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Refined Hardy inequalities

HAJER BAHOURI, JEAN-YVES CHEMIN AND ISABELLE GALLAGHER

Abstract. The aim of this article is to present “refined” Hardy-type inequalities.
Those inequalities are generalisations of the usual Hardy inequalities, their ad-
ditional feature being that they are invariant under oscillations: when applied to
highly oscillatory functions, both sides of the refined inequality are of the same or-
der of magnitude. The proof relies on paradifferential calculus and Besov spaces.
It is also adapted to the case of the Heisenberg group.

Mathematics Subject Classification (2000): 43A80 (primary); 42B99 (second-
ary).

1. Introduction

The aim of this article is to prove a “refined” version of the Hardy inequalities [11,
12]. Those inequalities have some importance in Analysis (among other applica-
tions we can mention blow-up methods or the study of pseudodifferential operators
with singular coefficients). Many works have been devoted to those inequalities,
and our goal is first to provide an elementary proof of the standard Hardy inequality,
and then to prove a refined inequality in the spirit of the refined Sobolev inequal-
ity proved in [10]. The setting will be both the classical RY space, as well as the
Heisenberg group HY (for an application of the Hardy inequality on the Heisenberg
group we refer for instance to [1]).

1.1. Elementary Hardy inequality

The simple case of RY with N > 3 with one derivative gives the following inequal-
ity:

2
/ W) < ClIVul?,. (1.1)
RV |x?

In order to prove this inequality, it is enough to observe that we have

1 1 (1 ,
— =—-R(—5) with R=x-V.
x| 20 \Jxp?
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An integration by parts joint with the fact that the divergence of R is equal to N
gives the result.

Let us now present the case of the Heisenberg group. The Heisenberg group H is
the space R??*! endowed with the following product group law:

wow' =@+x,y+y, s+ + )= OIx)

where w = (x,y,s) and w’ = (x/,y’,s’). Let us notice that H¢ is a non com-
mutative group and that the inverse of w is wl = (—x, —y, —s). The Lebesgue
measure on H? seen as R?>?*! is invariant by translation with respect to this law.
We define the convolution of two functions by

frgw) =/ fww Hg(w)dw.
Hd

Let us emphasize that this convolution product is, as H? itself, not commutative.
We say that a vector field X is left invariant if X(f(a-)) = (Xf)(a-). The Lie
algebra of left invariant vector fields is spanned by the vector fields

1
ijaxj'i_yjas’ szayj—xjas Wlth]e{l,,d} and SZaS:E[Yj7Xj]
In all that follows, we shall denote by Z the family definedby Z; = X;and Z; 14 =
Y;. Let us denote

Ap = ZZ? andfora € {1,...,2d}¢, 29 = Z, ... Zq,. (1.2)

Jj=1

One can associate Sobolev spaces to the system Z through the following definition.

Definition 1.1. Let k be a non negative integer, we denote by H*(H¢) the homo-
geneous Sobolev space of order k which is the space of functions u such that

def
laleqe, = D 12%ul g, < o (1.3)

Let us also introduce the distance to the origin

1
def 1 .
p) E ((xP+yP? 452" with w=(x,y,9)

and the dilation §; (w) def (Ax, Ay, A2s). Let us point out that the function p is
homogenenous of degree 1 in the sense that

p o) =Ap
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and the vector fields Z; change the homogeneity as
Zi(fod)=MZjf)od.
Moreover, we have
1Zjp?| < Cop® . (1.4)

Let us also introduce the homogeneous dimension N = 2d + 2 noticing that the
Jacobian of the dilation 8; is AY. The Hardy inequality with one derivative in this
context is

2

u-(w
/ ) < CIVaul?, where Ve & (Zyu. ... Zogu).
HI

p>(w)

The proof (as written for instance in [1]) of this inequality relies mainly on the fact
that

o1 (1 L del
pe = _ER <p> with R = Z;(Xij +y;Y;) + 2s0;.
J:

An integration by parts and the fact that div R = N essentially gives the result.

1.2. More general Hardy inequalities

Now we want to state Hardy inequalities with any number of derivatives less
than N /2.

Theorem 1.2. Let s €]0, N/2[. There exists a constant C such that

lu|?(x) 5 / u|?(w) )
dx < Cllull7 and dw < Cllu|,
/I;N |x|2s =C| “HS(RN) - pzS(U)) =Cl ”HS(Hd)

where the spaces H® are defined by complex interpolation.
Classically, the way of proving this consists in proving that the operators

1

|x|S

s 1 s
(=A)"2 or —(=Ap) 2
pS

are bounded on L2(R") or L>(H¢). The purpose of this paper is first to give a more
direct proof of these inequalities, which will be the same for RY or HY. Moreover,
in the case of R, let us apply the above Hardy inequality with s = 1 to the fam-
ily (fe)e>0 of functions defined by

fox) =€ T 0(x)

where 0 is a given function in the Schwartz class & (RM). The left-hand side of the

inequality is obviously independent of ¢ and the right-hand side is of order e ~!.
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The second purpose of this paper is to improve Hardy inequalities into inequalities
which in particular will be invariant under the multiplication by oscillating functions

 (x]o)

like ' & .

This requires the introduction of Besov spaces of negative index and thus Lit-
tlewood Paley theory. In the case of RV, this is quite classical. In the case of the
Heisenberg group, it was constructed by H. Bahouri, P. Gérard and C.-J. Xu in [2]
(see also [3]). We can summarize this theory in the following properties, which
hold regardless of the space which can be R or H?; one of the features of this
paper is to write unified statements and proofs, which hold independently of the
space. It is therefore natural to introduce unified notation. In the same way as on
the H]\e/:isenberg group we have defined a family Z of vector fields, we will denote
on R

fora e (1. N, 2% € X, .. Xy, where Xo €0y, .

We will also use the following notation:
1
2

N
vweRY, wl=—w, pw) def (Z ij|2) and Va € R, S,w = aw.
j=1

Using that notation, the elements of Littlewood-Paley theory we will need are the
following.

Both in the case of RN and HY, there exists a family (S i) jez of operators such that
for any p belonging to [1, oo,

Yue L?, lim |[|Sjullrr =0 and lim ||Sju —ullzr =0. (1.5)
Jj—>—00 J—>00

Moreover, for any multi-index «, there exists a constant C such that, for any (p, q) €
[1, 00)? satisfying p < q, we have

12Sjullee < 2N s, (1.6)

de, . .
:f Sjy1— S, two integers Ny and N exist such that

Moreover, if A
lj—Jj1=No= (AjAjy =0 and Aj(Sy_nyudjv)=0), (1.7)
(k—K|<No and j>k+Ni)= Aj(Arulpv)=0. (1.8)

For any positive integer k, there exists a constant C such that, for any p € [1, o],

IAjulle < C272K (=AY A jull L. (1.9)
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The operators A j are of the form

Aju=uxh; with hjw)=2"hGyw) and heS. (1.10)

We remark that as A; is a function of the Laplacian (respectively sublaplacian)
on RY (respectively H?), it commutes with the latter operator.
Definition 1.3. Let s € R be given, as well as p and r, two real numbers in the

interval [1, co]. Then we define the space B;y, of tempered distributions u# such

that
def

lim Sju=0 and ||z ‘(st||Aju||LP)

Jj—>—00

<
(Z)

Let us notice that Inequality (1.6) implies immediately that, wheng > p andr’ > r,
we have

Il o

. ) < Clullzy,- (1.11)

1.1
P q
q.r’

The result we will prove is the following. It is stated and proved indifferently in RV
and H.

Theorem 1.4. Let s be a real number in the interval 10, N /2[ and let p and q be
two real numbers in [1, oo] such that

5 < 2N _
< < 00
q N — 25 p=
s—N(3—1)
There is a constant C such that, for any function u € B 02 ", the following
inequality holds:
1
uw)l> -\’ .
——dw| < Clul® el
p=(w) S N(3-p) SN(3-7)
Bp,2 Bql
1 1
with @ =P (L 20 )
p—q\q 2 N
Let us remark that, when p = oo and g = 2, the above theorem implies that
1
)\’ ¥ 1F
——dw | =Clull® _yllull,". (1.12)
=S (w) B2

This inequality should be compared to the following similar result derived by P.
Gérard, Y. Meyer and F. Oru in [10], in the case of the Sobolev inequalities on RV
(see [3] for the Heisenberg case), namely

2s 1—2s 1
lullr < Cllull™ _y lull, ¥ with — =
572 r

00,00

s
N

(1.13)

SR
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The following result indicates the invariance of (1.12) and (1.13) under oscillations.

Proposition 1.5. Let 0 be a functionin S, p in[l,00], 0 in]— N(1 —1/p), +o0[
and gqy a positive real number. There exists a constant C such that the oscillatory

function fe(w) d:efQ(w)e"wl/‘8 satisfies
Ve <0, | fellgr = Ce™”. (1.14)
p,

This proposition implies immediately the following corollary.

Corollary 1.6. There exists a family (f:)e=0 of smooth functions such that, for
any s in 10, N/2[ and any B > 2s /N, we have

”fS” 2_N 1 fZ
lim 5 1_ﬂ=+oo and lim 5 = w = +00.
0 fell - N”fé‘” s O fell - N”fé‘”

1.3. Structure of the paper and idea of the proof

The idea of the proof of Theorems 1.2 and 1.4 is to see them from a non linear point
of view. More precisely, we write

u’ (w) _ 2 2
/p2~v<w)dw_<p S

2s

Then it is enough to prove that p~2 and u? belongs to a pair of spaces in duality.
In the second section, we shall prove that p~%* belongs to the space BN ZS.
Then using a product law, we shall conclude the proof of Theorem 1.2.
In the third section, we shall use paradifferential calculus to prove Theorem 1.4.
In the fourth section, we shall prove Proposition 1.5. We shall also investigate
if it is possible to extend Corollary 1.6 for a family of non negative functions.

2. The behavior of negative powers of p

It is described by the following proposition.

Proposition 2.1. Let s be a real number in the interval 10, N/2[. Then the func-
tion p~—% belongs to the Besov space BN %

Proof of Proposition 2.1. Let us introduce a smooth compactly supported func-
tion y which is identically equal to 1 near the unit ball and let us write

_ . def  _ def _
P =po+p1 with pg= xp * and p = (1—)p 2.
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It is obvious that p~% € L'4+L9 with g > N /2s which implies that lim S I o =

0in L' + L9. Then, the homogeneity of the function p gives

Ajp72s — ZJNIO*ZS *h(SZJ)
AR R CYDRYICD)
= 2275 (Aop %) (825 °).

Therefore |Ajp~ 31 = 2/~ Agp~5|| 1 which reduces the problem to
proving that the function Agp~ % isin L'. As pgisin L', Agpg is also in L'
thanks to the continuity of the operator Ay on Lebesgue spaces. In order to esti-
mate p; in L', we shall use Inequality (1.9) to write that

I Aopillzr < Cell (=AY Agpill < Crll(=A) prll 1

By the Leibniz formula, (—A)fp — (1 — X)(—A)k p is a smooth compactly sup-
ported function. Then, we achieve the proof by using (1.4) and choosing k such
that 2k > N — 2s. U

As an application, we shall prove Theorem 1.2. When u belongs to H*, then

N
2 ps—7 2 2
u” € By *oand  ut|| L, N < Cllully,-
B2I :

That result is classical in RV and was proved in HY by two of the authors in [3].
Now writing that

(,O—ZS’ MZ) — Z (Ajp—Zs’ Aj,u2>’
[j—J"1=No

we infer, thanks to Proposition 2.1 and embeddings (1.11), that

_ —j( X2 —j'(2s-4& .
720 <lulys D 2 i3 a2 Ie-8) i @y el @.
li—J'I1=No

This proves Theorem 1.2. O

2

Remark 2.2. Let us point out that, in Theorem 1.2, the function p~=° can be any

f . . B%—Zs
unction in 200

3. Paradifferential calculus and refined inequalities

In order to prove Theorem 1.4, let us recall the paraproduct algorithm introduced
by J.-M. Bony in [4] in the case of R and by two of the authors in the case of H?
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in [3]. In both cases, this allows to write that

u? = 2T, u + R(u,u), with T,u def ZSJ'_NOMA]'M

and R(u,u def Z Ajulju.
[j—J"1=No

Using (1.7) and (1.6), we get

||AjTuu||Loo = Z Aj(Sj’—NouAj’”)
[J=J'1=No Lo

IA

D ISjonoullLellAjull L.
lj—J"1=No

Now let us write that

) s = 3 2990 R0 A

k<j—1

Young’s inequality on series implies that

(N
i(7-s - 2
ISjullL= < Ce;2 (3 )||u||BS_% with § A=

00,2

This gives
J+No
18Tl = Clull_, y Y 2/ W90, y(¥- >||A,vu||Loo
ooz Jj'=j—No
Jj+No
< Clul? 2J<N ) Z dj with Y djy=1.
B, J'=j—No J’

Thanks to (1.11), and Proposition 2.1, we have,

(™%, Ty < Cllul™ o\ el 3.1)
SN(2-¢ N(5-5)
quz quz

forany0 <o < land p,q > 1.
The estimate of (p~2°, R(u, u)) relies on the following elementary interpola-
tion lemma.
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Proposition 3.1. Let s be a real number in the interval 10, N /2[ and let p and g be
two real numbers in [1, oo] such that

2N
2<gq<

< .
sS4 NI TP =

There is a constant C such that for any functions [ and g which belongs to LP N L4,
we have

_ _ _ . Pq 1 1 s
(0™, f8) < CUFIS ISl Il gl [a® with o= ——— <— - -+ —) -

Proof of Proposition 3.1. Let us write that, for any positive R,

L . def
(0™, fg) = (R) + h,(R) with I;(R) = / fi dw
(p=R) P

and  Ly(R) & f f—ngw
(p=R) P~

The condition on p and ¢ implies that p~2* is locally L o and is Lﬁ outside any

compact neighbourhood of 0. By Holder’s inequality, we infer that

I(R) < ||1(p§R)p_2s”Lﬁ I flizeliglier and

BR) < Mzr o™l I llsligla.

As the function p is homogeneous of order 1, we get, by the change of variable w’ =
8R—1 w,

—2s . N—2s—2N —2s

1p<r)P ”Lﬁ =R P [ 1p<yp ”Lﬁ and
—2s _ N—2s—2X _2s

11p>r) P IqutITz =R 7 [ 1p=1)p IIquTz-

Thus we have, for any positive R,

2

s N—2s N 2N
(0™, fg) <CR R 7| flleeligler + R 7| fllrallglira) -

Choosing the optimal

Pq
I flleeligliLe

concludes the proof of the proposition. U
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Let us go back to the proof of Theorem 1.4. By definition of R(u, u), we have

(P R@w) = Y Y (p . Ajudju).

[€|=No j€Z

Proposition 3.1 implies that

- 2j(s—N(i-1 “«
(07 Rww) = Y 3 (2N A ull Al )
[eI<No j€Z

2j(s—N(i-1 I—
x (270N Al 1A el
By definition of the Besov norms, this implies that two series (c;) jez and (c’j).,-ez
exist in the unit sphere of 0%(Z) such that

_ 2(1— _
(0™ R(u,w) < Cllul®_\  llul (S_Nj’%_é) Y e (et

(2-7)

B,, B, , [¢|<Ny jeZ
From Holder inequalities, it follows that
_ 2(1-a)
(p™%, R, w)) < Cllul* lul :
.s—N(%—%) BS.7N<%7$)
p.2 q.2
Together with (3.1), this gives Theorem 1.4. U

4. Oscillations and fractal transforms in refined inequalities

The purpose of this section is to provide examples which show that the refined
estimates are sharp. The first one deals with oscillating functions.

4.1. Oscillations

Here we want to prove Proposition 1.5, namely, by definition of Besov spaces, that
for any function 6 in S, we have

32 A fellr < Ce0 with  f(w) el Fow). @.1)

J

We shall treat differently the high frequencies (indices j such that 2/¢ is greater
than 1) and low frequencies (indices j such that 2/¢ is less than 1). N

Let us first estimate the low frequencies. Denoting the vector Z| = 9y, in the
case of RN and 21 = dy, — Y10y in the case of HY, we have

- § v
icZie's = —e'& .
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By integration by parts, we get

w' —

L0 (' w8y (w))dw

Ajfew') = (—ig)N2/N f (—Z)N (e

/
wl—

— (igyNoiV / GOV O w'w YRSy (w))dw

w/l —wp

N
= (-ie)szNZc,@/ei — ZV N O W) ZE (h(8,) (w))dw
£=0

where the vector field Z 1 acts on the variable w. As
Zy(h(85 () = 2/(Z1h) (85 (w)) and  — Z1@w'w™") = (Z1)(w'w™),
we infer that

1A fe ()]

N w) —w ~
= NN ZC,{,Z”(—I)N_Z/ei 2Ny w'w ) (ZEh) (8 (w))dw

=0

IA

N
V2N 3 chait <|zf’—é9| « [(ZEh) (5, .)|> w).
=0

Young inequalities imply that
A ICABI]

_iN _ ~ . B ~
= min {270 1ZY O 0 ZEhller . 27N NZY O 1 2R |

Therefore, aso > —N (1 — %) )

> 2NA fellwe < €&V ZZJ(GJFN(I_%))_F Y 2t

— ; i1
2i<s 2/<1 1<2i<+

< Ce™°.

IA

In order to estimate high frequencies, let us use (1.9). We get, for any non negative
integer M,

1A fellr < C2VN=2MD((— MM £y % h(85 ) Lr
C27HM Y (=AM fo Lo

A

IA
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The Leibniz formula implies that, for any € €10,&0], [|(=A)YMfollLr <Ce™M|10]|1».
Thus we infer, thanks to (1.6), that

Y 2NA fellr < CeTHM Y 2d 07D,

i< 1 i< 1
2i>2 2/>-

Choosing M such that o0 — 2M is negative gives

> 2\ Aj fellr < CeTO (4.2)
2i>1
This ends the proof of Proposition 1.5. U

4.2. Fractal transform and Besov norms

In this subsection we will show that oscillations are not the sole responsible for the
smallness of a Besov norm. Below we present another situation, of a sequence of
non negative functions for which the L” norms and the Besov norms are balanced
as the family (f;) of Proposition 1.5. Again, we shall present statements and proofs
common to the case of RY and HY. In order to do so, let us define the distance d as

def
Yw. w) e RY xR, dw,w)= max |w;—w)|
1<j<N
and, for any (w, w') € HY x HY,
d(w, w) Emax | max |x; — x/|, max |y; — yi|,Is — 5"+ (' [x) — ()3}
1<jza T igjEN

where in the case of HY we have noted w = (x, y,s) and w’ = (x', y/, s"). Let us
denote by Q the ball for d centered at zero and of radius 1/2. Now let us define
the following quantities. Let D and L such that D = L = N in the case of RV
and D =N —1and L = N + 1 in the case of HY. For J in {—1, 1}£, we define the
point wy of Q and the cube Q; by

1
wy d§f8%J and Q difw;-%Q: {w/d(w,wj)f g}'

Omitted elementary computations show that

3
Q;CQ and (J #J = d(Qy,0)) = %) . (4.3)

Now let us define the transform 7" which duplicates (after dilation and translation)
functions defined on Q.
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Definition 4.1. Let us denote by 7 the following transform

D(Q) - D(Q) o
T foTraP 3 g with frw) E FEaw] ).

Je{—1,1)L
For a subset A of Q , we denote by T A the set defined by
def
TA= |J wisaA
Jel—1,1)L

Let us notice that TA C Q and that Supp (T f) = T (Supp f). Let us also observe
that, using (4.3), we have

ITAI7, =227 > g,

Je{—1,1}k

=22 > 2V IfIg,

Je{—1,1}k
_ 2Dp+L72N”f”1L7p
= 2P@=Dy£117,.
Thus, we have
17 = 22077 i, (4.4)
The way T acts on Besov spaces is described by the following proposition.

Proposition 4.2. For any (p, r) € [1, 400]* and any o in ]—N (1 - %) + oo[,
there exists a constant C such that

D(1-1)42
1715, <2°0 )2 +Clfl.

Proof of Proposition 4.2. For the sake of simplicity, we only prove this proposition
in the case when r = 1. By definition of the Besov norm, we have
def

ITfllge, =Taf +Taf with Tif =) 27IA;Tf|ILe
‘ Jj=<0

and 7o f € Y2 A Tf .
Jj=1

On the one hand, using Bernstein’s inequality (1.6), the fact that N (1 — %) +0 >0
and (4.4) with p = 1, we get

o i 1
Tf<cy 2 Nl ”)IIAijIILl <CITflpr = Cllfllp- (4.5)
j=<0
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The estimate on 75 f uses the special structure of 7' Q. Let us define the set

déf{w/d(w, 0)) < i}-

~ 1 ~ ~
deef{w/d<w,TQ><—}= U 0, win 0, <3

32 Je{—1,1}k

Now let us write that 7> f = Ty f + T f with

def i def i
Tof =Y 2°NATf ey, and Tunf =Y 207|A;TF 10
Jj=1 j=>1

Let us recall that
(A Tw') = 2fN/Tf(w)h (32,-(w—‘u/)) dw.

As h belongs to S, we have, for any positive integer M, that |h(w)| < Cp(1+
p(w))_M . Thus, by homogeneity and by definition of p and d, we get, for all
(w,w) € TQ x QF,

—N—1
Cu (14 PG ™)) p 6y ™ w))

WSy (™ w)| =
< Cur (14 py @ wn) 27 M )
< Cu2 M (14 pGoywwy)

Using (4.4), we infer that, for any integer M,

U CHRIITT

2 (0=

”Aij”Lp(cé)

IA

IA

Then, choosing M large enough, we infer
Duf =Cliflp- (4.6)

Finally let us estimate T2, f. As é is the disjoint union of the é J, we get

L
P

1A Tflng <20 sup 1ATF oG, 4.7)

Je{—1,1}k

Let us first estimate || A |15, for J’ # J. We have, for all w’ € 0,

(A frw) =2/ / Frh(Sy (w™'w')) dw,
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and in the integral, the distance d(w, w’) is greater than 1/32. Then, reasoning as
above we find that, for any positive integers M, there exists a constant Cj; such that

i(N(1-1)-m
J#EIT =18 1l @, 5CM2’< (1-7) >||fjf||L1. (4.8)

Then, let us observe that ||Ajf/||Lp(§J) < A fsllLr. Writing that

I

-1
wlw' =8, ((54(w;‘w)) 34(w;1w’))
and changing variable v = 84(w;1w) gives
(A @) = (A2 f) (8w w)).

2N
Thus [|Aj frller =2 7 [|Aj—2fliLr. Then using (4.7) and (4.8), we get by defi-
nition of 7', that for all positive integers M,
L-2N i(N(1-1)-m
187 Fllog <2777 18 -2 f e + 2’ VO3
Thus by definition of 733 f, we get by choosing M large enough,
1-1 : i(o 1—L1)_
Tt < 2°070) S0 a il 4 Cull pi T2V (75) M)
j=1 j=1
D(1-1)42
= 2”0 p5 s clfi
Together with (4.5) and (4.6), this concludes the proof of the proposition. L]
Let us state the following corollary of Proposition 4.2.

Corollary 4.3. For (N — D)/2 < s < N/2, there exists a sequence (f,)neN of non
negative smooth and compactly supported functions such that, for any g > 2s/N,

| full 2n
lim LN = +00.
N> 00 B 1-8
fll? Wl
Boo. %

Proof of Corollary 4.3. Let us consider a smooth compactly supported non nega-
tive function fy and let us define the sequence (f;)neN by f = T" fo. By iteration
of the inequality of Proposition 4.2, we have

p.q —
m=0

1 n—l 1
g, < 2O ) 5 1c (Z 2’"("(1‘7’)*2“)) I foll 1.
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Ifo > —% (1 — %) we deduce that

g, < €2 (P03)20)

Applying this first with 0 = s — N/2 and p = ¢ = oo and then with 0 = s
and p = g = 2 gives

D
||fn||Bs_N < Cp2" PN and || fullgs < Cf02"<2+2s>.

00,00

Assertion (4.4) claims that

+

D=

nD
IIntIL%=2 (( ))IlfollLNzNZS-

This concludes the proof of the corollary. O

Remark 4.4. Unfortunately, we cannot claim the same result for the refined Hardy
inequality. Let us notice that the refined Hardy inequality has an obvious translation
invariant generalization which is

2 : .
u“(w) 2s 1-2
SUP/ i dw = Cllull™ _yllull "
a p=a= w) B2
00,2
For the sequences used in the proof of Corollary 4.3, omitted computations show
that, if s is greater than § (N — 2),

2
w
sup 2fn (71) dw < C2MD=N+29),
p=(a= w)
This is exactly the same behavior as || f; || N We do not know if the exponent

00,2

can be improved in (1.12) when we restrict to the cone of non negative functions.
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