
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. II (2003), pp. 823-845

Twistor Forms on Kähler Manifolds

ANDREI MOROIANU – UWE SEMMELMANN

Abstract. Twistor forms are a natural generalization of conformal vector fields on
Riemannian manifolds. They are defined as sections in the kernel of a conformally
invariant first order differential operator. We study twistor forms on compact
Kähler manifolds and give a complete description up to special forms in the middle
dimension. In particular, we show that they are closely related to Hamiltonian
2-forms. This provides the first examples of compact Kähler manifolds with non–
parallel twistor forms in any even degree.

Mathematics Subject Classification (2000): 53C55 (primary), 58J50 (secondary).

1. – Introduction

Killing vector fields are important objects in Riemannian geometry. They are
by definition infinitesimal isometries, i.e. their flow preserves a given metric.
The existence of Killing vector fields determines the degree of symmetry of
the manifold. Slightly more generally one can consider conformal vector fields,
i.e. vector fields whose flows preserve a conformal class of metrics. The
covariant derivative of a vector field can be seen as a section of the tensor
product �1 M ⊗ T M which is isomorphic to �1 M ⊗�1 M . This tensor product
decomposes under the action of O(n) as

�1 M ⊗ �1 M ∼= R ⊕ �2 M ⊕ S2
0 M,

where S2
0 M is the space of trace–free symmetric 2–tensors, identified with the

Cartan product of the two copies of �1 M . A vector field X is a conformal
vector field if and only if the projection on S2

0 M of ∇ X vanishes.
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More generally, the tensor product �1 M ⊗ �p M decomposes under the
action of O(n) as

�1 M ⊗ �p M ∼= �p−1 M ⊕ �p+1 M ⊕ T p,1 M,

where again T p,1 M denotes the Cartan product. As natural generalizations of
conformal vector fields, twistor p-forms are defined to be p–forms ψ such that
the projection of ∇ψ onto T p,1 M vanishes.

Coclosed twistor p–forms are called Killing forms. For p = 1 they are
dual to Killing vector fields. Note that parallel forms are trivial examples of
twistor forms.

Killing forms, as a generalization of Killing vector fields, were introduced
by K. Yano in [20]. Twistor forms were introduced later on by S. Tachibana [18],
for the case of 2-forms, and by T. Kashiwada [13], [17] in the general case.

The composition of the covariant derivation and the projection �1 M ⊗
�p M → T p,1 M defines a first order differential operator T , which was already
studied in the context of Stein–Weiss operators (c.f. [10]). As forms in the
kernel of T , twistor forms are very similar to twistor spinors in spin geometry,
which were first studied in [1]. We will give an explicit construction relating
these two objects in Section 2.

The special interest for twistor forms, in the physics literature stems from
the fact that they can be used to define quadratic first integrals of the geodesic
equation, i.e. functions which are constant along geodesics. Hence, they can
be used to integrate the equation of motion, which was done for the first time
by R. Penrose and M. Walker in [14]. More recently Killing forms and twistor
forms have been successfully applied to define symmetries of field equations
(c.f. [7], [8]).

Despite this longstanding interest in Killing forms there are only very few
global results on the existence or non–existence of twistor forms on Riemannian
manifolds. The first result for twistor forms on compact Kähler manifolds was
obtained in [19], where it is proved that any Killing form has to be parallel.
Some years later S. Yamaguchi et al. stated in [12] that, with a few exceptions
for small degrees and in small dimensions, any twistor form on a compact
Kähler manifold has to be parallel. Nevertheless, it turns out that their proof
contains several serious gaps.

In fact, we will show that there are examples of compact Kähler manifolds
having non–parallel twistor forms in any even degree.

For the convenience of the reader, we outline here the main results of the
paper, as well as the remaining open questions.

If ψ is a twistor p-form on a compact Kähler manifold (M2m, ω) with 2 ≤
p ≤ n−2 and p �= m, then it turns out that ψ is completely determined (modulo
parallel forms) by a special 2-form and its generalized trace (Theorem 4.5).
Special 2-forms are closely related to Hamiltonian 2–forms, recently introduced
and studied in [3] and [4]. Hamiltonian forms arise for example on weakly
Bochner-flat Kähler manifolds and on Kähler manifolds which are conformally
Einstein.
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If p = m, the orthogonal projection of ψ onto the kernel of J on m–forms
can still be characterized (up to parallel forms) by special 2–forms, but the
complete classification of non–parallel twistor forms can only be obtained up
to the hypothetical existence of special m–forms of type (m −1, 1)+ (1, m −1).
At this moment we have no examples of such forms for m > 2, and moreover
we were able to show that they are automatically parallel on compact Kähler–
Einstein manifolds.

For m > 2, each special 2–form ϕ with generalized trace f (defined by
d f = δcϕ) determines an affine line {ϕx = ϕ + x f ω} in the space of 2–forms,
which contains distinguished elements : ϕx is Hamiltonian for x = 1

m2−1
, closed

for x = 1
m+1 , coclosed for x = −1 and a twistor form for x = − m−2

2(m2−1)
.

For m = 2, the picture is slightly different since the generalized trace of
a special 2–form (and thus the affine line above) are no longer defined. The
results are as follows : every twistor 2–form is (up to parallel forms) primitive
and of type (1, 1) (i.e. anti–self–dual), and defines a special 2–form. This
special 2–form induces a Hamiltonian 2–form if and only if its codifferential
is a Killing vector field. Conversely, a Hamiltonian 2–form always defines the
affine line above, and in particular its primitive part is simultaneously a special
2–form and a twistor form. Thus, special 2–forms are, in some sense, less
restrictive than Hamiltonian 2–forms on Kähler surfaces.

2. – Twistor forms on Riemannian manifolds

Let (V, 〈·, ·〉) be an n–dimensional Euclidean vector space. The tensor
product V ∗ ⊗ �pV ∗ has the following O(n)–invariant decomposition:

V ∗ ⊗ �pV ∗ ∼= �p−1V ∗ ⊕ �p+1V ∗ ⊕ T p,1 V ∗

where T p,1 V ∗ is the intersection of the kernels of wedge and inner product
maps, which can be identified with the Cartan product of V ∗ and �pV ∗. This
decomposition immediately translates to Riemannian manifolds (Mn, g), where
we have

(1) T ∗M ⊗ �pT ∗M ∼= �p−1T ∗M ⊕ �p+1T ∗M ⊕ T p,1 T ∗M

with T p,1 T ∗M denoting the vector bundle corresponding to the vector space
T p,1 . The covariant derivative ∇ψ of a p–form ψ is a section of T ∗M ⊗
�pT ∗M . Its projections onto the summands �p+1T ∗M and �p−1T ∗M are
just the differential dψ and the codifferential δψ . Its projection onto the third
summand T p,1 T ∗M defines a natural first order differential operator T , called
the twistor operator. The twistor operator T : �(�pT ∗M) → �(T p,1 T ∗M) ⊂
�(T ∗M ⊗ �pT ∗M) is given for any vector field X by the following formula

[ T ψ ] (X) := [prT p,1 (∇ψ)] (X) = ∇X ψ − 1

p + 1
X �dψ + 1

n − p + 1
X ∧ δψ .
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Note that here, and in the remaining part of this article, we identify vectors
and 1–forms using the metric.

The twistor operator T is a typical example of a so–called Stein–Weiss
operator and it was in this context already considered by T. Branson in [10].
Its definition is also similar to the definition of the twistor operator in spin
geometry. The tensor product between the spinor bundle and the cotangent
bundle decomposes under the action of the spinor group into the sum of the
spinor bundle and the kernel of the Clifford multiplication. The (spinorial)
twistor operator is then defined as the projection of the covariant derivative of
a spinor onto the kernel of the Clifford multiplication.

Definition 2.1. A p–form ψ is called a twistor p–form if and only if ψ

is in the kernel of T , i.e. if and only if ψ satisfies

(2) ∇X ψ = 1

p + 1
X � dψ − 1

n − p + 1
X ∧ δψ ,

for all vector fields X . If the p–form ψ is in addition coclosed, it is called a
Killing p–form. This is equivalent to ∇ψ ∈ �(�p+1T ∗M) or to X �∇Xψ = 0
for any vector field X .

It follows directly from the definition that the Hodge star operator ∗ maps
twistor p–forms into twistor (n − p)–forms. In particular, it interchanges closed
and coclosed twistor forms.

In the physics literature, equation (2) defining a twistor form is often called
the Killing–Yano equation. The terminology conformal Killing forms to denote
twistor forms is also used. Our motivation for using the name twistor form is not
only the similarity of its definition to that of twistor spinors in spin geometry,
but also the existence of a direct relation between these objects. We recall that
a twistor spinor on a Riemannian spin manifold is a section ψ of the spinor
bundle lying in the kernel of the (spinorial) twistor operator. Equivalently, ψ

satisfies for all vector fields X the equation ∇Xψ = − 1
n X · Dψ , where D

denotes the Dirac operator. Given two such twistor spinors, ψ1 and ψ2, we can
introduce k–forms ωk , which on tangent vectors X1, . . . , Xk are defined as

ωk(X1, . . . , Xk) := 〈(X1 ∧ . . . ∧ Xk) · ψ1, ψ2〉 .

It is well–known that for k = 1 the form ω1 is dual to a conformal vector field.
Moreover, if ψ1 and ψ2 are Killing spinors the form ω1 is dual to a Killing
vector field. More generally we have

Proposition 2.2 (cf. [15]). Let (Mn, g) be a Riemannian spin manifold with
twistor spinors ψ1 and ψ2. Then for any k the associated k–form ωk is a twistor
form.

We will now give an important integrability condition which characterizes
twistor forms on compact manifolds. A similar characterization was obtained
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in [13]. We first obtain two Weitzenböck formulas by differentiating the equation
defining the twistor operator.

∇∗∇ψ = 1

p + 1
δd ψ + 1

n − p + 1
dδ ψ + T ∗T ψ ,(3)

q(R) ψ = p

p + 1
δd ψ + n − p

n − p + 1
dδ ψ − T ∗T ψ ,(4)

where q(R) is the curvature expression appearing in the classical Weitzenböck
formula for the Laplacian on p–forms: � = δd + dδ = ∇∗∇ + q(R). It is the
symmetric endomorphism of the bundle of differential forms defined by

(5) q(R) =
∑

ej ∧ ei �Rei ,ej ,

where {ei } is any local orthonormal frame and Rei ,ej denotes the curvature of
the form bundle. On forms of degree one and two one has an explicit expression
for the action of q(R), e.g. if ξ is any 1–form, then q(R) ξ = Ric(ξ). In fact
it is possible to define q(R) in a more general context. For this we first rewrite
equation (5) as

q(R) =
∑
i< j

(ej ∧ ei � − ei ∧ ej �) Rei ,ej =
∑
i< j

(ei ∧ ej ) • R(ei ∧ ej )•

where the Riemannian curvature R is considered as element of Sym2(�2Tp M)

and • denotes the standard representation of the Lie algebra so(Tp M) ∼=
�2Tp M on the space of p–forms. Note that we can replace ei ∧ ej by any
orthonormal basis of so(Tp M). Let (M, g) be a Riemannian manifold with
holonomy group Hol. Then the curvature tensor takes values in the Lie algebra
hol of the holonomy group, i.e. we can write q(R) as

q(R) =
∑

ωi • R(ωi )• ∈ Sym2(hol)

where {ωi } is any orthonormal basis of hol and • denotes form representation
restricted to the holonomy group. Writing the bundle endomorphism q(R) in
this way has two immediate consequences: we see that q(R) preserves any
parallel subbundle of the form bundle and it is clear that by the same definition
q(R) gives rise to a symmetric endomorphism on any associated vector bundle
defined via a representation of the holonomy group.

Integrating the second Weitzenböck formula (4) yields the following inte-
grability condition for twistor forms.

Proposition 2.3. Let (Mn, g) be a compact Riemannian manifold. Then a
p–form ψ is a twistor p–form, if and only if

(6) q(R) ψ = p

p + 1
δd ψ + n − p

n − p + 1
dδ ψ .

For coclosed forms, Proposition 2.3 is a generalization of the well–known
characterization of Killing vector fields on compact manifolds, as divergence
free vector fields in the kernel of � − 2 Ric. In the general case, it can be
reformulated as
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Corollary 2.4. Let (Mn, g) be a compact Riemannian manifold with a co-
closed p–form ψ . Then ψ is a Killing form if and only if

� ψ = p + 1

p
q(R) ψ .

One has similar characterizations for closed twistor forms and for twistor
m–forms on 2m–dimensional manifolds.

An important property of the equation defining twistor forms is its confor-
mal invariance (c.f. [8]). We note that the same is true for the twistor equation in
spin geometry. The precise formulation for twistor forms is the following. Let
ψ be a twistor form on a Riemannian manifold (M, g). Then ψ̂ := e(p+1)λψ is
a twistor p–form with respect to the conformally equivalent metric ĝ := e2λg.
Parallel forms are obviously in the kernel of the twistor operator, hence they
are twistor forms. Using the conformal invariance we see that for any parallel
form ψ , also the form ψ̂ := e(p+1)λ ψ is a twistor p–form with respect to the
conformally equivalent metric ĝ := e2λg. The form ψ̂ is in general not parallel.

The first non trivial examples of twistor forms were found on the standard
sphere. Here it is easy to show that any twistor p–form is a linear combination
of eigenforms for the minimal eigenvalue of the Laplace operator on closed resp.
coclosed p–forms. It is shown in [15] that the number of linearly independent
twistor forms on a connected Riemannian manifold is bounded from above by
the corresponding number on the standard sphere. Other examples exist on
Sasakian, nearly Kähler and on weak G2–manifolds. In some sense they are
all related to the existence of Killing spinors. Up to now these are more or
less all known global examples of twistor forms.

In Section 3 we will see that there are many new examples on compact
Kähler manifolds. The examples include the complex projective space and
Hirzebruch surfaces.

3. – Twistor forms on Kähler manifolds

In this section we will consider twistor forms on a compact Kähler manifold
(M, g, J ) of dimension n = 2m. The case of forms in the middle dimension,
i.e. forms of degree m, is somewhat special and will be treated in the next
section.

On a complex manifold the differential splits as d = ∂ + ∂̄ . Moreover, one
has the following real differential operator

dc = i (∂̄ − ∂) =
∑

Jei ∧ ∇ei

where {ei } is a local orthonormal frame.
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The formal adjoints of d and dc are denoted by δ and δc. If ω is the
Kähler form then � denotes the contraction with ω and L the wedge product
with ω. Another important operator acting on forms is the natural extension of
the complex structure J on p–forms, defined as follows :

Ju :=
∑

J (ei ) ∧ ei � u ∀u ∈ �p M.

Notice that this is the Lie algebra extension of J acting as derivative, rather
than the group extension of J acting as automorphism. In particular, J acts on
(p, q)–forms by scalar multiplication with i(q − p).

These operators satisfy the following fundamental commutator relations

dc = − [ δ, L ] = − [ d, J ] , δc = [ d, � ] = − [ δ, J ] ,

d = [ δc, L ] = [ dc, J ] , δ = − [ dc, � ] = [ δc, J ] .

In addition, the following commutators resp. anti–commutators vanish

0 = [ d, L ] = [ dc, L ] = [ δ, � ] = [ δc, � ] = [ �, J ] = [ J, ∗ ] ,

0 = δdc + dcδ = ddc + dcd = δδc + δcδ = dδc + δcd .

Using these relations we are now able to derive several consequences of the
twistor equation on Kähler manifolds. We start by computing δcu for a twistor
p–form u.

(7)

δcu = −
∑

Jei �∇ei u = −
∑

Jei �
(

1

p + 1
ei �du − 1

n − p + 1
ei ∧ δu

)

= − 2

p + 1
�(du) + 1

n − p + 1
J (δu)

= − 2

p + 1
d�(u) + 2

p + 1
δc u + 1

n − p + 1
J (δu)

= − 2

p − 1
d�(u) + p + 1

(p − 1)(n − p + 1)
J (δu) .

From this we immediately obtain

δc d u = − d δc u = − p + 1

(p − 1)(n − p + 1)

(
J (dδu) + dcδ u

)
,(8)

δδc u = − δcδu = − 2(n − p + 1)

(n − p)(p + 1)
�(δdu) .(9)
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A similar calculation for the operator dc leads to

(10)

dc u = −
∑

ei ∧ ∇Jei u

= −
∑

ei ∧
(

1

p + 1
Jei �du − 1

n − p + 1
Jei ∧ δu

)

= 1

p + 1
J (du) + 2

n − p + 1
L(δu)

= 1

p + 1
J (du) + 2

n − p + 1
δ(Lu) + 2

n − p + 1
dcu

= n − p + 1

(p + 1)(n − p − 1)
J (du) + 2

n − p + 1
δ(Lu) .

We apply this to conclude

(11) δdc u = n − p + 1

(p + 1)(n − p − 1)
( Jδdu − δcdu ) .

As a first step we will prove that for a twistor p–form u the form �J (u)

has to be parallel. Here we can assume p �= 2, since otherwise there is nothing
to show. It will be convenient to introduce for a moment the following notation

x := J�(dδu), a := dδ(J�u), α := δcd(�u),

y := J�(δdu), b := δd(J�u), β := δdc(�u) .

Using the various commutator rules we will derive several equations relating
the quantities x, y, a, b, α and β. We start with

x = J�(dδu) = J (dδ�u − δcδu)

= dδ(J�u) + dδc(�u) + dcδ(�u) − Jδcδu

= a − α − β − 2(n − p + 1)

(n − p)(p + 1)
y ,

where we also used equation (9) to replace the summand Jδcδu. Similarly we
have

y = J�(δdu) = J (δd(�u) − δδcu)

= δd(J�u) + δdc(�u) + δcd(�u) − Jδδcu

= b + β + α + 2(n − p + 1)

(n − p)(p + 1)
y .
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Adding the two equations for x resp. y, we obtain that x + y = a + b, i.e. we
can express x and y in terms of a, b, α and β as

y = ε1 (b + α + β), ε1 = (n − p)(p + 1)

(n − p)(p + 1) − 2(n − p + 1)
,(12)

x = a + b − y = a + (1 − ε1) b − ε1 (α + β) .(13)

Note that ε1 is well defined since the denominator may vanish only in the case
(n, p) = (4, 2), which we already excluded. Next, we contract equation (8)
with the Kähler form to obtain an equation for α.

α = δcd(�u) = �(δcdu)

= − p + 1

(p − 1)(n − p + 1)

(
�J (dδu) + �(dcδ u)

)

= − p + 1

(p − 1)(n − p + 1)
(x − β) .

Contracting equation (11) with the Kähler form we obtain a similar expression
for β.

β = δdc(�u) = �(δdcu)

= n − p + 1

(p + 1)(n − p − 1)
( �Jδdu − �(δcdu) )

= n − p + 1

(p + 1)(n − p − 1)
(y − α) .

Replacing x and y in the equations for α resp. β leads to

a + (1 − ε1) b − ε1 (α + β) = ε2 β + α, ε2 = (p − 1)(n − p + 1)

p + 1

ε1 (b + α + β) = ε3 β + α ε3 = (p + 1)(n − p − 1)

n − p + 1
.

Finally we obtain two equations only involving a, b, α and β,

a + (1 − ε1) b = (ε1 − ε2) α + (ε1 − 1) β(14)

ε1 b = (1 − ε1) α + (ε3 − ε1) β .(15)

Considering equation (15) we note that b and β are in the image of δ, whereas
α is in the image of d. Hence, since the coefficient (1 − ε1) is obviously
different from one, we can conclude that α has to vanish. Moreover, we have
the equation ε1b = (ε3 − ε1)β. Applying the same argument in equation (14)
we obtain that a has to vanish and that (1 − ε1)b = (ε1 − 1)β. Combining
the two equations for b and β we see that also these expressions have to
vanish. Taking the scalar product of a and b with J�u and integrating over
M yields that J�u has to be closed and coclosed, hence harmonic.
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Proposition 3.1. Let (M, g, J ) be a compact Kähler manifold. Then for any
twistor form u the form �Ju is parallel.

Proof. Let u be a twistor p–form. We have already shown that J�u
is harmonic, i.e. �(J�u) = 0. Since � = ∇∗∇ + q(R), the proof of the
proposition would follow from q(R)(J�u) = 0. For a twistor form u we
have the Weitzenböck formula (4) and the argument in Section 2 shows that
the curvature endomorphism q(R) commutes with � and J . Hence, we obtain

q(R)(J�u) = p

p + 1
y + n − p

n − p + 1
x ,

with the notation above. Since a, b, α and β vanish, equations (12) and
(13) show that x , y vanish too. Hence, q(R)(J�u) = 0 and the Weitzenböck
formula for � and integration over M prove that J�u has to be parallel.

In the case where the degree of the twistor form is different from the
complex dimension, this proposition has an important corollary.

Corollary 3.2. Let (M, g, J ) be a compact Kähler manifold of complex
dimension m. Then for any twistor p–form u, with p �= m, Ju is parallel.

Proof. We first note that the Hodge star operator ∗ commutes with the
complex structure J and with the covariant derivative. Moreover, it interchanges
L and �. If u is a twistor p–form, then ∗u is a twistor form, too, and by
Proposition 3.1, �J ∗ u is parallel. Hence, also ∗�J ∗ u is parallel. But
∗�J ∗ u = ±L Ju and it follows that L Ju is parallel. Since the contraction
with the Kähler form commutes with the covariant derivative we conclude that
�L Ju is parallel as well. Thus (m − p)Ju = �L Ju − L�Ju is parallel.

In the remaining part of this section we will investigate twistor forms u
for which Ju is parallel. The results below are thus valid for all twistor p–
forms with p �= m, but also for twistor m–forms annihilated by J , a fact used
in the next section.

Proposition 3.3. Let (M, g, J ) be a compact Kähler manifold of dimension
n = 2m. Then any twistor p–form u for which Ju is parallel satisfies the equations

δcu = µ1 d�u, dcu = µ2 δLu, δu = − µ1 dc�u, du = − µ2 δc Lu ,

with constants µ1 := − 2(n−p+1)

(p−1)(n−p)−2 and µ2 := 2(p+1)

p(n−p−1)−2 .

Note that this proposition is also valid for forms in the middle dimension.
Proof. The formula for δcu follows from equation (7) after interchanging J
and δ and using the assumption that Ju is parallel. Because of Jδ = δ J + δc

we obtain

δcu (1 − p + 1

(p − 1)(n − p + 1)
) = − 2

p − 1
d�(u) + p + 1

(p − 1)(n − p + 1)
δ(Ju)

= − 2

p − 1
d�(u) .
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Since J�u is also parallel, the formula for δu follows by applying J to
the above equation. Similarly we obtain the expression for dcu by using
equation (10) and the relation Jd = d J + dc. This yields

dcu (1 − n − p + 1

(p + 1)(n − p − 1)
) = n − p + 1

(p + 1)(n − p − 1)
d(Ju) + 2

n − p − 1
δ(Lu)

= 2

n − p − 1
δ(Lu) .

Applying J to this equation yields the formula for du .

As a first application of Proposition 3.3 we will show that the forms du
and δu are eigenvectors of the operator �L .

Lemma 3.4. Let u be a twistor p–form with Ju parallel. Then du and δu
satisfy the equations

�L(du) = 1

4
(n − p − 2) (p + 2) du , �L(δu) = 1

4
(n − p) p δu .

Proof. From Proposition 3.3 we have the equation du = −µ2 δc Lu =
−µ2Lδcu − µ2u. This implies

(1 + µ2) du = − µ2L(δcu) = − µ1 µ2 Ld�u = − µ1 µ2 d L�u

= − µ1 µ2 d(�Lu − (m − p) u)

= − µ1 µ2 (δc Lu + �L du − (m − p) du)

= µ1 du − µ1 µ2 �L(du) + µ1 µ2 (m − p) du .

Collecting the terms with du we obtain

�L(du) = − 1 + µ2 − µ1 − µ1µ2(m − p)

µ1µ2
du

where m denotes the complex dimension. Substituting the values for µ1 and µ2
given in Proposition 3.3, the formula for �L(du) follows after a straightforward
calculation.

Similarly we could prove the formula for �L(δu) by starting from the
equation dcu = µ2 δLu. Nevertheless it is easier to note that ∗u is again a
twistor form (of degree n − p). Hence, 4�L(d ∗ u) = (p − 2)(n − p + 2)d ∗ u
and we have

(p − 2)(n − p + 2) ∗ d ∗ u = 4 ∗ �L(d ∗ u) = 4 L� ∗ d ∗ u

= 4 �L ∗ d ∗ u − 4 (m − p + 1) ∗ d ∗ u .

Hence,

4 �L(δu) = [(p − 2)(n − p + 2) + 4 (m − p + 1)] δu = (n − p) p δu .
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In order to use the property that du resp. δu are eigenvectors of �L
we still need the following elementary lemma.

Lemma 3.5. Let (M2m, g, J ) be a Kähler manifold and let α be a p–form on
M, then

[ �, Ls ] α = s (m − p − s + 1) Ls−1α .

Moreover, if α is a primitive p–form, i.e. if �(α) = 0, then α satisfies in addition
the equation

�r Ls α = s!(m − p − s + r)!

(s − r)!(m − p − s)!
Ls−rα ,

where r, s are any integers.

Proof. In the case r = 1 we prove the formula for the commutator of �

and L by induction with respect to s. For s = 1 it is just the well–known
commutator relation for � and L . Assume now that we know the formula for
s − 1, then

[ �, Ls ] α = ( � ◦ Ls − Ls ◦ � ) α = � ◦ Ls−1 (Lα) − Ls−1 (L ◦ �) α

= Ls−1 ◦ � (Lα) + (s − 1) (m − (p + 1) − (s − 1) + 1) Ls−2 (Lα)

− Ls−1 ◦ � (Lα) + (m − p) Ls−1α

= ((s − 1)(m − p − s) + (m − p)) Ls−1α

= s (m − p − s + 1) Ls−1α .

The formula for �r Ls in the case r > 1 then follows by applying the com-
mutator relation several times.

4. – Twistor forms versus Hamiltonian 2–forms

On a Kähler manifold, any p–form u with p ≤ m has a unique decompo-
sition, u = u0 + Lu1 + . . . + Llul , where the ui ’s are primitive forms. This is
usually called the LePage decomposition of u. From now on we suppose that
p ≤ m, otherwise we just replace u by its Hodge dual ∗u. Applying �L and
using the Lemma 3.5 in the case r = 1 we obtain

� L(u) = (m − p) u0 + 2 (m − p + 1)�u1 + . . . + (l + 1) (m − p + l) Llul .

It is easy to see that coefficients in the above sum are all different. Indeed,
(s+1)(m− p+s) = (r +1)(m− p+r) if and only if (s−r)(m− p+1+s+r) = 0,
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and recall that we assumed that p ≤ m. Hence, a p–form u with p ≤ m is
an eigenvector of �L if and only u = Liα, for some primitive form α and
in that case the corresponding eigenvalue is (i + 1)(m − p + i).

Lemma 3.4 thus implies that du = Lsv and δu = Lrw for some primitive
forms v and w, and moreover (2m − p − 2)(p + 2) = 4(s + 1)(m − p + s − 1)

and p(2m − p) = 4(r + 1)(m − p + r + 1), which have the unique solutions
2s = p and 2r = p − 2. Hence, denoting p = 2k, we have

du = Lkv δu = Lk−1w

for some vectors v and w. Moreover, we see that the LePage decomposition
of u has the form u = u0 + . . . + Lkuk , where uk has to be a function.

Lemma 4.1. Let u be a 2k–form with Ju parallel and such that du = Lkv

and δu = Lk−1w, for some vectors v and w. Then

w = k(2m − 2k + 1)

2k + 1
Jv·

Proof. Applying J to the equation du = Lkv leads to dcu = Jdu =
Lk(Jv). Thus, contracting with the Kähler form yields

�(dcu) = dc�u + δu = � Lk(Jv) = k (m − k) Lk−1(Jv) .

From Proposition 3.3 we have the equation δu = −µ1dc�u. Hence,

δu = (1 − 1

µ1
)−1k(m − k)Lk−1(Jv) ,

which proves the lemma after substituting the value of µ1.

In the next step we will show that in the LePage decomposition of u only
the last two terms, i.e. Lk−1uk−1 and Lkuk , may be non–parallel. Indeed we
have

∇X u = ∇X u0 + L(∇X u1) + . . . + Lk(∇X uk)

= 1

p + 1
X �Lkv − 1

n − p + 1
X ∧ Lk−1w

= Lk−1 (
k

p + 1
J X ∧ v − 1

n − p + 1
X ∧ w) + Lk(

1

p + 1
〈x, v〉)

= Lk−1 ω1 + Lkω2 ,

for some primitive forms ω1, ω2. Hence, comparing the first line with the last,
implies that the components u0, u1, . . . , uk−2 have to be parallel. But then
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we can without loss of generality assume that they are zero, i.e. for a twistor
p–form u, with Ju parallel, we have

u = Lk−1uk−1 + Lkuk

where uk−1 is a primitive 2–form and uk is a function, i.e. p = 2k.
Our next aim is to translate the twistor equation for u into equations for

uk−1 resp. uk . This leads naturally to the following definition, which we will
need for the rest of this paper.

Definition 4.2. A special 2–form on a Kähler manifold M is a primitive
2–form ϕ of type (1, 1) satisfying the equation

(16) ∇X ϕ = γ ∧ J X − Jγ ∧ X − 2

m
γ (X) ω ,

for some 1–form γ , which then necessarily equals m
2(m2−1)

δcϕ.

Recall that a 2–form u is of type (1,1) if and only if Ju = 0. As a first
property of such special forms we obtain

Lemma 4.3. If ϕ is a special 2–form on a compact Kähler manifold M of
dimension m > 2, then δcϕ is exact.

Proof. Taking the wedge product with X in (16) and summing over an
orthonormal basis yields dϕ = 2 m−1

m Lγ = 1
m+1 Lδcϕ. It follows that Ldδcϕ = 0

and, since L is injective on 2–forms, we conclude that δcϕ is closed. Hence,
δcϕ = h + d f for some function f and a harmonic 1–form h. We have to
show that h vanishes. First, note that h is in the kernel of dc and δc since
the manifold is Kähler. Computing its L2–norm we obtain

(h, h) = (h, h + d f ) = (h, δcϕ) = (dch, ϕ) = 0 .

Definition 4.4. The function f given by the lemma above will be called
the generalized trace of the special 2–form ϕ. It is only defined up to a constant.

We can now state the main result of this section

Theorem 4.5. Let u be a form of degree p on a compact Kähler manifold M2m

and suppose that n − 2 ≥ p ≥ 2 and p �= m. Then u is a twistor form if and only if
there exists a special 2–form ϕ whose generalized trace is f and a positive integer
k such that p = 2k and

u = Lk−1ϕ − m − p

p(m2 − 1)
Lk f + parallel form.

The same statement is valid for p = m under the additional assumption that Ju is
parallel.
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Proof. Consider first the case p ≤ m. Using the notations from Lemma
4.1, the twistor equation for u reads

(17) ∇X uk−1 + L∇X uk = k

p + 1
J X ∧ v − 1

n − p + 1
X ∧ w.

An equality between 2–forms is equivalent with the equality of their primitive
parts and that of their traces with respect to the Kähler form. The equality of
the primitive parts in (17) is equivalent to

∇X uk−1 =
(

k

p + 1
J X ∧ v − 1

n − p + 1
X ∧ w

)

− 1

m
�

(
k

p + 1
J X ∧ v − 1

n − p + 1
X ∧ w

)
ω ,

where ω is the Kähler form. Now, �(J X ∧ v) = −〈v, X〉 and �(X ∧ w) −
〈Jw, X〉 so we obtain

∇X uk−1 = k

p + 1
J X ∧ v − 1

n − p + 1
X ∧ w

+ 1

m

(
k

p + 1
〈v, X〉 − 1

n − p + 1
〈Jw, X〉

)
ω

= k

p + 1
J X ∧ v − 1

n − p + 1

k(n − p + 1)

p + 1
X ∧ Jv

+
(

k

m(p + 1)
− 1

m(n − p + 1)

k(n − p + 1)

p + 1

)
〈v, X〉ω

= k

p + 1
J X ∧ v − k

p + 1
X ∧ Jv + 2k

m(p + 1)
〈v, X〉 ω

= γ ∧ J X − Jγ ∧ X − 2

m
γ (X) ω ,

where γ is the 1–form defined by γ (X) = − k
p+1 〈v, X〉. Contracting with J X

shows that γ = m
2(m2−1)

δcuk−1, so v = (p+1)m
p(m2−1)

δcuk−1.
The second part of (17) consists in the equality of the traces, which is

equivalent to

X (uk) = − p

m(p + 1)
〈v, X〉 + 1

p + 1
〈v, X〉 = m − p

m(p + 1)
X �v ,
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i.e.

duk = m − p

m(p + 1)
v = − m − p

p(m2 − 1)
δcuk−1.

We have shown that u is a twistor form if and only if uk−1 is a special form
and uk is − m−p

p(m2−1)
times its generalized trace.

A priori, this only proves the theorem for p ≤ m, but because of the
invariance of the hypothesis and conclusion of the theorem with respect to the
Hodge duality, the theorem is proved in full generality.

Specializing the above result for k = 1 yields the following characterization
of twistor 2–forms also obtained in [4]. Note that the result that we obtain is
more complete than that of [4] since we do not assume the fact that the 2–form
u is a (1, 1)–form.

Lemma 4.6. Let (M2m, g, J, ω) be a Kähler manifold. Then a 2–form u is a
twistor form if and only if there exists a 1–form γ with

(18) ∇X u = γ ∧ J X − Jγ ∧ X − γ (X) ω .

The 1–form γ is necessarily equal to γ = 1
2m−1 Jδu. Moreover, γ = − 1

m−2 d 〈u, ω〉
provided that m > 2.

Proof. First of all we can rewrite equation (18) as ∇X u = −X �(γ ∧ ω) +
X ∧ Jγ . Contracting (resp. taking the wedge product) in (18) with X and
summing over an orthonormal frame {ei } we obtain

Jγ = − 1

2m − 1
δu and γ ∧ ω = − 1

3
du .

Substituting this back into (18) yields the defining equation for a twistor 2–form,
i.e.:

∇X u = 1

3
X �du − 1

2m − 1
X ∧ δu .

Conversely, Theorem 4.5 shows that u = u0 + L f , where

∇X u0 = (γ ∧ J X − Jγ ∧ X) − 2

m
γ (X) ω ,

and d f = − m−2
2(m2−1)

δcu0 = − (m−2)
m γ , so clearly u satisfies (18).

This characterization of twistor 2–forms in particular implies that for m > 2
special forms are just the primitive parts of twistor 2–forms and vice versa. In
the remaining part of this section we will describe a similar relation between
twistor forms and Hamiltonian 2–forms. Using the results of [4] we can thus
produce many examples of non–parallel twistor forms.
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Definition 4.7. A (1, 1)–form ψ is called Hamiltonian if there is a
function σ such that

∇Xψ = 1

2
(dσ ∧ J X − Jdσ ∧ X)

for any vector field X . When m = 2 one has to require in addition that
J grad(σ ) is a Killing vector field.

It follows immediately from the definition that dσ = d〈ψ, ω〉. Hence, one
could without loss of generality replace σ with 〈ψ, ω〉.

Any special 2–form ϕ with generalized trace f defines an affine line ϕ +
R f ω in the space of 2–forms modulo constant multiples of the Kähler form.
Lemma 4.6 shows that this line contains a twistor 2–form and it is not difficult
to see that it contains a unique closed form and also an unique coclosed form.
Indeed, for some real number x , d(ϕ + x f ω) = 0 is equivalent to − 1

m+1 Lδcϕ +
x Ld f = 0, i.e. x = 1

m+1 , and δ(ϕ + x f ω) = 0 is equivalent to δϕ = xdc f =
x Jd f = x Jδcϕ = −xδϕ, i.e. x = −1. The following proposition shows that
this affine line also contains a Hamiltonian 2–form.

Proposition 4.8. Let (M2m, g, J, ω) be a Kähler manifold with a Hamiltonian
2–form ψ . Then u := ψ − 〈ψ,ω〉

2 ω is a twistor 2–form. Conversely, if u is a twistor
2–form and m > 2, then ψ := u − 〈u,ω〉

m−2 ω is a Hamiltonian 2–form.

Proof. Let ψ be a Hamiltonian 2–form and let u be defined as u :=
ψ − 〈ψ,ω〉

2 ω, then

∇X u = ∇X ψ − 1

2
d〈ψ, ω〉(X) ω

= 1

2
(dσ ∧ J X − Jdσ ∧ X) − 1

2
dσ(X) ω .

Thus, the (1, 1)–form u satisfies the equation (18) of Lemma 4.6 with, γ :=
1
2 dσ , and it follows that u is a twistor 2–form. Conversely, starting from a
twistor 2–form u and defining ψ := u− 〈u,ω〉

m−2 ω, we can use the characterization
of Lemma 4.6 to obtain

∇Xψ = γ ∧ J X − Jγ ∧ X .

Since for m > 2 we have γ = − 1
m−2 d〈u, ω〉 = 1

2 d〈ψ, ω〉, which implies that
ψ has to be a Hamiltonian 2–form.

The situation is somewhat different in dimension 4. If ψ is a Hamiltonian
2–form then u = ψ − 〈ψ,ω〉

2 ω = u0 is an anti–self–dual twistor 2–form (or
equivalently, of type (1, 1) and primitive). Conversely, if we start with an anti–
self–dual twistor 2–form u0 and ask for which functions f is the (1, 1)–form
ψ := u0 + f ω a Hamiltonian 2–form we have
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Lemma 4.9. Let (M4, g, J ) be a Kähler manifold with an anti–self–dual
twistor 2–form u0. Then ψ := u0 + f ω is Hamiltonian 2–form if and only if

(19) δu0 = − 3 Jd f

and δu0 is dual to a Killing vector field. In particular, this is the case on simply
connected Einstein manifolds.

Proof. Since f = 〈ψ,ω〉
2 we conclude from the definition that ψ is a

Hamiltonian 2–form if and only if ∇Xψ = d f ∧ J X − Jd f ∧ X for any vector
field X . On the other hand u0 is assumed to be a twistor (1, 1)–form. Hence,
from Lemma 4.6 u0 satisfies ∇X u0 = −X �(γ ∧ω)− Jγ ∧ X , where γ = 1

3 Jδu0.
This implies that ψ = u0 + f ω is a Hamiltonian 2–form if and only if

−X �(γ ∧ω)−Jγ ∧X = d f ∧J X−Jd f ∧X−d f (X)ω = −X �(d f ∧ω)−Jd f ∧X.

This is the case if and only if γ = d f , or equivalently if δu0 = − 3 Jd f . If
the complex dimension is 2, the definition of Hamiltonian 2–forms made the
additional requirement that Jdσ , which here is proportional to δu0, is dual
to a Killing vector field. Hence, it remains to show that on simply connected
Einstein manifolds the equation (19) has a solution such that δu0 is dual to a
Killing vector field. Let X be any Killing vector field on an arbitrary Kähler
manifold, then

0 = L X ω = d X �ω + X �d ω = d J X ,

i.e. the 1–form J X is closed. Hence, since the manifold is simply connected,
there exists some function f with J X = d f and also X = −Jd f . Finally,
it is easy to see that on Einstein manifolds, for any twistor 2–form u0, the
2–form δu0 is dual to a Killing vector field (cf. [15]).

Hamiltonian 2–forms have the following remarkable property (c.f. [4]). If
ψ is Hamiltonian, and if σ1, . . . , σm are the elementary symmetric functions
in the eigenvalues of ψ with respect to the Kähler form ω, then all vector
fields Kj = J grad(σj ) are Killing. Furthermore, the Poisson brackets {σi , σj }
vanish, which implies that the Killing vector fields K1, . . . , Km commute. If
the Killing vector fields are linearly independent, then the Kähler metric is
toric. But even if they are not linearly independent one has further interesting
properties, which eventually lead to a complete local classification of Kähler
manifolds with Hamiltonian 2–forms in [4]. The most important sources of
Kähler manifolds with Hamiltonian 2–forms are weakly Bochner–flat Kähler
manifolds and (in dimension greater than four) Kähler manifolds which are
conformally–Einstein. A Kähler manifold is weakly Bochner–flat if its Bochner
tensor is coclosed, which is the case if and only if the normalized Ricci form
is a Hamiltonian 2–form. The examples include some Hirzebruch surfaces and
the complex projective spaces.
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5. – The middle dimension

In this section we study twistor forms of degree m on compact Kähler
manifolds of real dimension n = 2m. This case is very special thanks to the
following

Lemma 5.1. Let �m M = L1 ⊕ . . . ⊕ Lr be a decomposition of the bundle
of m–forms in parallel subbundles and u = u1 + . . . + ur be the corresponding
decomposition of an arbitrary m–form u. Then u is a twistor form if and only if ui

is a twistor form for every i .

Proof. In the case of m–forms on 2m-dimensional manifolds Proposition 2.3
provides a characterization of twistor forms similar to that of Killing forms. A
m–form u is a twistor form if and only if

(20) � u = m + 1

m
q(R) u

Given a decomposition of the form bundle �m M into parallel subbundles we
know that the Laplace operator � as well as the symmetric endomorphism q(R)

preserve this decomposition. Hence, equation (20) can be projected onto the
summands, i.e. (20) is satisfied for u = u1 + . . . + ur if and only it is satisfied
for all summands ui , which proves the lemma.

In Section 3 we defined special 2–forms, which turned out to be the main
building block for twistor p–forms with p �= m. In dealing with twistor m–
forms on 2m–dimensional Kähler manifolds we have to introduce the following

Definition 5.2. A special m–form on a 2m–dimensional Kähler manifold
is a m–form ψ of type (1, m − 1) + (m − 1, 1) satisfying for all vector fields
X the equation

(21) ∇X ψ = X ∧ Jτ − (m − 1) J X ∧ τ − (m − 1) (X �τ) ∧ ω ,

for some 1–form τ , which then necessarily equals 1
m2−1

δcψ .

Note that for m = 2, we retrieve the definition of special 2–forms on
4–dimensional manifolds (Definition 4.2).

Proposition 5.3. Let u be a m–form on a compact Kähler manifold M2m. Then
u is a twistor form if and only if m = 2k and there exists a special 2–form φ and a
special m–form ψ such that

u = Lk−1 φ + ψ + parallel form.

Proof. Lemma 5.1 shows that we can assume u = Lkuk for some primitive
form uk . Suppose k ≥ 1, then it follows from Proposition 3.1 that J�u =
J�Lkuk = 0. Thus Lemma 3.5 implies J Lk−1uk = 0. Since Lk−1 is injective
on �m−2k , we get Juk = 0 and eventually Ju = 0. For twistor forms
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annihilated by J , the conclusion of Theorem 4.5 also holds in the case p = m.
Hence, u = Lk−1φ + parallel f orm, where φ is a special 2–form.

It remains to treat the case k = 0, i.e. the case where u is a primitive
m–form. Contracting the twistor equation with the Kähler form yields

(22) X �δcu + J X �δu = 0

for all vector fields X . After wedging with X and J X and summing over an
orthonormal basis, this gives

(23) J δ u = (m − 1) δc u and J δcu = − (m − 1) δ u .

Now, ∗u is again a twistor m–form and the above argument shows that we
can suppose ∗u to be primitive. (Otherwise, ∗u = Lk−1φ + parallel f orm,
for a special 2–form φ, which in particular is self–dual, i.e. u = Lk−1φ +
parallel f orm). Applying the Hodge star operator to �(∗u) = 0 immediately
implies Lu = 0. This shows that du = −Lδcu, so the twistor equation becomes

(24)

∇X u = 1

m + 1
( − X �L δc u − X ∧ δ u )

= 1

m + 1

(
− J X ∧ δcu − L (X �δcu) + 1

m − 1
X ∧ Jδcu

)
,

which is just the defining equation (21) of a special m–form with τ = 1
m2−1

δcu.
According to our definition of special m–forms, we still have to show that (up
to parallel forms) u is of type (m − 1, 1) + (1, m − 1). Equivalently we will
show this for ∇X u, where X is any vector field. Recall that u is of type
(m − 1, 1) + (1, m − 1) if and only if J 2u = −(m − 2)2u. We will compute
J 2(∇X u) using the twistor equation. Equation (23) implies that δu is of type
(m − 1, 0) + (0, m − 1), i.e J 2(δu) = −(m − 1)2δu. Moreover, using (22) and
(23) we obtain

J 2(X ∧ δu) = (−1 − (m − 1)2) X ∧ δu + 2 J X ∧ Jδu

= (−1 − (m − 1)2) X ∧ δu + 2 (m − 1) J X ∧ δcu

and similarly

J 2(X �Lδcu) = (−1 − (m − 1)2) X �Lδcu + 2 J X �J Lδcu

= (−1 − (m − 1)2) X �Lδcu − 2 (m − 1) J X �Lδu

= −(m − 2)2 X �Lδcu + 2 (m − 1)X ∧ δu − 2(m − 1) J X ∧ δcu .

Adding these two equations implies J 2(∇X u) = −(m − 2)2∇X u after using the
twistor equation as written in (24).
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As an application of Proposition 5.3 we see that any twistor 2–form on
a 4–dimensional Kähler manifold has to be of type (1, 1) and primitive, i.e.
any twistor 2–form has to be a special 2–form. In this case we know from
Lemma 4.9 that any Hamiltonian 2–form gives rise to a twistor 2–form and
vice versa, under some additional conditions. This clarifies the situation of
twistor 2–forms in dimension 4 and shows in particular that one can exhibit
many examples. Moreover, one can show that any special m–form (m ≥ 3) on
a Kähler-Einstein manifold has to be parallel. Nevertheless for the moment it
remains unclear whether these forms have to be parallel in general.

6. – Twistor forms on the complex projective space

In this section we describe the the construction of twistor forms on the
complex projective space (c.f. [4]). Let M = CPm be equipped with the Fubini-
Study metric and the corresponding Kähler form ω. Then the Riemannian
curvature is given as

RX, Y Z = − (X ∧ Y + J X ∧ JY ) Z − 2 ω(X, Y ) J Z

for any vector fields X, Y, Z . This implies for the Ricci curvature Ric =
2(m + 1) id. Let K be any Killing vector field on CPm . Then there exists
a function f with � f = 4(m + 1) f and K = J grad( f ), i.e. f is an
eigenfunction of the Laplace operator for the first non–zero eigenvalue. Now,
consider the 2–form φ := d K = d Jd f = ddc( f ). Since K is a Killing vector
field it follows:

∇X φ = ∇X (d K ) = 2 ∇X (∇K ) = 2 ∇2
X, · K = − 2 R(K , X)

= − 2 (d f ∧ J X − Jd f ∧ X) − 4 d f (X) ω .

It is clear that φ is a (1, 1)–form and an eigenform of the Laplace operator for
the minimal eigenvalue 4(m + 1). A small modification of φ yields a twistor
2–form. Indeed, defining φ̂ := φ + 6 f ω one obtains

∇X φ̂ = − 2 (d f ∧ J X − Jd f ∧ X) + 2 d f (X) ω .

Using Lemma 4.6 for γ := −2 d f one concludes that φ̂ is a twistor 2–form.
It is not difficult to show that indeed any twistor (1, 1)–form on CPm has to
arise in this way. Summarizing the construction one has

Proposition 6.1 [4]. Let K = J grad( f ) be any Killing vector field on the
complex projective space CPm then

φ̂ := ddc( f ) + 6 f ω = (ddc( f ))0 + 2m − 4

m
f ω

defines a non–parallel twistor (1, 1)–form. Moreover, in dimension 4, φ̂ is a prim-
itive (1, 1)–form, i.e. φ̂ = (ddc( f ))0.
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There are examples of twistor 2–forms on 4–dimensional manifolds which
do not come from Hamiltonian 2–forms [2]. The complete local classification
of Hamiltonian 2–forms was obtained in [3] for m = 2 and in [4] in the general
case. The same references contain examples of compact Kähler manifolds with
non–parallel Hamiltonian 2–forms.
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