dµ2

for all v ∈ W 1,p(�) ∩ L∞(�).

Let us remark that the fact of being the weak solution in the energy space forces
the measure µ1 + µ2 to belong to a dual space (see Theorem 4.5).

As we pointed out in the introduction, for this type of problems, the concept of
weak solution is not enough in order to get uniqueness. It is necessary to find some
extra conditions on the distributional solutions in order to ensure both existence and
uniqueness. This was done, introducing the concepts of entropy and renormalized
solutions (see [6]). For our problem these concepts are the following.

Definition 3.2. Let µ1, µ2 measures, µ1 = µ1 � and µ2 = µ2 ∂�, such that
µ1 + µ2 ∈ M

p
b (�). A triple of functions [u, z, w] ∈ T 1,p

tr (�) × L1(�) × L1(∂�)
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is an entropy solution of problem (Sγ,β
µ1,µ2) if z(x) ∈ γ (u(x)) a.e. in �, w(x) ∈

β(u(x)) a.e. in ∂� and∫
�

a(x, Du) · DTk(u − v)dx +
∫

�

zTk(u − v)dx +
∫

∂�

wTk(u − v)dHN−1

≤
∫

�

Tk(u − v) dµ1 +
∫

∂�

Tk(u − v)dµ2 ∀k > 0,

(3.1)

for all v ∈ W 1,p(�) ∩ L∞(�).

Definition 3.3. Let µ1, µ2 measures, µ1 = µ1 � and µ2 = µ2 ∂�, such that
µ1 + µ2 ∈ M

p
b (�). A triple of functions [u, z, w] ∈ T 1,p

tr (�) × L1(�) × L1(∂�)

is a renormalized solution of problem (Sγ,β
µ1,µ2) if z(x) ∈ γ (u(x)) a.e. in �, w(x) ∈

β(u(x)) a.e. in ∂�, and the following conditions hold

(a) for every h ∈ W 1,∞(R) with compact support we have∫
�

a(x, Du) · Du h′(u)ϕ dx +
∫

�

a(x, Du) · Dϕ h(u) dx

+
∫

�

z h(u)ϕ dx +
∫

∂�

w h(u)ϕ dHN−1

=
∫

�

h(u)ϕ dµ1 +
∫

∂�

h(u)ϕ dµ2 ∀k > 0,

(3.2)

for all ϕ ∈ W 1,p(�) ∩ L∞(�) such that h(u)ϕ ∈ W 1,p(�),
(b)

lim
n→+∞

∫
{n≤|u|≤n+1}

a(x, Du) · Du dx = 0. (3.3)

Remark 3.4. Every term in (3.2) is well defined. This is clear for the right hand
side since h(u)ϕ belongs to L∞(�, µ1 + µ2), and thus to L1(�, µ1 + µ2). On the
other hand, since supp(h) ⊂ [−k, k] for some k > 0, the two first terms of the left
hand side can be written as∫

�

a(x, DTk(u)) · DTk(u) h′(u)ϕ dx +
∫

�

a(x, DTk(u)) · Dϕ h(u) dx,

and both integrals are well defined in view of (H2), since both ϕ and Tk(u) belong to
W 1,p(�). Moreover, it is not difficult to see that the product DTk(u) h′(u) coincides
with the gradient of the composite function h(u) = h(Tk(u)) almost everywhere
(see [14]).

In the next result we will see that entropy and renormalized solutions coincide.

Theorem 3.5. Let µ1, µ2 measures, µ1 = µ1 � and µ2 = µ2 ∂�, such that
µ1 + µ2 ∈ M

p
b (�). Then, [u, z, w] is an entropy solution of problem (Sγ,β

µ1,µ2) if

and only if [u, z, w] is a renormalized solution of problem (Sγ,β
µ1,µ2).
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To prove the above theorem we firstly show the following lemma:

Lemma 3.6. Let µ1, µ2 measures, µ1 = µ1 � and µ2 = µ2 ∂�, such that
µ1 +µ2 ∈ M

p
b (�). Let [u, z, w] be an entropy solution of problem (Sγ,β

µ1,µ2). Then,

lim
h→+∞

∫
{x∈�:h<|u(x)|<h+k}

|Du|p = 0, ∀ k > 0. (3.4)

Proof. Let us write µ1 + µ2 = f + div F in D′(U�), f ∈ L1(U�), and F ∈
(L p′

(U�))N . First, let us see that for all h > 0,∫
{x∈�:h<|u(x)|<h+k}

|Du|p

≤ M

(
k
∫

{x∈U�:|vh(x)|≥h}
| f |+

∫
{x∈U�:|vh(x)|>h}

|F |p′ +
∫

�

|Tk(u−Th(u))|p
)

,

(3.5)

where vh = E[Tk+h](u) is the extension of Tk+h(u) to W 1,p
0 (U�) and the constant

M is independent of h and k. Indeed, taking Th(u) as test function in (3.1), since
E[Tk(u − Th(u))] = Tk(vh − Th(vh)), we have∫

�

a(x,Du) · DTk(u−Th(u)) +
∫

�

zTk(u−Th(u))+
∫

∂�

wTk(u − Th(u))

≤
∫

U�

f Tk(vh − Th(vh)) −
∫

U�

DTk(vh − Th(vh)) · F.

(3.6)

Now, since∫
U�

|DTk(vh − Th(vh))|p ≤ C

(∫
�

|DTk(u − Th(u))|p +
∫

�

|Tk(u − Th(u))|p
)

,

using Young’s inequality, we get that there exists a constant M1 independent of h
and k such that∣∣∣∣
∫

U�

DTk(vh − Th(vh)) · F

∣∣∣∣ ≤ M1

∫
{|vh |>h}

|F |p′ + �

2C

∫
U�

|DTk(vh − Th(vh))|p

≤ M1

∫
{|vh |>h}

|F |p′ + �

2

(∫
�

|DTk(u − Th(u))|p +
∫

�

|Tk(u − Th(u))|p
)

.

Then, by (H1) and the positivity of the second and third terms in (3.6), it follows
(3.5).

Let u be the function obtained by Lemma 2.1. Since vh = Th+k(u), we have
{|vh | ≥ h} ⊂ {|u| ≥ h}, which implies that

lim
h→+∞LN ({|vh | ≥ h}) = 0.

Consequently, from (3.5), (3.4) is deduced.
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Proof of Theorem 3.5. Let µ1, µ2 measures, µ1 = µ1 � and µ2 = µ2 ∂�, such
that µ = µ1 + µ2 ∈ M

p
b (�).

Assume that [u, z, w] is a renormalized solution. Fix v ∈ W 1,p(�) ∩ L∞(�).
Let hn(r) = inf(1, (n + 1 − |r |)+) and ϕ = Tk(u − v). Then,∫

�

h′
n(u)a(x, Du) · Du Tk(u − v) dx +

∫
�

a(x, Du) · DTk(u − v) hn(u) dx

+
∫

�

z hn(u)Tk(u − v) dx +
∫

∂�

w hn(u)Tk(u − v) dHN−1

=
∫

�

hn(u)Tk(u − v) dµ1 +
∫

∂�

hn(u)Tk(u − v) dµ2 ∀k > 0.

Since, for n large enough we have

D(hn(u)Tk(u − v)) = DTk(u − v) + h′
n(u)Tk(u − v)Du,

by (3.3) we have

lim
n→+∞

∫
�

h′
n(u)a(x, Du) · Du Tk(u − v) = 0.

Moreover

lim
n→+∞

∫
�

hn(u)Tk(u − v) dµ =
∫

�

Tk(u − v) dµ

and, we deduce that u is an entropy solution.
Assume now that [u, z, w] is an entropy solution of problem (Sγ,β

µ1,µ2). By
Lemma 3.6, (3.3) holds. Let h ∈W 1,∞(R) with compact support and ϕ∈W 1,p(�)∩
L∞(�) such that h(u)ϕ ∈ W 1,p(�). Take now as a test function in (3.1) v =
Tl(u) − h(u)ϕ and k = ‖h(u)ϕ‖L∞(�). For l large enough such that h(r) = 0 if
|r | ≥ l, we have

DTk(u − v) = D(h(u)ϕ)χ [|u|≤l] + Duχ [l≤|u|≤l+k],

moreover, Tk(u − v) → Tk(h(u)ϕ) = h(u)ϕ as l → ∞. So, by letting l → ∞, by
(3.4), we deduce that, for every h ∈ W 1,∞(R) with compact support∫

�

a(x, Du) · Du h′(u)ϕ dx +
∫

�

a(x, Du) · Dϕ h(u) dx

+
∫

�

z h(u)ϕ dx +
∫

∂�

w h(u)ϕ dHN−1

≤
∫

�

h(u)ϕ dµ1 +
∫

∂�

h(u)ϕ dµ2 ∀k > 0.

Interchanging ϕ and −ϕ, the equality is obtained.
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Remark 3.7. Assume that [u, z, w] is an entropy solution of problem (Sγ,β
µ1,µ2). If

we take v = Th(u) ± 1 as test functions in (3.1) and let h go to +∞, we get that

∫
�

z +
∫

∂�

w = µ1(�) + µ2(∂�).

Then, since z(x) ∈ γ (u(x)) a.e. in � and w(x) ∈ β(u(x)) a.e. in ∂�, necessarily
µ1 and µ2 must satisfy

R−
γ,β ≤ µ1(�) + µ2(∂�) ≤ R+

γ,β .

4. The Existence and Uniqueness Results

For weak solutions a contraction principle is proved in Theorem 4.5. With respect
to uniqueness for entropy solutions we have the following general result (see [13]
for the homogeneous Dirichlet problem).

Theorem 4.1. Let µ1, µ2 measures, µ1 = µ1 � and µ2 = µ2 ∂�, such that
µ1 + µ2 ∈ M

p
b (�) . Let [u1, z1, w1] and [u2, z2, w2] be entropy solutions of

problem (Sγ,β
µ1,µ2). Then, there exists a constant c ∈ R such that

u1 − u2 = c a.e. in �,

z1 − z2 = 0 a.e. in �.

w1 − w2 = 0 a.e. in ∂�.

Moreover, if c �= 0, there exists a constant k ∈ R such that z1 = z2 = k.

Proof. Let us write µ1+µ2 = f +divF in D′(U�), f ∈ L1(U�), F ∈ (L p′
(U�))N .

For every h > 0, we have that

∫
�

a(x,Du1) · DTk(u1−Th(u2)) +
∫

�

z1Tk(u1−Th(u2))+
∫

∂�

w1Tk(u1−Th(u2))

≤
∫

U�

f Tk(v1 − Th(v2)) −
∫

U�

F · DTk(v1 − Th(v2))

and∫
�

a(x,Du2) · DTk(u2−Th(u1))+
∫

�

z2Tk(u2−Th(u1))+
∫

∂�

w2Tk(u2−Th(u1))

≤
∫

U�

f Tk(v2 − Th(v1)) −
∫

U�

F · DTk(v2 − Th(v1))
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where vi := E[Tk+h(ui )], i = 1, 2, is the extension of Tk+h(ui ) to W 1,p
0 (U�).

Adding both inequalities and taking limits when h goes to ∞, on account of the
monotonicity of γ and β, if

Ih,k :=
∫

�

a(x, Du1) · DTk(u1 − Th(u2)) +
∫

�

a(x, Du2) · DTk(u2 − Th(u1)),

we get

lim sup
h→∞

Ih,k +
∫

�

(z1 − z2)Tk(u1 − u2) +
∫

∂�

(w1 − w2)Tk(u1 − u2)

≤ lim sup
h→∞

[
−
∫

U�

F · D (Tk(v1 − Th(v2)) + Tk(v2 − Th(v1)))

]
.

(4.1)

Let us see that

lim sup
h→∞

[
−
∫

U�

F · D
(

Tk(v1 − Th(v2)) + Tk(v2 − Th(v1))
)]

= 0. (4.2)

In fact,

−
∫

U�

F · D (Tk(v1 − Th(v2)) + Tk(v2 − Th(v1)))

= −
∫

{|v1|<h, |v2|>h}
F · D (Tk(v1 − Th(v2)) + Tk(v2 − Th(v1)))

−
∫

{|v1|>h, |v2|<h}
F · D (Tk(v1 − Th(v2)) + Tk(v2 − Th(v1)))

−
∫

{|v1|>h, |v2|>h}
F · D (Tk(v1 − Th(v2)) + Tk(v2 − Th(v1)))

= −
∫

{|v1|<h, |v2|>h, |v1−h sign(v2)|<k}
F · Dv1

−
∫

{|v1|<h, |v2|>h, |v2−v1|<k}
F · D(v2 − v1)

−
∫

{|v1|>h, |v2|<h, |v1−v2|<k}
F · D(v1 − v2)

−
∫

{|v1|>h, |v2|<h, |v2−h sign(v1)|<k}
F · Dv2

−
∫

{|v1|>h, |v2|>h, |v1−h sign(v2)|<k}
F · Dv1

−
∫

{|v1|>h, |v2|>h, |v2−h sign(v1)|<k}
F · Dv2.
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Now, by Hölder’s inequality∣∣∣∣
∫

{|v1|<h, |v2|>h, |v1−h sign(v2)|<k}
F · Dv1

∣∣∣∣ ≤
∣∣∣∣
∫

{h−k<|v1|<h,}
F · Dv1

∣∣∣∣
=

∣∣∣∣
∫

U�

F · DTk(v1−Th−k(v1))

∣∣∣∣≤
(∫

U�

|F |p′
) 1

p′ (∫
U�

|DTk(v1−Th−k(v1))|p
) 1

p

≤ C

(∫
U�

|F |p′
) 1

p′ (∫
�

|DTk(u1 − Th−k(u1))|p +
∫

�

|Tk(u1 − Th−k(u1))|p
) 1

p

≤ C

(∫
U�

|F |p′
) 1

p′ (∫
{h−k<|u1|<h}

|Du1|p +
∫

�

|Tk(u1 − Th−k(u1))|p
) 1

p

.

Hence, by Lemma 3.6, we obtain that

lim
h→+∞

∫
{|v1|<h, |v2|>h, |v1−h sign(v2)|<k}

F · Dv1 = 0.

Similarly, it can be proved that the five other terms of the last equality converge to
0 as h → +∞. Consequently, (4.2) holds. Now, from (4.1) and (4.2), we get

lim sup
h→∞

Ih,k ≤−
∫

�

(z1−z2)Tk(u1 − u2) −
∫

∂�

(w1 − w2)Tk(u1−u2) ≤ 0. (4.3)

Let us see that
lim inf
h→∞ Ih,k ≥ 0 for any k. (4.4)

To prove this, we split

Ih,k = I 1
h,k + I 2

h,k + I 3
h,k + I 4

h,k,

where

I 1
h,k :=

∫
{|u1|<h, |u2|<h}

(a(x, Du1) − a(x, Du2)) · DTk(u1 − u2),

I 2
h,k :=

∫
{|u1|<h, |u2|≥h}

a(x, Du1) · DTk(u1 − h sign(u2))

+
∫

{|u1|<h, |u2|≥h}
a(x, Du2) · DTk(u2 − u1)

≥
∫

{|u1|<h, |u2|≥h}
a(x, Du2) · DTk(u2 − u1),

I 3
h,k :=

∫
{|u1|≥h, |u2|<h}

a(x, Du1) · DTk(u1 − u2)

+
∫

{|u1|≥h, |u2|<h}
a(x, Du2) · DTk(u2 − h sign(u1))

≥
∫

{|u1|≥h, |u2|<h}
a(x, Du1) · DTk(u1 − u2)
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and

I 4
h,k :=

∫
{|u1|≥h, |u2|≥h}

a(x, Du1) · DTk(u1 − h sign(u2))

+
∫

{|u1|≥h, |u2|≥h}
a(x, Du2) · DTk(u2 − h sign(u1)) ≥ 0.

Combining the above estimates we obtain

Ih,k ≥ I 1
h,k + L1

h,k + L2
h,k, (4.5)

where

L1
h,k :=

∫
{|u1|<h, |u2|≥h}

a(x, Du2) · DTk(u2 − u1),

L2
h,k :=

∫
{|u1|≥h, |u2|<h}

a(x, Du1) · DTk(u1 − u2)

and I 1
h,k is nonnegative and nondecreasing in h. If we set

C(h, k) := {h < |u1| < k + h} ∩ {h − k < |u2| < h},
we have

|L2
h,k | ≤

∫
{|u1−u2|<k, |u1|≥h, |u2|<h}

|a(x, Du1) · (Du1 − Du2)|

≤
∫

C(h,k)

|a(x, Du1) · Du1| +
∫

C(h,k)

|a(x, Du1) · Du2|.

Then, by Hölder’s inequality, we deduce

|L2
h,k |

≤
(∫

C(h,k)

|a(x, Du1)|p′
)1/p′ ((∫

C(h,k)

|Du1|p
)1/p

+
(∫

C(h,k)

|Du2|p
)1/p

)
.

Now, by (H2),

(∫
C(h,k)

|a(x, Du1)|p′
)1/p′

≤
(∫

C(h,k)

σ p′ (
θ(x) + |Du1|p−1

)p′)1/p′

≤ σ2
1
p

(
‖θ‖p′

p′ +
∫

{h<|u1|<k+h}
|Du1|p

)1/p′

.

Hence by lemma 3.6, we obtain

lim
h→∞ L2

h,k = 0.
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Similarly, limh→∞ L1
h,k = 0. Therefore by (4.5), (4.4) holds. Now, by (4.3) and

(4.4),

lim
h→+∞

∫
{|u1|<h, |u2|<h}

(a(x, Du1) − a(x, Du2)) · DTk(u1 − u2) = 0.

Consequently, for any h > 0, DTh(u1) = DTh(u2) a.e. in �. Then, there exists a
constant c such that

u1 − u2 = c a.e. in �.

Applying (4.3) and (4.4) again,∫
�

(z1 − z2)Tk(u1 − u2) +
∫

∂�

(w1 − w2)Tk(u1 − u2) = 0 ∀ k > 0, (4.6)

which implies that

(w1 − w2)χ {u1−u2 �=0} = 0 a.e. in ∂�,

and
(z1 − z2)χ {u1−u2 �=0} = 0 a.e. in �.

Then, if c �= 0 it follows that w1 = w2, and z1 = z2.
In order to show that z1 = z2 in the case c = 0, we take Th(u1) − ϕ and

Th(u1) + ϕ, ϕ ∈ D(�), as test functions in (3.1) for the solution [u1, z1, w1] and
[u1, z2, w2], respectively, adding these inequalities and letting h go to +∞, if k >

‖ϕ‖∞, we get

lim
h→∞ Jh,k +

∫
�

(z1 − z2)ϕ ≤ 0,

where

Jh,k =
∫

�

a(x, Du1) · [DTk(u1 − Th(u1) + ϕ) + DTk(u1 − Th(u1) − ϕ)]

=
∫

{|u1|>h}
a(x, Du1) · [DTk(u1 − Th(u1) + ϕ) + DTk(u1 − Th(u1) − ϕ)].

Using Hölder’s inequality and Lemma 3.6, we obtain that

lim
h→∞ Jh,k = 0.

Hence ∫
�

z1ϕ ≤
∫

�

z2ϕ.

Similarly, ∫
�

z2ϕ ≤
∫

�

z1ϕ.

Therefore z1 = z2.
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If c �= 0, following the arguments of [8, Lemma 3.5], we have that z1 = z2
is constant. In fact, since γ = ∂ j , j (r) = ∫ r

0 γ 0(s)ds, and z1(x) ∈ γ (u1(x)) ∩
γ (u1(x)+c) a.e. x ∈ �, j (u1(x)+c)− j (u1(x)) = cz1(x) a.e. in �. Moreover, if
γ (R) is bounded, j is Lipschitz continuous, j (Tk(u1) + c), j (Tk(u1)) ∈ W 1,p(�)

and ∇ ( j (Tk(u1) + c) − j (Tk(u1))) = 0 a.e. in �. The above identity is obvious
if |u1| ≥ k. In the case |u1| < k, we have ∇ ( j (u1 + c) − j (u1)) = 0. Therefore
j (Tk(u1)+ c)− j (Tk(u1)) is constant (this constant, in fact, does not depend on k).
Consequently cz1 is constant, and since c �= 0, z1 is constant. In the case γ is not
bounded, we work, truncating γ , as in [8, Lemma 3.].

Finally let us show w1 = w2. We take as test function in (3.1) v = Th(ui )±ϕ,
ϕ ∈ W 1,p(�) ∩ L∞(�), for the entropy solution that involves wi , i = 1, 2 . Then,
since u1 = u2 + c and z1 = z2, we get∫

∂�

w1ϕ =
∫

∂�

w2ϕ.

Consequently w1 = w2.

In order to get the existence of solutions we need first to prove the following
lemma which is a key result.

Lemma 4.2. Let � be a bounded domain in RN with ∂� of class C1. Given µ ∈
M

p
b (�), there exists a sequence {ψn}n∈N ⊂ Cc(�),

ψn ⇀ µ as measures, (4.7)

such that, for any {vn}n∈N ∈ W 1,p(�) with vn → v weakly in W 1,p(�) and all
k > 0,

lim
n→∞

∫
�

Tk(vn)ψn =
∫

�

Tk(v) dµ. (4.8)

Moreover, if µ = f + div F, f ∈ L p′
(U�), F ∈ L p′

(U�)N , then∣∣∣∣
∫

�

vnψn

∣∣∣∣ ≤ C1 ‖ f ‖L p′
(U�)

‖vn‖L p(�)

+ C2‖F‖
(L p′

(U�))N

(‖vn‖L p(�) + ‖Dvn‖L p(�)

)
.

(4.9)

Proof. Using the notation of the proof of Lemma 2.1, let {θi }i=0,1,...,k be a partition
of unity subordinate to ∂� and U1, . . . Uk , where

∂� ⊂
k⋃

i=1

Ui ,

and let Gi : Q → Ui bijective functions such that Gi ∈ C1(Q), Gi
−1 ∈ C1(Ui ),

Gi (Q+) = Ui ∩ � and Gi (Q0) = Ui ∩ ∂�.
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Let us write

µ =
k∑

i=0

σi , where σi = θiµ.

Let dε(x ′, xN ) = (x ′, (1 − ε)xN + ε). Writing di
n = Gi ◦ d 1

n
◦ Gi

−1, i = 1, ..., n,

we can define the approximation functions of µ as follows,

ψn =
(

k∑
i=1

di
n#σi + σ0

)
∗ ρ 1

2n
, (4.10)

where ρε is a mollifier with support in B(0, ε). Obviously ψn ∈ Cc(�) and it is
easy to see that it satisfies (4.7).

Let µ = f + div F , f ∈ L1(U�), F ∈ L p′
(U�)N . Denoting with the same

name the extended functions to W 1,p
0 (U�), for u ∈ W 1,p(�) we have

∫
�

uψn =
∫

U�

uψn =
∫

U�

u

(
k∑

i=1

di
n#σi + σ0

)
∗ ρ 1

2n

=
∫

U�

u ∗ ρ 1
2n

d

(
k∑

i=1

di
n#σi + σ0

)

=
k∑

i=1

∫
U�∩Ui

u ∗ ρ 1
2n

d(di
n#σi ) +

∫
U�∩U0

u ∗ ρ 1
2n

dσ0

=
k∑

i=1

∫
U�

θi

(
(u ∗ ρ 1

2n
) ◦ di

n

)
dµ +

∫
U�

θ0(u ∗ ρ 1
2n

) dµ.

Then,

∫
�

uψn =
∫

U�

(
k∑

i=1

θi

(
(u ∗ ρ 1

2n
) ◦ di

n

)
+ θ0(u ∗ ρ 1

2n
)

)
dµ

=
∫

U�

f

(
k∑

i=1

θi

(
(u ∗ ρ 1

2n
) ◦ di

n

)
+ θ0(u ∗ ρ 1

2n
)

)

−
∫

U�

F · D

(
k∑

i=1

θi

(
(u ∗ ρ 1

2n
) ◦ di

n

)
+ θ0(u ∗ ρ 1

2n
)

)
.

(4.11)
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Let us now prove (4.8). Setting u = Tk(vn) in (4.11), k > 0, and writing ηn :=
Tk(vn) ∗ ρ 1

2n
, we get

∫
�

Tk(vn)ψn =
∫

U�

(
k∑

i=1

θi (ηn ◦ di
n) + θ0ηn

)
dµ

=
∫

U�

f

(
k∑

i=1

θi (ηn ◦ di
n) + θ0ηn

)

−
∫

U�

F · D

(
k∑

i=1

θi (ηn ◦ di
n) + θ0ηn

)
.

(4.12)

To pass to the limit in (4.12), we first see that

η̃n :=
k∑

i=1

θi

(
ηn ◦ di

n

)
+ θ0ηn → Tk(v) in L1(�). (4.13)

Indeed, by Lusin’s theorem, given ε > 0, there exists a continuous function in
�, ηε , with ||ηε ||L∞(�) ≤ ||Tk(v)||L∞(�), such that, if Aε = {x ∈ � : ηε(x) �=
Tk(v)(x)}, |Aε | < ε. Then,

‖η̃n − Tk(v)‖L1(�) =
∫

�

∣∣∣∣
k∑

i=1

θi (ηn ◦ di
n) + θ0ηn − Tk(v)

∣∣∣∣

≤
∫

�

∣∣∣∣
k∑

i=1

θi (ηn ◦ di
n) + θ0ηn −

k∑
i=1

θi (Tk(v) ◦ di
n) − θ0Tk(v)

∣∣∣∣

+
∫

�

∣∣∣∣
k∑

i=1

θi (Tk(v) ◦ di
n) + θ0Tk(v)−

k∑
i=1

θi (η
ε ◦ di

n)− θ0η
ε

∣∣∣∣

+
∫

�

∣∣∣∣
k∑

i=1

θi (η
ε ◦ di

n) + θ0η
ε − ηε

∣∣∣∣ +
∫

�

|ηε − Tk(v)|

≤ C
∫

�

|ηn − Tk(v)| + C
∫

Aε

|Tk(v) − ηε |

+
∫

�

∣∣∣∣
k∑

i=1

θi (η
ε ◦ di

n) + θ0η
ε − ηε

∣∣∣∣ +
∫

Aε

|ηε − Tk(v)|,
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where in the last inequality we have used that the Jacobian |J ((di
n)

−1)| is uniformly
bounded. Since ηε is continuous, ηε ◦ di

n → ηε uniformly. Hence,

lim
n→∞

∫
�

∣∣∣∣
k∑

i=1

θi (η
ε ◦ di

n) + θ0η
ε − ηε

∣∣∣∣ = 0.

Then, for ε > 0 fixed, taking limits as n goes to +∞, we get

lim sup
n

‖η̃n − Tk(v)‖L1(�) ≤ 2(C + 1)||Tk(v)||L∞(�)ε.

Therefore (4.13) follows, and the first term of the right side of (4.12) converges, as

n → ∞, to
∫

U�

f Tk(v).

For the remaining term, we use again (4.13) with the fact that, since the Jaco-
bian |J (di

n)| is uniformly bounded,

||η̃n||W 1,p
0 (U�)

≤ C1‖vn‖W 1,p(�).

We deduce, by taking a subsequence if necessary, that

η̃n → Tk(v) weakly in W 1,p
0 (U�) and a.e. in U�.

So, since the limit is independent of the subsequence, the second term of the right

side of (4.12) converges, as n → ∞, to
∫

U�

F · DTk(v). Therefore, passing to the

limit in (4.12), we get

lim
n→∞

∫
�

Tk(vn)ψn =
∫

U�

f Tk(v) dx −
∫

U�

F · DTk(v) =
∫

�

Tk(v) dµ,

which finishes the proof of (4.8).
Finally, let us prove (4.9). Setting u = vn in (4.11),∫
�

vnψn =
∫

U�

f

(
k∑

i=1

θi

(
(vn ∗ ρ 1

2n
) ◦ di

n

)
+ θ0(vn ∗ ρ 1

2n
)

)

+
∫

U�

F · D

(
k∑

i=1

θi

(
(vn ∗ ρ 1

2n
) ◦ di

n

)
+ θ0(vn ∗ ρ 1

2n
)

)
.

(4.14)

Again, it is easy to see that∥∥∥∥∥
(

k∑
i=1

θi

(
(vn ∗ ρ 1

2n
) ◦ di

n

)
+ θ0(vn ∗ ρ 1

2n
)

)∥∥∥∥∥
W 1,p

0 (U�)

≤ C2
(‖vn‖L p(�) + ‖Dvn‖L p(�)

)
.

Now, since f ∈ L p′
(U�) and F ∈ L p′

(U�)N , applying Hölder’s inequality, (4.9)
follows from (4.14).
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Remark 4.3. Observe that if � is an star-shaped domain, that is,

“there exists x0 ∈ � such that x − ε(x − x0) ∈ �, ∀ x ∈ �, ∀ε ∈ [0, 1]”,
we can simplify the above construction. In fact, setting

dε(x) := x − ε(x − x0),

we have that, for n ≥ 2,

ψn = (d 1
n
#µ) ∗ ρ 1

2n
∈ Cc(�)

satisfies (4.7), (4.13) is true for η̃n = ηn ◦ d 1
n
, and (4.8) and (4.9) hold.

We use the following lemma proved in [3, Lemma 4.2].

Lemma 4.4. Let {un}n∈N ⊂ W 1,p(�), {zn}n∈N ⊂ L1(�), {wn}n∈N ⊂ L1(∂�)

such that, for every n ∈ N, zn ∈ γ (un) a.e. in � and wn ∈ β(un) a.e. in ∂�. Let
us suppose that

(i) if R+
γ,β = +∞, there exists M > 0 such that

∫
�

z+
n dx +

∫
∂�

w+
n dσ < M ∀n ∈ N;

(ii) if R+
γ,β < +∞, there exists M ∈ R such that

∫
�

zndx +
∫

∂�

wndσ < M < R+
γ,β

and

lim
L→+∞

(∫
{x∈�:zn(x)<−L}

|zn|dx +
∫

{x∈∂�:wn(x)<−L}
|wn|dσ

)
= 0

uniformly in n ∈ N.

Then, there exists a constant C = C(M) such that

‖u+
n ‖L p(�) ≤ C

(‖Du+
n ‖L p(�) + 1

) ∀n ∈ N.

The next theorem gives the existence results of weak and entropy solutions. A
contraction principle for weak subsolutions and supersolutions, whose definitions
are the standard ones, is also stated.

Theorem 4.5. Let � ⊂ RN be an open bounded set with boundary ∂� of class C1.
Assume Dom(γ ) = Dom(β) = R and J (γ ) and J (β) are bounded (see (2.3) for
the definiton of J ). Then:
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(i) For any measures µ1, µ2 such that µ1 = µ1 �, µ2 = µ2 ∂�, µ = µ1 +
µ2 = f + div(F), f ∈ L p′

(U�), F ∈ (L p′
(U�))N , and µ(�) ∈ Rγ,β , there

exists a weak solution [u, z, w] of problem (Sγ,β
µ1,µ2).

(ii) If [u, z, w] is a weak subsolution of problem (Sγ,β
µ1,µ2), µ1, µ2 measures, µ1 =

µ1 � and µ2 = µ2 ∂� such that µ = µ1 + µ2 ∈ M
p
b (�), and [ũ, z̃, w̃] is

a weak supersolution of problem (Sγ,β

µ̃1,µ̃2
), µ̃1, µ̃2 measures, µ̃1 = µ̃1 � and

µ̃2 = µ̃2 ∂� such that µ̃ = µ̃1 + µ̃2 ∈ M
p
b (�), then∫

�

(z − z̃)+ +
∫

∂�

(w − w̃)+ ≤ (µ − µ̃)+(�). (4.15)

(iii) For any measures µ1, µ2 such that µ1 = µ1 �, µ2 = µ2 ∂�, µ = µ1 +
µ2 ∈ M

p
b (�), and µ(�) ∈ Rγ,β , there exists an entropy solution [u, z, w] of

problem (Sγ,β
µ1,µ2).

Proof. (i): We divide the proof of existence in several steps.

Step 1. We first suppose that Rγ,β = R.
Under the assumptions on γ and β, there exist aγ , bγ , −∞ < aγ < 0 < bγ < +∞,
and aβ, bβ , −∞ < aβ < 0 < bβ < +∞, such that

aγ < inf{J (γ )} ≤ sup{J (γ )} < bγ

and
aβ < inf{J (β)} ≤ sup{J (β)} < bβ.

We decompose γ as follows, γ = γ d + γ c, where γ d and γ c are the following
maximal monotone graphs.

γ d(r) =




γ (r), if r ∈]aγ , bγ [,
γ (aγ ), if r ≤ aγ ,

γ (bγ ), if r ≥ bγ ,

and

γ c(r) =




0, if r ∈]aγ , bγ [,
γ (r) − γ (aγ ), if r ≤ aγ ,

γ (r) − γ (bγ ), if r ≥ bγ .

In a similar way we decompose β = βd + βc.
We now consider a sequence of approximated problems to which we apply

Theorem 2.2. Let ψn given by (4.10). Since ψn ∈ L∞(�), by Theorem 2.2,
the problem (Sγ,β

ψn,0) has a weak solution [un, zn, wn] ∈ W 1,p(�) × V 1,p(�) ×
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V 1,p(∂�), that is, zn = zd
n+zc

n , zd
n (x)∈γ d(un(x)) a.e. in �, zc

n(x) = γ c(un(x)) a.e.
in �, wn = wd

n + wc
n , wd

n (x) ∈ βd(un(x)) a.e. in ∂�, wc
n(x) = βc(un(x)) a.e. in

∂�, and∫
�

a(x, Dun) · Dv +
∫

�

znv +
∫

∂�

wnv =
∫

�

ψnv ∀ v ∈ W 1,p(�). (4.16)

Moreover, for any n, we have

‖zd
n‖∞ ≤ sup{|γ (aγ )|, |γ (bγ )|}, ‖wd

n ‖∞ ≤ sup{|β(aβ)|, |β(bβ)|}

‖w±
n ‖L1(∂�) + ‖z±

n ‖L1(�) ≤ ‖ψ±
n ‖L1(�), (4.17)

∫
�

zn +
∫

∂�

wn =
∫

�

ψn. (4.18)

Taking v = un in (4.16) and having in mind (H1), we get

�

∫
�

|Dun|p ≤
∫

�

a(x, Dun) · Dun +
∫

�

znun +
∫

∂�

wnun =
∫

�

ψnun. (4.19)

By (4.19) and (4.9), we obtain that

�

∫
�

|Dun|p ≤ C1 ‖ f ‖L p′
(U�)

‖un‖L p(�)

+ C2‖F‖
(L p′

(U�))N

(‖un‖L p(�) + ‖Dun‖L p(�)

)
.

(4.20)

By (4.20), (4.17) and Lemma 4.4, we have {un} bounded in W 1,p(�). Then, we
can suppose that there exists u ∈ W 1,p(�) such that

un converges to u weakly in W 1,p(�),

un converges to u in L p(�) and a.e. in � (4.21)

and
un converges to u in L p(∂�) and a.e. in ∂�. (4.22)

Arguing as in Proposition 5.1 in [2], it is not difficult to see that {Dun} is a Cauchy
sequence in measure. Then, up to extraction of a subsequence, Dun converges to
Du a.e. in �. Consequently, we obtain that

a(., Dun) converges weakly in L p′
(�)N and a.e. in � to a(., Du). (4.23)
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Since γ d and βd are bounded we have that there exist subsequences denoted equal
such that

zd
n ⇀ zd ∈ γ d(u) weakly∗, zd ∈ L∞(�). (4.24)

and
wd

n ⇀ wd ∈ βd(u) weakly∗, wd ∈ L∞(∂�).

On the other hand, since γ c and βc are continuous, by (4.21) and (4.22) we have,

zc
n → zc = γ c(u) a.e. in �, (4.25)

and
wc

n → wc = βc(u) a.e. on ∂�.

Then, by Fatou’s lemma and having in mind (4.7) and (4.17),

∫
�

|zc| +
∫

∂�

|wc| ≤ lim inf
n→∞

(∫
�

|zc
n| +

∫
∂�

|wc
n|

)
≤ lim inf

n→∞

∫
�

|ψn| ≤ |µ|(�).

Consequently, z = zd + zc ∈ L1(�), z ∈ γ (u) a.e. in �, and w = wd + wc ∈
L1(∂�), w ∈ β(u) a.e. on ∂�.

Finally, let us prove that [u, z, w] is a weak solution of (Sγ,β
µ1,µ2). Let v̂ ∈

W 1,p(�) ∩ L∞(�) and S ∈ C2(R) ∩ L∞(R) satisfying

S(0) = 0, 0 ≤ S′ ≤ 1, S′(s) = 0 for s large enough,

S(−s) = −S(s), and S′′(s) ≤ 0 for s ≥ 0.

Taking S(un − v̂) as test function in (4.16), we get∫
�

a(x, Dun) · DS(un − v̂) +
∫

�

zn S(un − v̂) +
∫

∂�

wn S(un − v̂)

=
∫

�

ψn S(un − v̂).

(4.26)

We can write the first term of (4.26) as∫
�

a(x, Dun) · Dun S′(un − v̂) −
∫

�

a(x, Dun) · DwS′(un − v̂). (4.27)

Since un → u and Dun → Du a.e., Fatou’s lemma yields∫
�

a(x, Du) · DuS′(u − v̂) ≤ lim inf
n→∞

∫
�

a(x, Dun) · Dun S′(un − v̂).
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The second term of (4.27) is estimated as follows. By (4.23)

a(x, Dun) → a(x, Du) weakly in L p′
(�). (4.28)

On the other hand,
|Dv̂S′(un − v̂)| ≤ |Dv̂| ∈ L p(�).

Then, by the Dominated Convergence Theorem, we have

Dv̂S′(un − v̂) → Dv̂S′(u − v̂) in L p(�)N . (4.29)

Hence, by (4.28) and (4.29), it follows that

lim
n→∞

∫
�

a(x, Dun) · Dv̂S′(un − v̂) =
∫

�

a(x, Du) · Dv̂S′(u − v̂). (4.30)

On the other hand, writing the second term of (4.29) as∫
�

zn S(un − v̂) =
∫

�

(zn − γ 0(v̂))S(un − v̂) +
∫

�

γ 0(v̂)S(un − v̂), (4.31)

having in mind (4.21), (4.24) and (4.25), and using Fatou’s lemma, we get∫
�

zS(u − v̂) ≤ lim inf
n→∞

∫
�

zn S(un − v̂). (4.32)

Similarly, we can obtain that∫
∂�

wS(u − v̂) ≤ lim inf
n→∞

∫
∂�

wn S(un − v̂). (4.33)

For the right hand side of (4.26), by (4.34), we have

lim
n→∞

∫
�

S(un − v̂)ψn =
∫

U�

f S(u − v̂) dx −
∫

U�

F · DS(u − v̂). (4.34)

From (4.30), (4.32), (4.33) and (4.34), taking limits in (4.26), we obtain∫
�

a(x, Du) · DS(u − v̂) +
∫

�

zS(u − v̂) +
∫

∂�

wS(u − v̂)

≤
∫

�

S(u − v̂)dµ1 +
∫

∂�

S(u − v̂)dµ2.

Applying now the technique used in the proof of [6, Lemma 3.2] we get, for any
k > 0, ∫

�

a(x, Du) · DTk(u − v̂) +
∫

�

zTk(u − v̂) +
∫

∂�

wTk(u − v̂)

≤
∫

�

Tk(u − v̂)dµ1 +
∫

∂�

Tk(u − v̂)dµ2.

(4.35)
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Let now v ∈ W 1,p(�) ∩ L∞(�). Taking k ≥ ‖v‖∞, v̂ = Th(u) ± v in (4.35), and
letting h go to +∞, we have∫

�

a(x, Du) · Dv +
∫

�

zv +
∫

∂�

wv =
∫

�

vdµ1 +
∫

∂�

vdµ2,

which finishes the proof of (i) in the case Rγ,β = R.

Step 2. Let us now suppose that R−
γ,β = −∞ and R+

γ,β is finite.

By the previous step, there exists [um, zm + 1
m u+

m, wm] a weak solution of problem

(Sγm ,β
µ1,µ2), where γm(r) = γ (r) + 1

m r+. Now, by (ii), whose proof is independent of
(i) (see below), for m1 ≤ m2 we have that

zm1 + 1

m2
u+

m1
≤ zm2 + 1

m2
u+

m2
a.e. in �

and
wm1 ≤ wm2 a.e. in ∂�.

Moreover, it is easy to see that

um1 ≤ um2 a.e. in �.

Therefore,
zm1 ≤ zm2 a.e. in �.

On the other hand, similar estimates to (4.17), (4.18) and (4.20) can be obtained as
in the Step 1. Consequently, {zm} is convergent in L1(�) and {wm} is convergent
in L1(∂�). By Lemma 4.4, we can get that {un} is bounded in W 1,p(�). The proof
can be finished as above.

The case R+
γ,β = +∞ and R−

γ,β finite is similar. Let us now prove the last
step.

Step 3. We suppose now that R−
γ,β and R+

γ,β are finite.

By the previous step, let us construct [um, zm − 1
m u−

m, wm] a weak solution of prob-

lem (Sγm ,β
µ1,µ2), where γm(r) = γ (r) − 1

m r−. Now, by (ii), arguing as in the previous
step, we have that, for m1 ≤ m2,

zm1 ≥ zm2 a.e. in �

and
wm1 ≥ wm2 a.e. in ∂�.

By Lemma 4.4, we first obtain that {u−
n } is bounded in W 1,p(�) and afterward, on

account of this fact, we obtain that {u+
n } is bounded in W 1,p(�). Again, the proof

can be finished as in the first step.
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(ii): Let [u, z, w] be a weak subsolution of problem (Sγ,β
µ1,µ2) and let [ũ, z̃, w̃] be a

weak supersolution of problem (Sγ,β

µ̃1,µ̃2
). Then,

∫
�

a(x, Du) · Dv +
∫

�

zv +
∫

∂�

wv ≤
∫

�

v dµ

∀ v ∈ W 1,p(�) ∩ L∞(�), v ≥ 0,

(4.36)

and ∫
�

a(x, Dũ) · Dv +
∫

�

z̃v +
∫

∂�

w̃v ≥
∫

�

v dµ̃

∀ v ∈ W 1,p(�) ∩ L∞(�), v ≥ 0.

(4.37)

Consider ρ ∈ W 1,p(�), 0 ≤ ρ ≤ 1. Taking as test function v = T +
k
k (u − ũ + kρ) in

(4.36) and in (4.37), we have

∫
�

a(x, Du) · D

(
T +

k

k
(u − ũ + kρ)

)
+

∫
�

z
T +

k

k
(u − ũ + kρ)

+
∫

∂�

w
T +

k

k
(u − ũ + kρ) ≤

∫
�

(
T +

k

k
(u − ũ + kρ)

)
dµ

and ∫
�

a(x, Dũ) · D

(
T +

k

k
(u − ũ + kρ)

)
+

∫
�

z̃
T +

k

k
(u − ũ + kρ)

+
∫

∂�

w̃
T +

k

k
(u − ũ + kρ) ≥

∫
�

(
T +

k

k
(u − ũ + kρ)

)
dµ̃ .

Therefore, having in mind the monotonicity of a, we get

∫
�

(z − z̃)
T +

k

k
(u − ũ + kρ) +

∫
∂�

(w − w̃)
T +

k

k
(u − ũ + kρ)

+
∫

{0<u−ũ+kρ<k}
(a(x, Du) − a(x, Dũ)) · Dρ

≤
∫

�

(
T +

k

k
(u − ũ + kρ)

)
d(µ − µ̃) ≤ (µ − µ̃)+(�).
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Taking the limit as k goes to 0 in the above expression, having in mind that Du =
Dũ where u = ũ, we obtain that∫

�

(z − z̃)sign+
0 (u − ũ)χ {u �=ũ} +

∫
�

(z − z̃)ρχ {u=ũ}

∫
∂�

(w − w̃)sign+
0 (u − ũ)χ {u �=ũ} +

∫
∂�

(w − w̃)ρχ {u=ũ}

≤ (µ − µ̃)+(�).

(4.38)

By approximation we can suppose that (4.38) holds for every 0 ≤ ρ ∈ W 1,1(�) ∩
L∞(�). It is easy to see that there exist 0 ≤ ρn ∈ W 1,1(�) ∩ L∞(�) such that
ρn = sign+

0 (w − w̃), HN−1 a.e. on ∂�, and

ρn → sign+
0 (z − z̃) in L1(�).

Then, taking ρ = ρn in (4.38) and sending n → +∞, we get the contraction
principle (4.15).

(iii): We consider the same steps as in the proof of (i) and only give some details of
the proof.

Step 1. In the case Rγ,β = R, we use the same approximated problem (Sγ,β

ψn,0) as

above. Then, there exists [un, zn, wn] weak solution of (Sγ,β

ψn,0) such that

‖DTk(un)‖p
L p(�) ≤ k

�
‖ψ±

n ‖L1(�). (4.39)

By (4.39) and (4.7), we have that {Tk(un)} is bounded in W 1,p(�). Therefore, we
can suppose that there exists σk ∈ W 1,p(�) such that

Tk(un) converges to σk weakly in W 1,p(�),

Tk(un) converges to σk in L p(�) and a.e. in �

and
Tk(un) converges to σk in L p(∂�) and a.e. in ∂�.

Let us show that un converges almost every where in �. By (4.7), there exists
M > 0 such that, ∫

�

z+
n +

∫
∂�

w+
n < M ∀n ∈ N.

In particular, if

zk
n =




zn if |un| < k,

γ 0(k) if un ≥ k,

γ 0(−k) if un ≤ −k,
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and

wk
n =




wn if |un| < k,

β0(k) if un ≥ k,

β0(−k) if un ≤ −k,

k ∈ N, then ∫
�

(zk
n)

+ +
∫

∂�

(wk
n)

+ < M ∀n, k ∈ N.

Since zk
n ∈ γ (Tk(un)) a.e. in � and wk

n ∈ β(Tk(un)) a.e. in ∂�, by Lemma 4.4,
(4.39) and (4.7), we get

LN ({x ∈ � : σ+
k (x) = k}) =

∫
{x∈� : σ+

k (x)=k}
|σ+

k (x)|p

k p

≤ 1

k p
lim inf

n

∫
�

|Tk((un)
+)|p ≤ C

k p−1
.

Hence
LN ({x ∈ � : σ+

k (x) = k}) → 0 as k → +∞.

Working similarly for the negative part σ−
k we obtain

LN ({x ∈ � : σ−
k (x) = k}) → 0 as k → +∞.

Therefore, if we define u(x) = σk(x) on {x ∈ � : |σk(x)| < k}, then

un converges to u a.e. in �.

Consequently we obtain that σk = Tk(u) and u ∈ T 1,p(�).
Let us now see that u ∈ T 1,p

tr (�). On the one hand we have that un → u a.e.
in �. On the other hand, since DTk(un) is bounded in L p(�) and, as in Proposition
5.1 in [2], DTk(un) → DTk(u) in measure, it follows from [6, Lemma 6.1] that
DTk(un) → DTk(u) in L1(�). Now, using again Lemma 4.4, it can be shown that

HN−1({x ∈ ∂� : |(Tk(u))(x)| = k}) → 0 as k → +∞.

Therefore, if we define v(x) = Tk(u)(x) on {x ∈ ∂� : |Tk(u)(x)| < k}, we have
that

un converges to v a.e. in ∂�.

Consequently, u ∈ T 1,p
tr (�).

These facts are the main ingredients to finish the proof as in Step 2 of (i).

Step 2. We now suppose that R−
γ,β = −∞ and R+

γ,β is finite and consider again

γm(r)=γ (r)+ 1
m r+. Then, for every m, we obtain an entropy solution [um,zm,wm]
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of problem (Sγm ,β
µ1,µ2) as limit of weak solutions. By the contraction principle for

weak solutions, {zm} and {wm} are non decreasing in m. These facts are the main
ingredients to finish the proof.

Finally, the third step follows the same idea as the above one.

Remark 4.6. Observe we have the following monotonicity result for entropy solu-
tions.
Let [u, z, w] be an entropy solution of problem (Sγ,β

µ1,µ2), µ1, µ2 measures, µ1 =
µ1 � and µ2 = µ2 ∂� such that µ = µ1+µ2 ∈ M

p
b (�) and µ(�) ∈ Rγ,β , and

[ũ, z̃, w̃] an entropy solution of problem (Sγ,β

µ̃1,µ̃2
), µ̃1, µ̃2 measures, µ̃1 = µ̃1 �

and µ̃2 = µ̃2 ∂� such that µ̃ = µ̃1 + µ̃2 ∈ M
p
b (�) and µ̃(�) ∈ Rγ,β . If

µ1 ≤ µ2, then z1 ≤ z2 a.e. in � and w1 ≤ w2 a.e. in ∂�.

Remark 4.7. We point out that the cases of the Hele-Shaw problem, which corre-
sponds to

γ (r) =



0 if r < 0,

[0, 1] if r = 0,

1 if r > 0,

and the multiphase Stefan problem, which corresponds to

γ (r) =



r − 1 if r < 0,

[−1, 0] if r = 0,

r if r > 0,

are included in the above existence and uniqueness results.

Let us also remark that, as a consequence of the previous results, we have
existence and uniqueness of entropy solutions for problem (Lg1,β

0,µ ) for a large class
of maximal monotone graphs β.

5. Existence for Dirichlet boundary condition

In this section we study the particular case of Dirichlet boundary condition, that is,
for β the monotone graph D = {0} × R, which corresponds to the problem

(Sγ,D
µ,0 )




−div a(x, Du) + γ (u) � µ in �

u = 0 on ∂�,

where γ is a maximal monotone graph in R2 and µ a diffuse measure in �. In this
case the concept of entropy solution is the following:
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Definition 5.1. Let µ ∈ Mp
b (�). A pair of functions [u, z] ∈ T 1,p

0 (�) × L1(�) is

an entropy solution of problem (Sγ,D
µ,0 ) if z(x) ∈ γ (u(x)) a.e. in � and

∫
�

a(x, Du) · DTk(u − v) dx +
∫

�

zTk(u − v) dx ≤
∫

�

Tk(u − v) dµ

for all k > 0 and for all v ∈ W 1,p
0 (�) ∩ L∞(�).

We have the following existence and uniqueness result.

Theorem 5.2. Let � ⊂ RN be an open bounded set with boundary ∂� of class
C1. Assume D(γ ) = R and J (γ ) is bounded. Then, for any diffuse measure
µ ∈ Mp

b (�), there exists an entropy solution [u, z] of problem (Sγ,D
µ,0 ).

Moreover, if [u, z] is an entropy solution of problem (Sγ,D
µ,0 ), µ ∈ Mp

b (�), and

[ũ, z̃] is an entropy solution of problem (Sγ,D
µ̃,0 ), µ̃ ∈ Mp

b (�), then

∫
�

(z − z̃)+ ≤ (µ − µ̃)+(�).

Proof. Let us write µ = f + div F , f ∈ L1(�), F ∈ L p′
(�)N , and consider

ψn = Tn( f ) + div F . Working as in the proof of Theorem 4.5 (i) and (ii), on
account of Theorem 2.3, problem (Sγ,D

ψn,0) has a unique weak solution [un, zn] ∈
W 1,p

0 (�) × L1(�), zn ∈ γ (un) a.e. in �, such that

∫
�

a(x, Dun) · Dv +
∫

�

znv =
∫

�

ψnv, ∀ v ∈ W 1,p
0 (�). (5.1)

Moreover,
‖zn − zm‖L1(�) ≤ ‖ψn − ψm‖L1(�).

Taking v = Tk(u±
n ) in (5.1), and having in mind (H1), we get

‖DTk(u
±
n )‖p

L p(�) ≤ k

�
|µ|(�). (5.2)

By (5.2), {Tk(un)} is bounded in W 1,p
0 (�). Then, we can suppose that there exists

σk ∈ W 1,p
0 (�) such that

Tk(un) converges to σk weakly in W 1,p
0 (�),

and
Tk(un) converges to σk in L p(�) and a.e. in �.
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Let us prove that un converges almost everywhere in �. By (5.2) and Poincaré’s
inequality, we have

LN ({x ∈ � : σ+
k (x)p = k p}) =

∫
{x∈� : σ+

k (x)=k}
σ+

k (x)p

k p

≤ 1

k p
lim inf

n

∫
�

|Tk((un)
+)|p ≤ C

k p−1
.

Working similarly for the negative part and taking into account both results we get

LN ({x ∈ � : |σk(x)| = k}) ≤ C

k p−1
.

Therefore, if we define u(x) = σk(x) on {x ∈ � : |σk(x)| < k},
un converges to u a.e. in �,

Tk(un) converges to Tk(u) weakly in W 1,p
0 (�),

and
Tk(un) converges to Tk(u) in L p(�) and a.e. in �.

Consequently, we also have that u ∈ T 1,p
0 (�) (see [6]). The rest of the proof

follows the same ideas to the one given for Theorem 4.5.
For the contraction principle, let us write µ = f + div F , f ∈ L1(�),

F ∈ L p′
(�)N , µ̃ = f̃ + div F̃ , f̃ ∈ L1(�), F̃ ∈ L p′

(�)N , and consider ap-
proximation measures µn = Tn( f ) + div F and µ̃n = Tn( f̃ ) + div F̃ . As in Theo-
rem 4.5, we can prove a contraction principle for the solutions of the approximated
problems corresponding to µn and µ̃n , respectively. Moreover by the uniqueness
result proved in Theorem 4.1 we obtain the contraction principle in this case.
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