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On Cubics and Quartics Through a Canonical Curve

CHRISTIAN PAULY

Abstract. We construct families of quartic and cubic hypersurfaces through a
canonical curve, which are parametrized by an open subset in a Grassmannian and
a Flag variety respectively. Using G. Kempf’s cohomological obstruction theory,
we show that these families cut out the canonical curve and that the quartics are
birational (via a blowing-up of a linear subspace) to quadric bundles over the
projective plane, whose Steinerian curve equals the canonical curve.

Mathematics Subject Classification (2000): 14H60 (primary), 14H42 (secondary).

1. – Introduction

Let C be a smooth nonhyperelliptic curve of genus g ≥ 4 defined over the
complex numbers, which we consider as an embedded curve ιω : C ↪→ P

g−1 by
its canonical linear series |ω|. Let I = ⊕

n≥2 I (n) be the graded ideal of the
canonical curve. It was classically known (Noether-Enriques-Petri theorem, see
e.g. [ACGH] p. 124) that the ideal I is generated by its elements of degree 2,
unless C is trigonal or a plane quintic.

It was also classically known how to construct some distinguished quadrics
in I (2). We consider a double point of the theta divisor � ⊂ Picg−1(C), which
corresponds by Riemann’s singularity theorem to a degree g − 1 line bundle
L satisfying dim |L| = dim |ωL−1| = 1 and we observe that the morphism
ιL × ιωL−1 : C −→ C ′ ⊂ |L|∗ × |ωL−1|∗ = P

1 × P
1 (here C ′ denotes the image

curve) followed by the Segre embedding into P
3 factorizes through the canonical

space |ω|∗, i.e.,
C ↪→ |ω|∗� �π

P
1 × P

1 ↪→ P
3,

where π is projection from a (g −5)-dimensional vertex PV ⊥ in |ω|∗. We then
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define the quadric QL := π−1(P1 × P
1), which is a rank ≤ 4 quadric in I (2)

and coincides with the projectivized tangent cone at the double point [L] ∈ �

under the identification of H 0(C, ω)∗ with the tangent space T[L] Picg−1(C).
The main result, due to M. Green [Gr], asserts that the set of quadrics {QL},
when L varies over the double points of �, linearly spans I (2). From this
result one infers a constructive Torelli theorem by intersecting all quadrics QL

— at least for C general enough.
The geometry of the theta divisor � at a double point [L] can also be

exploited to produce higher degree elements in the ideal I as follows: we
expand in a suitable set of coordinates a local equation θ of � near [L] as
θ = θ2+θ3+. . . , where θi are homogeneous forms of degree i . Having seen that
QL = Zeros(θ2), we denote by SL the cubic Zeros(θ3) ⊂ |ω|∗, the osculating
cone of � at [L]. The cubic SL has many nice geometric properties: under the
blowing-up of the vertex PV ⊥ ⊂ SL , the cubic SL is transformed into a quadric
bundle S̃L over P

1 ×P
1 and it was shown by G. Kempf and F.-O. Schreyer [KS]

that the Hessian and Steinerian curves of S̃L are C ′ ⊂ P
1 × P

1 and C ⊂ |ω|∗
respectively, which gives another proof of Torelli’s theorem.

In this paper we construct and study distinguished cubics and quartics in
the ideal I by adapting the methods of [KS] to rank-2 vector bundles over C .
Our construction basically goes as follows (Section 2): we consider a general
3-plane W ⊂ H 0(C, ω) and define the rank-2 vector bundle EW as the dual of
the kernel of the evaluation map in ω of sections of W . The bundle EW is
stable and admits a theta divisor D(EW ) in the Jacobian JC . Since D(EW )

contains the origin O ∈ JC with multiplicity 4, the projectivized tangent cone
to D(EW ) at O is a quartic hypersurface in PTO JC = |ω|∗, denoted by FW

and which contains the canonical curve. We therefore obtain a rational map
from the Grassmannian Gr(3, H 0(ω)) to the ideal of quartics |I (4)|

(1.1) F4 : Gr(3, H 0(ω)) ��� |I (4)|, W 	→ FW .

Our main tool to study the tangent cones FW is G. Kempf’s cohomological
obstruction theory [K1], [K2], [KS] which in our set-up leads to a simple
criterion (Proposition 4.1) for b ∈ PTO JC = |ω|∗ to belong to FW . We deduce
in particular from this criterion that the cubic polar Px(FW ) of FW with respect
to a point x ∈ W ⊥ also contains the canonical curve. Here W ⊥ denotes the
annihilator of W ⊂ H 0(ω). We therefore obtain a rational map from the flag
variety Fl(3, g − 1, H 0(ω)) parametrizing pairs (W, x) to the ideal of cubics
|I (3)|

(1.2) F3 : Fl(3, g − 1, H 0(ω)) ��� |I (3)|, (W, x) 	→ Px(FW ) .

Our two main results can be stated as follows.

(1) Like the cubic osculating cones SL , the quartic tangent cones FW transform
under the blowing-up of the vertex PW ⊥ ⊂ FW into a quadric bundle
F̃W → PW ∗ = P

2. Their Hessian and Steinerian curves are the plane curve
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�, image under the projection with center PW ⊥, π : C → � ⊂ PW ∗, and
the canonical curve C ⊂ |ω|∗ (Theorem 4.8). This surprising analogy with
the osculating cones SL remains however unexplained.

(2) Let us denote by |F4| ⊂ |I (4)| and |F3| ⊂ |I (3)| the linear subsystems
spanned by the quartics FW and the cubics Px(FW ) respectively. Then
we show (Theorem 6.1) that both base loci of |F4| and |F3| coincide
with C ⊂ |ω|∗,i.e., the quartics FW (resp. the cubics Px(FW )) cut out the
canonical curve.

The starting point of our investigations was the question asked by B. van
Geemen and G. van der Geer ([vGvG] page 629) about “these mysterious
quartics” which arise as tangent cones to 2θ -divisors in the Jacobian having
multiplicity ≥ 4 at the origin. In that paper the authors implicitly conjectured
that the base locus of |F4| equals C , which was subsequently proved by G. Wel-
ters [We]. Our proof follows from the fact that |F4| contains all squares of
quadrics in |I (2)|.

This paper leaves many questions unanswered (Section 7), like e.g. finding
explicit equations of the quartics FW , their syzygies, the dimensions of |F3|
and |F4|. The techniques used here also apply when replacing |ω|∗ by Prym-
canonical space |ωα|∗, and generalizing rank-2 vector bundles to symplectic
bundles.

Acknowledgements. Many results contained in this paper arose from
discussions with Bert van Geemen, whose influence on this work is considerable.
I would like to thank him for these enjoyable and valuable discussions.

2. – Some constructions for rank-2 vector bundles with canonical determinant

In this section we briefly recall some known results from [BV], [vGI] and
[PP] on rank-2 vector bundles over C .

2.1. – Bundles E with dim H 0(C, E) ≥ 3

Let W ⊂ H 0(C, ω) be a 3-plane. We denote by [W ] ∈ Gr(3, H 0(ω))

the corresponding point in the Grassmannian and by B ⊂ Gr(3, H 0(ω)) the
codimension 2 subvariety consisting of [W ] such that the net PW ⊂ |ω| has a
base point. For [W ] /∈ B we consider (see [vGI] Section 4) the rank-2 vector
bundle EW defined by the exact sequence

(2.1) 0 −→ E∗
W −→ OC ⊗ W

ev−→ ω −→ 0 .
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Here E∗
W denotes the dual bundle of EW . We have det EW = ω and W ∗ ⊂

H 0(C, EW ). We denote by D the effective divisor in |OGr(g − 2)| defined by
the condition

[W ] ∈ D ⇐⇒ dim H 0(C, EW ) ≥ 4 .

We have the inclusion B ⊂ D. If [W ] /∈ D, then EW is stable ([vGI]
Lemma 4.2).

Let W ⊥ ⊂ H 0(ω)∗ = H 1(O) denote the annihilator of W ⊂ H 0(ω). We
call the projective subspace PW ⊥ ⊂ |ω|∗ the vertex and denote by

π : |ω|∗ ��� PW ∗, π : C → � ⊂ PW ∗ ,

the projection with center PW ⊥. Abusing notation we also denote by π a linear
lift π : H 0(ω)∗ → W ∗. If [W ] /∈ B, then C ∩ PW ⊥ = ∅ and π restricts to a
morphism C → PW ∗. Its image is a plane curve � of degree 2g − 2. We note
that EW = π∗(T (−1)), where T is the tangent bundle of PW ∗ = P

2.
Conversely any globally generated bundle E with det E = ω is of the form

EW .

2.2. – Bundles E with dim H 0(C, E) ≥ 4

Following [BV] (see also [PP] Section 5.2) we associate to a bundle E
with dim H 0(C, E) = 4 a rank ≤ 6 quadric QE ∈ |I (2)|, which is defined as
the inverse image of the Klein quadric under the dual µ∗ of the exterior product
map

µ∗ : |ω|∗ −→ P(	2 H 0(E)∗) ⊃ Gr(2, H 0(E)∗), QE := (µ∗)−1(Gr) .

Composing with the previous construction, we obtain a rational map

α : D ��� |I (2)|, α([W ]) = QEW .

Moreover given a Q ∈ |I (2)| with rkQ ≤ 6 and Sing Q ∩ C = ∅, it is easily
shown that

α−1(Q) = {[W ] ∈ D|PW ⊥ ⊂ Q} .

If rk Q = 6, then α−1(Q) has two connected components, which are isomorphic
to P

3.

Lemma 2.1. We have [W ] /∈ D if and only if the linear map induced by
restricting quadrics to the vertex PW ⊥

res : I (2) −→ H 0(PW ⊥,O(2))

is an isomorphism.

Proof. It is enough to observe that the two spaces have the same dimension
and that a nonzero element in ker res corresponds to a Q ∈|I (2)| with rkQ ≤6.
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2.3. – Definition of the quartic FW

We will now define the main object of this paper. Given [W ] /∈ B, we
consider the 2θ -divisor D(EW ) ⊂ JC (see e.g. [BV], [vGI], [PP]), whose set-
theoretical support equals

D(EW ) = {ξ ∈ JC | dim H 0(C, ξ ⊗ EW ) > 0} .

Since multO D(EW ) ≥ dim H 0(C, EW ) ≥ 3 and since any 2θ -divisor is sym-
metric, the first nonzero term of the Taylor expansion of a local equation of
D(EW ) at the origin O is a homogeneous polynomial FW of degree 4. The
hypersurface in |ω|∗ = PTO JC associated to FW is also denoted by FW . Here
we restrict attention to the case dim H 0(C, EW ) = 3 or 4. We have

FW := ConeO(D(EW )) ⊂ |ω|∗ .

The study of the quartics FW for [W ] ∈ Gr(3, H 0(ω)) \ D is the main purpose
of this paper. If [W ] ∈ D, the quartics FW have already been described in [PP]
Proposition 5.12.

Proposition 2.2. If dim H 0(C, EW ) = 4, then FW is a double quadric

FW = Q2
EW

.

Since |I (2)| is linearly spanned by rank ≤ 6 quadrics (see [PP] Section 5),
we obtain the following fact, which will be used in Section 6.

Proposition 2.3. The linear subsystem |F4| contains all squares of quadrics in
|I (2)|.

Although we will not use that fact, we mention that the rational map (1.1)
is given by a linear subsystem � ⊂ |JB(g −1)|, where JB is the ideal sheaf of
the subvariety B. If g = 4, the inclusion is an equality (see [OPP] Section 6).
If g > 4, a description of � is not known.

3. – Kempf’s cohomological obstruction theory

In this section we outline Kempf’s deformation theory [K1] and apply it
to the study of the tangent cones FW of the divisors D(EW ).

3.1. – Variation of cohomology

Let E be a vector bundle over the product C × S, where S = Spec(A) is
an affine neighbourhood of the origin of JC . We restrict attention to the case

E = π∗
C EW ⊗ L ,
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for some 3-plane W , and recall that Kempf’s deformation theory was ap-
plied [K1], [K2], [KS] to the case E = π∗

C M ⊗L, for a line bundle M over C .
The line bundle L denotes the restriction of a Poincaré line bundle over C × JC
to the neighbourhood C × S. The fundamental idea to study the variation of
cohomology, i.e., the two upper-semicontinuous functions on S

s 	→ h0(C × {s}, E ⊗A Cs), s 	→ h1(C × {s}, E ⊗A Cs) ,

where Cs = A/ms and ms is the maximal ideal of s ∈ S, is based on the
existence of an approximating homomorphism.

Theorem 3.1 (Grothendieck, [K1] Section 7). Given a family E of vector
bundles over C × S, there exist two flat A-modules F and G of finite type and an A-
homomorphism α : F → G such that for all A-modules M, we have isomorphisms

H 0(C ×S, E⊗A M) ∼= ker(α⊗A idM), H 1(C ×S, E⊗A M) ∼= coker(α⊗A idM) .

By considering a smaller neighbourhood of the origin, we may assume
the A-modules F and G to be locally free (Nakayama’s lemma). Moreover
([K1] Lemma 10.2) by restricting further the neighbourhood, we may find an
approximating homomorphism α : F → G such that α ⊗ C0 : F ⊗A A/m0 →
G ⊗A A/m0 is the zero homomorphism.

We apply this theorem to the family E = π∗
C EW ⊗L, for [W ] /∈ D. Since by

Riemann-Roch χ(E⊗Cs) = χ(EW ⊗Ls) = 0, ∀s ∈ S, and since h0(C, EW ) = 3,
the local equation f of the divisor

D(EW )|S = {s ∈ S : | : h0(C × {s}, EW ⊗ Ls) > 0}
is given at the origin O by the determinant of a 3×3 matrix of regular functions
fi j on S, with 1 ≤ i, j ≤ 3, which vanish at O, i.e., the A-modules F and G
are free and of rank 3. Hence

f = det( fi j ) .

The linear part of the regular functions fi j is related to the cup-product as
follows ([K1] Lemma 10.3 and Lemma 10.6): let m = m0 be the maximal ideal
of the origin O ∈ S and consider the exact sequence of A-modules

0 −→ m/m2 −→ A/m2 −→ A/m −→ 0 .

After tensoring with E over C ×S and taking cohomology, we obtain a cobound-
ary map

H 0(C, EW ) = H 0(C × {s}, E ⊗A A/m)
δ−→ H 1(C × {s}, E ⊗A m/m2)

= H 1(C, EW ) ⊗ m/m2 ,

where m/m2 is the Zariski cotangent space at O to JC . Note that we have a
canonical isomorphism (m/m2)∗ ∼= H 1(O) and that a tangent vector b ∈ H 1(O)

gives, by composing with the linear form lb : m/m2 → C, a linear map δb :
H 0(EW ) → H 1(EW ). As in the line bundle case [K1], one proves
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Lemma 3.2. For any nonzero b ∈ H 1(O) = TO JC, we have

1. The linear map δb : H 0(EW ) → H 1(EW ) coincides with the cup-product
(∪b) with the class b, and is skew-symmetric after identifying H 1(EW ) with
H 0(EW )∗ (Serre duality).

2. The coboundary map δ : H 0(EW ) → H 1(EW ) ⊗ m/m2 is described by a
skew-symmetric 3 × 3 matrix (xi j ), with xi j ∈ H 1(O)∗. Moreover the linear
form xi j coincides with the differential (d fi j )0 of fi j at the origin O.

The coboundary map δ induces a linear map

� : H 1(O) −→ 	2 H 0(EW )∗, b 	−→ δb ,

which coincides with the dual of the multiplication map of global sections of
EW . Moreover

ker � = W ⊥ = {x12 = x13 = x23 = 0} .

Using a flat structure [K2] we can write the power series expansion of the
regular functions fi j around O

fi j = xi j + qi j + . . . ,

where xi j and qi j are linear and quadratic polynomials respectively. We easily
calculate the expansion of f : by skew-symmetry its cubic term is zero, and its
quartic term equals

FW :q11x2
23+q22x2

13+q33x2
12+x12x23(q13+q31)−x12x23(q12+q21)−x12x13(q23+q32).

We straightforwardly deduce from this equation the following properties of FW .

Proposition 3.3.
1. The quartic FW is singular along the vertex PW ⊥.
2. For any x ∈ W ⊥, the cubic polar Px(FW ) is singular along the vertex PW ⊥.

3.2. – Infinitesimal deformations of global sections of EW

We first recall some elementary facts on principal parts. Let V be an
arbitrary vector bundle over C and let Rat(V ) be the space of rational sections
of V and p be a point of C . The space of principal parts of V at p is the
quotient

Prinp(V ) = Rat(V )/Ratp(V ) ,

where Ratp(V ) denotes the space of rational sections of V which are regular
at p. Since a rational section of V has only finitely many poles, we have a
natural mapping
(3.1)

pp : Rat(V ) −→ Prin(V ) :=
⊕
p∈C

Prinp(V ), s 	−→ (s mod Ratp(V ))p∈C .

Exactly as in the line bundle case ([K1] Lemma 3.3), one proves
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Lemma 3.4. There are isomorphisms

ker pp ∼= H 0(C, V ), coker pp ∼= H 1(C, V ) .

In the particular case V = O, we see that a tangent vector b ∈ H 1(O) =
TO JC can be represented by a collection β = (βp)p∈I of rational functions
βp ∈ Rat(O), where p varies over a finite set of points I ⊂ C . We then define
pp(β) = (ωp)p∈I ∈ Prin(O), where ωp is the principal part of βp at p. We
denote by [β] = b its cohomology class in H 1(O). Note that we can define
powers of β by βk := (βk

p)p∈I .
For i ≥ 1, let Di be the infinitesimal scheme Spec(Ai ), where Ai is the

Artinian ring C[ε]/εi+1. As explained in [K2] Section 2, a tangent vector
b ∈ H 1(O) determines a morphism

expi,b : Di −→ JC ,

with expi,b(x0) = O, where x0 is the closed point of Di . Let Li+1(b) denote
the pull-back of the Poincaré sheaf L under the morphism expi,b ×idC . Note
that we have the following exact sequences

D1 × C : 0 −→ εO −→ L2(b) −→ O −→ 0 ,(3.2)

D2 × C : 0 −→ ε2O −→ L3(b) −→ L2(b) −→ 0 .(3.3)

The second arrows in each sequence correspond to the restriction to the sub-
schemes {x0} × C ⊂ D1 × C and D1 × C ⊂ D2 × C respectively. As above we
choose a representative β of b. Following [K2] Section 2, one shows that the
space of global sections H 0(C × Di , Li+1(b)⊗ E), with E = EW and [W ] /∈ D,
is isomorphic to the Ai -module

(3.4)
Vi (β) ={ f = f0 +. . .+ fiε

i ∈Rat(E) ⊗ Ai

such that f exp(εβ) is regular ∀p∈C}.

An element f ∈ Vi (β) is called an i-th order deformation of the global section
f0 ∈ H 0(E). In the case i = 2, the condition f ∈ Vi (β) is equivalent to the
following three elements,

(3.5) f0, f1 + f0β, f2 + f1β + f0
β2

2
,

being regular at all points p ∈ C — for i = 1, we consider the first two elements.
Alternatively this means that their classes in Prin(E) are zero. We note that,
given two representatives β = (βp)p∈I and β ′ = (β ′

p)p∈I ′ with [β] = [β ′],
the two subspaces Vi (β) and Vi (β

′) of Rat(E) ⊗ Ai are different and that
any rational function ϕ ∈ Rat(O) satisfying pp(ϕ) = pp(β ′ − β) induces an
isomorphism Vi (β) ∼= Vi (β

′).
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We consider a class b ∈ H 1(O) \ W ⊥ and a representative β such that
[β] = b. By taking cohomology of (3.2) tensored with E , we observe that a
first order deformation of f0, i.e., a global section f = f0 + f1ε ∈ V1(β) ∼=
H 0(C × D1, L2(b) ⊗ E) always exists. Since rk(∪b) = 2, the global section f0
is uniquely determined up to a scalar

f0 · C = ker(∪b : H 0(E) −→ H 1(E)) .

Moreover any two first order deformations of f0 differ by an element in εH 0(E).
We now state a criterion for a tangent vector b = [β] to lie on the quartic

tangent cone FW in terms of a second order deformation of f0 ∈ H 0(E).

Lemma 3.5. A cohomology class b = [β] ∈ H 1(O) \ W ⊥ is contained in the
cone over the quartic FW if and only if there exists a global section

f = f0 + f1ε + f2ε
2 ∈ V2(β) ∼= H 0(C × D2, L3(b) ⊗ E) .

Proof. The proof is similar to [KS] Lemma 4. We work over the Artinian
ring A4, i.e., ε5 = 0. By Theorem 3.1 applied to the family L5(b) ⊗ E over
C × D4, there exists an approximating homomorphism of A4-modules

(3.6) A⊕3
4

ϕ−→ A⊕3
4 ,

such that ker ϕ|D2
∼= H 0(C×D2, L3(b)⊗E), coker ϕ|D2

∼= H 1(C×D2, L3(b)⊗E),
and ϕ ⊗C0 = 0. We denote by ϕ|D2 the homomorphism obtained from (3.6) by
projecting to A2. Note that any A4-module is free. The matrix ϕ is equivalent
to a matrix

M :=
( εu 0 0

0 εv 0
0 0 εw

)
.

Since ϕ⊗C0 = 0, we have u, v, w ≥ 1. Moreover we can order the exponents so
that 1 ≤ u ≤ v ≤ w. It follows from the definition of D(EW ) as a determinant
divisor that the pull-back of D(EW ) by exp4 : D4 −→ JC is given by the
equation (in A4)

det M = εu+v+w .

We immediately see that b ∈ FW if and only if u + v + w ≥ 5. Let us now
restrict ϕ to D1,i.e., we project (3.6) to A1. Since we assume b /∈ W ⊥ = ker �,
the restriction ϕ|D1 is nonzero and by skew-symmetry of rank 2, i.e., u = v = 1
and w ≥ 2. Hence b ∈ FW if and only if w ≥ 3.

On the other hand the A2-module ker ϕ|D2
∼= H 0(C × D2, L3(b) ⊗ E) has

length 2+w. Let µ be the multiplication by ε2 on this A2-module. Then by (3.4)
the A2-module ker µ is isomorphic to the A1-module H 0(C × D1, L2(b) ⊗ E),
which is of length 4, provided b /∈ W ⊥. Hence we obtain that w ≥ 3 if and
only if there exists an f ∈ H 0(C × D2, L3(b) ⊗ E) such that µ( f ) = ε2 f0.
This proves the lemma.
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4. – Study of the quartic FW

In this section we prove geometric properties of the quartic FW .

4.1. – Criteria for b ∈ FW

We now show that the criterion of Lemma 3.5 simplifies to a criterion
involving only a first order deformation f = f0 + f1ε ∈ V1(β) of f0. As above
we assume b /∈ W ⊥.

First we observe that the rational differential form f1 ∧ f0 is independent of
the choice of the representative β, i.e., f1 ∧ f0 only depends on the cohomology
class b = [β]: suppose we take β ′ = (

βp · ϕ
)

p∈I , where ϕ ∈ Rat(ω). Then f0

and f1 transform into f ′
0 = f0 and f ′

1 = f1 + ϕ f0, from which it is clear that
f ′
1 ∧ f ′

0 = f1 ∧ f0.
Secondly one easily sees that f0 = π(b) (Section 2.1) and that, under

the canonical identification 	2W ∗ = 	2 H 0(E) = W , the 2-plane H 0(E) ∧ f0
coincides with the intersection Vb := Hb ∩ W , where Hb denotes the hyperplane
determined by b ∈ H 1(O).

It follows from these two remarks that, given b and W , the form f1 ∧ f0
is well-defined up to a regular differential form in Vb ⊂ W .

Proposition 4.1. We have the following equivalence

b ∈ FW ⇐⇒ f1 ∧ f0 ∈ Hb .

Proof. Since f1∧ f0 does not depend on β, we may choose a β with simple
poles at the points p ∈ I . By Lemma 3.5 and relation (3.5) we see that b ∈ FW

if and only if the cohomology class [ f1β + f0
β2

2 ] is zero in H 1(E)/im(∪b) –
we recall that f1 is defined up to H 0(E).

First we will prove that [ f0
β2

2 ] ∈ im(∪b). The commutativity of the upper
right triangle of the diagram (see e.g. [K1])

H 0(E)

↓ ·β2

2 ↘ ∪[β2

2 ]

H 0(E)−→H 0(E(2I ))−→E(2I )|2I −→ H 1(E)

∩ ∩ ↗

Rat(E)
pp−→ Prin(E)

implies that [ f0
β2

2 ] = f0 ∪ [β2

2 ]. Moreover the skew-symmetric cup-product map
∪b

∪b = ∧b : H 0(E) = W ∗ −→ H 1(E) = W = 	2W ∗
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identifies with the exterior product ∧b, where b = π(b) ∈ W ∗. It is clear that
im(∪b) = im(∧b) = ker(∧b), where ∧b also denotes the linear form

(4.1) ∧b : 	2W ∗ −→ 	3W ∗ ∼= C .

As already observed, we have f0 = b. Denoting by c ∈ W ∗ the class π([β2

2 ]),

we see that the relation ( f0 ∧ c) ∧ b = b ∧ c ∧ b = 0 implies that f0 ∪ [β2

2 ] ∈
ker(∧b) = im(∪b).

Therefore the previous condition simplifies to [ f1β] ∈ im(∪b). We next
observe that the linear form ∧b on H 1(E) (4.1) identifies with the exterior
product map

H 1(E)
∧ f0−→ H 1(ω) ∼= C .

Since we have a commutative diagram

f1 ∈ H 0(E(I ))
·β−→Prin(E)−→ H 1(E)

↓ ∧ f0 ↓ ∧ f0

f1 ∧ f0 ∈ H 0(ω)
·β−→Prin(ω)−→H 1(ω),

and since f1 ∧ f0 ∈ H 0(ω) ⊂ Rat(ω), we easily see that the condition [ f1β] ∈
im(∪b) is equivalent to f1 ∧ f0 ∈ Hb = ker(∪b : H 0(ω) −→ H 1(ω)).

In the following proposition we give more details on the element f1 ∧ f0 ∈
H 0(ω). We additionally assume that π(b) /∈ �, which implies that the global
section f0 ∈ H 0(E) does not vanish at any point and hence determines an exact
sequence

(4.2) 0 −→ O f0−→ E
∧ f0−→ ω −→ 0 .

The coboundary map of the associated long exact sequence

(4.3) · · · −→ H 0(ω)
∪e−→ H 1(O) −→ · · ·

is symmetric and coincides (e.g. [K1] Corollary 6.8) with cup-product ∪e with
the extension class e ∈ PH 1(ω−1) = |ω2|∗. Moreover ∪e is the image of e
under the dual of the multiplication map

(4.4) H 1(ω−1) = H 0(ω2)∗ ↪→ Sym2 H 0(ω)∗, e 	−→ ∪e .

We note that corank(∪e) = 2 and that ker(∪e) = Vb. Hence ( f1 ∧ f0) ∪ e is
well-defined.
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Proposition 4.2. If π(b) /∈ �, then f1 ∧ f0 /∈ ker(∪e) and we have (up to a
nonzero scalar)

( f1 ∧ f0) ∪ e = b ∈ H 1(O) .

Proof. We keep the notation of the previous proof. The condition f1 ∧ f0 ∈
Vb implies that f1 is a regular section and, by (3.5), that f0 vanishes at the
support of b, i.e., π(b) ∈ �. As for the equality of the proposition, we introduce
the rank-2 vector bundle Ê which is obtained from E by (positive) elementary
transformations at the points p ∈ I and with respect to the line in Ep spanned
by the nonzero vector f0(p). Then we have E ⊂ Ê ⊂ E(I ) and Ê fits into
the exact sequence

0 −→ E −→ Ê −→ OI −→ 0 .

Moreover f1 ∈ H 0(Ê), which follows from condition (3.5). We also have the
following exact sequences

0−→O(I )−→Ê
∧ f0−→ω−→0 (ê)

∪ ∪ ‖
0−→ O f0−→E

∧ f0−→ω−→0 (e),

and the extension class ê ∈ H 1(ω−1(D)) is obtained from e by the canonical
projection H 1(ω−1) → H 1(ω−1(I )). Taking the associated long exact sequences,
we obtain

f1 ∈H 0(Ê)
∧ f0−→H 0(ω)

∪ê−→H 1(O(I ))

∪ ‖ ↑ πI

H 0(E)
∧ f0−→H 0(ω)

∪e−→ H 1(O) ,

where the two squares commute. This means that

πI (( f1 ∧ f0) ∪ e) = ( f1 ∧ f0) ∪ ê = 0 .

Since f1 ∧ f0 does not depend on β (nor on I ), the latter relation holds for
any I with I = supp β. Hence, denoting by 〈I 〉 the linear span in |ω|∗ of the
support I of β, we obtain

( f1 ∧ f0) ∪ e ∈
⋂

I=supp β

ker πI =
⋂

b∈〈I 〉
〈I 〉 = b .

4.2. – Geometric properties of FW

Proposition 4.3. For any [W ] /∈ D we have the following
1. The quartic FW contains the canonical curve C, i.e., FW ∈ |I (4)|.
2. The quartic FW contains the secant line pq, with p �= q, if and only if pq ∩

PW ⊥ �= ∅ or dim W ∩ H 0(ω(−2p − 2q)) > 0.
3. Let � be the set of points p at which the tangent line Tp(C) intersects the vertex

PW ⊥. Then � is empty for general [W ] and finite for any [W ]. Moreover any
point p ∈ C \ � is smooth on FW and the embedded tangent space Tp(FW ) is
the linear span of Tp(C) and PW ⊥.
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Proof. All statements are easily deduced from Proposition 4.1. Given a
point p ∈ C we denote by pp ∈ Prinp(O) the principal part supported at p
of a rational function with a simple pole at p. Then the class [pp] ∈ H 1(O)

is proportional to iω(p) ∈ |ω|∗ = PH 1(O) and the section f0 vanishes at p.
Hence f0pp ∈ Prin(E) is everywhere regular and we may choose f1 = 0. This
proves part 1. See also [PP].

As for part 2, we introduce βλ,µ = λpp + µpq ∈ Prin(O) for λ, µ ∈ C and
denote by sp and sq the global sections π([pp]) and π([pq ]), which vanish at
p and q respectively. Then one checks that f0 = λsp + µsq ∈ ker(∪[βλ,µ])
and pp( f1) = λµ(sqpp + sppq) ∈ Prin(E). With this notation the condition of
Proposition 4.1 transforms into

(4.5) 0 = lλ,µ( f0 ∧ f1) = λµ(λ2γp + µ2γq) ,

where lλ,µ is the linear form defined by [βλ,µ] ∈ H 1(O). The scalars γp and γq

are the values of the section sp∧sq ∈ W∩H 0(ω(−p−q)) at p and q respectively.
We now conclude noting that sp ∧ sq = 0 if and only if pq ∩ PW ⊥ �= ∅.

As for part 3, we first observe that the assumption � = C implies that the
restriction π|C : C → PW ∗ contracts C to a point, which is impossible. Next
we consider the tangent vector tq at p given by the direction q. By putting
λ = 1 and µ = ε, with ε2 = 0, into equation (4.5) we obtain that tq ∈ Tp(FW )

if and only if εγp = 0, i.e., π(q) ∈ Tπ(p)(�). Hence Tp(FW ) = π−1(Tπ(p)(�)),
which proves part 3.

4.3. – The cubic polar Px(FW )

Firstly we deduce from Propositions 4.1 and 4.2 a criterion for b ∈ Px(FW ),
with x ∈ W ⊥. Let Hx be the hyperplane determined by x ∈ H 1(O). As above
we assume b /∈ W ⊥ and π(b) /∈ �, i.e., the pencil V = Vb is base-point-free.

Proposition 4.4. We have the following equivalence

b ∈ Px(FW ) ⇐⇒ f1 ∧ f0 ∈ Hx .

Proof. We recall from Section 4.1 that ∪e induces a symmetric isomorphism
∪e : (V ⊥)∗ ∼−→ V ⊥ and we denote by Q∗ ⊂ P(V ⊥)∗ and Q ⊂ PV ⊥ the
two associated smooth quadrics. Note that Q and Q∗ are dual to each other.
Combining Propositions 4.1, 4.2 and 3.3 (1) we see that the restriction of the
quartic FW to the linear subspace PV ⊥ ⊂ |ω|∗ splits into a sum of divisors

(FW )|PV ⊥ = 2PW ⊥ + Q .

We also observe that Q only depends on V (and on W ) and not on b. Taking
the polar with respect to x ∈ W ⊥, we obtain

(Px(FW ))|PV ⊥ = 2PW ⊥ + Px(Q) .

Finally we see that the condition b ∈ Px(Q) is equivalent to f0 ∧ f1 =
(∪e)−1(b) ∈ Hx .
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We easily deduce from this criterion some properties of Px(FW ).

Proposition 4.5. The cubic Px(FW ) contains the canonical curve C, i.e.,
Px(FW ) ∈ |I (3)|.

Proof. We first observe that the two closed conditions of Proposition 4.4
are equivalent outside π−1(�). Hence they coincide as well on π−1(�) and we
can drop the assumption π(b) /∈ �. Now, as in the proof of Proposition 4.3 (1),
we may choose f1 = 0.

Proposition 4.6. We have the following properties⋂
x∈W⊥

Px(FW ) = SW ∪ PW ⊥ ∪
⋃
n≥2

	n ,

FW ∩ SW = C ∪ 	1, and 	 :=
⋃
n≥0

	n ⊂ FW ,

where SW is an irreducible surface. For n ≥ 0, we denote by 	n the union of (n+1)-
secant P

n’s to the canonical curve C, which intersect the vertex PW ⊥ along a P
n−1.

If W is general, then 	n = ∅ for n ≥ 2 and 	1 is the union of 2(g − 1)(g − 3)

secant lines.

Proof. We consider b in the intersection of all Px(FW ) and we first suppose
that π(b) /∈ �. Then by Propositions 4.1 and 4.4 we have

f0 ∧ f1 ∈
⋂

x∈W⊥
Hx = W .

Hence we obtain that PV ⊥ ∩⋂
x∈W⊥ Px(FW ) is reduced to the point (∪e)(W ) ∈

PV ⊥. On the other hand a standard computation shows that SW is the image of
P

2 under the linear system of the adjoint curves of �. Hence SW is irreducible.
If π(b) ∈ �, we denote by p1, . . . , pn+1 ∈ C the points such that π(pi ) =

π(b). Then f0 vanishes at p1, . . . , pn+1. Since f1 ∧ f0 does not depend on
the support of b, we can choose supp b such that pi /∈ supp b. Then f1 is
regular at pi and we deduce that f1 ∧ f0 ∈ H 0(ω(− ∑

pi )) ∩ W = Vb. Now
any rational f1 satisfying f1 ∧ f0 ∈ Vb = im(∧ f0) is regular everywhere, which
can only happen when f0 vanishes at the support of b. By uniqueness we have
supp b ⊂ {p1, . . . , pn+1} and b ∈ 	n . Note that 	0 = C . This proves the first
equality.

If b ∈ FW ∩ SW , we have f1 ∧ f0 ∈ W ∩ Hb = Vb and we conclude as
above. Note that 	1 is contained in SW and is mapped by π to the set of
ordinary double points of �.

For any [W ] ∈ Gr(3, H 0(ω)) \ D we introduce the subspace of I (3)

LW = {R ∈ I (3)|R is singular along the vertex PW ⊥} .

Then Propositions 4.5 and 3.3 (2) imply that Px(FW ) ∈ LW . More precisely,
we have
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Proposition 4.7. The restriction of the polar map of the quartic FW to its vertex
PW ⊥

P : W ⊥ −→ LW , x 	−→ Px(FW ) ,

is an isomorphism.

Proof. First we show that dim LW = g − 3. We choose a complementary
subspace A to W ⊥,i.e., H 0(ω)∗ = W ⊥⊕A, and a set of coordinates x1, . . . , xg−3
on W ⊥ and a1, a2, a3 on A. This enables us to expand a cubic F ∈ S3 H 0(ω)

F = F3(x) + F2(x)G1(a) + F1(x)G2(a) + G3(a),

Fi ∈ C[x1, . . . , xg−3], Gi ∈ C[a1, a2, a3] ,

with deg Fi = deg Gi = i . Let SA denote the subspace of cubics singular along
PA,i.e. G2 = G3 = 0. We consider the linear map

α : I (3) −→ SA, F 	−→ F3(x) + F2(x)G1(a) .

Since by Lemma 2.1 any monomial xi xj ∈ H 0(PW ⊥,O(2)) lifts to a quadric
Qi j ∈ I (2), we observe that the monomials xi xj xk and xi xj al , which generate
SA, also lift e.g. to Qi j xk and Qi j al in I (3). Hence α is surjective and
dim LW = dim ker α is easily calculated. One also checks that this computation
does not depend on A.

In order to conclude, it will be enough to show that P is injective. Suppose
that the contrary holds, i.e., there exists a point x ∈ W ⊥ with Px(FW ) = 0.
Given any base-point-free pencil V ⊂ W and any b ∈ V ⊥, we obtain by
Proposition 4.4 that f0 ∧ f1 ∈ Hx . Since ∪e : (V ⊥)∗ ∼−→ V ⊥ is an isomorphism,
we see that for b /∈ (∪e)−1(Hx) the element f0 ∧ f1 must be zero. This implies
that b ∈ 	 and since b varies in an open subset of |ω|∗, we obtain 	 = |ω|∗,
a contradiction.

4.4. – The quadric bundle associated to FW

Let P̃
g−1
W → |ω|∗ denote the blowing-up of |ω|∗ along the vertex PW ⊥ ⊂

|ω|∗. The rational projection π : |ω|∗ ��� P
2 = PW ∗ resolves into a morphism

π̃ : P̃
g−1
W → P

2. Since FW is singular along PW ⊥ (Proposition 3.3 (2)), the
proper transform F̃W ⊂ P̃

g−1
W admits a structure of a quadric bundle π̃ : F̃W →

P
2.

The contents of Propositions 4.3 and 4.5 can be reformulated in a more
geometrical way.

Theorem 4.8. For any [W ] ∈ Gr(3, H 0(ω))\D, the quadric bundle π̃ : F̃W →
P

2 has the following properties

1. Its Hessian curve is � ⊂ P
2.

2. Its Steinerian curve is the (proper transform of the) canonical curve C ⊂ |ω|∗.
3. The rational Steinerian map St : � ��� C, which associates to a singular

quadric its singular point, coincides with the adjoint map ad of the plane curve
�. Moreover the closure of the image ad(P2) equals SW .
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Remark 4.9. We note that Theorem 4.8 is analogous to the main result
of [KS] (replace P

2 with P
1 × P

1). In spite of this striking similarity and the
relation between the two parameter spaces Sing and Gr(3, H 0(ω)) (see [PP]),
we were unable to find a common frame for both constructions.

5. – The cubic hypersurface �V ⊂ P
g−3 associated to a base-point-free pencil

PV ⊂ |ω|

In this section we show that the symmetric cup-product maps ∪e ∈
Sym2 H 0(ω)∗ (see (4.3)) arise as polar quadrics of a cubic hypersurface �V ,
which will be used in the proof of Theorem 6.1.

Let V denote a base-point-free pencil of H 0(ω). We consider the exact
sequence given by evaluation of sections of V

(5.1) 0 −→ ω−1 −→ OC ⊗ V
ev−→ ω −→ 0 .

Its extension class v ∈ Ext1(ω, ω−1) ∼= H 1(ω−2) ∼= H 0(ω3)∗ corresponds to the
hyperplane in H 0(ω3), which is the image of the multiplication map

(5.2) im(V ⊗ H 0(ω2) −→ H 0(ω3)) .

We consider the cubic form �V defined by

�V : Sym3 H 0(ω)
µ−→ H 0(ω3)

v̄−→ C ,

where µ is the multiplication map and v̄ the linear form defined by the extension
class v. It follows from the description (5.2) that �V factorizes through the
quotient

�V : Sym3V −→ C,

where V := H 0(ω)/V . We also denote by �V ⊂ PV its associated cubic
hypersurface.

A 3-plane W ⊃ V determines a nonzero vector w in the quotient V =
H 0(ω)/V and a general w determines an extension (4.2) — recall that W ∗ ∼=
H 0(E). Hence we obtain an injective linear map V ↪→ H 1(ω−1), w 	→ e, which
we compose with (4.4)

� : V ↪→ H 1(ω−1) = H 0(ω2)∗ ↪→ Sym2 H 0(ω)∗, w 	→ e 	→ ∪e.

Since V ⊂ ker(∪e), we note that im� ⊂ Sym2V∗.

We now can state the main result of this section.
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Proposition 5.1. The linear map � : V → Sym2V∗ coincides with the polar
map of the cubic form �V , i.e.,

∀w ∈ V, �(w) = Pw(�V ).

Proof. This is straightforwardly read from the diagram obtained by relating
the exact sequences (5.1) and (2.1) via the inclusion V ⊂ W . We leave the
details to the reader.

We also observe that, by definition of the Hessian hypersurface (see e.g.
[DK] Section 3), we have an equality among degree g − 2 hypersurfaces of
PV = P

g−3

(5.3) Hess(�V ) = D ∩ PV,

where we use the inclusion PV ⊂ Gr(3, H 0(ω)).

Remark 5.2. We recall (see [DK] (5.2.1)) that the Hessian and Steinerian
of a cubic hypersurface coincide and that the Steinerian map is a rational
involution i . In the case of the cubic �V , the involution

i : Hess(�V ) ��� Hess(�V )

corresponds to the involution of [BV] Propositions 1.18 and 1.19, i.e., ∀w ∈
D ∩ PV , the bundles Ew and Ei(w) are related by the exact sequence

0 −→ E∗
i(w) −→ OC ⊗ H 0(Ew)

ev−→ Ew −→ 0.

Since we will not use that result, we leave its proof to the reader.

Remark 5.3. The construction which associates to a base-point-free pencil
V ⊂ H 0(ω) the extension class v ∈ |ω3|∗ induces a rational map

Gr(2, H 0(ω)) ��� |ω3|∗, V 	−→ v.

It is worthwhile to investigate the possible relations between that map and the
Wahl map

Gr(2, H 0(ω)) −→ |ω3|, V = 〈s, t〉 	−→ t⊗2d (s/t) .
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6. – Base loci of |F3| and |F4|

Let us denote by |F3| ⊂ |I (3)| and |F4| ⊂ |I (4)| the linear subsystems
spanned by the image of the rational maps F3 and F4 respectively. Then we
have the following

Theorem 6.1. The base loci of |F3| and |F4| coincide with the canonical curve
C ⊂ |ω|∗.

Proof. Let b ∈ Bs |F3| and let us suppose that b /∈ C . We consider a
base-point-free pencil V ⊂ Hb. With the notation of section 5, we introduce
the rational map

rb : PV ��� PV, w 	→ rb(w) = w′, with �̃V (w, w′, ·) = b,

where �̃V is the symmetric trilinear form of �V . We note (Proposition 4.2)
that, for w /∈ P(Hb/V ), the element rb(w) is collinear with the nonzero element
f0 ∧ f1 mod V and that rb is defined away from the hypersurface Hess(�V ),
which we assume to be nonzero. Since b ∈ Bs |F3| we obtain by Proposition
4.4 that

rb(w) =

 ⋂

x∈W⊥
Hx


 mod V = W mod V = w.

Hence rb is the identity map (away from Hess(�V )). This implies that
�̃V (w, w, ·) = b for any w ∈ PV , hence �V = x3

0 , where x0 is the equation of
the hyperplane P(Hb/V ) ⊂ PV . This in turn implies that Hess(�V ) = 0, i.e.,
PV ⊂ D. Since for a general [W ] ∈ Gr(3, H 0(ω)) the pencil V = W ∩ Hb is
base-point-free, we obtain that a general [W ] lies on the divisor D, which is a
contradiction.

As for |F4|, we recall that the fact Bs |F4| = C follows from [We].
Alternatively, it can also be deduced by noticing (see Proposition 2.3) that
Bs |F4| ⊂ Bs |I (2)|. Hence, if C is not trigonal nor a plane quintic, we are
done. In the other cases, the result can be deduced from Proposition 4.3 —
we leave the details to the reader.

7. – Open questions

7.1. – Dimensions

The projective dimensions of the linear systems |F3| and |F4| are not known
for general g. The known values of dim |F4| for a general curve C are given
as follows (see [PP]).

g 4 5 6 7

dim |F4| 4 15 40 88
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The examples of [PP] section 6 show that dim |F4| depends on the gonality of
C . Moreover it can be shown that |F4| �= |I (4)|.

7.2. – Prym-canonical spaces and symplectic bundles

The construction of the quartic hypersurfaces FW admits various analogues
and generalizations, which we briefly outline.

(1) Let Pα := Prym(Cα/C) denote the Prym variety of the étale double
cover Cα → C associated to the nonzero 2-torsion point α ∈ JC . Given a
general 3-plane Z ⊂ H 0(C, ωα), we associate the rank-2 vector bundle EZ

defined by
0 −→ E∗

Z −→ OC ⊗ Z
ev−→ ωα −→ 0.

By [IP] Proposition 4.1 we can associate to EZ the divisor �(EZ ) ∈ |2�|, where
� is a symmetric principal polarization on Pα . Its projectivized tangent cone
at the origin 0 ∈ Pα is a quartic hypersurface FZ in the Prym-canonical space
PT0 Pα

∼= |ωα|∗. Kempf’s obstruction theory equally applies to the quartics FZ .
We note that FZ contains the Prym-canonical curve iωα(C) ⊂ |ωα|∗.

(2) Let W be a vector space of dimension 2n + 1, for n ≥ 1. We consider
a general linear map

� : 	2W ∗ −→ H 0(C, ω).

By taking the n-th symmetric power Symn� and using the canonical maps
Symn(	2W ∗) → 	2nW ∗ ∼= W and Symn H 0(ω) → H 0(ω⊗n), we obtain a
linear map

α : W −→ H 0(ω⊗n),

which we assume to be injective. We then define the rank 2n vector bundle
E� by

0 −→ E∗
� −→ OC ⊗ W

ev−→ ω⊗n −→ 0.

The bundle E� carries an ω-valued symplectic form and the projectivized tangent
cone at O ∈ JC to the divisor D(E�) is a hypersurface F� in |ω|∗ of degree
2n + 2. Moreover F� ∈ |I (2n + 2)|.
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