We study the validity of the inequality for the Riesz transform when and of its reverse inequality when on complete riemannian manifolds under the doubling property and some Poincaré inequalities.
@article{ASNSP_2005_5_4_3_531_0, author = {Auscher, Pascal and Coulhon, Thierry}, title = {Riesz transform on manifolds and {Poincar\'e} inequalitie}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {531--555}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {3}, year = {2005}, mrnumber = {2185868}, zbl = {1116.58023}, language = {en}, url = {http://www.numdam.org./item/ASNSP_2005_5_4_3_531_0/} }
TY - JOUR AU - Auscher, Pascal AU - Coulhon, Thierry TI - Riesz transform on manifolds and Poincaré inequalitie JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 531 EP - 555 VL - 4 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org./item/ASNSP_2005_5_4_3_531_0/ LA - en ID - ASNSP_2005_5_4_3_531_0 ER -
%0 Journal Article %A Auscher, Pascal %A Coulhon, Thierry %T Riesz transform on manifolds and Poincaré inequalitie %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 531-555 %V 4 %N 3 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org./item/ASNSP_2005_5_4_3_531_0/ %G en %F ASNSP_2005_5_4_3_531_0
Auscher, Pascal; Coulhon, Thierry. Riesz transform on manifolds and Poincaré inequalitie. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 531-555. http://www.numdam.org./item/ASNSP_2005_5_4_3_531_0/
[1] On -estimates for square roots of second order elliptic operators on , Publ. Mat. 48 (2004), 159-186. | MR | Zbl
,[2] Riesz transforms on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup. 37 (2004), 911-95. | Numdam | MR | Zbl
, , and ,[3] Weighted norm inequalities off-diagonal estimates and elliptic operators: Part I, preprint 2005. | MR
and ,[4] “Square Root Problem for Divergence Operators and Related Topics”, Astérisque, 249, 1998. | Numdam | MR | Zbl
and ,[5] Transformations de Riesz pour les semi-groupes symétriques | Numdam | MR | Zbl
,[6] Calderón-Zygmund theory for non-integral operators and the functional calculus, Rev. Mat. Iberoamericana 19 (2003), 919-942. | MR | Zbl
and ,[7] Riesz transform and cohomology for manifolds with Euclidean ends, Duke Math. J., to appear. | MR | Zbl
, and ,[8] Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | MR | Zbl
and ,[9] Riesz transforms for , Trans. Amer. Math. Soc. 351 (1999), 1151-1169. | MR | Zbl
and ,[10] Riesz transform and related inequalities on non-compact Riemannian manifolds, Comm. Pure Appl. Math. 56, 12 (2003), 1728-1751. | MR | Zbl
and ,[11] Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz, Arch. Math. 83 (2004), 229-242. | MR | Zbl
and ,[12] Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), 108-146. | MR | Zbl
, and ,[13] The -integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. | MR | Zbl
,[14] “Multiple Integrals in the Calculus of Variations and Non-linear Elliptic Systems”, Annals of Math. Studies, vol. 105, Princeton Univ. Press, 1983. | MR | Zbl
,[15] Stochastically complete manifolds, (Russian) Dokl. Akad. Nauk SSSR 290 (1986), 534-537. | MR | Zbl
,[16] Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold, J. Funct. Anal. 127 (1995), 363-389. | MR | Zbl
,[17] Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble) 55 (2005), 825-890. | Numdam | MR | Zbl
and ,[18] “Sobolev Met Poincaré”, Mem. Amer. Math. Soc., Vol. 145, no. 688, 2000. | MR | Zbl
and ,[19] bounds for Riesz transforms and square roots associated to second order elliptic operators, Publ. Mat. 47 (2003), 497-515. | MR | Zbl
and ,[20] The Gehring lemma, In: “Quasiconformal Mappings and Analysis” (Ann. Arbor, MI, 1995), Springer, New York, 1998, 181-204. | MR | Zbl
,[21] The Poincaré inequality is an open ended condition, preprint 2003. | MR
and ,[22] La transformation de Riesz sur les variétés coniques, J. Funct. Anal. 168 (1999), 145-238. | MR | Zbl
,[23] PhD thesis, Universidad Autónoma de Madrid, 2003.
,[24] An estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 189-206. | Numdam | MR | Zbl
,[25] A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27-38. | MR | Zbl
,[26] Parabolic Harnack inequality for divergence form second order differential operators, Potential Anal. (4), 4 (1995), 429-467. | MR | Zbl
,[27] Bounds of Riesz transforms on spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble) 55 (2005), 173-197. | Numdam | MR | Zbl
,[28] “Singular Integrals and Differentiability Properties of Functions”, Princeton Univ. Press, 1970. | MR | Zbl
,[29] “Topics in Harmonic Analysis Related to the Littlewood-Paley Theory”, Princeton Univ. Press, 1970. | MR | Zbl
,