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On the Weight Filtration of the Homology of Algebraic Varieties:
the Generalized Leray Cycles

FOUAD ELZEIN – ANDRÁS NÉMETHI

Abstract. Let Y be a normal crossing divisor in the smooth complex projective
algebraic variety X and let U be a tubular neighbourhood of Y in X . Using
geometrical properties of different intersections of the irreducible components
of Y , and of the embedding Y ⊂ X , we provide the “normal forms” of a set of
geometrical cycles which generate H∗(A, B), where (A, B) is one of the following
pairs (Y, ∅), (X, Y ), (X, X − Y ), (X − Y, ∅) and (∂U, ∅). The construction is
compatible with the weights in H∗(A, B, Q) of Deligne’s mixed Hodge structure.

The main technical part is to construct “the generalized Leray inverse image”
of chains of the components of Y , giving rise to a chain situated in ∂U .

Mathematics Subject Classification (2000): 14C30 (primary), 14F25(secondary).

1. – Introduction

Let X be a smooth complex projective algebraic variety, Y a normal crossing
divisor in X , and U a tubular neighbourhood of Y in X . For any p ≥ 1 denote
by Ỹ p the normalization of the p-fold intersections of the different irreducible
components of Y , and let Ỹ 0 denote X .

The main goal of the present article is the construction of (geometric) cycles
generating H∗(A, B), where (A, B) is one of the pairs (Y, ∅), (X, Y ), (X, X−Y ),
(X − Y, ∅) or (∂U, ∅). The construction has several additional features. First,
the corresponding cycles are constructed from (geometric) cycles of the spaces
{Ỹ p}p≥0, emphasizing the geometrical connections between the smooth spaces
Ỹ p and the different pairs (A, B). Second, the construction is compatible with
the weights in H∗(A, B, Q) of Deligne’s mixed Hodge structure. Having the
first property of the construction, the second one is rather natural having in mind
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Deligne’s construction of the mixed Hodge structure on the cohomology of the
pairs (A, B). Third, the construction is compatible with Poincaré duality. Here
the point is that we can define a natural morphism at the level of the complexes
of chains which will induce all the wanted dualities. (In general such morphisms
do not exist; the construction of complexes which admit similar morphisms is
rather important, see e.g. [8] for more details.)

Here we wish to stress the main point (and philosophy) of the paper:
our final goal is not (only) to construct the (abstract) homology groups of the
pairs (A, B), and to describe their weight filtration (for this one only needs to
dualize Deligne’s theory at the (co)homological level), but to provide a geomet-
rical/topological method of identifying a set of closed cycles which generates
the groups GrW

∗ H∗(A, B). In some sense, we present “the normal form” of
those geometrical cycles which have a given weight. The beauty of the con-
struction is that this program is established in a uniform way for all the pairs
(A, B).

The construction has two important parts: first, for each pair (A, B) we de-
fine a double complex A∗∗(A, B) together with a weight filtration, in such a way
that its weight spectral sequence {Ek

∗∗}k converges to H∗(A, B), and the induced
weights agree with Deligne’s weights. The entries Ast of the double complex
are (some kind of) geometrical chains of the spaces {Ỹ p}p. In the second part,
we construct a quasi-isomorphism m A,B : Tot∗(A∗∗(A, B)) → C∗(A, B), where
Tot∗ denotes the total complex associated with a double complex and C∗(A, B)

is the group of geometric chains of the pair (A, B). Obviously, the map m A,B

codifies those geometrical steps with which one can construct cycles for the
pair (A, B) from a compatible set of chains of the smooth spaces {Ỹp}p.

Each part faces its own difficulties. First notice that if one wants to dual-
ize Deligne’s construction (which uses e.g. differential forms with logarithmic
poles), then it is not hard to dualise the spectral sequence Ek

∗∗ starting from the
term E1

∗∗, since all these entries can be described in terms of homology groups,
the homological Gysin maps, and morphisms induced by some inclusions. But
the construction of the E0

∗∗ term (i.e. of the double complex A∗∗) can be rather
involved. The difficulty appears in the fact that if one tries to work with the
usual simplicial or singular chains, then there is no good Gysin map and no
good intersection theory of these chains.

Therefore, excepting those cases when the double complex only involves
maps induced by inclusions (these are exactly the cases (A, B) = (Y, ∅) and
(A, B) = (X, Y )), the construction also uses special chains compatible with
intersections (i.e. with a geometrical Gysin map). It turns out that the zero-
perversity chains of Goresky-MacPherson will do the job. (In this paper we
call them “dimensionally transverse” chains.) In the case of ∂U , we even have
to take a mixture of these intersection chains and the usual chains. The reader
probably will be familiar with the double complexes A∗∗ for the pairs (Y, ∅)

and (X, Y ), but A∗∗ for all the other pairs is a novelty of the present paper.
The chain morphism m A,B is a kind of generalization of the construction

of the geometrical cycles living in a tubular neighbourhood of a smooth divisor
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Y in a smooth space X (the Leray cycles), but in the present case of a normal
crossing divisor Y , it is more complex. It codifies the recipe for constructing
closed cycles for (A, B), with a given weight from E∗

∗∗. So, in the final picture,
instead of having only some groups abstractly isomorphic to GrW

∗ H∗(A, B), we
give precise geometric representatives of their elements (via the maps m A,B).
These kind of constructions (excepting the “easy cases” (Y, ∅) and (X, Y )) were
known only in sporadic low dimensional situations.

Even if the “easy cases” were known, since they appear in some (needed)
exact sequences and Poincaré dualities involving the other cases, we decided to
insert them in all our discussions. In fact, our final goal was the understanding
of the case (∂U, ∅), which, in some sense involves all the other cases.

In a forthcoming paper we will provide duality properties between the
present double complexes A∗∗ and the cohomological double complexes used
by Deligne. These dualities are established by some residues along the (normal
crossing divisor) Y , generalizing Leray’s theory (the Y smooth case).

In the present paper the proofs are not based on these (residue type) du-
alities. Nevertheless, at some point we will need to establish a duality at
the weighted (co)homological level with Deligne’s cohomological mixed Hodge
structures. In fact, the degeneration of the spectral sequence Ek

∗∗ at rank two is
proved in this way, and this property is absolutely crucial in the construction of
the geometric cycles. More precisely: the degeneration of the spectral sequence
imposes strong conditions on the cycles of Ỹ p. The very existence of “the
recipe” for constructing the cycles lies in these conditions.

Another feature of the present construction is that it provides an extremely
convenient way to compare the weight filtration with the so called “support
filtration” (or Zeeman filtration). For the pairs (Y, ∅) and (X, X − Y ) we prove
that Deligne’s weight filtration and the support filtration agree. (This is extended
to all the pairs showing that the weights depend only on the topological type
of (X, Y ).) The result for (Y, ∅) was conjectured by Verdier and MacPherson,
and proved by McCrory [19] (see also [12] and [13]). Our new proof is rather
elementary and geometrical, and automatically provides the corresponding result
for (X, X − Y ) as well.

Finally, we mention the following (probably not absolutely negligible) ad-
vantage of the pesent presentation: it gives a uniform way to describe the weight
filtration of different homology groups appearing in the theory of complex alge-
braic variaties using only a topological language, not involving hypercohomolo-
gies, or Deligne’s mixed Hodge complexes. Moreover, as a byproduct, one gets
a geometrical interpretation of the rank two degenerations of the corresponding
weight spectral sequences.

The second part of the introduction presents the main notations and provides
a formal presentation of the main steps of the article. The rest of the paper
is organized as follows. In the second section we analyze the complex of
“dimensionally transverse” sub-analytic chains. This is in fact the complex of
the sub-analytic “intersection chains” associated with the natural stratification of
Y and zero perversity (in the sense of Goresky-MacPherson [9]). Moreover, here
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we also construct the (generalized Leray) operator L (which later will be used
in the definition of the morphisms m A,B). Using the above chains, in Section 3
we define the double complexes A∗∗(A, B) and we list some properties of their
spectral sequences. In Section 4 we review the (needed) algebraic properties
of a double complex whose spectral sequence degenerates at rank 2. Using the
result of the previous two sections, in Section 5 we construct cycles compatible
with the weight filtration. The case of (∂U, ∅) is the most involved, so we
separated it in Section 6.

In the next part, we summarize in more formal language the main steps
of the article, in order to provide a precise guideline for the reader.

1.1. The stratification of Y

Let X be a smooth projective algebraic variety containing a normal crossing
divisor Y . Let {Yα}α∈I be the decomposition of Y into irreducible components.
Here the index set I is a totally ordered set. The divisor Y has a natural
stratification by subspaces Y p consisting of “points of multiplicity ≥ p in Y ”,
i.e.:

Y p =
⋃

α1<···<αp

Yα1 ∩· · ·∩Yαp , with normalization Ỹ p =
∐

α1<···<αp

Yα1 ∩· · ·∩Yαp .

It is convenient to write Yα1,... ,αp = Yα1 ∩ · · · ∩ Yαp and Ỹ 0 = Y 0 = X .

1.2. The tubular neighbourhood of Y

For any variety X and divisor Y , X admits a triangulation compatible
with Y , hence there exists a regular (tubular) neighbourhood in X which is a
deformation retract of Y (see e.g. [22]). In the case of a normal crossing divisor,
A’ Campo [1] describes such a neighbourhood as follows. For any α ∈ I , the
real (oriented) blow-up �α : Zα → X with center Yα provides a differentiable
manifold Zα with boundary and a projection �α inducing a diffeomorphism
above the complement of Yα . Moreover, �−1

α (Yα) is isomorphic to the S1-
bundle associated to the oriented normal bundle NYα/X . We can identify the
fiber above a point y ∈ Yα with the set of real oriented normal directions to
Yα . For example, if Y = Yα is a point in X = C, then Zα is a half-cylinder
whose boundary S1 lies over the point Y . In general, the boundary �−1

α (Yα)

of Zα is diffeomorphic to the boundary of the complement of an open tubular
neighbourhood of Yα in X .

Next we consider the fibered product � : Z → X of the projections
{�α}α∈I over X . Then Z is a manifold with corners whose boundary ∂ Z is
exactly �−1(Y ). In fact, Z is homeomorphic to the complement of an open
tubular neighbourhood V of Y in X , hence ∂ Z is homeomorphic also to the
boundary ∂ V̄ of the closure V̄ of V . This shows that V̄ is homeomorphic to
the mapping cylinder of �|∂ Z : ∂ Z → Y .



ON THE WEIGHT FILTRATION OF THE HOMOLOGY OF ALGEBRAIC VARIETIES . . . 873

More precisely, fix a homeomorphism φ : ∂ Z × [0, ε] → Zε , where Zε ⊂ Z
is some collar of ∂ Z , and φ|∂ Z × {0} is the inclusion ∂ Z ↪→ Zε . There is a
natural projection p : Zε → ∂ Z given by pr1 ◦φ−1, where pr1 is the projection
on the first factor. (This retract can be extended to a strong deformation retract
of the inclusion ∂ Z ↪→ Zε .) Using this, one can define a tubular neighbourhood
Uε of Y in X by Uε := �(Zε). Its boundary ∂Uε is clearly �(φ(∂ Z × {ε})).

This construction is completely satisfactory in the discussion of topological
invariants. But, in fact, Z has a natural semi-analytic structure and the above
homeomorphism φ can be chosen as a sub-analytic homeomorphism as well
(in fact, even as a piecewise analytic isomorphism with respect to the natural
stratification). For the proof of this last statement, see [21]. Therefore, all
the homeomorphisms and maps discussed in the previous paragraphs can be
considered in the sub-analytic category. Moreover, � : Z → X is compatible
with the semi-analytic structures of Z and X .

1.3. The construction of the double complexes A∗∗(A, B)

For any p ≥ 0, we denote the complex of the usual (respectively the
“dimensionally transverse”) sub-analytic chains defined on Ỹ p by (C∗(Ỹ p), ∂)

(respectively by (C�
∗ (Ỹ p), ∂)) (cf. 2.I and 2.II). One has the following chain

morphisms:

· · · C�
∗−4(Ỹ

2)
∩←− C�

∗−2(Ỹ
1)

∩←− C�
∗ (Ỹ 0)� j

C∗(Ỹ 0)
i←− C∗(Ỹ 1)

i←− C∗(Ỹ 2) · · ·
Then define (modulo some shift of indexes): A∗∗(X, X−Y )=(C�

∗ (Ỹ p), ∂, ∩)p≥1,
A∗∗(X − Y ) = (C�

∗ (Ỹ p), ∂, ∩)p≥0, A∗∗(Y ) = (C∗(Ỹ p), ∂, i)p≥1, A∗∗(X, Y ) =
(C∗(Ỹ p), ∂, i)p≥0. Finally, let A∗∗(∂U ) be the cone of the morphism j (consid-
ered as a morphism of double complexes) after we replace in the above diagram
Ỹ 0 by U . The weight filtration W∗ of a double complex A∗∗ is defined by
Ws := ⊕p≤s Apq . {E∗

st } denotes the corresponding weight spectral sequence of
(A∗∗, W ). The main property of these spectral sequences is that they degenerate
at rank two.

1.4. The construction of the cycles

First, using the geometrical properties of the projection �, for any pair
(A, B) we construct a chain morphism m A,B : Tot∗(A∗∗(A, B)) → C∗(A, B),
and we prove that it is a quasi-isomorphism. Then, using the degeneration
property of the spectral sequence, any representative cst of an element [cst ] ∈
ker(d1|E1

st) is completed to a chain c∞
st = cst + cs−1,t+1 + · · · ∈ Z∞

st with
D(c∞

st ) = 0, where D is the differential of the associated total complex Tot∗(A∗∗)
(and cpq ∈ Apq ). The final product of the construction is the k = s + t
dimensional closed cycle m A,B(c∞

s,t ) in Ck(A, B).
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For the various pairs (A, B) considered above, we have the following result.

Theorem 1.5. a) (E1
st , d1) of the weight spectral sequence can be explicitly

determined from the homology of the spaces Ỹ p and from the various normal bundles
of the components of Ỹ p in Ỹ p−1.

b) Er
st ⇒ Hs+t(A, B, Z), and induces a weight filtration on the integer ho-

mology. Moreover E∞
st ⊗Q = GrW

−t Hs+t(A, B, Q) (the last considered in Deligne’s
MHS).

c) E∗
∗∗ ⊗ Q degenerates at rank 2.

d) The above construction provides all the cycles of the pair (A, B) (mod-
ulo boundary) according to their weights. More precisely, the homology class
[m A,B(c∞

s,t )] of dimension k = s + t is well-defined modulo W−t−1 Hk(A, B, Q),
and these types of classes generate W−t Hk(A, B, Q).

Example 1.6. Suppose Y = Y1 ∪ Y2 has two components with smooth
intersection Y1,2 = Y1 ∩ Y2. One wishes to describe all the k dimensional cycles
in ∂U . Let us exemplify the weight −k − 1 case (s = −1).

Two homology classes [ai ] ∈ Hk−1(Yi ), i = 1, 2, satisfying [a1] ∩ [Y1,2] =
[a2] ∩ [Y1,2] in Hk−3(Y1,2) give rise to such a homology class in ∂U . The
corresponding representative can be constructed as follows. Assume that the
representative ai is transversal to Y1,2 in Yi (i = 1, 2). Due to the condition
about [ai ] ∩ [Y1,2], there exists a chain a1,2 in Y1,2 such that ∂a1,2 = a2 ∩ Y1,2 −
a1 ∩ Y1,2. Now, �−1(ai ) is an “S1-bundle over ai ” (i = 1, 2) — the precise
meaning of �−1(ai ) will be explained latter, cf. the operator L in Section 2
— and �−1(a1,2) is an “S1 × S1-bundle over a1,2”. Therefore, dim �−1ai =
dim �−1a1,2 = k. Moreover, by the very construction, �−1(a1 + a2 + a1,2) has
no boundary. It is the wanted closed cycle in ∂U (via an identification of ∂ Z
with ∂U ). The ambiguity provided by the choice of a1,2 is modulo a cycle of
weight −k − 2.

Now, consider the case when Y has three irreducible components Yi (i =
1, 2, 3) with Y1,2,3 �= ∅. Similarly as above, we want to lift some closed cycles
ai into ∂U . The first obstruction is [ai ∩ Yi, j ] = [aj ∩ Yi, j ] in the homology of
Yi, j (for any pair i �= j). (This condition is codified in (E1

∗∗, d1).) Using this,
we create the new chains ai, j in Yi, j as above. Now, if we want to lift these
new chains and glue them together, we face the second obstruction provided by
the triple intersection Y1,2,3 (codified in (E2

∗∗, d2)). The main point is that there
exists a good choice of ai, j such that this new obstruction is trivial; the vanishing of
this second obstruction is equivalent to the vanishing of the second differential
d2 of the spectral sequence. Now the construction can be continued (i.e. in this
case one gets an additional cycle a1,2,3) which, together with the other pieces,
lifted via �, provides the wanted representative as above.

For a more complete example see 6.9.



ON THE WEIGHT FILTRATION OF THE HOMOLOGY OF ALGEBRAIC VARIETIES . . . 875

2. – Topological Preliminaries

I. Geometric chains

2.1. Preliminary remarks

In some cases it is not absolutely evident how one can dualize a result
established in cohomology. For example, if we want to compute the homology
of Y , then Deligne spectral sequence in cohomology has a very natural analog
in homology. On the other hand, if we want to find the homological analogue
of the cohomological theory of X − Y , then we have to realize that there is no
obvious homological candidate. Actually, the E1-term of the spectral sequence
associated with the log complex (�∗

X (log Y ), W ) can be easily dualized; but we
want (and need to) dualize the whole spectral sequence, in particular the E0
term as well.

Since the Gysin differential, in the cohomological E1-term of X−Y , dualizes
to the intersection of cycles, one needs to work with chains with good intersection
properties with respect to the stratification defined by Y . Similarly as in the
case of the intersection homology groups, one has several options to define the
chain complex. In the original definition of the intersection homology groups,
Goresky and MacPherson used geometric chains with some restrictions provided
by the perversities [9]. On the other hand, H. King recovered these groups using
singular chains. We will follow here the first option: we will use sub-analytic
geometric chains. The sub-analytic assumption is also motivated by the fact
that these chains are stable with respect to the real blowing up along Y (in
contrast with the P.L. chains).

Moreover, in order to have a good intersection theory, one needs some kind
of transversality property of the chains. Here again one has several possibilities.
Our choice asks (only) a “dimensional transversality” of the chains. This has
the big advantage that the complex of these chains coincides with the complex
of zero perversity chains of Goresky-MacPherson; but has the disadvantage, that
in the intersections of the cycles we have to handle an intersection multiplicity
problem (see the second Subsection II).

2.2. Definition. Sub-analytic geometric chains

Before we start the precise definition of our geometric chains, let us review
briefly the general theory. We will follow the presentation from [18], pages
146-155.

Fix a manifold M . The group of geometric chains is defined in three
steps. First, one defines a good class C of subsets of M . This should satisfy the
following properties: (1) if a subset S of M is in C, then M has a Whitney
stratification such that S is a union of strata, and each stratum is in C; (2) the
class C is closed under unions, intersections and differences; (3) the closure of
a subset in C is in C.
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In the second step, one defines the geometric prechains (relative to C).
Basically, they can be represented as

∑
α mα Sα , where each Sα is a closed

subset from C (with a fixed orientation) and mα is an integer (the coefficient
or the “multiplicity” of Sα). A geometric chain is an equivalence class of
geometric prechains with respect to a natural equivalence relation. (For details,
see [18].)

In this paper we will use sub-analytic chains: if M is a complex analytic
manifold, and we fix a real analytic structure on M , then the class of all
sub–analytic subsets of M form the good class of subsets C.

Since for any p ≥ 0, Ỹ p is a complex analytic manifold, the above definition
can be applied. The corresponding chain complex is denoted by C∗(Ỹ p). We
emphasize (even if this is clear since X is compact) that we deal with chains
with compact supports. (Cf. also with [2], I.)

2.3. Sub-analytic geometric chains via triangulation

In this paragraph we present a different realization of C∗(Ỹ p). We closely
follow the paper [9] of Goresky and MacPherson (where the case of the P.L.
geometric chains is considered instead of sub-analytic ones).

We regard our manifold X as a pseudomanifold of dimension 2n, where n is
the complex dimension of X . We consider its natural stratification X2n−2p+1 =
X2n−2p = Y p for p ≥ 1, hence � = Y . Similarly as above Ỹ 0 = Y 0 = X .

By [15], X admits a (canonical) sub-analytic triangulation, compatible with
the stratification. In fact, any two sub-analytic triangulations admit a common
refinement (see [15], 2.4).

For the next definitions, we fix an integer p ≥ 0. Then Ỹ p is again a
pseudomanifold. Its stratification is given by the intersection points of “mul-
tiplicity ≥ p”. If T is a sub-analytic triangulation of Ỹ p, compatible with
its stratification, let CT

∗ (Ỹ p) be the chain complex of simplicial chains of Ỹ p

with respect to T . By definition, a chain of Ỹ p is an element of CT
∗ (Ỹ p) for

some sub-analytic triangulation T , however one identifies two chains c ∈ CT
∗

and c′ ∈ CT ′
∗ if their canonical images in CT ′′

∗ coincide, for some common
refinement T ′′ of T and T ′. Hence, the group of all chains is the inductive
limit with respect to all the triangulations, and it is denoted by lim→ CT

∗ (Ỹ p).
Obviously, there is a natural boundary operator ∂ which makes lim→ CT

∗ (Ỹ p)

a complex.
If ξ ∈ CT

k , then the support |ξ | of ξ is the union of the closures of those
k-simplices σ whose coefficient in ξ is non-zero. Actually, the support of ξ is
independent on T , and it is a k-dimensional sub-analytic subset (in particular,
it is well-defined for any element of lim→ CT

∗ (Ỹ p)).

2.4. Identification and homological properties of the chains

(a) lim→ CT
∗ (Ỹ p) = C∗(Ỹ p);
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(b) The homology of the complex C∗(Ỹ p) is the usual (i.e. singular) homology
H∗(Ỹ p) of Ỹ p;

(c) For any triangulation T , the natural morphism CT
∗ (Ỹ p) → lim→ CT

∗ (Ỹ p) is a
quasi-isomorphism.

Proof. For (a) notice that for an arbitrary closed sub-analytic subset S of
Ỹ p, by [15], there is a sub-analytic triangulation T which makes S an element
of CT

∗ (Ỹ p) (with all multiplicities one). For (b) see [18], page 155. Finally,
for (c) notice that the triangulation homeomorphism t : |K | → Ỹ p from the
simplicial complex |K | to Ỹ p identifies the simplicial homology of |K | and the
usual homology of Ỹ p.

II. “Dimensionally transverse” chains

For any p ≥ 0, we introduce the following complex of dimensionally
transverse chains in Ỹ p. We recall that the stratification of Ỹ p is provided by
the intersection points of multiplicity ≥ p. It will be denoted by {Ỹ p

2n−2p−2r }r≥0

(i.e. 2r denotes the real codimension in Ỹ p).

Definition 2.5. We say that a chain ξ ∈ Ck(Ỹ p) is dimensionally trans-
verse, if

a) dim(|ξ |) ∩ Ỹ p
2n−2p−2r ≤ k − 2r , for any r > 0; and

b) dim(|∂ξ |) ∩ Ỹ p
2n−2p−2r ≤ k − 1 − 2r , for any r > 0.

The subgroup of C∗(Ỹ p) consisting of the dimensionally transverse chains
is denoted by C�

∗ (Ỹ p). The boundary operator ∂ maps dimensionally transverse
chains into dimensionally transverse chains, hence defines a complex with ∂2 =0.

In fact, the complex C�
∗ (Ỹ p) is exactly the complex I C 0̄

∗ (Ỹ p) of intersection
chains corresponding to the zero perversity (see [9]).

Lemma 2.6. The natural inclusion j : (C�
∗ (Ỹ p), ∂) → (C∗(Ỹ p), ∂) is a quasi-

isomorphism. In particular, the homology of (C�
∗ (Ỹ p), ∂) is H∗(Ỹ p).

Proof. This follows from Section 4.3 of [9] (because the Poincaré map
H 2n−2p−k(Ỹ p) → Hk(Ỹ p) is an isomorphism, provided by the smoothness of
Ỹ p). Actually, since Ỹ p is smooth, and the intersection homology group is
independent on the stratification (cf. [9], 3.2), all the intersection homology
groups are the same to the usual homology groups.

2.7. The intersections with the strata

Now, for any chain ξ = ξ k
α1,... ,αp

∈ C�
k (Yα1,... ,αp ) and α �∈ {α1, . . . , αp} we

define the intersection chain ξ ∩ Yα ∈ C�
k−2(Yα1,... ,αp ∩Yα). Here, similarly as

above, if p = 0 then Yα1,... ,αp denotes X . In the definition an “intersection
multiplicity” plays a crucial role. It is clear that the intersection |ξ | ∩ Yα of the
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supports has dimension ≤ k − 2, and this intersection satisfies the transversality
restrictions imposed by the (k − 2)-dimensional supports. But, still we have
to determine the coefficients of those simplices which support this intersection.
For this, we will follow [9]. We start with the following fact.

2.8. Fact ([9] page 138)

If C ⊂ Ỹ p+1 is a (k-2)-dimensional sub-analytic subset of Ỹ p+1 and if D ⊂ C is
a (k-3)-dimensional sub-analytic subset, then there is a one-to-one correspondence
between chains β ∈ Ck−2(Ỹ p+1) such that |β| ⊂ C, |∂β| ⊂ D, and between
homology classes [β] ∈ Hk−2(C, D). Furthermore, the homology class of ∂β in
Hk−3(D) is exactly ∂∗([β]), where ∂∗ : Hk−2(C, D) → Hk−3(D) is the natural
connecting homomorphism.

Using the above Fact, the intersection ξ �→ ξ ∩Yα is completely determined
by the following composition:

Hk(|ξ |, |∂ξ |)

≈ ↑ ∩[Yα1,... ,αp ]

H 2n−2p−k(Yα1,... ,αp − |∂ξ |, Yα1,... ,αp − |ξ |)
↓ i∗

H 2n−2p−k(Yα1,... ,αp ∩ Yα − |∂ξ |, Yα1,... ,αp ∩ Yα − |ξ |)
≈ ↓ ∩[Yα1,... ,αp ∩ Yα]

Hk−2(|ξ | ∩ Yα, |∂ξ | ∩ Yα).

Above, the first map is the (inverse) of the cap product with the fundamental
class of Yα1,... ,αp , as it is presented in the Appendix of [9], page 162; the second
map is the restriction i∗, where i is the natural inclusion; and finally, the third
map is again the cap product with the fundamental class of Yα1,... ,αp ∩ Yα . The
cap products are isomorphisms (cf. [loc.cit.]).

Then the map ξ �→ ξ ∩ Yα is defined as follows: ξ gives an element in
Hk(|ξ |, |∂ξ |) via 2.8, and the image of that element by the above composition
determines ξ ∩ Yα , via the same 2.8.

Remark 2.9. Obviously, the supports satisfy the inclusion |ξ∩Yα| ⊂ |ξ |∩Yα .
Nevertheless, it is important to notice that |ξ ∩ Yα| is not necessarily equal to
|ξ | ∩ Yα (see e.g. 2.22).

Next, we define an operator ∩ : C�
k (Ỹ p) → C�

k−2(Ỹ
p+1). If ξ k ∈ C�

k (Ỹ p),
we write ξ k = ⊕α1<...<αp ξ k

α1,... ,αp
for the corresponding components of ξ k
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corresponding to the decomposition of Ỹ p (the index k emphasizes the di-
mension, and sometimes it is omitted). Similarly, the components of ∩ξ are
⊕α1<...<αp+1 (∩ξ)α1,... ,αp+1 . Then, by definition:

(∩ξ)α1,... ,αp+1 =
p∑

i=0

(−1)k+i ξ k
α1,... ,αi ,α̂i+1,αi+2,... ,αp+1

∩ Yαi+1

(where α̂i+1 means that αi+1 is omitted).

Lemma 2.10. a) ∩2 = 0 and b) ∂ ∩ + ∩ ∂ = 0.

Proof. The proof follows from a standard index manipulation and from
the identity (ξα1,... ,αp ∩ Yα) ∩ Yβ = (ξα1,... ,αp ∩ Yβ) ∩ Yα for any α < β and
α, β �∈ {α1, . . . , αp} (which follows from [9], page 144). For b) also notice that
the sign (−1)k in the definition of ∩ provides the wanted identity instead of
∩∂ = ∂∩.

The fact that the homology of (C�
∗ (Ỹ p), ∂) is exactly H∗(Ỹ p) (cf. Lemma

2.6) and part (b) of 2.10 show that ∩ induces an operator H∗(Ỹ p)→ H∗−2(Ỹ p+1),
still denoted by ∩.

Lemma 2.11. For any p ≥ 0, the operator ∩ : Hk(Ỹ p) → Hk−2(Ỹ p+1),
[ξ ] �→ ∩[ξ ], induced by ∩ : C�

k (Ỹ p) → C�
k−2(Ỹ

p+1) is

(∩[ξ ])α1,... ,αp+1 =
p∑

i=0

(−1)k+i [ξ ]
α1,... ,αi ,α̂i+1,αi+2,... ,αp+1

∩ [Yαi+1]

where ∩[Yα] denotes the homological Gysin map, or transfer map i!, where i :
Yα1,... ,αp ∩ Yα ↪→ Yα1,... ,αp is the natural inclusion. (I.e. i! = P D ◦ i∗ ◦ P D, where
P D denotes the Poincaré dualities in the corresponding spaces; cf. e.g. [3], page
368.)

Proof. The result follows from the definition of the intersection ξ ∩ Yα; cf.
also with the next discussion about Poincaré dualities.

2.12. The Poincaré duality map

We will need later the Poincaré isomorphism between homology of Y and
cohomology of X with support in Y . Therefore, we review the construction of
[9], pages 139-140, inspired by the classical construction which provides the
Poincaré duality for manifolds (see e.g. [3], page 338).

Similarly as above, for any triangulation T of X , compatible with the strat-
ification, one can consider the chain complex of simplicial cochains (C∗

T (Ỹ p), δ)

of Ỹ p. Here Ci
T (Ỹ p) = Hom(CT

i (Ỹ p), Z). Let T ′ be the first barycentric sub-
division of T , and let σ̂ denote the barycentre of the simplex σ ∈ T . Let
Ti be the i-skeleton of T , thought of as a subcomplex of T ′. It is spanned
by all vertices σ̂ such that dim σ ≤ i . Let Di be the i-coskeleton spanned,
as a subcomplex of T ′, by all the vertices σ̂ such that dim σ ≥ i . There are
canonical simplex preserving deformation retracts:
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2.13 X − |Ti | → |Di+1| and X − |Di+1| → |Ti |

Now, identify Ci
T (X) with ⊕dim σ=i H i (σ, ∂σ ) = Hi (|Ti |, |Ti−1|), and define

pd : Ci
T (X) → CT ′

2n−i (X) by the following composition:

Hi (|Ti |, |Ti−1|)
↓ ∩[X ]

H2n−i (X − |Ti−1|, X − |Ti |)
≈ ↓ (deformation retract)

H2n−i (|Di |, |Di+1|)
↓

H2n−i (|T ′
2n−i |, |T ′

2n−i−1|)

Actually, H2n−i (|T ′
2n−i |, |T ′

2n−i−1|) = CT ′
2n−i (X), but we have even something

more. Since the image of any chain by this composition is supported by union
of |Di |’s, and any |Di | is dimensionally transverse, one obtains a homomor-

phism pd : Ci
T (X) → CT ′,�

2n−i (X). Similarly, for any Yα1,... ,αp , one can define a
homomorphism:

pd : Ci
T (Yα1,... ,αp ) → CT ′,�

2n−2p−i (Yα1,... ,αp ).

By [9] (7.2), this is a chain map:

2.14. ∂ ◦ pd = pd ◦ δ

Lemma 2.15. a) Fix α �∈ {α1, . . . , αp}. Then the following diagram is commu-
tative:

Ci
T (Yα1,... ,αp )

pd−→ CT ′,�
2n−2p−i (Yα1,... ,αp )�i∗

�∩
Ci

T (Yα1,... ,αp ∩ Yα)
pd−→ CT ′,�

2n−2p−i−2(Yα1,... ,αp ∩ Yα)

b) The above diagram (and 2.14) provides at homology level a commutative
diagram:

Hi (Yα1,... ,αp )
P D−→ H2n−2p−i (Yα1,... ,αp )�i∗

�∩
Hi (Yα1,... ,αp ∩ Yα)

P D−→ H2n−2p−i−2(Yα1,... ,αp ∩ Yα)

where the horizontal maps are the Poincaré duality isomorphisms (cf. also with
2.11).

Proof. Use the definitions of ∩ and pd and 2.13.
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III. The chain correspondence L

2.16. In this subsection we present our main topological tool: the generalized
Leray correspondence L which provides chains in Z , respectively in its boundary
∂ Z , as “strict inverse” of chains on Ỹ p. But first we have to fix some orientation
conventions regarding the fibers �−1(yo) for different points yo ∈ Y .

2.17. Orientation convention

We denote the oriented boundary of a disc in the complex plane by S1 = ∂ D
(where we consider the orientation of a boundary in the usual way). For
any point yo ∈ Y 1 − Y 2, the circle �−1(yo) appears as the boundary of the
complement of a disc in C, hence (as an oriented 1-manifold) it is −S1. If
yo ∈ Y p − Y p+1 then the situation is similar. Y , in a local model, is defined
by {y1 . . . yp = 0} ⊂ Cp where yo stays for the origin. Let U be defined by
{y | min |yi | ≤ 1} ⊂ Cp and the component Yαi by yi = 0. Then �−1(yo),
set-theoretically, is the tori S1

1 × . . .× S1
p, where S1

i is defined by {yi : |yi | = 1}.
Then, we fix the orientation of �−1(yo) as given by the product orientation
(−S1

1) × · · · × (−S1
p). Moreover, if σ is a contractible C∞-submanifold in

Yα1,... ,αp − Y p+1 (α1 < · · · < αp), then on the set-theoretical inverse image
�−1(σ ) we define the product orientation σ × (−S1

α1
) × · · · × (−S1

αp
).

With this notations, the following holds.

Lemma 2.18. Fix indices α1 < · · · < αi < α < αi+1 < · · · < αp and let
σ ⊂ Yα1,... ,αp be an oriented C∞ sub-manifold with boundaries such that σ and ∂σ

intersect Yα transversally, but σ ∩ Yβ = ∅ for any β �∈ {α, α1, . . . , αp} (here the
transversality is considered in Yα1,... ,αp ). Then the oriented boundary ∂(�−1σ) of
�−1σ is the union of �−1(∂σ ) and (−1)dim σ+i�−1(σ ∩ Yα).

Proof. In a neighbourhood of an intersection point p ∈ σ ∩Yα (respectively
(∂σ ) ∩ Yα), σ has a product structure D × T where T is a ball (respectively
a half ball) in Yα ∩ Yα1,... ,αp , and D is a real 2-disc transversal to Yα . We
denote the boundary of D by ∂ D. Let Dη = D − {small open disc of radius
η and origin 0}; hence ∂ Dη = ∂ D − S1

η . Then we have the diffeomorphism
�−1(D × T ) ≈ �−1(Dη × T ). Since �−1(Dη × T ) = Dη × T × �, where
� = (−1)p S1

α1
× · · · × S1

αp
, we get: ∂�−1(Dη × T ) = ∂ D × T × � − S1

η × T ×
� + Dη × ∂T × �. Hence ∂�−1(D × T ) = (−1)dim T +i T × (−1)p+1S1

α1
× · · · ×

S1
α × · · · × S1

αp
+ ∂(D × T ) × � = (−1)dim σ+i�−1(σ ∩ Yα) + �−1∂σ (with the

obvious notations).

2.19. Definition of L(ξ)

Next, we lift an arbitrary sub-analytic chain via �. Let n : Ỹ p → Y be the
natural map. Then notice that for each sub-analytic subset S ⊂ Ỹ r , the strict
transform S̃ := cl(�−1(n(S) − Y r+1)) (i.e. the closure of the inverse image of
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the complement of Y r+1 in n(S)) is a sub-analytic subset of Z . Indeed, the
strict transform can be constructed using a real analytic isomorphism and the
permitted operations listed in 2.2 (2-3).

Fix again the integer p ≥ 0. For any chain ξ ∈ C�
k (Ỹ p) we construct a

chain L p(ξ) in Ck+p(∂ Z) if p ≥ 1, respectively in Ck(Z) if p = 0.
In a simple way, the chain L p(ξ) can be defined as follows. Write ξ

as a finite sum
∑

mσ σ , where σ are the simplices in the support of ξ with
non-zero coefficients. Let σ 0 be n(σ ) − Y p+1. Then the closure cl(�−1(σ 0))

of �−1(σ 0) is a (k + p)–dimensional sub-analytic set. Then define L p(ξ) by∑
mσ cl(�−1(σ 0)).
In the next discussions we will use another (equivalent) definition based

on Fact 2.8. Again notice that the inverse image �−1(n(|ξ |)) of the support of
ξ is a (k + p)–dimensional sub-analytic subset of Z . For simplicity, sometimes
we will omit the map n, e.g. we will write �−1(|ξ |).

First, we consider the morphism

i : Hk(|ξ |, |∂ξ |) −→ Hk(|ξ |, |∂ξ | ∪ (|ξ | ∩ Y p+1))

induced by the inclusion (|ξ |, |∂ξ |) −→ (|ξ |, |∂ξ | ∪ (|ξ | ∩ Y p+1)). (In fact i is
an isomorphism since codim|ξ | ∩ Y p+1 is 2 in |ξ | and in the long homology
exact sequence of the above pair one has Hi (|∂ξ |∪(|ξ |∩Y p+1), |∂ξ |) = Hi (|ξ |∩
Y p+1, |∂ξ | ∩ Y p+1) = 0 if i = k or k − 1.)

Then, like in the case of Leray’s cohomological residue, we have the
following morphism of relative homology:

�−1
rel : Hk(|ξ |, |∂ξ |∪(|ξ |∩Y p+1))→ Hk+p(�

−1(|ξ |), �−1(|∂ξ |)∪�−1(|ξ |∩Y p+1)).

Since �−1(|ξ |) → |ξ | is an oriented fiber bundle over |ξ |−Y p+1, with fibers
(S1)p, the classical spectral sequence argument shows that it is an isomorphism
(use deformation retract tubular neighbourhoods to thicken |ξ | ∩ Y p+1 and its
inverse image �−1(|ξ |∩Y p+1), then the excision theorem to reduce the situation
to the fiber bundle case).

Now, the image of ξ , via the composed map �−1
rel ◦i , determines completely

L p(ξ) (via Fact). By definition, this is the application ξ �→ L p(ξ). Sometimes
the index p will be omitted. (The fact that i and �−1

rel are isomorphisms shows
that the two definitions of L agree.)

The next result generalizes the above Lemma 2.18.

Proposition 2.20. Fix the integer p ≥ 0. If p ≥ 1 then fix the indices
α1 < · · · < αp as well. For any α �∈ {α1, . . . , αp}, set i(α) = i if α1 < · · · < αi <

α < αi+1 < · · · < αp. Then for any ξ ∈ C�
k (Yα1,... ,αp ):

∂(L pξ) = L p(∂ξ) +
∑
α

(−1)k+i(α) L p+1(ξ ∩ Yα).

Above, the sum is over all α with α �∈ {α1, . . . , αp}. The equality is considered in
C∗(∂ Z) if p ≥ 1, respectively in C∗(Z) if p = 0.
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Proof. The contribution L p(∂ξ) is clear. Next we want to determine the
coefficients of the simplices which lie in �−1(|ξ | ∩ Yα). It is enough to work
modulo Yα ∩ (∪βYβ), where the union is over all β �∈ {α, α1, . . . , αp}, since
it intersects |ξ | in codimension 4 and its inverse image intersects �−1(|ξ |) in
codimension 2.

Consider the composition:

Hk+p(�
−1(|ξ |), �−1(|∂ξ |) ∪ �−1(|ξ | ∩ Y p+1))

↓ ∂

Hk+p−1(�
−1(|∂ξ | ∪ (|ξ | ∩ Y p+1)), �−1(|∂ξ | ∪ (|ξ | ∩ ∪βYβ)))

≈ ↓ e

Hk+p−1(�
−1(|ξ | ∩ Yα), �−1(|∂ξ | ∩ Yα) ∪ �−1(|ξ | ∩ Yα ∩ ∪βYβ))).

Again, the union ∪β is over all β �∈ {α, α1, . . . , αp}. If A = �−1(|ξ |), B =
�−1(|∂ξ | ∪ (|ξ | ∩ ∪βYβ))), and C = �−1(|ξ | ∩ Yα), then the first map is the
boundary operator Hk+p(A, B ∪C) → Hk+p−1(B ∪C, B), and the second is the
excision isomorphism Hk+p−1(B ∪ C, B) → Hk+p−1(C, B ∩ C). The composed
map e ◦ ∂ and the map ξ �→ ξ ∩ Yα are connected by the following diagram,
which commutes up to sign:

Hk(|ξ |, |∂ξ |) �−1
rel−→ Hk+p(�

−1(|ξ |), �−1((|∂ξ |) ∪ (|ξ | ∩ Yp+1)))

↓ ∩Yα ↓ e ◦ ∂

Hk−2(|ξ |∩Yα, |∂ξ |∩Yα)
�−1

rel−→ Hk+p−1(�
−1(|ξ |∩Yα), �−1((|∂ξ |∩Yα)∪ (|ξ |∩Yα ∩∪βYβ)))

The commutativity of the diagram (up to a sign), basically comes from the
fact that for a manifold with boundary, the Lefschetz duality identifies the
boundary operator in homology with the restriction map (to the boundary) in
cohomology (see e.g. [3], page 357). The corresponding sign is universal,
depends only on the orientation conventions. Therefore, it can be determined
using C∞-transversal chains, as in Lemma 2.18.

The above proposition and the definition of the operator ∩ : C�
k (Ỹ p) →

C�
k−2(Ỹ

p+1) have the following corollary.

Corollary 2.21. ∂L = L(∂ + ∩).

Example 2.22. Let ξ ∈ C�
∗ (X) with ∂ξ = 0. In general, the three sets

�−1(|ξ |∩Y ), |L(ξ)|∩∂ Z and |∂(L(ξ))| are all distinct. To see this, set X = C2,
Y = {0} × C (Y 2 = ∅). Fix coordinates zj = xj + iyj ( j = 1, 2 ) in C2. Let ξ

be the closed cycle with support (x1 −1)2 + y2
1 + x2

2 −1 = y2 = 0 and coefficient
one.

Then |ξ | is a 2-dimensional real sphere with |ξ | ∩ Y = (0, 0), hence
�−1(|ξ | ∩ Y ) = S1. On the other hand, the intersection chain ξ ∩ Y = 0
(even if |ξ | ∩ Y �= ∅). Indeed, ξ ∩ Y is the chain supported by |ξ | ∩ Y with
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coefficient the intersection multiplicity of |ξ | and Y , which is zero. Therefore,
by 2.21, ∂L(ξ) = 0, hence |∂(L(ξ))| = ∅. Finally, the reader is invited to
verify that |L(ξ)| ∩ ∂ Z is a half circle in S1 = �−1(0, 0).

Remark 2.23. If p = 0, then in the above discussion one can replace
the space X by the (compact) tubular neighbourhood U = Uε = �(Zε) (cf.
1.2). This means that the complex C∗(X) is replaced by C∗(U ), and C�

∗ (X) by
C�

∗ (U ). Notice that ∩ : C�
∗ (U ) → C�

∗−2(Ỹ
1) is well-defined and still satisfies

∩∂+∂∩ = 0. Moreover, one has a map L : C�
∗ (U ) → C∗(Zε), defined similarly

as L : C�
∗ (X) → C∗(Z), which satisfies ∂L = L(∂ + ∩).

3. – The double complexes and their spectral sequences

3.1. Preliminary remarks and notations

In this section we construct the homological double complexes giving rise
to the homology groups mentioned in the introduction, together with their weight
filtration. The “easy” cases (Y, ∅) and (X, Y ) are well-known, nevertheless we
decided to include them since their properties are useful in the study of the
other pairs as well. The construction of the complexes for the pairs (X − Y, ∅),
(X, X − Y ) and (∂U, ∅) is new (to the best of the author’s knowledge). These
constructions use the dimensionally transverse cycles. The most involved case
is ∂U , which is separated in Section 6.

For any double complex (A∗∗, ∂, δ), we denote its total complex by
(Tot∗(A∗∗), D), where Totk(A∗∗) = ⊕s+t=k Ast and D = ∂ + δ. Here the degree
of ∂ is (0, −1), of δ is (−1, 0). The weight filtration of A∗∗ is defined by
W (A∗∗)s := ⊕p≤s Apq . The homological spectral sequence associated with the
weight filtration W is denoted by Er

∗∗. Recall that E1
st = Ht (As∗, ∂) and d1 is

induced by δ. However, we will violate the weight notation on the ∞-term,
and we will use Deligne’s convention: on E∞

st the weight is −t (instead of s);
i.e. image{Hk(Tot∗(Ws) → Hk(Tot∗(A))} is Ws−k Hk(Tot∗(A)).

The dual double complex of A∗∗ is Bst = HomZ(Ast , Z) with the correspond-
ing dual maps. Its weight filtration is W (B)s = {ϕ ∈ A∗ : ϕ(W (A)−s−1) = 0},
or equivalently, W (B)−s = ⊕p≥s Bpq .

In some of the proofs we use some properties of the “cohomological mixed
Hodge complexes” (for the definition and properties see [6]) and “mixed cones”
(they correspond to the mapping cones in the category of mixed Hodge com-
plexes; for details, see [6], page 21, or [7], page 49).

I. The homological double complex of Y

Consider the double complex As,t(Y ) := Ct (Ỹ s+1) (with s ≥ 0 and t ≥ 0)
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together with the natural operators:

∂ : Ck(Ỹ
p) → Ck−1(Ỹ

p) and i : Ck(Ỹ
p) → Ck(Ỹ

p−1).

Here i is defined as follows. If ⊕α1<···<αp cα1,... ,αp ∈ Ck(Ỹ p), then i(⊕αcα) =
⊕βdβ if:

dα1,... ,αp−1 =
∑

α1<···<αi <α<···<αp−1

(−1)k+i iα1,... ,αp−1;α(cα1,... ,αi ,α,... ,αp−1),

where iα1,... ,αp−1;α is the natural inclusion Yα1,... ,αi ,α,... ,αp−1 ↪→ Yα1,... ,αp−1 .

Lemma 3.2. a) i2 = 0, and b) i∂ + ∂i = 0.

In particular, D := i +∂ is a differential of the total complex Tot∗(A∗∗(Y )).
The weight filtration {W (A)s}s provides a spectral sequence over Z. Here are
some of its properties.

Proposition 3.3. E1
st = Ht (Ỹ s+1) (s ≥ 0), d1 = i∗, and {Er

st }r satisfies
1.5.b-c.

Proof. Step 1. Before we start the proof of the proposition, we make the
following discussion. The goal is to sfeafify the dual complex, and to obtain a
quasi-isomorphism with ZỸ p .

(In fact, C∗(Ỹ p) has a natural sheafification C∗
Ỹ p which is fine and is quasi-

isomorphic to the dualizing complex D∗
Ỹ p (cf. [10] page 97, or [2] page 33).

In the present paper we will use a different construction.)
For any open set V ⊂ Ỹ p, let Ck(V, Ỹ p) be the subgroup of chains ξ ∈

Ck(Ỹ p) with compact support |ξ | in V . Obviously, for any open pair V ⊂
W ⊂ Ỹ p, there is a natural inclusion Ck(V, Ỹ p) → Ck(W, Ỹ p). Now, define
the dual Ck(V, Ỹ p) by HomZ(Ck(V, Ỹ p), Z). Then for any V ⊂ W as above,
the “restriction” Ck(W, Ỹ p) → Ck(V, Ỹ p) defines a presheaf Ck(Ỹ p) on Ỹ p,
satisfying the condition (S2) (i.e. it is “conjuctive” in the terminology of [4]).
Let C̄k(Ỹ p) be the associated sheaf whose space global sections is denoted by
C̄k(Ỹ p). Let Ck

0(Ỹ p) be the subgroups of elements of Ck(Ỹ p) with empty
support. Then

0 → Ck
0(Ỹ p) → Ck(Ỹ p) → C̄k(Ỹ p) → 0

is exact (cf. [4] page 22). Moreover, C∗(Ỹ p) and C∗
0 (Ỹ p) form complexes,

and H∗(C∗
0 (Ỹ p)) = 0 (by a subdivision argument, see [4], page 26 in the case

of singular chains).
Therefore, the complexes C∗(Ỹ p) and C̄∗(Ỹ p) are quasi-isomorphic. On the

other hand, for any open V , there is a natural augmentation map C0(V, Ỹ p) → Z

which give rise to a resolution 0 → ZỸ p → C̄∗(Ỹ p). The sheaf C̄k(Ỹ p) is a
module over the ring of Z-constructible functions on Ỹ p. Indeed, for any
constructible function f and ϕ ∈ Ck(Ỹ p) one can define f · ϕ ∈ Ck(Ỹ p) by
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( f · ϕ)(σ ) = f (σ̂ )ϕ(σ ), where σ̂ is the barycenter of σ . This shows that the
above resolution is a resolution of fine sheaves.

Step 2. Let n : Ỹ p → Y be the natural map. Recall that the K ·
Q term in

Deligne’s cohomological mixed Hodge complex associated with the space Y is
the “Mayer-Vietoris resolution” n∗QỸ · :

0 → n∗QỸ 1 → n∗QỸ 2 → · · · .

This is considered with its “bête” filtration W−s(n∗QỸ ·) = σ≥s(n∗QỸ ·).
Consider now the dual double complex B∗∗ of A∗∗. Then (n∗QỸ ·, W ) and

(B∗∗, W ) ⊗ 1Q are quasi-isomorphic. This follows from the above discussion
(Step 1). Therefore, their spectral sequence (for r > 0) are isomorphic. This
gives a) and b). Finally notice that by a result of Deligne, the weight spectral
sequence (over Q) of a mixed Hodge complex degenerates at rank two, which
provides c).

II. The homological double complex of (X, Y )

Starting with Ỹ 0 = X , we consider now the double complex As,t (X, Y ) :=
Ct (Ỹ s) (with s ≥ 0 and t ≥ 0) together with the natural operators: ∂ : Ck(Ỹ p) →
Ck−1(Ỹ p) and i : Ck(Ỹ p) → Ck(Ỹ p−1) as above. Again, D := i + ∂ is a
differential of the total complex Tot∗(A∗∗(X, Y )).

In fact, the double complex A∗∗(X, Y ) is a cone. To see this, first introduce
the double complex A∗∗(X) of X defined by As∗(X) = C∗(X) if s = 0 and
= 0 otherwise. Then define ĩ : A∗∗(Y ) → A∗∗(X) so that ĩ |As∗(Y ) = 0 if
s �= 0, and ĩ |A0∗(Y ) is exactly i : C∗(Ỹ 1) → C∗(X). Then As∗(X, Y ) =
As∗(X) ⊕ As−1,∗(Y ), and A∗∗(X, Y ) can be interpreted as the Cone(ĩ) of ĩ .

Proposition 3.4. E1
st = Ht (Ỹ s) (s ≥ 0), d1 = i∗, and {Er

st }r satisfies 1.5.b-c

Proof. The proof is similar as in the case of 3.3. In the present case, K ·
Q

is 0 → n∗QỸ 0 → n∗QỸ 1 → · · · . In fact this (and the whole cohomologically
mixed Hodge complex of (X, Y )) can be constructed as a mixed cone of the
complexes of Y and X . This is compatible with the construction of A∗∗(X, Y ).

III. The homological double complex of (X, X − Y ) or (U, ∂U )

We define
As,t (X, X − Y ) := C�

t+2(s−1)(Ỹ
−(s−1)),

with s ≤ 0 and t + 2(s − 1) ≥ 0. Then ∂ and ∩ act as ∂ : As,t → As,t−1 and
∩ : As,t → As−1,t , hence D = ∂ + ∩ is the differential of the total complex
Tot∗(A∗∗(X, X − Y )). Corollary 2.21 reads as:

Corollary 3.5. L : (Tot∗(A∗∗(X, X − Y )), D) → (C∗−1(∂ Z), ∂) is a mor-
phism of complexes i.e. ∂L = L D.
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Moreover, 2.6, 2.11, 2.14 and Poincaré duality imply the following result.

Proposition 3.6.
a) E1

s+1,t = Ht+2s(Ỹ −s) (s + 1 ≤ 0), d1 is the transfer map i!, and {Er
st }r satisfies

1.5.b-c.

b) The Poincaré duality map pd (cf. 2.12) induces an isomorphism of spectral
sequences (for any r ≥ 1) between the cohomological spectral sequnence of Y
and the above homological spectral sequence of (X, X − Y ), which provides
exactly the ismorphism ∩[X ] : GrW

2n−t H 2n−s−t (Y ) → GrW
−t Hs+t(X, X − Y ).

c) L from 3.5 induces a morphism H∗(X, X − Y, Z) → H∗−1(∂ Z , Z).

Proof. The result follows via duality d) and the results of the Subsection
I (case Y ). The proof of the duality is as follows.

Fix a triangulation T and let T ′ be its first barycentric subdivision. Then
the Poincaré duality map (cf. 2.12) can be organized in the following morphism
of double complexes.

Set AT
st (Y ) = CT

t (Ỹ s+1), which form a double complex with ∂ and i ,
similarly as in 3.I. Set the double complex BT

st (Y ) = Hom(AT
st (Y ), Z) with dual

morphisms δ and i∗. Consider AT ′
s+1,t(X, X − Y ) = C�,T ′

t+2s (Ỹ
−s) with boundary

morphisms ∂ and ∩ (similarly as A∗∗(X, X − Y ) defined above). Then pd :
BT

−s,2n−t(Y ) → AT ′
st (X, X −Y ) satisfies ∂ ◦ pd = pd ◦ δ (cf. 2.14) and ∩◦ pd =

pd ◦ i∗ (cf. 2.15).
Now, A∗∗(Y ) is quasi-isomorphic to AT

∗∗(Y ) (i.e. their spectral sequences
are the same for r ≥ 1), and the later is dual to BT

∗∗(Y ). Using 2.15, pd induces
an isomorphism at the level of the E1 term, hence it is an quasi-isomorphism.
In particular, it induces isomorphism at the level of any Er (r ≥ 2). On the
other hand, Er (AT ′

∗∗(X, X − Y )) = Er (A∗∗(X, X − Y )) for r ≥ 1. Hence the
result follows.

Remark 3.7. Let U = Uε be a “tubular neighbourhood” of Y in X (cf.
1.2). Then obviously H∗(X, X − Y, Z) = H∗(U, U − Y, Z) = H∗(U, ∂U, Z).
Hence the above double complex A∗∗(U, ∂U ) := A∗∗(X, X − Y ) also computes
the homology of H∗(U, ∂U ) with its weight filtration and with all the properties
listed in the above proposition. In fact, if one identifies ∂ Z and ∂U , the operator
induced by L (cf. part c) is exactly the boundary operator H∗(U, ∂U, Z) →
H∗−1(∂U, Z).

IV. The homological double complex of X − Y

Define As,t(X − Y ) := C�
t+2s(Ỹ

−s), with s ≤ 0 and t + 2s ≥ 0. Then
D = ∂ + ∩ is a differential of the total complex Tot∗(A∗∗(X − Y )).

Similarly to the case of the pair (X, Y ), we can define A�
∗∗(X) by A�

s∗(X) =
C�

∗ (X) if s =0 and=0 otherwise. Then As∗(X−Y )= A�
s∗(X)⊕As+1,∗(X, X−Y ).
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Actually, A∗−1,∗(X−Y ) is the cone of the morphism ∩ : A�
∗∗(X)→ A∗∗(X, X−Y ),

where ∩ is the intersection for s = 0 and zero otherwise.
Hence the Poincaré duality from (the proof of) 3.6 extends to:

Proposition 3.8.
a) E1

s,t = Ht+2s(Ỹ −s) (s ≤ 0), d1 is the transfer map i!, and {Er
st }r satisfies

1.5.b-c.

b) The Poincaré duality map pd (cf. 2.12) induces an isomorphism of spectral
sequences (for any r ≥ 1) between the cohomological spectral sequnence of
(X, Y ) and the above homological spectral sequence of X − Y , which provides
exactly the ismorphism ∩[X ] : GrW

2n−t H 2n−s−t (X, Y ) → GrW
−t Hs+t(X − Y ).

4. – The spectral sequence associated with a double complex

4.1. The main result of this section is Proposition 4.3. In order to state the
result, we need to review the basic notations.

Let A = ⊕s,t As,t be a finite homological double complex with operators
δ : As,t → As−1,t and ∂ : As,t → As,t−1 with δ2 = 0, ∂2 = 0 and δ∂ + ∂δ = 0.
Similarly as above, define the associated total complex by Totk A = ⊕s+t=k As,t

and D = d+δ; and the weight filtration by W� A = ⊕s≤� As,t . By general theory,
there is a spectral sequence (Er

s,t , dr )r≥0, converging to the graded homology
of A. Here E0

s,t = As,t ; E1
s,t = Ker(∂ : As,t → As,t−1)/I m(∂ : As,t+1 → As,t),

and d1 is induced by δ. Set

Zr
s,t = {c ∈ Ws Tots+t A : Dc ∈ Ws−r A} Zr

s = {c ∈ Ws A : Dc ∈ Ws−r A}
Z∞

s,t = {c ∈ Ws Tots+t A : Dc = 0} Z∞
s = {c ∈ Ws A : Dc = 0}.

Then

Er
s,t = Zr

s,t/(Zr−1
s−1 + DZr−1

s+r−1) E∞
s,t = Z∞

s,t/(Z∞
s−1 + D A ∩ Ws A).

In particular, Er
s,t is generated by the class of elements

cst + cs−1,t+1 + · · · + cs−r+1,t+r−1 ∈ Zr
st (cpq ∈ Apq)

which satisfy

(∗r ) ∂cst =0; ∂cs−1,t+1+δcst = 0; . . . ; ∂cs−r+1,t+r−1+δcs−r+2,t+r−2 =0.

For r = 1, this means that cst ∈ Apq with ∂cst = 0. For r = 2, Z2
st is generated

by elements of type cst + cs−1,t+1 such that ∂cs,t = 0, ∂cs−1,t+1 + δcs,t = 0.
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These type of elements generate Ker(d1) ⊂ E1. For r = ∞, E∞
st is generated

by class of cycles of type

cst + cs−1,t+1 + · · · + cs−r,t+r + · · ·

satisfying

(∗∞) ∂cst = 0; ∂cs−r,t+r + δcs−r+1,t+r−1 = 0 for any r ≥ 1.

In general, for any r ≥ 1, the map dr can be defined as:

dr
s,t [cst + cs−1,t+1 + · · · + cs−r+1,t+r−1] = [δcs−r+1,t+r−1].

4.2. Now, assume that d2 = d3 = · · · = 0 which means E2
st ≡ E∞

st . Then
consider

Ker(d1 : E1
st → E1

s−1,t) → E∞
st .

This shows that for any c2 = cst + cs−1,t+1 satisfying (∗2), there is a class
c∞ = c′

st + c′
s−1,t+1 + · · · with (∗∞), such that [c2] = [c∞] in E∞

st . The next
proposition shows that we can choose the cycle c∞ with c′

st = cst .

Proposition 4.3. For any r ≥ 2, consider an element cr = ∑r−1
i=0 cs−i,t+i ∈

Zr
s,t . If dr = 0 then cr can be replaced by c̃r = cst + ∑r−1

i=1 c̃s−i,t+i ∈ Zr
s,t with

[cr ] = [c̃r ] ∈ Er
s,t such that c̃r can be completed to c̃r+1 = c̃r + c̃s−r,t+r ∈ Zr+1

st .
The fact that dr = 0 is equivalent to the fact that this can be done for any cycle cr .

In particular, if d2 = d3 = · · · = 0, then

(i) any representative cst (with ∂cst = 0 and δcst ∈ ∂ As−1,t+1) of a class in
Ker(d1|E1

st) can be completed to a cycle

c∞
s,t = cs,t +

∑
i≥1

cs−i,t−i ∈ Z∞
st ;

(ii) if c∞
st and c′∞

st are two liftings of cst as in (i), then c∞
st − c′∞

st ∈ Z∞
s−1;

(iii) if cst and c′
st are representatives of the same class of Ker(d1|E1

st) (i.e. cst −c′
st ∈

∂ Bs,t+1) and we complete cst and c′
st to c∞

st and c′∞
st , respectively, as in (i), then

c∞
st − c′∞

st ∈ D A ∩ Ws + Z∞
s−1.

The proof is standard linear algebra (using the above definitions) and it is
left to the reader.
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5. – The cycles and topological characterizations of the weights

In this section we construct closed rational cycles which generate
W−t Hk(A, B), where (A, B) = (Y, ∅), (X, Y ), (X, X −Y ), (X −Y, ∅). As we
already summarized in the introduction (cf. e.g 1.5, part d), all the cycles have
the form m A,B(c∞

st ) for some quasi-isomorphisms m A,B , and for some closed
cycles c∞

st provided by the spectral-sequence argument of Section 4. Neverthe-
less, we prefer to stress more the particular form of the cycles instead of the
properties of the morphisms m A,B . Therefore, at each case, we will describe
in details the corresponding cyles and only at the very end (for the interested
reader) we will indicate briefly what the morphism m A,B are.

The construction depends on a choice of c∞
st . By Proposition 4.3, different

choices modify the class of the cycle by elements in W−t−1 Hk(A, B). (This
general fact will be not repeated at each case again.) All the homology groups
are considered with rational coefficients.

5.1. Cycles in Y

Consider (A∗∗(Y ), ∂, i) and fix a pair (s, t) with s + t = k. If one wants to
construct a closed cycle in Y , it is natural to start with a chain cst ∈ Ct (Ỹ s+1)

(with ∂cst = 0) and tries to extent it. The first obstruction is i(cst) ∈ im ∂ ,
i.e. the existence of cs−1,t+1 with i(cst ) + ∂cs−1,t+1 = 0. Then the second
obstruction is i(cs−1,t+1) ∈ im ∂ , and so one. The remarkable fact is that once
the first obstruction is satisfied then all the others are automatically satisfied
(for the precise formulation of this fact, see Section 4). This follows from
the degeneration of the spectral sequence (3.3), and it is a consequence of the
algebraicity of Y ; in a simple topological context it is not true.

The above completion procedure is formalized in Section 4 in the language
of the spectral sequence, and it allows us to construct closed cycles in Y .
More precisely, if cst ∈ Ast (Y ) satisfies ∂cst = 0 and i(cst ) ∈ im ∂ , then it
can be completed to a cycle c∞

st = cst + cs−1,t+1 + · · · + c0,k with Dc∞
st = 0.

For any p ≥ 1, let n : Ỹ p → Y be the natural projection. Then we claim
that n∗(c0,k) ∈ C∗(Y ) is a closed chain. Indeed, ∂n∗(c0,k) = n∗(∂c0,k) =
n∗(ic1,k−1) = n∗c1,k−1 − n∗c1,k−1 = 0. n∗(c0,k) is our wanted closed cycle.

Apparently, considering n∗c0,k we lose the other cycles {cs−i,t+i }i , but this
is not exactly so. E.g., the dimensions of their supports can be recovered from
n∗c0,k . Indeed, first notice that n is a finite map. Moreover, for any i with
s ≥ i ≥ 0, if one writes p = s − i + 1, then:

|n∗c0,k | ∩ Y p = n(|cp−1,k−p+1|), whose dimension is k − p + 1.

On the other hand, if p ≥ s + 2, then in the homology class [cst ] one can take
a representative cst which is in a general position with respect to Y p (e.g. it
is transversal to all the components of Y p). Therefore (with a good choise of
cst ):

|n∗c0,k |∩Y p = |n∗cst |∩Y p whose dimension is ≤ t−2(p−s−1)= 2k−t−2p+2.
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This motivates the following definition:

Definition 5.2 (The “support filtration”). Define in Hk(Y ) the incresing
filtration V∗ by

V−t Hk(Y )

:={ [c] ∈ Hk(Y ) so that if 1 ≤ p ≤ k − t + 1, then dim |c| ∩ Y p ≤ k − p + 1;
if p ≥ min(1, k − t + 2), then dim |c| ∩ Y p ≤ 2k − t − 2p + 2. }

This can be rewritten in the language of intersection homology as follows. For
any integer s ≥ 0, consider the perversity s defined by s(2i) = i for 0 ≤ i ≤ s,
and s(2i) = s for i ≥ s. (Since we have no stratum with odd codimension,
s(2i + 1) is unimportant.) Notice that s does not satisfy s(2) = 0 (as any
perversity in [9]); but it is a generalized perversity in the sense of [13] (see
also [13]). Then by the definition of the intersection homology groups one has:

V−t Hk(Y ) = im(I H
s
k (Y ) → Hk(Y )) (with k = t + s).

This filtration is called “support filtration” (or Zeeman filtration) (for some more
details see e.g. [19]; in fact, in [loc. cit.] the definition is slightly different,
but one can show that they are equivalent). One of its main properties is that
it depends only on the topological type of the space Y .

The results from the previous sections can be summarized in the following
statement.

Proposition 5.3. Using the above notations, one has:
a) The homology classes [n∗c0,k] ∈ Hk(Y ) (associated with cst as above) generate

W−t Hk(Y ).
b) W−t Hk(Y ) ⊂ V−t Hk(Y ) for any k and t.

In fact, Verdier and MacPherson conjectured that in part b) one has equality.
This fact was verified by C. McCrory in [19] (see also [12] and [13]). In the
sequel we will provide a new proof of this identity. The present proof is
partially based on the duality between Y and (X, X − Y ), therefore, before the
proof, we need to treat the case (X, X − Y ) as well.

5.4. Cycles in (X, X − Y ) (or in (U, ∂U ))

In the next paragraphs we will construct relative cycles in (U, ∂U ), i.e
chains ξ supported in U with |∂ξ | ⊂ ∂U . Since the natural inclusion induces a
weighted isomorphism H∗(U, ∂U ) → H∗(X, X − Y ), this settles the (X, X − Y )

case as well.
For any (s, t) with s + t = k, fix cst ∈ Ast(X, X − Y ) with ∂cst = 0 and

∩cst ∈ im ∂ . Then it can be completed to a cycle c∞
s,t = cst + cs−1,t+1 + · · ·

with Dc∞
s,t = 0 (cf. Section 4). Consider L(c∞

s,t ) ∈ Ck−1(∂ Z). Then by 3.5 one
has ∂(L(c∞

s,t )) = 0. Fix a sub-analytic homeomorphism φ : ∂ Z × [0, ε] → Zε ,
where Zε is a collar of ∂ Z ⊂ Z and set U = �(Zε) (cf. 1.2). For any



892 FOUAD ELZEIN – ANDRÁS NÉMETHI

chain ξ ∈ C∗(∂ Z), one can associate in a natural way a new chain ξ × [0, ε] ∈
C∗+1(∂ Z × [0, ε]). Indeed, if ξ = ∑

mS S, then ξ × [0, ε] := ∑
mS S × [0, ε].

Then �∗ ◦ φ∗(L(c∞
s,t ) × [0, ε])) ∈ Ck(U ) has boundary supported in ∂U . For

simplicity, we will denote this relatice cycle by crel
s,t .

Next, similarly as in the case of Y , we analyse the intersection properties
of the cycle crel

s,t with Y p. Notice that for p ≥ 1, |crel
s,t | ∩ Y p = n|cs′,k−s′ |, where

s ′ := min{s, −p + 1}. More precisely, if p ≥ 1 − s, the intersection |crel
s,t | ∩ Y p

is n|c−p+1,k+p−1|, which has dimension k − p −1. For p ≤ −s, the intersection
|crel

s,t | ∩ Y p is n|cs,t |, which has dimension 2k − t − 2.
Then similarly as for Y , we introduce the topological “support filtration”

as follows:

Definition 5.5. Define in Hk(X, X − Y ) the increasing filtration V∗ by

V−t Hk(X, X − Y )

:= {[c] ∈ Hk(X, X −Y ) so that if 1≤ p≤−k+t, then dim |c| ∩ Y p ≤2k−t−2;
if p ≥ min(1, −k + t + 1), then dim |c| ∩ Y p ≤ k − p− 1}.

Then clearly one has:

Proposition 5.6.
a) The relative cycles crel

s,t generate W−t Hk(U, ∂U ) = W−t Hk(X, X − Y ).
b) W−t Hk(X, X − Y ) ⊂ V−t Hk(X, X − Y ) for any k and t.

Our next goal is to prove that in 5.3.b and 5.6.b one has identities: i.e.
Deligne’s weight filtration and the support filtration agree.

Theorem 5.7. If (A, B) = (Y, ∅) or (A, B) = (X, X −Y ) then W∗ Hk(A, B) =
V∗ Hk(A, B) for any k. In particular, the weight filtration of Hk(Y ) (resp. of
Hk(X, X −Y )) depends only on the homeomorphism type of Y (resp. of (X, X −Y )).

Proof. First consider the non-degenerate intersection pair ∩ : Hk(Y ) ⊗
H2n−k(X, X − Y ) → Q. By the general theory (or by 3.6.b of the present
paper) ∩ induces a duality at the level of weight filtrations as well. In other
words, for any t :

(⊥1) W−2n−1+t H2n−k(X, X − Y )⊥ = W−t Hk(Y ).

Next, we verify the following property for the support filtrations: for any t ,

(⊥2) the restriction of ∩ to V−t Hk(Y )⊗ V−2n−1+t H2n−k(X, X −Y ) is trivial.

Indeed, let [c] ∈ V−t Hk(Y ) and [c′] ∈ V−2n−1+t H2n−k(X, X − Y ) so that the
representatives c and c′ satisfy the imposed restrictions. We show that the
intersection |c| ∩ |c′| is empty, after a possible small deformation of c.

Since |c| ⊂ Y , it is clear that |c| ∩ |c′| ⊂ Y . Assume that for some p ≥ 1
one has |c| ∩ |c′| ∩ Y p+1 = ∅, and we analyze the dimensions d := dim |c| ∩ Y p
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and d ′ := dim |c′|∩Y p of the intersections with Y p. For this, set t ′ := 2n+1− t
and k ′ := 2n − k. Notice that −k ′ + t ′ = k − t + 1.

If p ≤ k − t + 1 (∗), then p ≤ −k ′ + t ′ as well, hence d ≤ k − p + 1 and
d ′ ≤ 2k ′− t ′−2. Therefore, using (∗), one gets: d +d ′ ≤ 2n−2p−1. Similarly,
if p ≥ k−t +2 (∗∗), or equivalently p ≥ −k ′+t ′+1, one has d ≤ 2k−t −2p+2
and d ′ ≤ k ′ − p − 1. Hence, again by (∗∗), d + d ′ ≤ 2k − 2p − 1.

The point is that if one deforms slightly and generically the cycle c, the
dimensions of the intersections {|c| ∩ Y r }r will not increase. Moreover, the
property |c| ∩ |c′| ∩ Y p+1 = ∅ will also be preserved under a small deformation.
Since Y p −Y p+1 is smooth of dimension 2n−2p, for a generic deformation, the
supports |c| and |c′| will have empty intersection in Y p. Therefore |c|∩ |c′| = ∅
by induction, hence (⊥2) follows.

Now, we finish the proof of theorem. Consider the inclusions 5.3.b and
5.6.b. We show that the dual of the second inclusion is the opposite inclusion
of the first one. Indeed, by (⊥2), duality and (⊥1):

V−t Hk(Y ) ⊂ V−t ′ Hk′(X, X − Y )⊥ ⊂ W−t ′ Hk′(X, X − Y )⊥ = W−t Hk(Y ).

Hence everywhere one has equality.

Remark 5.8 (The “neighbourhood filtration”). Let U p ⊂ X be a small
regular neighbourhood of Y p in X (cf. [22], ch. 3). Then for U sufficiently
small (with respect to U p), and for any p ≥ 1, one can consider the groups

N−p Hk(U, ∂U ) := im
(

Hk(U
p, U p ∩ ∂U ) → Hk(U, ∂U )

)
.

Then the filtration {N−p Hk(U, ∂U )}p is independent on the choice of neigh-
bourhoods U p. By our construction, |crel

s,t | ⊂ U p provided that p = 1 − s and
s + t = k. Therefore:

(∗p) W−k−p+1 Hk(U, ∂U ) ⊂ N−p Hk(U, ∂U ).

Nevertheless, the filtration N∗ does not characterize topologically the weight
filtration, since the inclusion in (∗p), in general, is strict (take e.g. n = 1,
k = 2 and p = 2).

5.9. Cycles in (X, Y ) and their topological characterization

The construction is similar to the case Y . Take cst ∈ Ast(X, Y ) with
∂cst = 0 and i(cst) ∈ im ∂ . Then complete to c∞

st = cst + · · · + c̃0,k , where
k = s + t . Here c̃0,k ∈ Ck(X) with ∂ c̃0,k = −i(c1,k−1), hence |∂ c̃0,k | ⊂ Y . Then,
one has:

• The relative cycles c̃0,k (associated with cst as above) generate W−t Hk(X,Y ).
• The weight filtration of Hk(X, Y ) is completely characterized by the bound-

ary operator ∂ : Hk(X, Y ) → Hk−1(Y ) and the topological characterization
of the weight filtration of Hk(Y ). Indeed, W−t Hk(X, Y ) = ∂−1W−t Hk−1(Y ).
Hence W∗ Hk(X, Y ) depends only on the homeomorphism type of the pair
(X, Y ).
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5.10. Cycles in X − Y and their topological characterization

Here we will use the identification H∗(X −Y ) = H∗(Z) (via �). Similarly
as above, for any (s, t) with s + t = k fix cst ∈ Ast (X − Y ) with ∂cst = 0 and
∩cst ∈ im ∂ . Then it can be completed to a cycle c∞

s,t = cst + cs−1,t+1 + · · ·
with Dc∞

s,t = 0. Consider Lc∞
s,t ∈ Ck(Z). Then one has:

• The cycles Lc∞
s,t generate W−t Hk(Z) = W−t Hk(X − Y ).

• The weight filtration of Hk(X − Y ) is completely characterized by the
boundary operator ∂ : Hk+1(X, X − Y ) → Hk(X − Y ) and the topologi-
cal characterization of the weight filtration of Hk+1(X, X − Y ). Indeed,
W−k Hk(X − Y ) = Hk(X − Y ); and for t < −k one has W−t Hk(X − Y ) =
∂W−t Hk+1(X, X −Y ). Therefore, W∗ Hk(X −Y ) depends only on the home-
omorphism type of the pair (X, Y ).

On the other hand, it is well known that one cannot recover the weight
filtration from the homeomorphism type (or even from the analytic type) of
X − Y . For a counterexample, see e.g. [23], (2.12).

For the space X − Y , similarly as for the pair (X, X − Y ), one can define
the “neighbourhood filtration” (cf. 5.8). Then our construction provides an
inclusion (like in 5.8) which, in general, is strict. (The details are left for the
interested reader.)

5.11. Remark. The homology of Y p and (X, X − Y p)

Using the double complexes A∗∗, one can easily recover the weight filtration
from the homology of the spaces Y p and (X, X −Y p). The case (A, B) = (Y, ∅)

is classical, see e.g. [11].
If A∗∗ is a double complex, we denote by σs≤i A∗∗ the subcomplex of A∗∗

defined by (σs≤i A∗∗)st = Ast for s ≤ i and zero otherwise. σs≥i+1 A∗∗ is the
quotient double complex A∗∗/σs≤i A∗∗.

If we start with the double complex of Y , then for any p ≥ 1:

Hk(Tot∗(σs≥p−1 A∗∗(Y ))) = Hk−p+1(Y
p).

Moreover, the exact sequence 0 → σs≤p−2 A∗∗ → A∗∗ → σs≥p−1 A∗∗ → 0
provides the identity:

Wp−2−k Hk(Y ) = Ker
(

Hk(Y )
b−→ Hk−p+1(Y

p)
)
,

where b is the (“Mayer-Vietoris”) boundary map (associated with the closed
covering Y = ∪i Yi ). Similar identities are valid for A∗∗(X, Y ), in particular,
for p ≥ 1:

Wp−1−k Hk(X, Y ) = Ker
(

Hk(X, Y )
b′−→ Hk−p(Y

p)
)
,
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where b′ is the composite of the boundary operator and b. In the case of (X, X−
Y ), for p ≥ 1, one has Hk(Tot∗(σs≤−p+1 A∗∗(X, X −Y ))) = Hk+p−1(X, X −Y p).
Hence one gets:

W−p+1−k Hk(X, X − Y ) = im
(

Hk+p−1(X, X − Y p)
b−→ Hk(X, X − Y )

)
,

W−p−k Hk(X − Y ) = im
(

Hk+p(X, X − Y p)
b′−→ Hk(X − Y )

)
.

The above properties of the pairs (Y, ∅) and (X, X − Y ), respectively of (X, Y )

and (X − Y, ∅), correspond by Poincaré Duality.

5.12. The morphisms m A,B

The reader can easily realize that in the above constructions all the cycles
have the form m A,B(c∞

st ). Now, we will indicate briefly these morphisms m A,B .
1. (A, B) = (Y, ∅). mY := mY,∅ : Tot∗(A∗∗(Y )) → C∗(Y ) defined as

follows. If cst ∈ Ast(Y ) then mY (cs,t) = n∗(cs,t ) if s = 0 and equals zero
otherwise. Since n∗ic1,t = 0, one gets ∂mY = mY D.

2. (A, B) = (X, Y ). Consider i∗ : C∗(Y ) → C∗(X) induced by the
inclusion of Y into X . Let Cone∗(i∗) denote its cone. By the cone construction
of A∗∗(X, Y ) there is a natural morphism m X,Y := id ⊕mY : Tot∗(A∗∗(X, Y )) →
Cone∗(i∗). If one prefers C∗(X)/C∗(Y ) instead of Cone∗(i∗), then one can
consider the natural quasi-isomorphism θ : Cone∗(i∗) → C∗(X)/C∗(Y ) given
by (xq , yq−1) �→ x̂q . Hence one can take m X,Y := θ ◦ (id ⊕ mY ) instead of
id ⊕ mY .

3. (A, B) = (X − Y, ∅). Notice that by 2.21 and 3.8, L : Tot∗(A∗∗(X −
Y )) → C∗(Z) is a quasi-isomorphism of complexes (cf. also with the iso-
morphisms of 2.19). On the other hand, C∗(Z − ∂ Z) ≡ C∗(X − Y ) is quasi-
isomorphic to C∗(Z) , hence one can take m X−Y,∅ := L .

4. (A, B) = (X, X − Y ). Consider the complex (Ker∗+1, ∂) defined as
the kernel of the morphism �′

∗ : (C∗(∂ Z), ∂) → (C∗(Y ), ∂) induced by �.
Since ∂ Z ≈ ∂U , and U ∼ Y , (Ker∗+1, ∂) is quasi-isomorphic to C∗+1(U, ∂U )

(for a quasi-isomorphism, see below). The complex (Ker∗+1, ∂) coincide (by a
natural identification via the morphism C∗(∂ Z) → C∗(Z)) with the kernel of
the morphism �∗ : (C∗(Z), ∂) → (C∗(X), ∂) since � induces an isomorphism
over X − Y .

We claim that L : As,t(X − Y ) → Cs+t (Z) maps As,t (X − Y ) into Kers+t+1
provided that s ≤ −1. Indeed, for any p ≥ 1, the image of any cycle ξ ∈
C�

k (Ỹ p) via the composite map C�
k (Ỹ p)

L−→ Ck+p(∂ Z)
�∗−→ Ck+p(Y ) has k-

dimensional support.
Now we can define m X,X−Y . First for any s ≤ −1 identify As+1,t(X, X −Y )

with As,t (X−Y ). Then the restriction of L gives a morphism Tot∗(A∗+1,∗(X, X−
Y ))→Ker∗+1. Now, if one prefers the “relative cycle realization” of C∗+1(U,∂U )
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instead of Ker∗+1, one can consider additionally the following morphism: θ ′ :
Ker∗+1 →C∗+1(U,∂U ). Fix a sub-analytic homeomorphism φ : ∂ Z × [0, ε] →
Zε , where Zε is a collar of ∂ Z ⊂ Z and set U = �(Zε) (cf. 1.2). For any
chain ξ ∈ C∗(∂ Z), one can associate in a natural way a new chain ξ × [0, ε] ∈
C∗+1(∂ Z × [0, ε]). Then θ ′(ξ) := �∗ ◦ φ∗(ξ × [0, ε]). Then m X,X−Y := θ ′ ◦ L
(or simply the restriction L).

6. – The homology of ∂U

I. The homological double complex of ∂U

6.1. Preliminary remarks

The space ∂U appears in a natural way in two homological exact sequences.
One of them is the pair (U, ∂U ). The homological exact sequence of this pair,
and the isomorphism H∗(U ) = H∗(Y ) suggests that a possible double complex
for ∂U should satisfy

0 → A∗+1,∗(U, ∂U ) → A∗∗(∂U ) → A∗∗(Y ) → 0.

Hence, we can try to define the double complex of ∂U by

As,t(∂U ) =
{ C�

t+2s(Ỹ
−s) for s ≤ −1

Ct(Ỹ s+1) for s ≥ 0.

But now we are confronted with the definition of the arrows of the double
complex. Actually, we have all the vertical arrows, and all the horizontal
arrows corresponding to s ≤ −1 and s ≥ 0. But we need to define a map
C∗(Ỹ 1) → C�

∗−2(Ỹ
1) with some nice properties. First of all, this map should be

compatible with the other arrows, in the sense that the whole complex should
form a double complex. On the other hand, we expect (since we know the
cohomological E1 term) that this map should induce at the homology level
the “intersection matrix” I (see 6.3). Therefore, the wanted map C∗(Ỹ 1) →
C�

∗−2(Ỹ
1) should be some kind of intersection. But we realize immediately

that we face serious obstructions: we have to intersect cycles which are not
“transversal”, and the result of the intersection should be “transversal”. Even
if we try to modify our complexes, similar type of obstruction will survive.
This can be explained as follows. The cap products {cα ∩ [Yα]}α , sitting on the
diagonal of I , cannot be determined only from the spaces {Ỹ p}p≥1, we need
the Poincaré dual of the spaces Yα in X , hence we need also to consider the
space X (or at least U ) in our double complex.

Therefore, we have to think about ∂U as the boundary of Z , and we have
to consider the pair of spaces (Z , ∂ Z). Notice that H∗(Z , ∂ Z) = H∗(X, Y ) and
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H∗(Z) = H∗(X − Y ), so it is natural to ask for for a double complex with
0 → A∗+1,∗(X, Y ) → A∗∗(∂U ) → A∗∗(X − Y ) → 0. The construction is done
in the next subsection.

6.2. The double complex A′
∗∗(∂U )

Consider the following diagram of complexes:

· · · C�
∗−4(Ỹ

2)
∩← C�

∗−2(Ỹ
1)

∩← C�
∗ (Ỹ 0)� j

C∗(Ỹ 0)
i← C∗(Ỹ 1)

i← C∗(Ỹ 2) · · ·
The first line corresponds to the double complex A∗∗(X − Y ) (where the col-
umn s = 0 is C�

∗ (Ỹ 0) = C�
∗ (X)), and the second line is the double com-

plex A∗∗(X, Y ). Notice that j can be considered as a morphism of double
complexes, hence the usual cone construction provides the double complex
A′

∗∗(∂U ) = {A′
s∗(∂U )}s :

· · · C�
∗−4(Ỹ

2)
∩← C�

∗−2(Ỹ
1)

∩← C�
∗ (Ỹ 0)

⊕
j

↙ ⊕
C∗(Ỹ 0)

i← C∗(Ỹ 1)
i← C∗(Ỹ 2) · · ·

s = −2 s = −1 s = 0 s = 1

Theorem 6.3.
a) The E1 term of the spectral sequence associated with (A′

∗∗(∂U ), W ) is:

· · · H∗−4(Ỹ 2)
∩← H∗−2(Ỹ 1)

∩← H∗(Ỹ 0)

⊕ id↙ ⊕
H∗(Ỹ 0)

i∗← H∗(Ỹ 1)
i∗← H∗(Ỹ 2) · · ·

s = −2 s = −1 s = 0 s = 1

Here ∩ is given in 2.11, e.g. for c ∈ Hk(X) one has ∩(c) = (−1)k ⊕β

c ∩ [Yβ] ∈ ⊕β Hk−2(Yβ) = Hk−2(Ỹ 1); i∗ is induced by i (cf. 3.I), e.g. for
⊕αcα ∈ ⊕α Hk(Yα) = Hk(Ỹ 1) one has i∗(⊕αcα) = (−1)k ∑

α iα(cα) ∈ Hk(X).
The E1 term is quasi-isomorphic to the complex:

· · · H∗−4(Ỹ
2)

∩← H∗−2(Ỹ
1)

I← H∗(Ỹ 1)
i∗← H∗(Ỹ 2) · · · ,

where I denotes the “intersection matrix” ∩ ◦ i∗, i.e.

I (⊕αcα) = ⊕β (
∑
α

iα(cα) ∩ [Yβ] ).

b) Er
st ⇒ Hs+t (∂U, Z) and E∞

st ⊗ Q = GrW
−t Hs+t (∂U, Q).

c) E∗
∗∗ ⊗ Q degenerates at level two, i.e. dr ⊗ 1Q = 0 for r ≥ 2.
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Proof. For a) and b) use 2.6 and 2.11 and the corresponding definitions. c)
follows from the results of the previous subsections and from the construction
of the mixed cone.

6.4. The double complex A∗∗(∂U )

In the construction of the homological cycles for ∂U it is natural to combine
chains situated in the neighbourhood U . Therefore, the above complex is not
convenient because of the presence of the global terms C�

∗ (Ỹ 0) and C∗(Ỹ 0). In
the next construction, we replace these complexes by the complexes of chains
supported by the close neighbourhood U . More precisely, we define A∗∗(∂U ):

· · · C�
∗−4(Ỹ

2)
∩← C�

∗−2(Ỹ
1)

∩← C�
∗ (U )

⊕
j

↙ ⊕
C∗(U )

i← C∗(Ỹ 1)
i← C∗(Ỹ 2) · · ·

Then E1(A∗∗) is:

· · · H∗−4(Ỹ 2)
∩← H∗−2(Ỹ 1)

∩← H∗(U )

⊕ id↙ ⊕
H∗(U )

i∗← H∗(Ỹ 1)
i∗← H∗(Ỹ 2) · · ·

which is quasi-isomorphic to E1(A′
∗∗), hence (Er (A∗∗), dr ) = (Er (A′

∗∗), dr ) for
any r ≥ 2. Therefore, a posteriori, one gets the degeneration of the spectral
sequence of A∗∗(∂U ) as well.

6.5. Topological characterization of the weights

By construction, σs≤−1 A∗∗(X − Y ) = A∗+1,∗(X, X − Y ) is a subcomplex of
A∗∗(∂U ). The corresponding pair provides the exact sequence:

→ Hk+1(X, X − Y )
∂−→ Hk(∂U )

α−→ Hk(Y )
δ−→ Hk(X, X − Y ) → .

Since the weights of Hk+1(X, X − Y ) are ≤ −k − 1, and the weights of Hk(Y )

are ≥ −k, the weight filtration of Hk(∂U ) is completely determined from this
exact sequence and from the weight filtrations of (X, X − Y ) and Y . In-
deed, Wl Hk(∂U ) = ∂(Wl Hk+1(X, X − Y ) for l ≤ −k − 1, and Wl Hk(∂U ) =
α−1Wl Hk(Y ) for l ≥ −k.

In particular, the weight filtration of Hk(∂U ) is completely determined from
the topology of the pair (X, Y ). On the other hand, it cannot be determined
from the diffeomorphism type of ∂U (cf. [23]; here one has to identify the link
of on isolated singularity (S, s) with the boundary ∂U of a resolution U → S
over a Stein representative S of (S, s).)



ON THE WEIGHT FILTRATION OF THE HOMOLOGY OF ALGEBRAIC VARIETIES . . . 899

6.6. The morphism m∂U,∅

In the next subsection we will construct our closed cycles. The morphism
m∂U,∅ what we will use is the following. Let A∗∗(Zε) be the double complex:

· · · C�
∗−4(Ỹ

2)
∩← C�

∗−2(Ỹ
1)

∩← C�
∗ (U ) ← 0 · · ·

s = −2 s = −1 s = 0 s = 1

Then, there are two natural morphisms. First a projection q : A∗∗(∂U ) →
A∗∗(Zε), and then L : Tot∗(A∗∗(Zα)) → C∗(Zε) (cf. 2.23). Then m∂U :=
L ◦ Tot(q) (modulo the identifications Zε = ∂ Z × [0, ε] and ∂ Z = ∂U ).

II. Rational cycles in ∂U

In the sequel we assume that the homology groups have rational coeffi-
cients. Corresponding to the above discussion of the weights (cf. 6.5), in the
construction of the cycles in ∂U we also distinguish two different cases.

6.7. The case s ≤ −1

Fix a pair (s, t) with s + t = k and s ≤ −1. Consider cst ∈ As+1,t(X, X −
Y ) ⊂ As,t(∂U ) with ∂cst = 0 and ∩cst ∈ im ∂ . Complete to c∞

s,t with Dc∞
s,t =

0. Then Lc∞
s,t ∈ Ck(∂ Z) is closed (cf. 3.5). Recall that we have a natural

identification of ∂ Z and ∂U (cf. 1.2). Then one has:

• For s ≤ −1, the cycles Lc∞
s,t generate W−t Hk(∂U ).

Notice also that [Lc∞
s,t ] = ∂[crel

s,t ], where crel
s,t is constructed in 5.4. In particular,

these homology classes inherit all the properties of W∗ Hk+1(X, X−Y ) (including
their relationship with the “support” filtration). The details are left to the reader.

6.8. The case s ≥ 0

Assume that s ≥ 0. In this case the construction of the cycles is more
involved: we have to lift some cycles from Y to ∂U .

Assume that c′
st ∈ Ast (∂U ) (s ≥ 0) satisfies ∂c′

st = 0 and d1[c′
st ] = 0. If

s = 0 this means that c′
st = c⊥

0,k + c0,k , where c⊥
0,k ∈ C�

k (U ) and c0,k ∈ Ck(Ỹ 1)

such that ∂c⊥
0,k = ∂c0,k = 0 and i∗(c0,k)+ c⊥

0,k + ∂γ = 0 for some γ ∈ Ck+1(U ).
If s > 0, then c′

st ∈ A′
st (∂U ) has “only one component”: c′

st = cst ∈
Ct (Ỹ s+1) with ∂cst = 0 and i∗cst ∈ im ∂ .

In both cases c′
st can be completed to a cycle

c∞
s,t = cs,t +cs−1,t+1+· · ·+c1,k−1+(c0,k +c⊥

0,k)+(γ−1,k+1+c−1,k+1)+c−2,k+2+· · ·
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where cs,t ∈ Ct (Ỹ s+1) for s ≥ 0, cs,t ∈ C�
t+2s(Ỹ

−s) for s ≤ −1, c⊥
0,k ∈ C�

k (U ),
and γ−1,k+1 ∈ Ck+1(U ). These chains satisfy the following relations:

∂cs,t = 0;

i∗cs−l,t+l + ∂cs−l−1,t+l+1 = 0 for 0 ≤ l ≤ s − 1;

∂c⊥
0,k = 0;

i∗c0,k + jc⊥
0,k + ∂γ−1,k+1 = 0;

∩c⊥
0,k + ∂c−1,k+1 = 0;

∩cl,k−l + ∂cl−1,k−l+1 = 0 for l ≤ −1.

Now, we will separate the chain (for the notations, see 6.6):

c̄st := c⊥
0,k + c−1,k+1 + c−2,k+2 + · · · ∈ A∗∗(Zε).

Then by the above relations, D(c̄st ) = 0, where here D is the differential
in A∗∗(Zε). Therefore, Lc̄st ∈ Ck(Zε) is closed. Obviously, the projection
pr : Zε = ∂ Z × [0, ε] → ∂ Z provides a closed cycle pr∗Lc̄st ∈ Ck(∂ Z).

• For any s ≥ 0 and t + s = k, the cycles pr∗Lc̄st generate W−t Hk(∂U ).

Notice that in the cycles c̄st we do not see the chains cl,k−l for l ≥ 0, in particular
neither cs,t , the chain which generates c̄st . In fact, the above algorithm goes
as follows. The chain cst is completed to a sequence cst + cs−1,t+1 + · · · + c0,k

with c0,k ∈ Ck(Ỹ 1). The chain i∗c0,k actually is closed (in U ) and supported
by Y . Now, this is replaced by the transversal chain c⊥

0,k ∈ C�
k (U ) such that

i∗c0,k + c⊥
0,k + ∂γ = 0 for some γ , and finally c⊥

0,k is completed to c̄st . It
is really remarkable that the above algebraic construction plays the role of a
very geometric operation: it replaces a closed chain supported in Y by another
closed chain supported in U , homologous with the original one in U , and
dimensionally transversal to the stratification given by Y (i.e. it eliminates the
obstruction mentioned in 6.1 by this “algebraic deformation”.)

Example 6.9. Assume that n = 2, and Y is a connected set of curves
{Yi }i in X . Set g = ∑

i genus(Yi ). If � is the dual graph of the curves then
let c� = rank H1(|�|) be the number of independent cycles in |�|. Let I be
the intersection matrix of the irreducible curves Yi . Then it is well-known that
rank H1(∂U ) = rank Ker I + 2g + c� . These three contributions correspond
exactly to the weight of H1(∂U ).

Indeed, for s = −1, take c−1,2 ∈ C�
0 (Ỹ 1) as above. A possible chain c−1,2

is an arbitrary point P in Y 1 − Y 2 with coefficient one. Then c∞
−1,2 = c−1,2 and

�−1(c−1,2) is a circle S1, the loop around Y in a transversal slice at P . These
loops γP generate W−2 H1 (isomorphic to coker I ). If s = 0, consider a closed 1-
cycle c0,1 in one of the components of Y . This can be changed by a homologous
cycle c⊥

0,1 in U , which has no intersection with Y . Hence it can be contracted
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to ∂U . These cycles generate W−1 H1 (so that dim GrW
−1 H1 = 2g). Notice

that the lifting c0,1 �→ c⊥
0,1 is defined modulo the cycles of type γP . Finally,

consider c1,0 ∈ C0(Y 2) such that d1[c1,0] = 0. Here d1 : H0(Y 2) → H0(Ỹ 1) and
Ker d1 ≈ H1(|�|). Take c0,1 ∈ C1(Ỹ 1) such that ic1,0 + ∂c0,1 = 0. Then i(c0,1)

is a cycle in U supported by Y . We replace it by c⊥
0,1 which has no intersection

with Y . They provide the remaining cycles in W0 H1 so that dim GrW
0 H1 = c� .

Now, we discuss the case H2(∂U ) as well. Take a point P ∈ Y 2 (with
coefficient one) corresponding to c−2,4. Then �−1c−2,4 is a torus in ∂U . They
generate W−4 H2. Notice that W−4 H2 ≈ coker∩ : H2(Ỹ 1) → H0(Y 2) has
dimension c� . Next, take a generic closed 1-cycle in Ỹ 1 whose image c in Y
has no intersection with Y 2. The 2-cycle �−1(c) in ∂U is an S1 bundle over
c; they generate W−3 H2. Finally, consider c02 = ∑

i mi Yi ∈ C2(Ỹ 1) such that
∩[c02] = 0. This means that [c02]·[Yj ] = 0 for all j . The dimension of the space
generated by these classes [c02] is coker I . Now, c02 is replaced by a transversal
2-cycle c⊥

02. Transversality implies that c⊥
02 ∩ Yi is a 0-cycle in Yi , which by

the above assumption is zero-homologous. In particular, c⊥
02 ∩ Yi = ∂c−1,3.

Now, take a very small tubular neighbourhood U ′ of Y 1 − Y 2 with projection
pr : U ′ → Y 1 − Y 2. (Here U − U ′ stays for Zε .) Then the boundaries of the
chains c⊥

02 − U ′ and the S1-bundle (pr |∂U ′)−1(c−1,3) can be identified (modulo
sign) so they can be glued. They generate the remaining classes in W−2 H2.

Remark 6.10 (Purity results). The above example shows that in general
all the possible weights (permitted by the spectral sequence) can appear. For
example, if ∂U is the boundary (or link) of a 1-parameter family of projective
curves over a small disc, then the intersection matrix I has 1-dimensional
kernel, hence H1(∂U ) can have weight −2, −1 and 0. On the other hand, if
∂U is the boundary of the resolution of a normal surface singularity, then I is
non-degenerate, hence the non-trivial weight of H1(∂U ) are −1 and 0.

More generally, if S is a projective algebraic variety with unique singular
point s ∈ S, and φ : X → S is a resolution of this isolated singularity with
normal crossing exceptional divisor Y = φ−1(s), then the following additional
restrictions hold. For details see e.g. [20].

1) If k ≤ n − 1 then GrW
l Hk(∂U ) = 0 for l not in [−k, 0];

2) If k ≥ n then GrW
l Hk(∂U ) = 0 for l not in [−2n, −k − 1];

3) If k ≥ n then Hk(Y ) is pure of weight −k and Hk(U ) → Hk(U, ∂U ) is
injective;

4) If k ≤ n then Hk(U, ∂U ) is pure of weight −k and Hk(U ) → Hk(U, ∂U )

is surjective;
5) Consider the exact sequence (cf. the E1 term in 6.3):

· · · Hk−4(Ỹ
2)

∩← Hk−2(Ỹ
1)

Ik← Hk(Ỹ
1)

i∗← Hk(Ỹ
2) · · · .

If k ≥ n then Ker Ik = im i∗, if k ≤ n then Ker ∩ = im Ik .
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Actually, between the above exact sequence and the the exact sequence
6.5, there is the following connection: δ is non-trivial only for weight −k and
GrW

−k δ can be identified with Îk : Hk(Ỹ 1)/ im i∗ → Ker ∩.
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