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Continuity of solutions to a basic problem
in the calculus of variations
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Abstract. We study the problem of minimizing
∫
� F(Du(x)) dx over the func-

tions u ∈ W 1,1(�) that assume given boundary values φ on � := ∂�. The La-
grangian F and the domain � are assumed convex. A new type of hypothesis on
the boundary function φ is introduced: the lower (or upper) bounded slope con-
dition. This condition, which is less restrictive than the familiar bounded slope
condition of Hartman, Nirenberg and Stampacchia, allows us to extend the clas-
sical Hilbert-Haar regularity theory to the case of semiconvex (or semiconcave)
boundary data (instead of C2). We prove in particular that the solution is locally
Lipschitz in �. In certain cases, as when � is a polyhedron or else of class C1,1,
we obtain in addition a global Hölder condition on �.

Mathematics Subject Classification (2000): 49J10 (primary); 35J20 (secondary).

1. Introduction

In this article we study the following problem (P) in the multiple integral calculus
of variations:

min
u

∫
�

F(Du(x)) dx subject to u ∈ W 1,1(�), tr u = φ (P)

where � is a domain in R
n , u is scalar-valued, and tr u signifies the trace of u on

� := ∂�. The function F : R
n → R is said to be strictly convex if for any two

distinct points z1, z2 in R
n and λ ∈ (0, 1) we have

F(λz1 + (1 − λ)z2) < λF(z1) + (1 − λ)F(z2),

and coercive of order p > 1 if for certain constants σ > 0 and µ we have

F(z) ≥ σ |z|p + µ ∀ z ∈ R
n.
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Our basic hypotheses are as follows: (1) � ⊂ R
n (n ≥ 2) is open, convex, and

bounded; (2) F : R
n → R is strictly convex; (3) F is coercive of order p > 1.

Since a convex body has Lipschitz boundary, the trace operator is well-defined.
The function φ : � → R which prescribes the boundary values lies in some ap-
propriate class, the choice of which is one of our main considerations. Under basic
hypotheses (1)-(3) above, in order to guarantee that the problem is well-posed and
admits a solution u, it is sufficient that φ be the restriction to � of a Lipschitz func-
tion. This follows from well-known lower semicontinuity theorems for the integral
functional which go back in spirit to Tonelli’s direct method; the unique solution
then lies in W 1,p(�) necessarily.

The question now becomes the regularity of u. The principal classical results
in this connection are based on two approaches: the theory of De Giorgi (which
is also referred to as that of De Giorgi-Nash-Moser), and what has become known
as Hilbert-Haar theory. We refer to the books of Giaquinta [8], Giusti [10], and
Morrey [17] for detailed discussions.

The theory of De Giorgi can be applied directly to (P), but in that case it re-
quires strong assumptions on F : uniform ellipticity and constrained growth of the
same order p from both above and below (see however Marcellini [13] and the
references therein for certain extensions). More relevant to this article are its appli-
cation to Lagrangians F that may not satisfy such demanding hypotheses, but are
at least regular: of class C2, with ∇2 F(z) > 0 at each z. Then, provided that one
knows a priori that u is Lipschitz, De Giorgi’s theorem on elliptic equations can
be invoked to deduce higher-order regularity: it follows that Du is locally Hölder
continuous in �.

The classical Hilbert-Haar approach, which in contrast makes no additional
structural assumptions on F , requires instead that φ satisfy the bounded slope con-
dition (BSC). This theory cannot be attributed to a single person. Hilbert, Rado,
Haar, and von Neumann each made a key contribution to its development; after the
BSC was formulated in its present form by Hartman and Nirenberg [12], Stampac-
chia [18] coined the term BSC and applied it to variational problems.

The bounded slope condition of rank K is the requirement that given any point
γ on the boundary, there exist two affine functions

y �→
〈
ζ−
γ , y − γ

〉
+ φ(γ ), y �→

〈
ζ+
γ , y − γ

〉
+ φ(γ )

agreeing with φ at γ whose ‘slopes’ satisfy |ζ−
γ | ≤ K , |ζ+

γ | ≤ K and such that
〈
ζ−
γ , γ ′ − γ

〉
+ φ(γ ) ≤ φ(γ ′) ≤

〈
ζ+
γ , γ ′ − γ

〉
+ φ(γ ) ∀ γ ′ ∈ �.

This is a very restrictive requirement on ‘flat parts’ of �, since it forces φ to be
affine. But the BSC becomes more interesting when � is sufficiently curved. �

is said to be uniformly convex if, for some ε > 0, every point γ on the boundary
admits a hyperplane H through γ such that

dH (γ ′) ≥ ε|γ ′ − γ |2 ∀ γ ′ ∈ �.
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Miranda’s Theorem [16] states that when � is uniformly convex, then any φ of class
C2 satisfies the BSC. Later, Hartman [11] showed that when � is uniformly convex
and � is C1,1, then φ satisfies the BSC if and only if φ is itself C1,1.

The Hilbert-Haar theory (see Chapter 1 of Giusti [10]) affirms that when φ

satisfies the BSC of rank K , then the solution u of problem (P) is globally Lips-
chitz of rank K . Thus the two theories work in tandem to obtain the continuous
differentiability of the solution(1).

In this article we introduce a new hypothesis on φ, the lower bounded slope
condition (lower BSC) of rank K : given any point γ on the boundary, there exists
an affine function y �→ 〈

ζγ , y − γ
〉 + φ(γ ) with |ζγ | ≤ K such that

〈
ζγ , γ ′ − γ

〉 + φ(γ ) ≤ φ(γ ′) ∀ γ ′ ∈ �.

This requirement (which can be viewed as a one-sided BSC) has an alternate char-
acterization:

Proposition 1.1. A function φ : � → R satisfies the lower BSC of rank K if and
only if φ is the restriction to � of a function f : R

n → R which is convex and
globally Lipschitz of rank K .

Proof. The sufficiency follows from the fact that a function f as described admits
at each point x an element ζ in its subdifferential ∂ f (x): then |ζ | ≤ K and

f (x ′) − f (x) ≥ 〈
ζ, x ′ − x

〉 ∀ x ′ ∈ R
n,

and the lower BSC follows (since f = φ on �). For the necessity, we set

f (x) := sup
γ∈�

〈
ζγ , x − γ

〉 + φ(γ ),

which is easily seen to coincide with φ on �, and to be convex and Lipschitz of
rank K .

Being one-sided, the lower BSC naturally admits a counterpart: an upper BSC that
is satisfied by φ exactly when −φ satisfies the lower BSC.

In the context of the lower (or upper) BSC, the property that � be curved has
less importance than before; flat parts of the boundary do not force φ to be affine.
Nonetheless, curvature can still serve a purpose: Bousquet [1] has shown that when
� is uniformly convex, then φ satisfies the lower (upper) BSC if and only if it is
the restriction to � of a function which is semiconvex (semiconcave), a familiar
and useful property in pde’s (see for example [4]). In the uniformly convex case,
therefore, the results of this article extend Hilbert-Haar theory to boundary data that
is semiconvex or semiconcave rather than C2 (or C1,1).

(1)More precisely, Hilbert-Haar theory affirms the existence of a minimizer in the class of Lips-
chitz functions. To deduce that this solution coincides with the Sobolev solution u, one must rule
out the Lavrentiev phenomenon. This can be done in several ways: see [6, 3, 14].



514 FRANCIS CLARKE

It turns out that the one-sided BSC hypothesis has significant implications for
the regularity of the solution u, although, unsurprisingly, it implies less than the
full two-sided BSC. In fact, the one-sided BSC, which goes considerably beyond
the full BSC with respect to the domains and boundary conditions which it allows,
nonetheless gives the crucial regularity property: u is locally Lipschitz in �. This
allows us to assert that u is a weak solution of the Euler equation, in the absence
of any ‘natural growth conditions’ on F , and also permits the application of the
theory of higher-order regularity when the Lagrangian is regular. Another desirable
regularity property is continuity at the boundary. In a variety of situations, it turns
out that the lower or upper BSC does imply that, and even a global Hölder condition
in some cases.

We proceed now to state the main results of the article. In accordance with the
usual convention, the continuity assertions on u refer to the existence of a represen-
tative of u having the stated property.

Theorem 1.2. Under the basic hypotheses, if φ satisfies the lower bounded slope
condition, then the solution u of (P) is locally Lipschitz in � and lower semicontin-
uous on �. There is a constant K with the property that for any subdomain �′ of
distance δ > 0 from �, we have

|u(x) − u(y)| ≤ (K/δ)|x − y| ∀ x, y ∈ �′.

In addition, u is continuous on � if one of the following holds:

(a) � is a polyhedron, or
(b) � is C1,1 and p > (n + 1)/2, or
(c) � is uniformly convex.

In cases (a) and (b), u satisfies a Hölder condition on �.

Remark 1.3.

1. The lower semicontinuity is interpreted with u taken to be equal to φ everywhere
on �.

2. There is a corresponding version of the theorem in which, in its two occurrences,
the word ‘lower’ is replaced by ‘upper’.

When F has more regularity itself, some further properties of u follow immediately:

Corollary 1.4. Let the basic hypotheses hold, and assume that φ satisfies the lower
bounded slope condition. Then

(a) If F is differentiable, u is a weak solution of the Euler equation:

∫
�

∇F(Du(x)) · Dψ(x) dx = 0 ∀ ψ ∈ C1
c (�).
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(b) If in addition we assume that F is of class C2 and satisfies

∇2 F(z) > 0 ∀ z,

then Du is locally Hölder continuous in �.

Theorem 1.2 is elaborated upon and proved in Section 2. The type of regularity
it provides is illustrated by the following example due to Piermarco Cannarsa and
Pierre Bousquet:

Example 1.5. Let n = 2 and take F to be the Dirichlet Lagrangian

F(Du) := |Du|2 = u2
x + u2

y,

and � the unit disc. The complex function

f (z) := −
∑
i≥1

zi

i2

is analytic on � and continuous on �. We define u(r, θ) to be its real part, and
φ(θ) on � to be u(1, θ):

φ(θ) := −
∑
i≥1

cos iθ

i2
.

It can be shown that u (which is of course harmonic in �) belongs to W 1,2(�),
from which it follows [17, Theorem 3.3.1] that u is the solution to problem (P). The
gradient of u is unbounded on �, so that u is locally but not globally Lipschitz.

The function φ satisfies a lower (but not full) bounded slope condition [1], and
F is coercive of order 2. Theorem 1.2 tells us that u satisfies a Hölder condition on
the closed disc, and provides the bound K/d�(x) for |Du(x)|.
Lipschitz boundary conditions. In the last section of the article we study the case
in which, rather than a one-sided bounded slope condition, φ satisfies a weaker
requirement, a Lipschitz condition. We prove

Theorem 1.6. Let φ be Lipschitz, where in addition to the basic hypotheses we
assume that either

(a) � is a polyhedron, or
(b) � is C1,1 and p > (n + 1)/2.

Then for certain constants k and β > 0 the solution u has the following property:
if �′ is any subdomain of � of distance δ from �, then

|u(x) − u(y)| ≤ (k/δβ)|x − y|β ∀ x, y ∈ �′.

In case (a), u satisfies a Hölder condition on �. In case (b), if in addition � is
uniformly convex, then u is continuous on �.
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Remark 1.7. The proof of the classical Hilbert-Haar theorem is based on the Com-
parison (or Maximum) Principle on spaces of Lipschitz functions. Our proof of
Theorem 1.2 uses an extension of the Comparison Principle (by Mariconda and
Treu) to the Sobolev setting. In further contrast to earlier work, we use dilation
rather than translation to construct comparison functions.

ACKNOWLEDGEMENT. The author thanks Piermarco Cannarsa and Pierre Bous-
quet for their many helpful remarks.

2. Proof of Theorem 1.2

2.1. Four theorems

We first establish some notation. For any x, y ∈ �, x 
= y, we denote by π�(x |y)

the ‘projection of x onto � in the direction of y’; that is, the unique point γ ∈ �

of the form x + t (y − x), t > 0. Then d�(x |y), the ‘distance from x to � in the
direction of y’, is given by d�(x |y) := |x − π�(x |y)|. We have d�(x |z) ≥ d�(x),
where the latter denotes the usual distance function associated with �.

In this section we prove the four following theorems, which clearly imply The-
orem 1.2. Besides being steps towards its proof, they make additional assertions.
Note for example that the first two do not require F to be coercive; we simply sup-
pose instead that a solution u exists. They also provide explicit estimates for certain
constants.

Theorem 2.1. We posit the basic hypotheses (1) and (2). Let u be a solution of
(P), where φ satisfies the lower bounded slope condition of rank K . Then u is
continuous in � and lower semicontinuous on �, and we have

u(x) ≥ φ(γ ) − K |x − γ | ∀ x ∈ �, ∀ γ ∈ �,

as well as

u(x) − u(y) ≤ K
|x − y|
d�(x |y)

∀ x, y ∈ �, x 
= y

where
K := 2‖φ‖L∞(�) + K diam �.

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, assume either that �

is a polyhedron, or else that � is uniformly convex. Then the solution u is also
continuous on �.

Theorem 2.3. In addition to the hypotheses of Theorem 2.1, assume that � is a
polyhedron and that F is coercive of order p > 1. Then for some constant k1, u
satisfies

−K |x − γ | ≤ u(x) − φ(γ ) ≤ k1|x − γ |a1, ∀ x ∈ �, ∀ γ ∈ �,
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where

a1 := (p − 1)/(n + p − 1) ∈ (0, 1).

Furthermore, u satisfies a Hölder condition on � of order

a2 := (p − 1)/(n + 2p − 2) ∈ (0, a1).

Theorem 2.4. In addition to the hypotheses of Theorem 2.1, assume that � is C1,1

and that F is coercive of order p > (n+1)/2. Then for some constant κ1, u satisfies

−K |x − γ | ≤ u(x) − φ(γ ) ≤ κ1|x − γ |α1, ∀ x ∈ �, ∀ γ ∈ �,

where

α1 := (2p − n − 1)/(2n + 2p − 2) ∈ (0, 1).

Furthermore, u satisfies a Hölder condition on � of order

α2 := (2p − n − 1)/(4p + n − 3) ∈ (0, α1).

Remark 2.5.

1. The proofs of the Hölder conditions yield constants (such as k1 and κ1) that
depend on the data of the problem only via the dimension n, the coercivity co-
efficients σ, µ (as regards F), the quantities ‖φ‖∞, K (as regards φ), and the
geometry of � (its diameter, together with the density and tightness of corners
in the polyhedral case, or the curvature of the boundary in the smooth case).

2. When p ≤ n, then the fact that Du ∈ L p(�) does not in itself imply that u
is continuous. But for p > n, a well-known theorem of Morrey asserts that u
satisfies a Hölder condition on � of order (p − n)/p. Theorems 2.3 and 2.4
evidently provide Hölder continuity in some cases in which Morrey’s Theorem
is not applicable, and, in some cases where it does apply, they yield a better (that
is, greater) Hölder exponent.

3. In the presence of coercivity, all the theorems above can be extended to problems
in which a constraint of the form Du(x) ∈ C a.e. is present, where C is a given
closed convex set. It suffices to apply the (unconstrained) theorem to the solution
ui of the penalized problem with Lagrangian F(z) + idC (z), whose solution ui
converges to u.

4. If the strict convexity hypothesis on F is weakened to merely convexity, then the
solution u is not necessarily unique and may not have the stated regularity; how-
ever, the conclusions of the theorems hold for some solution, as can be shown
by considering the Lagrangian F(z) + ε|z|2 and letting ε go to 0.

5. The methods of this article can be extended to treat more general Lagrangians
(depending on x, u) by the barrier function technique, as forthcoming work will
show [2].
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2.2. Proof of Theorem 2.1

We denote

I�(v) :=
∫

�

F(Dv(x)) dx,

which is always well-defined for any v ∈ W 1,1(�), possibly as +∞. An element
v of W 1,1(�) is called a minimizer (for I�) if I�(v) < +∞ and if for any other
w ∈ W 1,1(�) having the same trace on ∂�, we have I�(w) ≥ I�(v). An affine
function is always a minimizer (see [10]), and the sum of a minimizer and a constant
yields a minimizer.

There is a well-known comparison or maximum principle for a given pair of
minimizers v, w on � (not necessarily having the same trace on ∂�) which asserts
that if v ≤ w on ∂�, then v ≤ w in �. A proof may be found for example in
Chapter 1 of [10], in the classical case (see also [9]), when v and w are restricted
to being Lipschitz continuous of given rank K . The proof can be adapted to certain
lattices in a Sobolev space setting, as shown by Mariconda and Treu [15]. We now
state a special case of their results for convenience.

Theorem. (Comparison Principle) Let v and w be minimizers for I� such that
tr v ≤ tr w a.e. Then in � we have v ≤ w a.e.

(Of course the two ‘almost everywheres’ in this statement refer to (n − 1)- and
n-dimensional measure respectively.) We give the proof of Theorem 2.1 in the
stated case in which φ satisfies the lower bounded slope condition of rank K . (The
corresponding ‘upper’ case reduces to this one by considering ũ := −u, which is
a minimizer for F̃(z) := F(−z) with boundary condition −φ.) By Proposition 1.1
we may suppose that φ is a globally defined convex function of (global) Lipschitz
rank K. The Comparison Principle (applied to u and appropriate constant functions)
implies that |u| is essentially bounded on � by the constant M := ‖φ‖L∞(�).
The word ‘essentially’ can be dispensed with here if we take u to be the precise
representative (see [7]) of its class, as we do henceforth.

We fix a point z in � and a scalar λ in (0, 1). For any y ∈ Rn , we denote
by yλ the point λ(y − z) + z, and we define the set �λ as the image of � under
this mapping: �λ := λ(� − z) + z. Note that �λ is an open convex subset of
�, and that the mapping γ → γλ is one-to-one between points γ ∈ � and points
γλ ∈ �λ := ∂�λ.

We proceed to define on �λ the function

uλ(x) := λu ((x − z)/λ + z) ;
note that uλ(xλ) = λu(x) for any x ∈ �.

Lemma 2.6. We have

uλ(γλ) − u(γλ) ≤ K ′(1 − λ), γ ∈ � a.e.,

where K ′ := ‖φ‖L∞(�) + K diam � = M + K diam �.
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Proof. Since u is approximately continuous(2) at almost every point of �, it follows
from Fubini’s theorem and the use of spherical coordinates that for almost every
γ ∈ �, the half-open line segment (z, γ ] has the property that almost all of its
points are points of approximate continuity of u. Additionally, by known properties
of Sobolev functions [19], for almost every such γ , the segment is such that the
restriction of u to it is (absolutely) continuous, with u(γ ) = φ(γ ). We fix any γ in
� for which the associated segment (z, γ ] has both these properties.

Let ζ be an element of ∂φ(γ ). Then |ζ | ≤ K , and for any x ∈ R
n we have

φ(x) ≥ φ(γ ) + 〈ζ, x − γ 〉 =: v(x).

In particular, u ≥ v a.e. on �. Since v is affine and hence a minimizer, the Compar-
ison Principle gives u ≥ v a.e. in �. This last inequality must hold at all points of
approximate continuity of u, and so on a set of full one-dimensional measure in the
line segment (z, γ ]. Since u is continuous along the segment, it follows that u ≥ v

on the entire segment, whence

uλ(γλ) − u(γλ) ≤ λφ(γ ) − v(γλ)

= (λ − 1)φ(γ ) − 〈ζ, γλ − γ 〉
= (λ − 1) {φ(γ ) − 〈ζ, z − γ 〉}
≤ (1 − λ){M + K diam �}.

This proves the lemma.

Lemma 2.7. There is a subset X (λ, z) of full measure in � such that for every x in
X (λ, z) we have

λu(x) − u(λx + (1 − λ)z) ≤ K ′(1 − λ).

Proof. We note first that u restricted to �λ is a minimizer. For if it were not, there
would exist v on �λ with the same boundary values as u, yet strictly ‘better’ than u
on that subdomain; then the function which equals v on �λ and u on �\�λ (which
lies in W 1,1(�)) would be strictly better than u on �, while having the same trace
on �, which is a contradiction.

We claim that uλ is also a minimizer (relative to the domain �λ). If this were
not the case, there would exist v ∈ W 1,1(�λ) with the same values on �λ as uλ

such that

I�λ(v) :=
∫

�λ

F(Dv(x)) dx <

∫
�λ

F(Duλ(x)) dx =: I�λ(uλ).

Upon making an evident change of variables, the right-hand integral is seen to equal

λn
∫

�

F(Du(x)) dx = λn I�(u).

(2)Approximate continuity at x refers to the existence of a measurable set C satisfying
limr→0 |B(x, r) ∩ C |/|B(x, r)| = 1, and relative to which u is continuous.
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Now define w ∈ W 1,1(�) by w(x) := (1/λ)v (λ(x − z) + z) ,which has the same
boundary values at � as u. A simple calculation then leads to I�(w) < I�(u), a
contradiction which establishes the claim.

The conclusion of Lemma 2.6, in conjunction with the Comparison Principle,
when applied to the domain �λ and the two functions uλ and u + K ′(1 − λ) (re-
stricted to �λ), gives rise to

uλ(x) − u(x) ≤ K ′(1 − λ), x ∈ �λ a.e.,

which may be re-expressed as follows: there is a subset X (λ, z) of � of full measure
such that

λu(x) − u(λx + (1 − λ)z) ≤ K ′(1 − λ) ∀ x ∈ X (λ, z),

as required.

Lemma 2.8. Let x and y in � be distinct Lebesgue points of u. Then

u(x) − u(y) ≤ K
|x − y|
d�(x |y)

,

where K := K ′ + M = 2‖φ‖L∞(�) + K diam �.

Proof. Let z be a point on the line segment (x, π�(x |y)) satisfying

|x − z| = d�(x |y) − µ,

where µ is a small positive number. Assume for ease of notation that z = 0. Then
for some λ ∈ (0, 1) we have y = λx . Let ε > 0 be such that B(x, ε) ⊂ �.
According to the preceding lemma, we have, for almost all x ′ ∈ B(x, ε),

λu(x ′) ≤ u(λx ′) + K ′(1 − λ).

Integrating this inequality over B(x, ε), we obtain, after a change of variables on
the right side,

λ

|B(x, ε)|
∫

B(x,ε)

u(x ′) dx ′ ≤ 1

|B(y, λε)|
∫

B(y,λε)

u(y′) dy′ + K ′(1 − λ).

Passing to the limit as ε → 0 gives

λu(x) − u(y) ≤ K ′(1 − λ),

which implies
u(x) − u(y) ≤ K (1 − λ)

since u is bounded by M . In view of the fact that

(1 − λ)|x | = (1 − λ)(d�(x |y) − µ) = |x − y|,
and because µ is arbitrarily small, we obtain the conclusion of the lemma.
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It follows from Lemma 2.8 that a representative of u is locally Lipschitz in the
manner stated in Theorem 2.1. We now examine the behavior at the boundary; we
establish a ‘lower Lipschitz’ semicontinuity:

Lemma 2.9. Let γ be any point in �. Then

u(x) ≥ φ(γ ) − K |x − γ | ∀ x ∈ �.

Proof. By the lower bounded slope condition, there exists ζ, |ζ | ≤ K , such that

φ(γ ′) ≥ φ(γ ) + 〈
ζ, γ ′ − γ

〉
, γ ′ ∈ �.

Thus u ≥ v a.e. on �, where v is the affine function v(x) := φ(γ ) + 〈ζ, x − γ 〉 .

By the Comparison Principle, we have u ≥ v everywhere in �, since u and v are
continuous; the lemma follows.

This completes the proof of Theorem 2.1.

2.3. Proof of Theorem 2.2

The polyhedral case. We consider first the case in which � is a polyhedron, arguing
by contradiction. Suppose that u fails to be continuous on �. Then, in view of the
lower Lipschitz property noted in Lemma 2.9, there must be a sequence xi of points
in � converging to a point γ ∈ � and such that, for some ε > 0, we have

lim
i→+∞ u(xi ) ≥ φ(γ ) + ε.

Let T�(γ ) denote the tangent cone of convex analysis to � at γ . Because � is a
convex body, it is known (see [5]) that this tangent cone has nonempty interior, and
that for any v in its interior, the point x + rv lies in � whenever x ∈ � is near γ

and r > 0 is sufficiently small. Because � is a polytope, there is a more uniform
version of this: for some δ > 0, we have

x + T (δ) ⊂ � ∀ x ∈ � ∩ B(γ, δ),

where, for any r > 0, T (r) := T�(γ ) ∩ B(0, r). Now pick i sufficiently large so
that |xi − γ | < δ/2 and u(xi ) ≥ φ(γ ) + 2ε/3, and any y of the form xi + v where
v ∈ T (δ), v 
= 0. We observe that (in view of the preceding inclusion) d�(xi |y) ≥
δ, so that by Lemma 2.8, we have u(y) ≥ u(xi ) − K |xi − y|/δ. Suppose that y is
further asked to satisfy |xi − y| < εδ/(3K ). Then we deduce u(y) > φ(γ ) + ε/3.
We have shown that for all i sufficiently large, u(xi + T (α)) > φ(γ ) + ε/3, where
α := min[δ, εδ/(3K )]. For any v in the interior of T (α), it is clear that γ +v lies in
xi + T (α) for all i sufficiently large. In view of this, the preceding inclusion gives

u(γ + int T (α)) > φ(γ ) + ε/3.

However, the closure of γ + int T (α) contains a neighborhood in � of γ (since �

is a polytope), and the trace of u on � is φ (continuous). This contradiction proves
the theorem in the case when � is a polyhedron.



522 FRANCIS CLARKE

The uniformly convex case. The fact that u is continuous when � is uniformly
convex is a special case of a result due to Pierre Bousquet [1]; we give his proof
here for completeness.

Proposition 2.10. When � is uniformly convex and φ is continuous, then u is con-
tinuous.

Proof. To see this, let φi be a sequence of C2 functions on a neighborhood of �

converging uniformly to φ; set εi := ‖φ − φi‖∞. When � is uniformly convex,
Miranda’s theorem asserts that each φi satisfies the (full) bounded slope condition
of some rank Ki (these will be unbounded in general). Then Hilbert-Haar theory
yields the existence of a Lipschitz function ui which minimizes I�(v) relative to all
Lipschitz functions having value φi on �.

By a result of Mariconda and Treu [14], it follows that ui is also a minimizer
relative to W 1,1(�) (that is, no Lavrentiev phenomenon is present). On � we have

|u(γ ) − ui (γ )| = |φ(γ ) − φi (γ )| ≤ εi a.e.,

so by the Comparison Principle we must have |u − ui | ≤ εi a.e. in �. But then
u is the uniform limit of a sequence of continuous functions, and so is continuous
itself.

2.4. Proof of Theorem 2.3

A hyperwedge signifies a subset W of a given hyperplane H having the form

WH (v, �, ω) = {tv′ : 0 ≤ t ≤ �, v′ ∈ H, |v′ − v| ≤ ω},
where the unit vector v ∈ H is the direction of W , � its length, and ω its width.
Because � is a polyhedron, there exist positive � and ω such that, for any point γ ∈
�, for some hyperplane H = H(γ ) and direction v = v(γ ), the set γ +WH (v, �, ω)

lies in �. We may also take � and ω small enough so that, for some m > 0, for any
γ ∈ �, we have

x + WH(γ )(v(γ ), �, ω) ⊂ � ∀ x ∈ � ∩ B(γ, m).

Lemma 2.11. There exists a constant k with the following property: given any
x ∈ � lying within m of � and its projection γ onto �, one has

u(x) − φ(γ ) ≤ k|x − γ |a1,

where a1 is defined in the statement of Theorem 2.3.

Proof. We assume that u(x) = φ(γ ) + δ for some δ > 0, for otherwise there is
nothing to prove. Note that γ (which we do not require to be the unique projec-
tion) is necessarily in the interior of some facet, and therefore defines an (n − 1)-
dimensional subspace H whose associated hyperplane γ + H contains that facet.
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By the remark above, there is a hyperwedge W = WH (v, �, ω) such that γ +W
lies in � (and in γ + H ), and such that x + W ⊂ �. For every point x ′ ∈ x + W
we have d�(x |x ′) ≥ �. In light of Theorem 2.1 we deduce (for such x ′)

u(x ′) ≥ u(x) − K |x − x ′|/� = φ(γ ) + δ − K |x − x ′|/�.
We associate with every point x ′ ∈ x + W its projection γ ′ ∈ γ + H . For almost
every such γ ′ (relative to (n − 1)-dimensional measure) we have

u(γ ′) = φ(γ ′) ≤ φ(γ ) + K |γ ′ − γ |,
since φ is Lipschitz of rank K . Since |γ ′ − γ | = |x ′ − x |, it follows that

u(x ′) − u(γ ′) ≥ δ − c|x ′ − x |,
for c = K + K/�. This implies (almost everywhere x ′)

∫ d

0
|Du(x ′ + tν) · ν| dt ≥ δ − c|x ′ − x |,

where ν is the (unit) normal vector to � at γ and d := |x − γ |. We now limit the
x ′ in question to those satisfying |x ′ − x | < ρ0δ, where ρ0 is chosen small enough
to guarantee both c|x ′ − x | < δ/2 and |x − x ′| < �; note that such a ρ0 can be
chosen as a function of just M and �, since δ is bounded above a priori by 2M . Set
S := (x + W ) ∩ B(x, ρ0δ). Then the last inequality gives

∫ d

0
|Du(x ′ + tν) · ν| dt ≥ δ/2 ∀ x ′ ∈ S.

Applying Hölder’s inequality to the integral on the left, and then integrating over
x ′ ∈ S, we obtain, with the help of the change of variables formula,

d p−1
∫

S

∫
[0,d]

|Du|p dt dx ′ ≥ c′δ p(ρ0δ)
n−1,

for a constant c′ depending on the width ω of the hyperwedge W and the dimension
n. The iterated integral on the left is bounded a priori because F is coercive. We
immediately deduce an estimate of the form δn+p−1 ≤ c′′d p−1, which gives the
required result, for a certain k.

This proves a boundary estimate of the type that appears in the statement of the
theorem, but only for the case in which γ is the projection of x onto �. We proceed
now to establish such an estimate generally, for any x ∈ � and γ ∈ �. Let γ ′ be a
nearest point in � to x . We consider first the case in which |x − γ ′| < m. Then we
may argue as follows:

u(x) − φ(γ ) = u(x) − φ(γ ′) + φ(γ ′) − φ(γ )

≤ k|x − γ ′|a1 + K |γ ′ − γ |
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(by Lemma 2.11, and since φ is Lipschitz)

≤ k|x − γ |a1 + K |γ ′ − x | + K |x − γ |

(since γ ′ is a closest point in � to x)

≤ k|x − γ |a1 + 2K |x − γ | ≤ k1|x − γ |a1

for some new constant k1. By taking k1 greater than 2Mm−a1 , the upper bound
for u(x) − φ(γ ) just obtained will continue to hold in the remaining case in which
|x − γ ′| ≥ m (since |x − γ | ≥ |x − γ ′|). The general estimate thereby follows.

We now complete the proof of Theorem 2.3. We set a′ := 1/(1+a1), a2 := a1a′.
We establish the existence of a certain constant k such that, for any two points x, x ′
in �, the following inequality holds:

u(x) − u(x ′) ≤ k|x − x ′|a2 .

Let γ be the projection of x onto �.

Case 1. |x − x ′|a′ ≥ |x − γ |. We write

u(x) − u(x ′) = [u(x) − φ(γ )] + [φ(γ ) − u(x ′)]
≤ k|x − γ |a1 + K |γ − x ′|

(by the preceding estimate, and since φ is Lipschitz)

≤ k|x − x ′|a1a′ + K |γ − x | + K |x − x ′|
≤ k|x − x ′|a2 + K |x ′ − x |a′ + K |x − x ′|
≤ c|x − x ′|a2,

for a suitable constant c.

Case 2. |x − x ′|a′
< |x − γ |. We have

d�(x |x ′) ≥ |x − γ | > |x − x ′|a′
,

so that by Theorem 2.1 it follows that

u(x) − u(x ′) ≤ K |x − x ′|/|x − x ′|a′ = K |x − x ′|a2 .

We get the required inequality by taking k := max(c, K ), and the theorem follows.
(Lemma 2.9 continues to apply here, as regards the lower boundary estimate.)
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2.5. Proof of Theorem 2.4

In the proof we shall use the fact that when � is C1,1 (and compact), � satisfies a
uniform inner ball condition: there exists R > 0 with the following property: for
every point γ ∈ � there is a closed ball of radius R contained in � which contacts
the boundary at γ . (This is a familiar property in regularity theory for pde’s; see
for example [4]). We note as well that there is a unique exterior unit normal vector
ν(γ ) to � (or the ball) at each boundary point, and ν(·) is Lipschitz continuous.
Finally, every point in � of distance less than R from � admits a unique projection
(closest point) in �.

We assume that F is coercive of order p > (n + 1)/2, and we set

α1 := (2p − n − 1)/(2n + 2p − 2) ∈ (0, 1).

We first prove a boundary-based Hölder condition.

Lemma 2.12. There exist positive constants κ and m such that for any γ ∈ �, for
any x ∈ � of the form γ − tν(γ ), 0 < t < m, one has

u(x) − φ(γ ) ≤ κ|x − γ |α1 .

Proof. We take m < R/4 to begin; it will be subject to another upper bound
presently. Note that γ is the closest point to x in �. We assume for notational
convenience, and without loss of generality, that γ − Rν(γ ) = 0, and we denote
by H0 the hyperplane through 0 that is perpendicular to ν(γ ). For points y lying
‘above’ H (that is, for which 〈y, ν(γ )〉 > 0) we consider the coordinate system in
which a point y is expressed in the form rθ , for some θ ∈ � and 0 < r . Then points
in � are those having coordinates of the form (1, θ).

We assume that u(x) > φ(γ ), for otherwise there is nothing to prove; let

δx := u(x) − φ(γ ), mx := |x − γ |.
We denote by S the part of the hyperplane x + H0 lying in B(0, R), and by Rx
its radius: the distance in x + H0 from x to the relative boundary of S. If ρ lies
in (0, Rx ) and |θ − γ | < ρ, then the ray rθ meets S at a point we label rθ θ . We
consider the following domain A:

A := {y = rθ : |θ − γ | < ρ, rθ ≤ r ≤ 1},
the points ‘radially above’ S and ‘below’ �. For any point y in A having the form
rθ θ (a point in x + H0, on the ‘lower’ boundary of A), we have

d�(x |y) ≥ Rx ≥ cm1/2
x ,

where c depends only on R. By Theorem 2.1 we deduce

u(rθ θ) ≥ u(x) − K |x − rθ θ |/[cm1/2
x ].
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For almost all points y in A of the form θ ∈ � (the ‘upper’ boundary), u is abso-
lutely continuous along the ray rθ , differentiable at almost all points of the ray, and
we have u(y) = φ(y), whence

u(θ) = φ(θ) ≤ φ(γ ) + K |θ − γ | = u(x) + δx + K |θ − γ |.
We conclude from the last two inequalities that for such θ ,

∫ 1

rθ

| 〈Du(rθ), θ〉 | dr ≥ δx − K |θ − γ | − K |rθ θ − x |/[cm1/2
x ]

≥ δx − K |θ − γ | − K |θ − γ |/[cm1/2
x ]

≥ δx − 2(K/c)m−1/2
x |θ − γ |

(since mx ≤ m, provided we choose m < [K/(cK )]2)

≥ δx − c′m−1/2
x ρ,

where c′ depends only on K and c. Let us now specify ρ = ρ0m1/2
x δx ; then we get

∫ 1

rθ

| 〈Du(rθ), θ〉 | dr ≥ δx [1 − c′ρ0];

we pick ρ0 < 1/c′ to make this positive. Further, if we choose ρ0 < c/(2M) we
also have

ρ = ρ0mx
1/2δx < [c/(2M)](Rx/c)(2M) = Rx

(since δx ≤ 2M), as required above. The previous inequality now becomes
∫ 1

rθ

| 〈Du(rθ), θ〉 | dr ≥ c′′δx .

Because � lies below the supporting hyperplane γ +H0 to � at γ , there is a constant
C depending only on R such that

(1 − rθ ) ≤ C |x − γ | = Cmx .

Applying Hölder’s inequality to the integral above, we deduce

C ′mx
p−1

∫ 1

rθ

| 〈Du(rθ), θ〉 |p dr ≥ δ
p
x

for a certain constant C ′. We proceed to integrate this inequality over θ ∈ � ∩
B(γ, ρ). Since |Du|p is summable over � (as follows from coercivity), it is
summable over A, and we get (after invoking the change of variables formula)

C ′′mx
p−1 ≥ δ

p
x ρn−1 = δ

p
x [ρ0m1/2

x δx ]n−1.
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where C ′′ depends on R, K , M and the coercivity constants of F , but not on the
specific x or γ . This gives the estimate in the statement of the lemma, for a certain
constant κ .

This proves a boundary estimate of the type that appears in the statement of the
theorem, but only for the case in which γ is the projection of x onto �. We proceed
now to establish the estimate more generally. Let x be any point within m of the
boundary and γ ∈ �. Let γ ′ be the nearest point in � to x . Then

u(x) − φ(γ ) = u(x) − φ(γ ′) + φ(γ ′) − φ(γ )

≤ κ|x − γ ′|α1 + K |γ ′ − γ |

(by Lemma 2.12, and since φ is Lipschitz)

≤ κ|x − γ |α1 + K |γ ′ − x | + K |x − γ |
≤ κ|x − γ |α1 + 2K |x − γ | ≤ κ1|x − γ |α1

for some new constant κ1.
We now proceed to derive a global Hölder condition, not just based at boundary

points, but valid on all of �. It suffices to show that u satisfies a Hölder condition in
a neighborhood of �, since on strictly interior domains u is actually Lipschitz. We
define α′ := 1/(1 + α1), α2 := α1α

′. We will establish that for a certain constant
κ , for any two points x and x ′ in � within distance m of �, one has

u(x) − u(x ′) ≤ κ|x − x ′|α2 .

Let γ be the projection of x onto �. We consider two cases, according to whether
|x − x ′|α′

is greater than |x − γ | or not. In the first case, we write

u(x) − u(x ′) = [u(x) − φ(γ )] + [φ(γ ) − u(x ′)]
≤ κ|x − γ |α1 + K |γ − x ′|

(by Lemma 2.12 and by Lemma 2.9 respectively)

≤ κ|x − x ′|α′α1 + K |x − x ′| + K |x − γ |
≤ κ|x − x ′|α′α1 + +K |x − x ′| + K |x − x ′|α′

≤ c′|x − x ′|α2,

for a certain new constant c′.
There remains the other case to consider, in which

|x − x ′|α′
< |x − γ |.
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We then have
d�(x |x ′) ≥ |x − γ | > |x − x ′|α′

.

Applying Theorem 2.1 gives

u(x) − u(x ′) ≤ K
|x − x ′|

|x − x ′|α′ = c′′|x − x ′|1−α′ = c′′|x − x ′|α2 .

The result follows, for κ = max(c′, c′′), and Theorem 2.4 is proved. (The other
(lower) boundary estimate in the theorem continues to be provided by Lemma 2.9.)

Proof of Corollary 1.4. Given ψ ∈ C1
c (�) and any t > 0, the optimality of u

implies I�(u + tψ) ≥ I�(u). Upon dividing by t and then letting t tend to 0 we
obtain ∫

�

∇F(Du(x)) · Dψ(x) dx = 0,

where the integration and the limit commute because Du(x) is bounded for x ∈
supp ψ . Thus u is a weak solution of the Euler equation, which is the first assertion
of Corollary 1.4. The second assertion holds because under the stated assumptions,
and as we know Du to be locally bounded by the theorem, De Giorgi’s regularity
theorem applies.

3. Proof of Theorem 1.6

We are given that φ is Lipschitz of rank K (say) on �. We exploit this by writing

φ(γ ) = min
q∈�

{φ(q) + K |γ − q|}.

Since the function φq(y) := φ(q) + K |y − q| is convex and Lipschitz of rank K
on R

n , this reveals φ to be the lower envelope (attained for each point) of a family
of functions each satisfying the lower bounded slope condition of rank K . We
write φ = minq φq to signify this fact; note that ‖φq‖∞ is bounded by a constant
depending just on the data of (P).

Since F is coercive, there is (for any given q) a solution uq to the version of
(P) in which the boundary condition is given by φq . In light of Theorems 2.3 and
2.4, uq is Hölder continuous on �. Note that on � we have u = φ ≤ φq = uq a.e.
By the Comparison Principle, therefore, we have u ≤ uq a.e. in �.

The existence of the minimizers uq will allow us to prove an analogue of
Lemma 2.6 in the proof of Theorem 2.1. Fixing a point z in � and a scalar λ in
(0, 1), we define �λ and uλ exactly as in the proof of Theorem 2.1. We set β := a1
if case (a) of the theorem holds, and β := α1 in case (b) (Note: a1 and α1 remain as
defined in the statements of Theorems 2.3 and 2.4.) Lemma 2.6 now becomes :

Lemma 3.1. There exists a constant K ′ depending only on the data of (P) such that

u(γλ) − uλ(γλ) ≤ K ′(1 − λ)β, γ ∈ � a.e.
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Proof. Let γ ∈ � be a point for which u(γ ) = φ(γ ), and let q be an index for
which φ(γ ) = φq(γ ). Then

u(γλ) − uλ(γλ) = u(λγ ) − λu(γ )

≤ uq(λγ ) − λφ(γ )

(assuming for now that the point λγ is not a point of exception for the inequality
u ≤ uq )

= uq(λγ ) − φq(γ ) + (1 − λ)φq(γ )

≤ k′|γ − λγ |β + (1 − λ)‖φq‖∞

(where k′ is either the k1 of Theorem 2.3 or the κ1 of Theorem 2.4)

≤ k(1 − λ)β,

for an appropriate constant k. This argument can be modified to avoid supposing
that λγ is not a point of exception, precisely as was done in the proof of Lemma
2.6. We omit the details, since the fact that (1 − λ) is replaced by (1 − λ)β causes
no significant changes.

The next step in the proof also follows very closely that of Theorem 2.1. From
the Comparison Principle we have u(x) ≤ uλ(x) a.e. on �λ, which leads as before
to the conclusion that u is continuous on � and satisfies

u(y) − u(x) ≤ k|x − y|β
d�(x |y)β

∀ x, y ∈ �, x 
= y.

This implies that u is locally Hölder continuous in � (of uniform order β) in the
manner stated in Theorem 1.6. The fact that u is continuous on � when � is
uniformly convex was already noted in connection with the proof of Theorem 2.2.

There remains to show that u satisfies a Hölder condition in case (a); the key
to this is to establish an analogue of Lemma 2.11. The proof of the latter requires
only minor changes: the appeal to Theorem 2.1 is replaced by one to Theorem 2.3,
which has the effect of replacing |x − x ′| by |x − x ′|α2 in the rest of the argument.
This merely reduces the ensuing Hölder exponent.
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