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A Remark on Quiver Varieties and Weyl Groups
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Abstract. In this paper we define an action of the Weyl group on the quiver varieties
Mm,λ(v) with generic (m, λ).
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In [11], [12] Nakajima defined a particular class of quiver varieties and
showed how to use them to give a geometric construction of integrable repre-
sentations of Kac-Moody algebras. Luckily these varieties can be used also to
give a geometric construction of representations of Weyl groups. In [6], Lusztig
constructed an action of the Weyl group on the homology of Nakajima’s quiver
varieties. His construction is similar to the construction of Springer represen-
tations. In [12], Nakajima gave a construction of isomorphisms �σ,ζ (d, v) :
Mζ (d, v) −→ Mσζ (d, σ (v − d) + d) in the case of a quiver of finite type
(Nakajima’s conventions are different from the ones we adopt here, for us this
case would be a particular case of quiver varieties of affine type). In the same
paper he also suggested that it would have been possible to construct these
isomorphisms using reflection functors in the general case. His construction
is analytic and relies on a description of quiver varieties as moduli spaces of
instantons on ALE spaces.

The main result of this paper is a direct and algebraic construction of these
isomorphisms which works for a general quiver without simple loops. To do it
we also describe a set of generators for the algebra of covariant functions.

The paper is organized as follows. In the first section we fix the notation
and we give the definition of a quiver variety: Mm,λ(v) where m and λ are two
parameters, and v is a dimension vector. We are interested in quiver varieties
as algebraic varieties but in order to explain one of the applications we need
to give also the hyperKähler construction of a quiver variety. We use a result
of Migliorini [9] to explain the connection between the two constructions.

Algebraic quiver varieties are defined as the Proj scheme of a ring of
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covariants. In the second section we describe a set of generators for this ring.
In a special case which is not directly related with quiver varieties we are also
able to give a more precise result and to describe a basis for the vector space
of χ -covariants functions.

In the third section we use this description to generalize a construction of
Lusztig [6]. Namely, if m and λ are generic, for any element σ of the Weyl
group we construct an isomorphism �σ between Mm,λ(v) and Mσm,σλ(σv).
More precisely we construct �s for all simple reflections s and we verify the
Coxeter relations.

In the fourth section we give a result which reduces the study of the
geometric and algebraic properties of the quiver varieties Mm,λ(v) to the case
v dominant, for all m and λ.

In the fifth section, following Nakajima [11], we show how to use the
action constructed in section 3 (and the connection between the hyperKähler
construction and the algebraic construction) to describe an action of the Weyl
group on the homology of a class of quiver varieties. This action is different
from the one constructed by Lusztig in [6].

In the first version of this paper only Nakajima’s quiver varieties were
considered. In an attempt to make the paper clearer I found that the notation
required to explain the general case was simpler. In the last section I restrict
my attention to Nakajima’s quiver varieties, which depend on two dimension
vectors v and d. In particular in the case of a quiver of finite type and d − v

a regular weight, I prove the normality of the quiver variety M0(d, v) and the
connectedness of M(d, v).

After this paper was available Nakajima gave a construction of the iso-
morphisms described in Section 3 based on the hyperKähler construction of
quiver varieties and Crawley-Boevey gave a complete proof of the connected-
ness of M(d, v).

1. – Notation and definitions

In this section we associate to a quiver many different objects: a Cartan
matrix, a Weyl group, a variety and an associative algebra.

1.1. – Double quivers

Let Q = (I, H, h �→ h0, h �→ h1) be a finite oriented quiver: I is the set
of vertices, H the set of arrows and the orientation is given by the two maps

h �−→ h0 and h �−→ h1

from H to I . A double quiver is a quiver as above equipped with the following
extra structure:

1. For all h ∈ H we have h0 �= h1;
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2. An involution h �→ h̄ of H without fixed points and satisfying h̄0 = h1;
3. A map ε : H −→ {−1, 1} such that ε(h̄) = −ε(h).

We define � = {h ∈ H : ε(h) = 1} and � = {h ∈ H : ε(h) = −1}.
Observe that given a symmetric graph without simple loops it is always

possible to define ε and an involution ¯ as above.

1.2. – The Cartan matrix, the root lattice and the Weyl group

To a double quiver Q we associate a card I × card I matrix A with the
following entries:

ai j = card{h ∈ H : h0 = i and h1 = j}.

We define a generalized symmetric Cartan matrix as follows: C = 2I−A = (cij).
We define also a lattice R = Z[I ], its dual P = Hom(R, Z) and its positive

part R+ = N[I ]. To avoid confusion we indicate with αi the element of R
corresponding to i ∈ I . The set {αi : i ∈ I } is a basis for R, we indicate with
ωi the dual basis of P .

We define a symmetric bilinear form 〈 , 〉 on R by 〈αi , αj 〉 = ci j . If r ∈ R
we let r̄ be the element of P defined by this bilinear form, so αi = ∑

j∈I ci jωj .
The Weyl group W attached to C is defined as the subgroup of Aut (R)

generated by the reflections

(1) si : x �−→ x −〈x, αi 〉αi .

A presentation of the group W is given by the following Coxeter relations:

s2
i = 1 for all i ∈ I,(2a)

(si sj )
2 = 1 for all i, j ∈ I such that ci j = 0,(2b)

(si sj )
3 = 1 for all i, j ∈ I such that ci j = −1.(2c)

1.3. – Representations of a quiver

If Q = (I, H) is any oriented quiver and v = ∑
i∈I viαi ∈ R, we fix the

vector spaces Vi = Cvi and we define the space of representations of Q of
dimension v to be the vector space

(3) S(Q, v) =
⊕
h∈H

Hom(Vh0, Vh1).

If there is no ambiguity about Q and v we will write S instead of S(Q, v).
If s ∈ S we will write Bh or Bh(s) for the component of s relative to the

arrow h.



652 ANDREA MAFFEI

In the case of a double quiver Q when v is fixed and s ∈ S we define:

Ti =
⊕

h : h1=i

Vh0 ,(4a)

ai = ai (s) = (Bh̄(s))h : h1=i : Vi −→ Ti ,(4b)

bi = bi (s) = (ε(h)Bh(s))h : h1=i : Ti −→ Vi .(4c)

A natural symplectic form is defined on the space S(Q, v) by the formula:

ω(s, t) =
∑
h∈H

ε(h) Tr(Bh(s)Bh̄(t)) =
∑
i∈I

Tr(bi (s)ai (t)).

1.4. – Hermitian structure on S

We suppose now that a double quiver Q = (I, H) is fixed and that the
spaces Vi are endowed with hermitian metrics. So we can speak of the adjoint
ϕ∗ of a linear map between these spaces, and we have a positive definite
hermitian structure h on S defined by

h(s, t) =
∑
h∈H

Tr(Bh(s)B∗
h̄ (t)) =

∑
i∈I

Tr(ai (s)a
∗
i (t) + b∗

i (t)bi (s))

and an associated real symplectic form ωI (s, t) = Re h(
√−1s, t).

1.5. – Group actions and moment maps

We can define an action of the group GL(V ) = ∏
GL(Vi ) on the set S

in the following way:

g(Bh) = (gh1 Bhg−1
h0

) for g = (gi ) ∈ GL(V ).

Observe that ω is GL(V ) invariant. Observe also that the 1-dimensional subgroup
C∗ ·(IdVi )i∈I acts trivially, so an action of the group Gv =GL(V )/C∗(IdVi )i∈I is
defined. Moreover if U (V ) = ∏

U (Vi ) is the group of unitary transformations
in GL(V ) and Uv = U (V )/S1 ⊂ Gv then the real symplectic form ωI is Uv

invariant.
We want now to give explicit formulas for the relative moment maps.
Given two finite dimensional vector spaces E and F we will identify the

dual of HomC(E, F) with HomC(F, E) through the pairing 〈ϕ, ψ〉 = Tr(ϕ◦ψ).
Using this identification we see that we can identify g∗

v with the space
{(xi ) ∈ ⊕i∈I gl(Vi ) :

∑
i Tr(xi ) = 0} and u∗

v = HomR(u, R) with the subspace
of gv of skew-hermitian matrices.
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We can now give the following explicit formulas for the moment map
µ: S −→ g∗

v relative to the symplectic form ω and for the moment map
µI : S −→ u∗

v relative to the symplectic form ωI :

(µ(s))i =
∑

h∈H : h1=i

ε(h)Bh Bh̄ = bi ai ,

(µI (s))i =
√−1

2

 ∑
h∈H : h1=i

Bh B∗
h − B∗

h̄ Bh̄

 =
√−1

2
(bi b

∗
i − a∗

i ai ).

It is common to group these moment maps together and to define an
hyperKähler moment map

µ̃ = (µI , µ) : S −→ uv ⊕ gv = (R ⊕ C) ⊗R uv.

1.6. – Quiver varieties as hyperKähler quotients

Let Z = (R⊕C)⊗Z P and for any v ∈ R define Zv = {ζ ∈ Z : 〈ζ, v〉 = 0}.
If v ∈ R+ and ζ = ∑

i∈I (ξi , λi )ωi ∈ Zv define:

Lζ (Q, v) = {s ∈ S : µi (s) − λi IdVi = 0 and µI,i (s) − √−1ξi IdVi = 0}.

We observe that Lζ (Q, v) is stable for the action of Uv , so, at least as a
topological Hausdorff space we can define the quiver variety of type ζ as

Mζ (Q, v) = Lζ (Q, v)/Uv.

It will be convenient to define also Mζ (Q, v) = ∅ if v ∈ R − R+.

Remark 1. There is a surjective map from Zv to Z(uv) ⊕ Z(gv) given by:

∑
i∈I

(ξi , λi )ωi �−→
(∑

i

√−1ξi IdVi ,
∑

i

λi IdVi

)

Observe that Lζ is the fiber of µ̃ over the image of ζ in Z(uv) ⊕ Z(gv).

Remark 2. If v ≥ 0 define: I ∗ = {i ∈ I : vi �= 0}, H∗ = {h ∈ H :
h0, h1 ∈ I ∗}, ε∗ = ε

∣∣
H∗ , v∗ = ∑

i∈I∗ viαi , and ζ ∗ = ∑
i∈I∗ ζiωi then it is clear

that

Lζ∗(v∗) ' Lζ (v) and Mζ∗(v∗) ' Mζ (v).
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1.7. – Geometric invariant theory and moment map

In this section we explain the relation between the moment map and the
GIT quotient proved by Kempf, Ness [4], Kirwan [10] and others. To be more
precise we need a generalization of their results in the case of an action on an
affine variety proved by Migliorini [9].

Let X be an affine variety over C and G a reductive group acting on X .
We can assume that X is a closed sub-variety of a vector space V where G
acts linearly. Let h be an hermitian form on V invariant by the action of a
maximal compact subgroup U of G and define a real U -invariant symplectic
form on V by

η(x, y) = Re h(
√−1x, y).

Then we can define a moment map ν : V −→ u∗ = HomR(u, R):

〈ν(x), u〉 = 1

2
η(u · x, x).

We observe that the real symplectic form η restricted to a complex submanifold
is always non degenerate and that µ restricted to the non singular locus of X
is a moment map for the action of U on X .

Now let χ be a multiplicative character of G. We observe that for all
g ∈ U we have |χ(g)| = 1 so

√−1 dχ is a map with values in R. In particular
we can consider

√−1 dχ as an element of u∗. Moreover we observe that it
is invariant by the dual adjoint action, hence it makes sense to consider the
quotient:

M = ν−1(
√−1 dχ)/U.

As we saw our varieties are a particular case of this construction.

On the other side we can consider the GIT quotient. Let us recall the
definition. If ϕ is a character of G we consider the line bundle Lϕ = V × C

on V with the following G-action:

g(x, z) = (g · x, ϕ(g)z).

An invariant section of Lϕ is determined by an algebraic function f : V −→ C

such that f (gx) = ϕ(g) f (x) for all g ∈ G and x ∈ V . We use the same
symbol Lϕ also for the restriction of Lϕ to X .

Given a rational action of G on a C-vector space A we define

Aϕ,n = {a ∈ A : g · a = ϕ−n(g)a for all g ∈ G},

Aϕ =
∞⊕

n=0

Aϕ,n as a graded vector space.

Hence we have that H 0(X, Lϕ)G = C[X ]ϕ,1. We observe that if I is the ideal
of algebraic function on V vanishing on X then

H 0(X, Lϕ)G = H 0(V, Lϕ)G

Iϕ,1
.
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This last fact can be easily proved (for example) by averaging a ϕ-equivariant
function f on X in the following way:

f̃ (v) =
∫

U
ϕ−1(u) f (u · v) du.

Definition 3. A point x of X is said to be χ -semi-stable if there exist
n > 0 and f ∈ H 0(X, L⊗n

χ )G such that f (x) �= 0. We observe that by the
remark above a point of X is χ -semi-stable if and only if it is χ -semi-stable as
a point of V . We denote by Xss

χ (resp. V ss
χ ) the open subset of χ -semi-stable

points of X (resp. V ).

Proposition 4 ([10], [13]). There exists a good quotient of Xss
χ by the action

of G and we have that
Xss

χ //G = Proj C[X ]χ .

Moreover Proj C[X ]χ is a finitely generated C-algebra and a natural projective map

π : Xss
χ //G −→ X//G = Spec C[X ]G

is defined.

In the case of χ ≡ 1 the following fact is well known:

Proj C[X ]χ = Spec C[X ]G ' ν−1(0)/U.

The following result is less well known, and its proof requires some adjustment
of the classical proof for the case χ ≡ 1 (see for example an appendix of [9]
or par.I.2 in [8]).

Proposition 5 (Migliorini, [9]). Let x ∈ X then

∃g ∈ G : ν(gx) = √−1dχ ⇐⇒ Gx is a closed orbit in Xss
χ .

Proposition 6. The inclusion ν−1(
√−1dχ) ⊂ Xss

χ induces a homeomorphism

ν−1(
√−1dχ)/U ' Xss

χ //G.

1.8. – Quiver varieties as algebraic varieties

If v ∈ R and m = ∑
i miωi ∈ P is such that 〈v, m〉 = 0 then we define a

character χm of Gv by χm = ∏
i∈I det

mi
GL(VI ). Let Z = C ⊗Z P and if v ∈ R set

Zv = {λ ∈ Z : 〈λ, v〉 = 0}. If λ = ∑
i λiωi ∈ Z , m ∈ P and v ∈ R+ then we

define the varieties:

�λ(Q, v) = {s ∈ S : µi (s) − λi IdVi = 0 for all i},
�m,λ(Q, v) = {s ∈ �λ(Q, v) : s is χm − semi-stable}
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and the associated quiver varieties

Mm,λ(Q, v) = �m,λ(Q, v)//Gv.

We call pv
m,λ: �m,λ(v) −→ Mm,λ(v) the quotient map. Observe that the inclusion

�m,λ(v) ⊂ �λ(v) induces a projective morphism

πv
m,λ : Mm,λ(v) −→ M0,λ(v).

Finally it will be convenient to define Mm,λ(v) = ∅ if v ∈ R − R+.

Remark 7. As in Remark 1 we have a surjective map from Z to Z(gv)

and �λ(v) is the fiber of µ over the image of λ in Z(gv).

Remark 8. Remark 2 holds without changes also in this case.

Remark 9. Observe that P ⊕ Z ⊂ Z. Observe also that the map m −→ χm

defines a surjective morphism from P to Hom(Gv, C∗) and that the following
diagram commutes:

P −−−→ Hom(G, C∗) � χ8 8 8
Rn −−−→ Z(u) ' (u∗)U �√−1dχ

In particular we can apply Proposition 6 to the action of Gv on �λ(v) and we
obtain:

M(m,λ)(Q, v) ' Mm,λ(Q, v).

1.9. – Path algebra

To describe functions on quiver varieties we need some notations about the
path algebra.

Definition 10. A path α in our graph is a sequence h(m) . . . h(1) such that
h(i) ∈ H and h(i)

1 = h(i+1)
0 for i = 1, . . . , m − 1. We define also the source

α0 = h(1)
0 , and the target α1 = h(m)

1 and we say that the length of α is m. If
α0 = α1 we say that α is a closed path. We consider also the empty paths ∅i

for i ∈ I and we define (∅i )0 = (∅i )1 = i . The product of paths is defined in
the obvious way.

Given a path α = h(m) . . . h(1) we define an evaluation of α on S in the
following way: if s ∈ S then

∅i (s) = IdVi ∈ Hom(Vi , Vi ) and α(s) = Bh(m) ◦. . .◦Bh(1) ∈ Hom(Vα0, Vα1).

The path algebra R is the vector space spanned by all the paths, and with
the product induced by the product of paths. If i, j ∈ I we say that an element
in R is of type (i, j) if it is in the linear span of the paths with source in i
and target in j .

Remark 11. We observe that the evaluation on S is a morphism of algebras
from R to the algebra defined by the morphisms of the category of vector spaces.
Moreover if f is of type (i, j) we observe that f (s) ∈ Hom(Vi , Vj ).
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2. – Generators of the projective ring of a quiver variety

In this section we want to describe a set of generators of the graded ring
C[S]χ and by consequence of the projective ring of a quiver variety C[�λ]χ .
More precisely we will give a set of generators as C[S]G-module of its l-
homogeneous part: C[S]χ,l . This result is a generalization of the one obtained
by Le Bruyn and Procesi in [1] in the case of invariants: χ ≡ 1. Other bases
of the ring of covariants have been obtained by Derksen and Weyman for all
characteristics (see [3]).

First of all recall the result of Le Bruyn and Procesi.

Theorem 12 (Le Bruyn and Procesi [1]). The ring C[S]G is generated by the
polynomials s �−→ Tr (α(s)) for α a closed path.

2.0.1. – Determinants

To describe our result we make first some general remarks. Forget for a
moment our quiver, and suppose to have a finite set of finite dimensional vector
spaces X1, . . . , Xk of dimensions u1, . . . , uk , a pair of nonnegative integers
(m+

i , m−
i ) for each of them and assume that N = ∑k

i=1 m+
i ui = ∑k

i=1 m−
i ui .

Construct the vector spaces:

Y =
k⊕

i=1

C
m−

i ⊗ Xi , Z =
k⊕

i=1

C
m+

i ⊗ Xi

and observe that dim Y = dim Z = N . Define an action of the general linear
group GL(Xi ) of Xi on Y by

gi ·
 k∑

j=1

vj ⊗ xj

 =
∑
j �=i

vj ⊗ xj + vi ⊗ gi xi ,

and also a similar action on Z . Hence the vector space Hom(Y, Z) acquires a
natural structure of G X = ∏k

i=1 GL(Xi ) module. If we choose an isomorphism
σ between Hom(

∧N Y,
∧N Z) and C we can define a function det on Hom(Y, Z)

by

det(A) = σ

(
n∧

A

)
.

For simplicity we do not emphasize the role of σ in this definition, so strictly
speaking, det is a function defined only up to a nontrivial constant factor. We

observe also that
∧n Y ' (∧ui X1

)⊗m−
1 ⊗ · · · ⊗ (∧uk Xk

)⊗m−
k (and similarly for

Z ) so an isomorphism σ is determined if we choose orientations, or bases, of
the X j ’s. Finally observe that for any g = (gj ) ∈ G X we have

det(g · A) =
k∏

i=1

(detGL(Xi )(gi ))
m+

i −m−
i det(A).
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2.0.2. – Description of the generators

We go back now to our quiver and we describe a set of covariant poly-
nomials on S. Any character χ of the group Gv is of the form χ = χm =∏

i∈I det
mi
GL(Vi )

. We fix such a character. We use now the construction explained

in 2.0.1 in the case Xi = Vi and m+
i − m−

i = mi . In particular we have

Y =
⊕
i∈I

m−
i⊕

h=1

V (h)
i , Z =

⊕
i∈I

m+
i⊕

k=1

V [k]
i

where V (l)
i , V [l]

i are isomorphic copies of Vi . For any i, j ∈ I and for any
1 ≤ h ≤ m−

i , 1 ≤ k ≤ m+
j we choose an element α

i,h
j,k of the path algebra of

type (i, j). We call the data � = (m+
i , m−

i , α
i,h
j,k ) a χ -data and we attach to it

a χ -covariant function f� on S through the formula:

f�(s) = det (��(s))

where ��(s) is a linear map from Y to Z defined by

[��]
V (h)

i

V [k]
j

(s) = α
i,h
j,k (s).

The functions f� form a set of generators as C[S]G-module of C[S]χ,1,
but we will need to define a smaller set of generators. To define this set we
give a notion of good �.

Definition 13. Data � as above is said to be χ -good if it satisfies m+
i +

m−
i = |mi | for all i ∈ I .

Theorem 14. The set of polynomials f� with � χ -good generates C[S]χ,1 as
a C[S]Gv -module.

Remark 15. In a previous version of this paper [7] a slightly more general
and precise result was proved. In that case we used a different definition of
quiver varieties where extra vector spaces were considered.

2.1. – Some remark on the invariant theory of GL(n)

If V is a finite dimensional representation of a linearly reductive Lie group
G and S is a simple representation of S we write V [S] for the S-isotypic
component of type S of V .

We now fix n and V = Cn and we make some remarks on the representa-
tions of GL(n). To any partition of height less then or equal to n we associate
an irreducible representation of GL(n) in the usual way. If we multiply these
representations by a power of the inverse of the determinant representation we
obtain a complete list of irreducible representations of GL(n). If λ is a partition
we define λop = (λ1 − λn, λ1 − λn−1, . . . , λ1 − λ1). We call δ the determinant
representation of GL(n) and ε = 1n the associated partition. Finally we call V
the natural representation.
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Lemma 16.
1. Lλ

∗ = δ−λ1 ⊗ Lλop ,

2. HomGL(n)(δ
m, Lλ ⊗ Lµ) =

{
C if λ = µop + (m − µ1)ε,

0 otherwise,

3. HomGL(n)(δ
m, Lλ ⊗ L∗

µ) =
{

C if λ = µ + mε,

0 otherwise.

We want now to describe HomGL(n)

(
δm, V ⊗i ⊗ (V ∗)⊗ j ). To do it we will

use Schur-duality. Remind that the irreducible representations of the groups
Sm are parameterized by the partitions of m and we call Sλ the irreducible
representation associated with λ. Consider now the action of Sm on V ⊗m given
by permuting the factors. This action commute with the GL(n) action. Schur
duality asserts that the action of the group Sm × GL(n) on V ⊗m decomposes
in the following way:

V ⊗m =
⊕
λ)m

ht (λ)≤n

Sλ ⊗ Lλ.

We describe a set of elements of HomGL(n)

(
δm, V ⊗i ⊗ (

V ∗)⊗ j). Let m be a
nonnegative integer and choose a permutation σ of {1, . . . , i + mn}. To σ we
associate maps:

�σ :
(

V ⊗i ⊗ (V ∗)⊗i
)GL(n) −→ V ⊗i+mn ⊗ (V ∗)⊗i [δm],

�σ :
(

V ⊗i ⊗ (V ∗)⊗i
)GL(n) −→ V ⊗i ⊗ (V ∗)⊗i+mn[δ−m],

by
�σ(t ⊗ s) = σ(o ⊗ · · · ⊗ o ⊗ t) ⊗ s,

�σ (t ⊗ s) = t ⊗ σ(o∗ ⊗ · · · ⊗ o∗ ⊗ s)

where o is a nonzero vector in
∧n V , o∗ is a non zero vector in

∧n V ∗, t ∈ V ⊗i

and s ∈ (V ∗)⊗i .

Lemma 17.
1. If i �= j + mn then HomGL(n)

(
δm, V ⊗i ⊗ (V ∗)⊗ j

)
= 0.

2. If m > 0 then V ⊗i+mn ⊗ (V ∗)⊗i [δm] = ∑
σ

Im �σ .

3. If m > 0 then V ⊗i ⊗ (V ∗)⊗i+mn[δ−m] = ∑
σ

Im �σ .

We want now to give a slightly different formulation of the Lemma above.
Let M = V ⊗i ⊗ (V ∗)⊗ j we want to describe M∗

δm = {ϕ ∈ M∗ : g · ϕ =
δ−m(g)ϕ}. Of course this problem is completely equivalent to the previous one.
We shall now reformulate the description of a set of generators of M∗

δm in a
more convenient way for our purposes. Let m ≥ 0 and choose a collection
I = {I1, . . . , Im} of m disjoint subsets of {1, . . . , i + mn} of cardinality n. Let
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Ij = {i j1 < · · · < i jn} and {1, . . . , i + mn} − ⋃
I = { j1 < · · · < ji }. To I and

to a permutation σ ∈ Si we associate elements

φI,σ ∈
(

V ⊗i+mn ⊗ (V ∗)⊗i
)∗

δm
and ψI,σ ∈

(
V ⊗i ⊗ (V ∗)⊗i+mn

)∗
δ−m

defined by

φI,σ (v1 ⊗ . . . vi+mn ⊗ ϕ1 . . . ϕi ) =
m∏

j=1

〈o∗, vi j1 ∧ · · · ∧ vi jn 〉 ·
i∏

h=1

〈vjh , ϕσh 〉

ψI,σ (v1 ⊗ . . . vi ⊗ ϕ1 . . . ϕi+mn) =
m∏

j=1

〈o, ϕi j1 ∧ · · · ∧ ϕi jn 〉 ·
i∏

h=1

〈vσh , ϕjh 〉

where o is a nonzero vector in
∧n V and o∗ is a non zero vector in

∧n V ∗.

Lemma 18.
1. If i �= j + mn then

(
V ⊗i ⊗ (V ∗)⊗ j

)∗
δm = 0.

2. If m ≥ 0 then
(
V ⊗i+mn ⊗ (V ∗)⊗i

)∗
δm is generated by the functions φI,σ .

3. If m ≥ 0 then
(
V ⊗i ⊗ (V ∗)⊗i+mn

)∗
δ−m is generated by the functions ψI,σ .

The proofs of the three Lemmas are straightforward.

2.2. – A special case

To simplify the exposition in this subsection we prove two special cases of
Theorem 14. In one of these cases we obtain a more precise result interesting
in its own.

Let J+, J− be two sets of indexes and define J = J+ × J−. For each
i ∈ J+ (resp. j ∈ J−) choose a vector space Yi (resp. X j ) and define
X = ⊕

j∈J− X j and Y = ⊕
i∈J+ Yi . Consider the group

G XY =
∏

i∈J+
GL(Yi ) ×

∏
j∈J−

GL(X j )

and its character c = ∏
i∈J+ detGL(Yi ) ×

(∏
j∈J− detGL(X j )

)−1
.

We fix a matrix r = (ri j )i∈J+, j∈J− of integers and we consider the vector
space:

H XY
r =

⊕
(i, j)∈J

Hom(X j , Yi )
⊕ri j .

When r and the spaces X, Y will be clear from the context we will write
H instead of H XY

r . In the case ri j = 1 for all i, j we obtain the space
H XY

1 = H1 = Hom(X, Y ). We fix a basis ei j
m of C

ri j , so we have a canonical
identification

(5) H =
⊕

(i, j)∈J

Hom(X j , Yi ) ⊗ C
ri j .
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We want to study c-equivariant polynomials on H . If we choose elements
ϕi j ∈ (Cri j )∗ for all i, j then we can define a map �ϕ : H −→ H1 by

(6) �ϕ

 ∑
(i, j)∈J

Ai j ⊗ vi j

 =
∑

(i, j)∈J

ϕi j (vi j )Ai j

where Ai j ⊗ vi j ∈ Hom(X j , Yi ) ⊗ C
ri j . We will prove that the determinants of

these maps generates the space of c-equivariant polynomials. We will study
first the case ri j = 1 for all i, j where we can state a more precise result. To
state it we introduce the following set of matrices:

Sn =
S = (si j ) ∈ NJ+×J−

:
∑
i, j

si j = n

 ,

SXY = S =
S = (si j ) ∈ NJ+×J−

:
∑

j

si j = dim Yi ∀i ∈ J+ and

∑
i

si j = dim X j ∀ j ∈ J−
}

.

As for H we will write S when the spaces X j , Yi will be clear from the context.
Observe that S = ∅ if

∑
j dim X j �= ∑

i dim Yi and that if N = ∑
dim X j =∑

dim Yi then S ⊂ SN . For each card(J+) × card(J−) matrix S = (si j ) we
consider ϕi j ∈ C∗ given by ϕi j (λ) = si jλ and we define

�S = �ϕ and fS(A) = f XY
S (A) = det(�S(A)).

We can now state the two special versions of Theorem 14.

Proposition 19. { fS}S∈SXY is a basis of C[H XY
1 ]c.

Lemma 20. C[H XY ]c is generated as a vector space by the following functions:

s �−→ det
(
�ϕ(s)

)
where �ϕ : H XY −→ H XY

1 is as in (6) above.

2.2.1. – Proof of Proposition

Here and in the following we will use polarization: if V is a finite dimen-
sional vector space then we can define a map

℘ : (V ⊗n)∗ −→ Sn(V ∗) ⊂ C[V ] through ℘(ϕ)(v) = ϕ(v ⊗ · · · ⊗ v).

Lemma 21. ℘ is surjective, moreover if V is a finite dimensional representation
of a reductive group �, and χ is a character of � then

℘((V ⊗n)∗χ ) = Sn(V ∗)χ

where Eχ is the isotypic component of type χ−1 of a G module E.
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Lemma 22. For i = 1, . . . , n let �i be a reductive group, χi be a character
of �i and Ei be a f.d. representation of �i . Let � = ∏

�i , then E = ⊗i Ei is a
representation of � and χ = ∏

χi is a character of �. Then

E∗
χ = (E1)

∗
χ1

⊗ · · · ⊗ (En)
∗
χn

.

Now we prove Proposition 19. We have to compute Sn(H∗
1 )c = (Sn(H1))

∗
c

for all n. For all S ∈ Sn define

ES =
⊗

(i, j)∈J+×J−
Ssi j

(
Hom(X j , Yi )

)
.

Observe that Sn(H1) =⊕
S∈Sn

ES as a G-module. So Sn(H1)
∗
c =⊕

S∈Sn
(ES)

∗
c .

Observe now that ES is a quotient of

(7) ẼS =
⊗

(i, j)∈J+×J−
(X∗

j )
⊗si j ⊗ Y

⊗si j
i .

By the Lemmas of Subsection 2.1 we have that

(ẼS)
∗
c =

{
0 if S /∈ SXY ,

C if S ∈ SXY .

So in particular (ES)
∗
c = 0 if S /∈ SXY . Hence dim Sn(H)∗c ≤ card(SXY ).

The functions fS are clearly c-equivariant so the only thing that we have
to prove is that they are linearly independent. To prove it we will prove a
generalization of it.

If i ∈ J+ and j ∈ J− let Ei j be the card(J+) × card(J−) matrix with a 1
in the (i, j) position and 0 elsewhere.

For each i ∈ J+, j ∈ J−, m ∈ N and N ∈ N we consider the following
sentence Pi, j,m,N :

If
∑

j
dim X j = N = ∑

i
dim Yi then { fS+m Ei j }S∈SXY is linearly independent.

In the case m = 0 we call this Proposition P0,N since it does not depend on i, j
and we observe that ∀N P0,N is equivalent to the statement of Proposition 19.

For each N ∈ N we consider also the following sentence QN :

If
∑

j
dim X j = N =∑

i
dim Yi then Pi, j,m,N is true for all i∈ J+, j ∈ J− and m ∈N.

We prove QN by induction on N . The case N = 1 is trivial. Suppose now
that there exist cS ∈ C, i0 ∈ J+, j0 ∈ J− and m ∈ N such that∑

S∈SXY

cS f XY
S+m Ei0 j0

= 0.

We shall prove cS = 0 for all S in various steps.
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First step: If there exists j1 such that dim X j1 = 1 then cS = 0 for all S. Set

S̃i = {S ∈ SXY : si j1 = 1}

and observe that since dim X j1 = 1 then SXY = ∐
S̃i . Now choose a non zero

vector xj1 ∈ X j1 and for all i ∈ J+ choose a non zero vector yi ∈ Yi and an
hyper-plane Y ′

i of Yi such that Yi = Cyi ⊕ Y ′
i .

Now fix i1 �= i0 such that dim Yi1 ≥ 2 and consider J̃+ = J+ and J̃− =
J− − { j1}. For all i ∈ J̃+ and for all j ∈ J̃− define:

X̃ j = X j , Ỹi =
{

Yi if i �= i1,

Y ′
i1

if i = i1.

For any S ∈ S̃i1 we define also t (S) ∈ S X̃ Ỹ by t (S)i j = si j for all i ∈ J̃+,

j ∈ J̃−. S �−→ t (S) is a bijection between S̃i1 and S X̃ Ỹ : we call t−1 the

inverse map. Finally we define � : H X̃Ỹ
1 −→ H XY

1 by

(8) �(T )

∣∣∣∣
X j

= T

∣∣∣∣
X̃ j

for all j ∈ J̃− and �(T )(xj1) = yj1 .

Observe that if S ∈ SXY then fS+m Ei0 j0
◦� = 0 if S /∈ S̃i1 .

Now if j0 �= j1 we have

0 =
∑

S∈SXY

cS f XY
S+m Ei0 j0

(�(T )) =
∑
S∈S̃i

cS f X̃ Ỹ
t (S)+m Ei0 j0

(T )

=
∑

S∈S X̃ Ỹ

ct−1(S) f X̃ Ỹ
S+m Ei0 j0

(T )

and by Pi0, j0,m,N−1 we deduce cS = 0 for all S ∈ S̃i1 .
If j0 = j1 we obtain similarly

0 = (δi0i1m + 1)
∑

S∈S X̃ Ỹ

ct−1(S) f X̃ Ỹ
S (T )

and by P0,N−1 we deduce cS = 0 for all S ∈ S̃i1 .
In a similar way we prove cS = 0 if S ∈ S̃i1 and dim Yi1 = 1.

Second step: If there exists i1 such that dim Yi1 = 1 then cS = 0 for all S. This
is completely analogous to the previous step.

So we can assume dim X j , dim Yi ≥ 2 for all i, j .

Third step: If m = 0 then cS = 0 for all S. Choose i1, j1 arbitrarily. Since
dim X j1, dim Yi1 ≥ 2 we can choose a nonzero element xj1 ∈ X j1 (resp. yi1 ∈
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Yi1) and an hyper-plane X ′
j1

⊂ X j1 (resp. Y ′
i1

⊂ Yi1) such that X j1 = Cxj1 ⊕ X ′
j1

(resp. Yj1 = Cyi1 ⊕ Y ′
i1

). Define:

(9) X̃ j =
{

X j if j �= j1
X ′

j1
if j = j1

and Ỹi =
{

Yi if i �= i1

Y ′
i1

if i = i1

and � : H X̃Ỹ
1 −→ H XY

1 by

(10) �(T )

∣∣∣∣
X j

= T

∣∣∣∣
X̃ j

and �(T )(xj1) = yj1 .

Then
0 =

∑
S∈SXY

cS f XY
S (�(T )) =

∑
S∈SXY : si1 j1

�=0

si1 j1cS f X̃ Ỹ
S (T )

=
∑

S∈S X̃ Ỹ

(si1 j1 + 1)cS+Ei1 j1
f X̃ Ỹ
S+Ei1 j1

(T )

By induction Pi, j,1,N−1 is true for all i, j so we see that cS = 0 for all S ∈ S
such that si1, j1 ≥ 1. Now we conclude thanks to previous two steps.

Fourth step: If m ≥ 1 then cS = 0 for all S. We can construct X̃ j , Ỹi , � as in
the third step with j1 = j0 and i1 = i0 and we see that

0 =
∑

S∈SXY

cS f XY
S+m Ei0 j0

(�(T )) =
∑

S∈SXY

(si0 j0 + m)cS f X̃ Ỹ
S+m Ei0 j0

(T )

=
∑

S∈S X̃ Ỹ

(si0 j0 + m + 1)cS+Ei0 j0
f X̃ Ỹ
S+(m+1)Ei0 j0

(T )

and by Pi0, j0,m+1,N−1 we deduce cS = 0 for all S.

2.3. – Proof of Lemma 20

We study first (H⊗n)∗c and then we apply polarization. As in the previous
section we can decompose H⊗n in summands of the following form:

(11) E =
⊗

(i, j)∈J

(Hom(X j , Yi ) ⊗ C
ri j )⊗si j =

⊗
(i, j)∈J

(X∗
j )

⊗si j ⊗ Y
⊗si j
i ⊗ (Cri j )⊗si j

where si j are nonnegative integers such that
∑

i, j si j = n. Notice that the order
of the factors is not important for us since we will apply polarization.

We can describe easily E∗
c using the Lemmas in Subsection 2.1. In par-

ticular a necessary and sufficient condition for the existence of c-covariants is
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i∈J+ si j = dim X j for all j ∈ J− and

∑
j∈J+ si j = dim Yi for all i ∈ J+.

Moreover
E∗

c '
⊗

(i, j)∈J

(
(Cri j )∗

)⊗si j

To write explicit formulas we choose an order on the factors of E , for
example choosing a lexicographic order in i ∈ J+, j ∈ J− and 1 ≤ q ≤ si j :

E = X∗
1 ⊗ Y1 ⊗ Cr11︸ ︷︷ ︸

q=1

⊗ · · · ⊗ X∗
1 ⊗ Y1 ⊗ Cr11︸ ︷︷ ︸

q=s11

⊗ X∗
1 ⊗ Y2 ⊗ Cr12︸ ︷︷ ︸

q=1

⊗ · · ·

Once we have chosen such an order we can write an element of E as linear
combination of elements of the form ⊗(i, j,q)∈K xi, j,q ⊗ yi, j,q ⊗vi, j,q with xi, j,q ∈
X∗

j , yi, j,q ∈ Yi vi, j,q ∈ C
ri j and we have set K = {(i, j, q) ∈ J × N : 1 ≤ q ≤

si j }. Using this convention if

(12) φ =
⊗

(i, j,q)∈K

φi, j,q ∈
⊗

(i, j,q)∈K

(Cri j )∗

the corresponding c equivariant linear function on E is defined on an element
s = ⊗(i, j,q)∈K xi, j,q ⊗ yi, j,q ⊗ vi, j,q by

φ(s) =
∏

i∈J+
〈
∧
−→

(i, j,q)∈K

yi, j,q , o∗
i 〉

∏
j∈J−

〈
∧

−→ (i, j,q)∈K

xi, j,q , oj 〉
∏

(i, j,q)∈K

φi, j,q(vi, j,q)

where
∧
−→

means that we are making the exterior product with respect to the

order we have chosen above. Observe now that ℘(E∗
c )=℘

( ⊗
(i, j)∈J

Ssi j
(
(Cri j )∗

))
.

In particular since Sm(V ) is spanned by vectors of the form v ⊗· · ·⊗v, ℘(E∗
c )

is spanned by the functions ℘(φ) with φ of the following special form:

(13) φ =
⊗

(i, j)∈J

(φi, j )⊗si j

The Lemma now follows from the following claim:

Claim. For each φ as in (13) ℘(φ) is a linear combination of the functions
A �→ det(�ϕ(A)).

We prove the claim as follows: we consider the space H1 = Hom(X, Y )

and we construct a G XY equivariant map ρ : H −→ H1 such that

1. there exists a c-covariant function f on H1 such that ℘(φ) = f ◦ρ,
2. for all S ∈ SXY there exists ϕ as in equation (6) such that for all A ∈ H

we have fS(ρ(A)) = det(�ϕ(A)).

The claim now follows from Proposition 19.
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To prove 1. fix φ as in (13) and define ρi j : Hom(X j , Yi ) ⊗ C
ri j −→

Hom(X j , Yi ) by
ρi j (T ⊗ v) = φi, j (v)T,

and define ρ = ⊕
i, j∈J ρi j : H −→ H1. Observe that ρ is G XY -equivariant.

Observe now that H⊗n
1 = ⊕

ES where S ∈ Sn and ES is defined as in (7).
In particular we choose the following summand of H⊗n

1 :

E =
⊗

(i, j)∈J

Hom(X j , Yi )
⊗si j

where the (si j ) are the same as those used to define φ in formula (13). Observe
that (E)∗c = C. Choose a non zero element φ̃ ∈ (E)∗c and observe that up to a
nonzero scalar factor we have

(14) ℘H1(φ̃)◦ρ = ℘H (φ).

To see this choose φ as in (13), and bases yi
h of Yi , x j

k of X∗
j (and its dual

basis z j
k of X j ) . Choose also a bases εi j

m of C
ri j such that φi, j (εi j

m ) = δm,1 and
set Ai j = ρi j (s) = ∑

h,k ai j
hk yi

h ⊗ x j
k for s ∈ H . Then

℘(φ)(t) =
∑

h∈KY ,k∈KX

∏
i∈J+

〈
∧
−→

(i, j,q)∈K

ai j
h(i, j,q)k(i, j,q)yi

h(i, j,q), o∗
i 〉

∏
j∈J−

〈
∧
−→

(i, j,q)∈K

x j
k(i, j,q), oj 〉

=
∑

k∈KX

∏
i∈J+

〈
∧
−→

(i, j,q)∈K

Ai j z j
k(i, j,q), o∗

i 〉
∏

j∈J−
〈
∧
−→

(i, j,q)∈K

x j
k(i, j,q), oj 〉

where the indexes are as follows:

KX = {k : K −→ N : 1 ≤ k(i, j, q) ≤ dim X j },
KY = {h : K −→ N : 1 ≤ h(i, j, q) ≤ dim Yi }.

The left hand side in (14) clearly gives the same expression.
Finally for any S = (ti j ) ∈ SXY if we choose ϕi j = ti jφ

i, j then

fS(ρ(A)) = det(�ϕ(A)).

Remark 23. The basis of C[H ]c we have described are different from the
polarization of the natural basis of E∗

c . The relation between the two basis is
given by formulas of the following types

1. If A =
( a11 a12

a21 a22

)
and B =

( b11 b12
b21 b22

)
then

det
( a11 b12

a21 b22

)
+ det

( b11 a12
b21 a22

)
= det(A + B) − det A − det B.
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2. If A=
( a11 a12

a21 a22

)
, B =

( b11 b12
b21 b22

)
, C =

( c11 c12
c21 c22

)
and D =

( d11 d12
d21 d22

)
then

det
( a11 b11

a21 b21

)
det

( c12 d12
c22 d22

)
− det

( a11 b12
a21 b22

)
det

( c12 d11
c22 d21

)
− det

( a12 b11
a22 b21

)
det

( c11 d12
c21 d22

)
+ det

( a12 b12
a22 b22

)
det

( c11 d11
c21 d21

)
= − det

( A B
C D

)
+ det

( A 0
0 D

)
+ det

( 0 B
C 0

)
The first type of formula corresponds to the reduction of Lemma 20 to
the case ri j = 1. The second type of formula correspond to the case of
Proposition 19.

2.4. – Proof of Theorem 14

Write the vector space S(Q, v) in the following way:

S =
⊕
h∈H

V ∗
h0

⊗ Vh1 .

Fix a character χm and mi , m+
i , m−

i as in 2.0.2 and let I + (resp. I 0, I −) be
the set of vertices i such that mi > 0 (resp. = 0, < 0). We describe first the
χm covariants of S⊗n . Observe that we can decompose S⊗n in the following
way:

S⊗n =
⊕

�

E (�)
1 ⊗ · · · ⊗ E (�)

n

where each E (�)
i is of the form V ∗

h0
⊗ Vh1 . So it is enough to compute the χm

covariants of each piece E (�)
1 ⊗· · ·⊗E (�)

n . We fix such a piece E = E1⊗· · ·⊗En

and we compute E∗
χ . Let I ∗ be a copy of I and fix an isomorphism i ←→ i∗

between the two sets. For each j = 1, . . . , n we define the subset Sj of I
∐

I ∗
as {h∗

0, h1} if Ej = V ∗
h0

⊗ Vh1 .
Let now S = ∐n

j=1 Sj . An element of S can be thought as a couple
(i, j) (or (i∗, j)) where i (or i∗) is in Sj . We consider now a special class of
partitions of S: a collection F = {C,M(l)

i for i ∈ I and 1 ≤ l ≤ mi } of disjoint
subsets of 2S is called m-special if:

1.
⋃

F is a partition of S,
2. ∀ C ∈ C card C = 2 and ∃i ∈ I , Sj1,Sj2 such that i ∈ Sj1 , i∗ ∈ Sj2 and

C = {(i, j1), (i∗, j2)},
3. ∀M ∈ M(l)

i we have M = {(i, j)} if i ∈ I + and M = {(i∗, j)} if i ∈ I −,
4. card M(l)

i = vi = dim Vi .

We can represents a special collection with a graph whose vertices are the sets
Sj enriched according with the following rules:
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1. we put an arrow from Sj1 to Sj2 if there exists C = {(i, j2), (i∗, j1)} ∈ C,

2. we put an indexed circle box ◦l
i on Sj if there exists M = {(i, j)} ∈ M(l)

i ,
3. we put an indexed square box �l

i on Sj if there exists M = {(i∗, j)} ∈ M(l)
i ,

4. if Ej is of type V ∗
h0

⊗ Vh1 then we write h at the left of the corresponding
vertex.

Observe that: i) a vertex can be marked with a circle and a square but that
it cannot be marked with two circles or two squares, i i)the cardinality of the
vertices marked with ◦l

i is vi for each i ∈ I + and 1 ≤ l ≤ mi , i i i) the cardinality
of verteces marked with �l

i is vi for each i ∈ I − and 1 ≤ l ≤ −mi .
To a special collection F as above we attach a function φF on E . We

define it by the formula

φF(e1 ⊗ · · · ⊗ en) =
∏
C∈C

φC ·
∏

i∈I+

mi∏
l=1

〈o∗
i ,
∧

M(l)
i 〉 ·

∏
i∈I−

mi∏
l=1

〈oi ,
∧

M(l)
i 〉

where oi is a non zero element in
∧vi Vi , o∗

i is a non zero element in
∧vi V ∗

i ,
ej = x∗

j ⊗ yj ∈ V ∗
h0

⊗ Vh1 if Ej = V ∗
h0

⊗ Vh1 , and

φC = 〈x∗
j1

, vj2〉 if C = {(i∗, j1), (i, j2)},∧
M(l)

i = yj1 ∧ · · · ∧ yjvi
if M(l)

i = {{(i, j1)}, . . . , {(i, jvi )}} and i ∈ I +,∧
M(l)

i = x∗
j1

∧ · · · ∧ x∗
jvi

if M(l)
i = {{(i, j1)}, . . . , {(i, jvi )}} and i ∈ I −.

Finally we extend φF to E by linearity. By the discussion in 2.1 we deduce
easily the following Lemma:

Lemma 24. E∗
χ is generated by the functions φF.

Theorem 14 now follows from Lemma 24 and the following claim:

Claim. for any special collection F the function ℘(φF) is a C[S]Gv -linear
combination of the functions f� described in 2.0.2.

We consider the connected components of the graph. There are only two
possible types of paths:

1. closed paths,
2. straight paths leaving from a square boxed vertex and arriving in a circle

boxed vertex.

Let now F0 be the union of the connected components of the first type and F1
be the union of the remaining components. Observe that

℘(φF) = ℘(φF0)℘ (φF1).

Observe also that φF0 is an invariant function (indeed this part of the graph
corresponds to the situation studied by Lusztig in [5]). Since we are interested
in generators of C[S]χ,1as a C[S]G-module, we can suppose F = F1.



A REMARK ON QUIVER VARIETIES AND WEYL GROUPS 669

Observe now that each connected component � of the graph of the second
type with the initial vertex marked with a square �l0

i0
and the final vertex marked

with a circle ◦l1
i1

determines:

1. a path α� of our quiver Q such that α�
0 = i0 and α�

1 = i1,
2. two numbers l0 = L0(�) and l1 = L0(�) such that 1 ≤ l0 ≤ −m

α�
0

and

1 ≤ l1 ≤ m
α�

1
.

Now we prove the claim in the following way, we construct X j , Yi and r as
in 2.2, a group homomorphism σ : Gv −→ G XY such that σ ∗c = χm , a Gv

equivariant map ρ : S −→ H , and a G XY c-covariant function f on H such
that:

1. for all ϕ there exists a χm-good data � such that det(�ϕ(ρ(s))) = f�(s),
2. ℘(φF) = f ◦ρ.

The claim will clearly follow from Lemma 20.
Set

J− = {(i, l) : i ∈ I − and 1 ≤ l ≤ −mi },
J+ = {(i, l) : i ∈ I + and 1 ≤ l ≤ mi }.

For all (i, l) ∈ J− choose X(i,l) = Vi and for each (i, l) ∈ J+ choose Y(i,l) = Vi .
For each (i0, l0) ∈ J− and for each (i1, l1) ∈ J+ define:

r(i0,l0)(i1,l1) = card{ connected component � of the second type such

that α�
0 = i0, α�

1 = i1, L0(�) = l0 and L1(�) = l1}.

We use the connected component � of the set in the right hand side as a basis
e� of the vector space C

r(i0,l0)(i1,l1) . This basis plays the role of the basis ei j
m

we used to give the identification in (5).
Now for each connected component � of the second type define ρ� : S −→

Hom(X
(α�

0 ,L0(�))
, Y

(α�
1 ,L1(�))

) by ρ�(s) = α�(s). Finally define

ρ : S −→ H by ρ =
⊕

�

ρ�.

Define also a group homomorphism σ : Gv −→ G XY by (σ (gi ))X(i0,l0)
= gi0

and (σ (gi ))Y(i1,l1)
= gi1 , and observe that ρ is Gv equivariant.

Now we describe φ ∈ (H⊗ñ)∗c (in general ñ is less or equal to n) such that

(15) ℘(φF)(s) = ℘(φ)(ρ(s)).

We describe φ by giving a summand Ẽ of H⊗ñ as in (11) and φ ∈ Ẽ∗
c as in

(12). To define Ẽ we set s(i1,l1)(i0,l0) = r(i1,l1)(i0,l0) for all (i1, l1) ∈ J+ and for
all (i0, l0) ∈ J−.
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Observe that we can choose a bijection q ←→�q between {1,. . .,s(i1,l1)(i0,l0)}
and the set of connected component � of the second type such that α�

1 =
i1,L1(�) = l1, α�

0 = i0 and L0(�) = l0. So we can define φ(i1,l1),(i0,l0),q by

φ(i1,l1),(i0,l0),q(e�) = δ
α�

1 i1
δ
α�

0 i0
δL0(�)l0δL1(�)l1δ�,�q .

Up to a sign which depends on our choices and ordering, equation (15) is
tautologically satisfied so we proved property 2. above.

To prove property 1. fix ϕ as in (6) and choose a χm-good � = {α∗
∗} as

follows:
αik

jh =
∑

1≤q≤s( j,h)(i,k)

ϕ( j,h),(i,k)(e�q )α�q .

The equation det(�ϕ(ρ(s))) = f�(s) follows now by definition.

3. – The action of the Weyl group

For any v ∈ R, m ∈ P and for any λ ∈ Z we have defined a variety
Mm,λ(Q, v). Observe that on v, m, λ there is a natural action of the Weyl
group W . So it makes sense to consider the variety Mσm,σλ(σv) or the variety
Mσζ (σv) for ζ ∈ Z.

In [11] Nakajima used analytic methods to prove, in the case of a finite
Dynkin diagram, that if ζ is generic then there exists a diffeomorphism of
differentiable manifolds

�σ,ζ : Mζ (d, v) −→ Mσζ (σ (d, v))

and moreover that �σ ′,σ ζ ◦�σ,ζ = �σ ′σ,ζ . In the same paper he also asserted
that a similar construction could be obtained in the general case using reflection
functors as indeed we are going to do.

In [6] Lusztig gave a purely algebraic construction of an isomorphism

M0,λ(v) ' M0,si λ(siv)

whenever λi �= 0. In this section we will give a generalization of Lusztig
construction and we will prove Coxeter relations.

Definition 25. If u ∈ R and A ⊂ R we define

Hu = {(m, λ) ∈ P ⊕ Z : 〈u, λ〉 = 〈u, m〉 = 0} and HA =
⋃
a∈A

Ha.

Let K = max{1, a2
i j : i, j ∈ I }. If v ∈ Zn we define

Av = {u ∈ R+ : Kv − u ∈ R+} and H v = HAv .
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We define also
A∞ =

⋃
i∈I

W ᾱi and H∞ = HA∞ .

Finally we set Gv = {(m, λ) ∈ P × Z : (σm, σλ) /∈ Hσ ·v for all σ ∈ W }. Let

G′ = {(v, m, λ) ∈ R × P × Z : (m, λ) ∈ Gv} and

G′′ = {(v, m, λ) ∈ R × P × Z : (m, λ) /∈ H∞}.
Observe that both G′ and G′′ are W -stable.

If G = G′ or G = G′′ then the following Theorem holds.

Theorem 26. For all v ∈ R, for all σ ∈ W and for all (m, λ) such that
(v, m, λ) ∈ G there exists an algebraic isomorphism:

�v
σ,m,λ: Mm,λ(v) −→ Mσm,σλ(σv).

Moreover these isomorphisms satisfy

(16) �σv
τ,σm,σλ◦�v

σ,m,λ = �v
τσ,m,λ.

3.1. – Generators

In this subsection we define the action of the generators si of W following
[6]. We fix i ∈ I , v ∈ R, λ ∈ Z and m ∈ P . We call v′ = siv, λ′ = siλ and
m ′ = si m. Through all this section we assume v, v′ ∈ R+. For the convenience
of the reader we write explicit formulas in this case:

λ′
j = λj − ci jλi , m ′

j = mj − ci j mi for all j,

v′
i = −vi +

∑
j �=i

ai jvj , v′
j = vj for all j �= i.

Observe that we can choose V ′
j = Vj for all j �= i and that in particular we

have Ti = ⊕
h1=i Vh0 = T ′

i since we suppose that our quiver has not simple
loops.

Definition 27 (Lusztig [6]). Fix λ ∈ Z and define Zλ
i (v) to be the subva-

riety of Si (v) × Si (v
′) of pairs (s, s ′) such that the following conditions hold:

C1: Bh(s) = Bh(s ′) for all h such that h0, h1 �= i ,
C2: the following sequence is exact:

0 −−−→ V ′
i

ai (s
′)−−−→ Ti

bi (s)−−−→ Vi −−−→ 0,

C3: ai (s ′)bi (s ′) = ai (s)bi (s) − λi IdTi ,
C4: s ∈ �λ(v) and s ′ ∈ �λ′(v′).

Lemma 28. Let (s, s ′) ∈ Si (v) × Si (v
′) and suppose that it satisfies conditions

C1, C2, C3 above then:

1. s ∈ �λ(v) ⇐⇒ s ′ ∈ �λ′(v′),
2. if µj (s) − λj IdVj = 0 for all j �= i then s ∈ �λ(d, v),
3. if µj (s ′) = λj IdV ′

j
for all j �= i then s ′ ∈ �λ′(d, v′).
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Proof. 2. We have to prove bi ai − λi IdVi = 0 and by condition C2 it is
enough to prove bi ai bi = λi bi . So bi ai bi = bi (a′

i b
′
i − λi ) = λi bi by conditions

C2 and C3.
The proof of 3. is equal to the proof of 2. We prove the implication ⇒

in 1. By 2. and 3. it is enough to prove that b′
j a

′
j = λ′

j for j �= i .

b′
j a

′
j =

∑
h1= j

ε(h)B ′
h B ′

h̄

=
∑

h1= j,h0 �=i

ε(h)Bh Bh̄ +
∑

h1= j,h0=i

ε(h)B ′
h B ′

h̄

= bj aj +
∑

h1= j,h0=i

ε(h)
(

B ′
h B ′

h̄ − Bh Bh̄

)
= bj aj +

∑
h0= j,h1=i

(
Bh̄ε(h)Bh − B ′

h̄ε(h)B ′
h

)
= bj aj +

∑
h0= j,h1=i

(
[ai bi ]

Vh0
Vh0

− [a′
i b

′
i ]

Vh0
Vh0

)
= λj +

∑
h0= j,h1=i

λi = λ′
j .

The proof of the converse is completely analogous.

Lemma 29. Let λ ∈ Z, (s, s ′) ∈ Zλ
i (v) and α be an element of the path algebra

algebra of type (α0, α1) then if α0, α1 �= i there exists an element α′ of the path
algebra of type (α0, α1) such that α′(s ′) = α(s).

Proof. By induction on the length of α we can reduce the proof of this
Lemma to the following identity that is a consequence of condition C3 in
Definition 2.0.2:

B ′
h B ′

k =
{

Bh Bk − λi if k = h̄ and h0 = i,

Bh Bk otherwise.

Lemma 30. Let (s, s ′) ∈ Zλ
i (v) and suppose mi ≥ 0 or λi �= 0 then

s is χm semistable ⇐⇒ s ′ is χm′ semistable

Proof. We prove only ⇒. Let us consider first the case mi ≥ 0. If s is
χm semi-stable, then there exists � = {α∗

∗} m-good such that f�(s) �= 0. Using
the notation in 2.0.2 we have f� = det �� where �� : Y −→ Z is a linear
map. In our case we can write Z as Cmi ⊗ Vi ⊕ Z̃ and we observe that no Vi

summands appear in Y or Z̃ since � is χm-good.
Now we construct a new data �′ = {m+, m−, α′∗

∗} such that f�′(s ′) �= 0
and f�′ is a χ ′-covariant polynomial. Our strategy will be the following: we
substitute each Vi with the space Ti in the space Z and we add mi copies of
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V ′
i to Y . Let’s do it more precise: first of all the new data will not be m ′-good

so we have to define m ′+
j and m ′−

j :

1. m ′+
i = 0 and m ′−

i = mi = m+
i ,

2. m ′
j
− = m−

j and m ′
j
+ = m+

j + ai j m
+
i for all j �= i .

Observe that m ′
j
+−m ′

j
− = m ′

j for all j so our data will furnish a χm′ equivariant
function. Moreover if we define

Z ′ = Cmi ⊗ Ti ⊕ Z̃ and Y ′ = Cmi ⊗ V ′
i ⊕ Y

we observe that they have the numbers of V ′
j factors prescribed by m ′+, m ′−.

Now we construct the new data �′ in such a way that with respect to the
decompositions above we have:

[��(s)]Y
C

mi ⊗Vi ⊕Z̃
=

( (Id ⊗bi )◦π

�

)
and

[��′(s ′)]
C

mi ⊗V ′
i ⊕Y

C
mi ⊗Ti ⊕Z̃

=
( Id ⊗a′

i π

0 �

)
.

If we construct a data with this property we observe that ��(s) is an
isomorphism if and only if ��′(s ′) is an isomorphism. Hence f�(s) �= 0
implies f�′(s ′) �= 0 and the Lemma is proved.

To construct the new data we choose first of all α′ j1,h1
j2,h2

for j1 �= i and
h2 ≤ m+

j2
as an element constructed according to the previous Lemma (observe

that j2 is always different from i).
In this way we guarantee that the projection of ��′(s ′) onto Z̃ is equal

to
(
0 �

)
. To define the remaining part of the new data we do not give details

on the indexes, but we explain how to construct it. It is clear that we can
choose α′i,h

∗ for the remaining indexes * in such a way that the projection of
��′(s ′)

∣∣
C

mi ⊗V ′
i

on Cmi ⊗Ti is equal to Id ⊗a′
i . Finally we observe that a path β

from Vj to Vi with j �= i need to pass through a summand of Ti so there exists
a path α such that β(s) = bi◦α(s). Now we use the previous Lemma to change
α with a α′ such that β(s) = bi ◦α′(s ′). More generally if β is an element of
the path algebra of type ( j, i) with j �= i then there exists an element of the
path algebra α′ such that β(s) = bi ◦α′(s). In this way we define the elements
of the path algebra connecting summands of Y and summands of Cmi ⊗ Ti .

In the case mi < 0 we proceed in a similar way: we choose � m-good
and we have

Y = C−mi ⊗ Vi ⊕ Ỹ , Y ′ = C−mi ⊗ Ti ⊕ Ỹ , Z ′ = C−mi ⊗ V ′
i ⊕ Z .

As in the previous case we can find a new data �′ such that:

[��(s)]
C

−mi ⊗Vi ⊕Ỹ
Z = ( π ◦(Id ⊗ai ) � ) ,

[��′(s ′)]C
−mi ⊗Ti ⊕Ỹ

C
−mi ⊗V ′

i ⊕Z
=

( Id ⊗b′
i 0

π �

)
.
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Now to conclude that ��′(s ′) is an isomorphism if ��(s) is an isomorphism
we need to know that b′

i is an epimorphism and this is not guarantee by
(s, s ′) ∈ Zλ

i (v). But if λi �= 0 then, since b′
i a

′
i = −λi , we have that b′

i is
surjective.

Definition 31. Let p (resp. p′) be the projection of Zλ
i (v) on �λ(v) ⊂ S(v)

(resp. �λ′(v′) ⊂ S(v′)). Suppose that mi > 0 or λi �= 0 then we define

Zm,λ
i = p−1(�m,λ(v)

) = p′−1(
�m′,λ′(v′)

)
.

We define also

Gi,v =
∏
j �=i

GL(Vj ) × GL(Vi ) × GL(V ′
i ).

Observe that there are natural projections from Gi,v to Gv and Gv′ , therefore
there are natural actions of Gi,v on Si (v) and Si (v

′). Observe that there is
a natural action of Gi,v on Zλ

i and Zm,λ
i such that the projections p, p′ are

equivariant.

Lemma 32. Let s ∈ �λ,m(v) then

1) if λi �= 0 then bi is surjective and ai is injective,
2) if mi > 0 then bi is surjective,
3) if mi < 0 then ai is injective.

Proof. If λi �= 0 then the result is clear by bi ai = λi . Suppose now that
λi = 0 and mi > 0. Let Ui = Im bi and let Vi = Ui ⊕ Wi . Define now a one
parameter subgroup g(t) of GV in the following way:

[gi (t)]
Ui ⊕Wi
Ui ⊕Wi

=
( 1 0

0 t−1

)
and gj ≡ 1 for j �= i

Since Im bi ⊂ Ui we have that there exists the limit limt→0 g(t) · s = s0. Let
now n > 0 and f a χn-covariant function on S such that f (s) �= 0. Then

f (s0) = lim
t→0

f (g(t) · s) = lim
t→0

det
nmi
GL(Vi )

f (s) = lim
t→0

t−nmi dim Wi f (s)

So we must have dim Wi = 0. The proof of the third case is completely similar
to this one.

Lemma 33 (see also Lusztig [6]). If mi > 0 or λi �= 0 then

1) p : Zm,λ
i (v) −→ �m,λ(v) is a principal GL(V ′

i ) bundle,
2) p′ : Zm,λ

i (v) −→ �m′,λ′(v′) is a principal GL(Vi ) bundle.
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Proof. Lusztig’s proof extends to this case without changes. Let’s prove for
example 1. We have to prove: i) that the action on the fiber is free, i i) that it is
transitive. First of all we observe that by the previous Lemma if s ∈ �m,λ then
bi (s) is surjective. In particular there exists a′

i : V ′
i −→ Ti such that sequence

(17) is exact, and clearly a′
i is univocally determined up to the action of GL(V ′

i ),
moreover this action is free. So i) and i i) reduce to the following fact: if
s ∈ �m,λ and a′

i is such that sequence (17) is exact, then there exists a unique, b′
i

such that a′
i b

′
i = ai bi −λi . Since a′

i is injective the unicity is clear. To prove the
existence we observe that it is equivalent to Im a′

i ⊃ Im(ai bi −λi ). But the last
statement is clear since we have: Im a′

i = ker bi and bi (ai bi − λi ) = 0.

Proposition 34. If mi > 0 or λi �= 0 then the projections p, p′ induces
algebraic isomorphisms p̄ , p̄′:

�m,λ(v)//Gv
∼←−−−
p̄

Zm,λ
i (v)//Gi,v

∼−−−→
p̄′

�m′,λ′(v′)//Gv′

Proof. This proposition is a straightforward consequence of the previous
Lemma and the following general fact (see for example [10] Proposition 0.2):
let G be an algebraic group over C and X , Y two irreducible algebraic variety
over C; if G acts on X and ϕ : X −→ Y is such that for all y ∈ Y the fiber
X y contains exactly one G-orbit then ϕ is a categorical quotient. If we apply
this Lemma to the projection p, (resp. p′) and to the group GL(V ′

i ) (resp.
GL(Vi )) we obtain the required result.

We can use this proposition to define the action of the generators of the
Weyl group.

Definition 35. Let i, λ, m, v, λ′, m ′, v′ be as above, and suppose v, v′ ∈ R+
and (λi , mi ) �= 0. We define an isomorphism of algebraic varieties

�v
si ,λ,m : Mm,λ(v) −→ Mm′,λ′(v′)

in the following way:

1. if mi > 0 or λi �= 0 we set �v
si ,λ,m = p̄′ p̄−1,

2. if mi < 0 we exchange the role of v, v′ in the previous construction: more
precisely we observe that m ′

i > 0 so we can define �v′
si ,λ

′,m′ : Mm′,λ′(v′) −→
Mm,λ(v) and we define �v

si ,λ,m = (
�v′

si ,λ
′,m′

)−1.

Remark 36. To see that �v
si ,λ,m is univocally defined we have to verify

that if λi �= 0 and mi < 0 the two definitions above coincide. This fact reduces
easily to the following remark: if λi �= 0 then

(s, s ′) ∈ Zλ
i (v) ⇐⇒ (s ′, s) ∈ Zλ′

i (v′).

Let us prove, for example, the ⇒ part. Since ai bi = a′
i b

′
i + λi = a′

i b
′
i − λ′

i the
only thing we have to verify is that the sequence

0 −−−→ Vi
ai−−−→ Ti

b′
i−−−→ V ′

i −−−→ 0
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is exact. The surjectivity of b′
i and the injectivity of ai are a consequence of

λi �= 0. Since dim Ti = dim Vi + dim V ′
i we need only to prove that b′

i ai = 0.
Observe that b′

i ai = 0 if and only if a′
i b

′
i ai = 0 since a′

i is injective. Finally
a′

i b
′
i ai = (ai bi − λi )ai = 0.

3.2. – Empty case

We saw how to define

�v
si ,m,λ: Mm,λ

(
v
) −→ Msi (m),si (λ)

(
siv

)
in the case that (λi , mi ) �= 0 and v, siv ∈ R+. To define an action of the
Weyl group we have now to guarantee that Coxeter relations hold. We will
prove these relations in the next paragraph. Before doing it we observe that
we have to guarantee some conditions on m, λ such that we will be able to
define �σv

si ,σm,σλ for any element σ ∈ W : this condition will be (v, m, λ) ∈ G′

or (v, m, λ) ∈ G′′. We will make some remark also about the case v �∈ R+.

Lemma 37. Suppose that (m, λ) ∈ Gv and that there exists σ ∈ W such that
σ · v �∈ R+; then Mm,λ(v) = ∅.

Proof. Suppose that σ is an element of minimal length such that σ · v �≥ 0
and let l = �(σ ). We prove the Lemma by induction on l. The case l = 0 is
trivial.
Initial step: l = 1. If si · v �∈ R+ then we have 0 ≤ ∑

ai jvj < vi . Hence
dim Ti < dim Vi , u = αi ∈ Av and (λi , mi ) �= 0. So Mm,λ(v) = ∅ by Lemma
32.
Inductive step: if l ≥ 2 then l − 1 ⇒ l. Let σ = τ si with �(τ ) = l − 1 and
v′ = si · v, λ′ = siλ, m ′ = si m. By induction Mm′,λ′(v′) = ∅ and, since l ≥ 2,
v′ ∈ R+. If (mi , λi ) �= 0 then we can apply Proposition 34 and we obtain
Mm,λ(v) ' Mm′,λ′(v′) = ∅. If (mi , λi ) = 0 then u = αi �∈ Av , hence vi = 0.
Moreover λ′ = λ and m ′ = m so (m ′

i , λ
′
i ) = 0 and u = αi �∈ Av′ . Hence v′

i = 0
so that v′ = v and τv �∈ R+ against the minimality of σ .

Lemma 38. Let (I, H) be connected, (m, λ) ∈ Gv and suppose σ · v ∈ R+ for
all σ ∈ W . If there exists i ∈ I, σ ∈ W such that 〈σm, ωi 〉 = 〈σλ, ωi 〉 = 0 then
v = 0.

Proof. Without loss of generality we can assume σ = 1.
First step: vi = 0. This is clear since otherwise αi ∈ Av .
Second step: vj = 0 for all j such that ai j �= 0. Let v′ = si · v and observe that
siλ = λ and si m = m. Then, as in the first step, we have 0 = v′

i = ∑
j ai jvj

from which the claim follows.
Let now W ′ = 〈{sj : ai j = 0 and j �= i}〉. Since (I, H) is connected there

exists j ∈ I and τ ∈ W ′ such that ai j �= 0 and

n =
∑
h∈I

ajh ṽh > 0.
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where ṽ = τ · v. Since (τλ)i = λi = 0 = mi = (τm)i we can assume τ = 1.
Let now v′ = si sj · v, λ′ = si sjλ and m ′ = si sj m, we have:

v′
i = ai j n λ′

i = −ai jλj mi = −ai j mj

v′
j = n λ′

j = (a2
i j − 1)λj mj = (a2

i j − 1)mj .

Hence u = ai jαj+(a2
i j−1)αi ∈ Av′ and 〈u, λ′〉 = 〈u, m ′〉 = 0 against (m, λ) ∈ Gv .

Remark 39. The analogous Lemmas in the case of G′′ = {(m, λ, v) :
(m, λ) /∈ H∞} are simpler.

3.3. – Relations

In this section we define an isomorphism of algebraic varieties

�v
σ,m,λ: Mm,λ

(
v
) −→ Mσm,σλ

(
σv

)
.

in the case (m, λ) ∈ Gv or (m, λ) /∈ H∞. If there exists σ ∈ W such that
σv �∈ R+ or in the case v = 0 we have seen in the previous section that there
is nothing to define or that the definition is trivial. In the remaining cases we
observe that for all σ, i we have (〈σm, αi 〉, 〈σλ, αi 〉) �= 0 by Lemma 38. Hence
we can define �v

σ,m,λ by induction on �(σ ) by the formula

(18) �v
σ,m,λ = �

si v
σ si ,si m,si λ

◦�v
si ,m,λ

if �(σ si ) = �(σ ) − 1. Of course we have to prove that (18) is well defined
by checking the Coxeter relations (2a), (2b), (2c) that in our situation take
respectively the following form:

�
si v
si ,si λ,si m ◦�v

si ,λ,m = Id(19a)

�
sj v

si ,sj λ,sj m ◦�v
sj ,λ,m = �

si v
sj ,si λ,si m ◦�v

si ,λ,m(19b)

�
sj si v

si ,sj si λ,sj si m ◦�
si v
sj ,si λ,si m ◦�v

si ,λ,m = �
si sj v

sj ,si sj λ,si sj m ◦�
sj v

si ,sj λ,sj m ◦�v
sj ,λ,m .(19c)

The first equation is clear by the very definition and Remark 36. The second
equation is trivial. We need to prove the third equation. We need the following
two simple Lemmas of linear algebra whose proofs are trivial.

Lemma 40. Let V, W, X, Y, Z be finite dimensional vector spaces and α, β, γ ,
δ, ε, ϕ linear maps between them as in the diagrams below. The sequence

0 −−−→ V

(α

β

γ

)
−−−−→ W ⊕ X ⊕ Y

( δ 0 −1
0 ε ϕ

)
−−−−−−−−−−→ Y ⊕ Z −−−→ 0

is exact if and only if the sequence

0 −−−→ V

(α

β

)
−−−→ W ⊕ X

(ϕδ ε )−−−−−→ Z −−−→ 0
is exact and γ = δα.



678 ANDREA MAFFEI

Lemma 41. Let U, V, W, X, Y, Z be finite dimensional vector spaces and α,
β, γ , δ, ε, ϕ, ψ , ρ, σ linear maps between them as in the diagrams below such that
ψ ⊕ ρ : W ⊕ X −→ Z is an epimorphism. Then the sequence

0 −→U

(α

β

γ

)
−−−→ V ⊕ W ⊕ X

( δ 0 1
ε ϕ 0
0 ψ ρ

)
−−−−−−−−→ X ⊕ Y ⊕ Z

(ρ σ −1 )−−−−−−−−−→ Z −→0

is exact if and only if γ = −δα , ψ = σφ , ρδ + σε = 0 and the sequence

0 −−−→ U

(α

β

)
−−−→ V ⊕ W

( ε ϕ )−−−−−→ Y −−−→ 0

is exact.

We fix now and i, j such that ai j = 1 and we verify (19c). Let

λ′ = siλ m ′ = si m v′ = siv

λ′′ = sjλ
′ m ′′ = sj m

′ v′′ = sjv
′

λ′′′ = siλ
′′ m ′′′ = si m

′′ v′′′ = siv
′′

λ̃ = sjλ m̃ = sj m ṽ = sjv

˜̃λ = si λ̃ ˜̃m = si m̃ ˜̃v = si ṽ

First of all we observe that since relation (19a) holds we can assume that:

1) λi �= 0 or mi > 0 and λj �= 0 or mj > 0,
2) λ′

j �= 0 or m ′
j > 0 and λ̃i �= 0 or m̃i > 0,

3) λ′′
i �= 0 or m ′′

i > 0 and ˜̃λj �= 0 or ˜̃mj > 0.

Define

Zi ji = {(s ′′′, s) ∈ �m′′′,λ′′′(v′′′) × �m,λ(v) : ∃s ′′ ∈ S(v′′), and s ′ ∈ S(v′) such

that (s ′′′, s ′′) ∈ Zm′′,λ′′
i (v′′), (s ′′, s ′) ∈ Zm′,λ′

j (v′) and (s ′, s)∈ Zm,λ
i (v)}

Zji j = {(s ′′′, s) ∈ �m′′′,λ′′′(v′′′) × �m,λ(v) : ∃ ˜̃s ∈ S( ˜̃v), and s̃ ∈ S(ṽ) such

that (s ′′′, ˜̃s) ∈ Z
˜̃m, ˜̃λ

j ( ˜̃v), ( ˜̃s, s̃) ∈ Zm̃,λ̃
i (ṽ) and (s̃, s) ∈ Zm,λ

j (v)}

Observe that (s ′′′, s) ∈ Zi ji ⇐⇒ pv′′′
m′′′.λ′′′(s ′′′) = �si �sj �si (pv

m,λ(s)) and that

(s ′′′, s) ∈ Zji j ⇐⇒ pv′′′
m′′′.λ′′′(s ′′′) = �sj �si �sj (pv

m,λ(s)). So relation (19c) is
equivalent to Zi ji = Zji j .

Let Ri = ⊕
h : h1=i,h0 �= j Vh0 , Rj = ⊕

h : h1=i,h0 �= j Vh0 and observe that Ti =
Ri ⊕ Vj and Tj = Rj ⊕ Vi . Let k be the only element of H such that k0 = j
and k1 = i . Let ε = ε(k). Define A = A(s) = Bk(s), B = B(s) = Bk̄(s) and

for l = i, j and {l ′, l} = {i, j} set cl = cl(s) = π
Rl⊕Vl′
Rl

al(s) and dl = dl(s) =
bl(s)

∣∣
Rl

.
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Let (s, s ′′′) ∈ �λ(v) × �λ′′′(v′′′) and set A∗ = A(s∗), B∗ = B(s∗), c∗
l =

cl(s∗) and d∗
l = dl(s∗) for l ∈ {i, j} and ∗ ∈ { ,′′′ }.

If we apply Lemmas 40 and 41 to our situation we obtain the following
result: (s, s ′′′) ∈ Zi ji if and only if there exist vector spaces V ′

i , V ′
j , V ′′

i , V ′′
j and

linear maps A′, B ′, c′
i , d ′

i , c′
j , d ′

j , A′′ , B ′′ , c′′
i , d ′′

i , c′′
j , d ′′

j such that:

1. dim V ∗
l = v∗

l for l ∈ {i, j} and ∗ ∈ {′,′′ },
2. for each ∗ ∈ { ′, ′′} and l ∈ {i, j} A∗ ∈ Hom(V ∗

i , V ∗
j ), B∗ ∈ Hom(V ∗

j , V ∗
i ),

cl ∈ Hom(V ∗
l , R∗

l ) and dl ∈ Hom(R∗
l , V ∗

l ),
3. V ′′′

j = V ′′
j , c′′′

j = c′′
j , d ′′′

j = d ′′
j and

c′′′
i d ′′′

i = ci di − λi − λj c′′′
i B ′′′ = c′

i B ′′

A′′′d ′′′
i = A′′d ′

i εA′′′ B ′′′ = εA′′ B ′′ − λj

4. V ′′
i = V ′

i , c′′
i = c′

i , d ′′
i = d ′

i and

c′′
j d ′′

j = cj dj − λi − λj c′′
j A′′ = cj A′

B ′′d ′′
j = B ′dj εA′′ B ′′ = εA′ B ′ + λi + λj

5. V ′
j = Vj , c′

j = cj , d ′
j = dj and

c′
i d

′
i = ci di − λi c′

i B ′ = ci B

A′d ′
i = Adi εA′ B ′ = εAB − λi

6. εc′
i B ′′ A′′′ + c′

i d
′
i c

′′′
i = 0 and εA′ B ′′ = dj a′′

j ,
7. the following sequences are exact

0 −−−→ V ′′′
i

( c′′′
i

c′′
j A′′′

)
−−−−−−→ Ri ⊕ Rj

( Adi dj )−−−−−−−→ Vj −−−→ 0

0 −−−→ V ′′
j

(
c′′

j

c′
i B ′′

)
−−−−−−→ Rj ⊕ Ri

( Bdj di )−−−−−−−→ Vi −−−→ 0

0 −−−→ V ′
i

( c′
i

A′
)

−−−−→ Ri ⊕ Vj
(di εB )−−−−−−→ Vi −−−→ 0

Remark 42. The first condition in point 6 is equivalent to εB ′′ A′′′ = d ′
i c

′′′
i .

Indeed this condition is certainly sufficient. To prove its necessity observe that
by the injectivity of a′

i = (c′
i A′)t it is enough to prove εc′

i B ′′ A′′′ + c′
i d

′
i c

′′′
i = 0

and εA′ B ′′ A′′′ + A′d ′
i c

′′′
i = 0. The first equation is the first condition in point

6 and the second one is a consequence of εA′ B ′′ = dj c′′′
i , A′d ′

i = Adi and the
exactness of the first sequence.
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Remark 43. The condition (s, s ′′′) ∈ Zji j can be expressed in a similar
way. In the previous conditions we have only to exchange i with j and ε

with −ε.

We will prove now Zi ji ⊂ Zji j . To do it we suppose that A′, . . . , d ′′
j are

given as above and we construct Ã, B̃, c̃i , d̃i , c̃j , d̃j ,
˜̃A, ˜̃B, ˜̃ci ,

˜̃di , ˜̃cj ,
˜̃d j such that

they satisfy the analogous conditions for (s, s ′′′) ∈ Zji j .
We construct first Ã, B̃, c̃i , c̃j , d̃i , d̃j . Choose s̃ such that (s̃, s) ∈ Zχ,λ

j and
define Ã = A(s̃), B̃ = B(s̃), c̃l = cl(s̃) and d̃l = dl(s̃) for l ∈ {i, j} .

I claim that there exist unique ˜̃A : V ′′′
i −→ Ṽj and ˜̃B : Ṽj −→ V ′′′

i such
that: {

c̃j
˜̃A = c′′

j A′′′

B̃ ˜̃A = −εdi c′′′
i

and
{ ˜̃A ˜̃B = Ã B̃ − ελi − ελj

c′′′
i

˜̃B = ci B̃

Unicity of ˜̃A: since the map ãj = (c̃j − ε B̃)t is injective the unicity is clear.

Existence of ˜̃A: to prove the existence of ˜̃A is enough to prove:

Im
(

c′′
j A′′′

−εdi c′′′
i

)
⊂ Im

( c̃j

B̃

)
= ker ( dj −εA ) .

So the thesis follows from dj c′′
j A′′′ + Adi c′′′

i = 0.

Let now ˜̃ai = (c′′′
i

˜̃A)t . I claim that ˜̃ai is injective and that Im ˜̃ai =
ker(di ε B̃) = ker b̃i . First of all observe that since m̃i > 0 or λi �= 0, b̃i is
surjective. Observe also that( c̃j 0

0 IdV ′′′
i

)
◦
( ˜̃A

c′′′
i

)
=

(
c′′

j A′′′

c′′′
i

)
.

So ˜̃ai is injective as claimed. Now since dim Ri + dim Ṽj = dim V ′′′
i + dim Vi

to prove the last part of the claim it is enough to check that b̃i ˜̃ai = 0. Indeed

b̃i ˜̃ai = di c
′′′
i + ε B̃ ˜̃A = 0.

Unicity of ˜̃B: this is a consequence of ˜̃ai injective.
Existence of ˜̃B: As for the existence of ˜̃A this is equivalent to

Im
( ci B̃

Ã B̃ − ελi − ελj

)
⊂ Im

(
c′′′

i
˜̃A

)
= ker ( di ε B̃ ) .

So the thesis follows from ε B̃ Ã B̃ − λi B̃ − λj B̃ + di ci B̃ = 0.
Finally we set

˜̃V i = V ′′′
i

˜̃ci = c′′′
i

˜̃di = d ′′′
i

˜̃V i = Ṽj ˜̃cj = c̃j
˜̃d j = d̃j .

The verification of all the conditions is now straightforward.
The inclusion Zji j ⊂ Zi ji can be proved similarly and equation (16) is

clear by definition. Proposition 26 is proved.
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4. – Reduction to the dominant case

As a consequence of Proposition 26 we see that in the finite type case if
(m, λ) ∈ Gv then there exists σ ∈ W and v′ = σ · v such that v′ is dominant
and Mσm,σλ(v

′) ' Mm,λ(v). We generalize now this result to arbitrary quiver
and arbitrary (m, λ).

On R we consider the following order: v′ ≤ v if and only if v − v′ ∈ R+.
We say that an element v of R is dominant if 〈v, αi 〉 ≤ 0 for all i ∈ I .

We consider now the following construction: let v′ ≤ v and fix an embed-
ding V ′

i ↪→ Vi and a complement Wi of V ′
i in Vi , then we can define a map

̃ : S(v′) −→ S(v) through:

(20) ̃ (B ′
h) =

( B ′
h 0

0 0

)
where the matrices of the element on the right hand side represents the com-
ponents Bh through the decomposition Vi = V ′

i ⊕ Wi .
Suppose now that (mi , λi ) = 0 for all i such that 〈v − v′, ωi 〉 �= 0. Then

it is easy to see that this map restrict to a map r : �m,λ(v
′) −→ �m,λ(v) and

that induces a map v′
v =  : Mm,λ(v

′) −→ Mm,λ(v). Clearly  is independent
from the choice of the embedding V ′

i ↪→ Vi and of the complement Wi .

Lemma 44.  is a closed immersion

Proof. It is enough to prove that the map $ :C[�λ(v)]G(v)
χm

−→C[�λ(v
′)]G(v′)

χm
is surjective. By Propositions 12 and 14 this follows by the identities:

Tr (α ( (s))) = Tr (α(s)) and f� ( (s)) = f� (s)

for each closed path α and for each χm good �.

Lemma 45. If 〈v, αi 〉 > 0, v′ = v − αi and (mi , λi ) = 0 then  is an
isomorphism of algebraic varieties.

Proof. It’s enough to prove that  is surjective. Let s ∈ �m,λ(v) and �

a χm good data for some positive n such that f� (s) �= 0. Consider now the
sequence (see equation (4) for the notation):

Ti
bi−−−→ Vi

ai−−−→ Ti .

Since bi ai = λi IdVi = 0 and 2 dim Vi − dim Ti = 〈v, αi 〉 > 0 we have that bi is
not surjective or that ai is not injective.

Suppose that bi is not surjective, then up to the action of Gv we can
assume that Im bi ⊂ V ′

i . Then, for t ∈ C∗ consider g(t) = (gj (t)) ∈ Gv with

gi (t) =
( IdV ′

i
0

0 t−1

)
and gj (t) = IdVj for j �= i.
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Then

1. gi (t)Bh = Bh if h1 = i , since Im Bh ⊂ Im bi ⊂ V ′
i ,

2. ∃ limt→0 Bhgi (t)−1 = Bh if h0 = i ,
3. χm(g(t)) = 1 since mi = 0.

So ∃ limt→0 g(t)s = s ′ and f�(s ′) = f�(s) �= 0. We observe now that s ′ ∈
̃ (�m,λ(v

′)) and that pv
m,λ(s) = pv

m,λ(s
′) ∈ Im  .

If bj is surjective and ai is not injective the argument is similar.

Proposition 46. For all λ and for all v there exists v′ and σ ∈ W such that v′
is dominant and

Mσm,σλ(v
′) ' Mm,λ(v).

Proof. If v �∈ R+ it is enough to prove that there exists a dominant v′
such that Mm,λ(v

′) = ∅. So it is enough to prove that there exists a dominant
v �∈ R+. By absurd suppose that v dominant implies v ∈ R+. Observe that R+
doesn’t contain any line, so the same is true for the cone D of dominant v.
So the linear functionals 〈αi , 〉 must be linearly independent. Then we are in
the case of a Cartan matrix of finite type and we know that D ⊂ −R+.

If v ∈ R+ we prove the Proposition by induction on the order ≤ on R.

First step: v = 0. If v = 0 we can take v′ = v = 0 and σ = 1.

Inductive step. If v is not dominant then there exists i such that 〈v, αi 〉 > 0.
If (mi , λi ) �= 0 we observe that siv = v′ < v (that is v′ ≤ v and v′ �= v)

and that Msi m,si λ(v
′) ' Mm,λ(v) by Proposition 34. Now we can apply the

inductive hypothesis.
If (mi ,λi )=0 we apply the previous Lemma and the inductive hypothesis.

Remark 47. We observe that in the case of a Cartan matrix of finite type
this implies that for all v ∈ R+ the variety Mm,λ(v) is a point if vi (mi , λi ) = 0
for all i and it is empty otherwise.

5. – A representation of the Weyl group

The maps �v
σ,m,λ induces isomorphisms between the cohomology of dif-

ferent quiver varieties. In this section, following Nakajima [11], we show how
to use this action to construct an action of the Weyl group on the cohomology
of a single quiver variety.

Let Q = (I, H) be a complete subquiver of a double quiver Q̃ = ( Ĩ , H̃):
that is I ⊂ Ĩ , H ⊂ H̃ and for all h ∈ H̃ if h0, h1 ∈ I then h ∈ H . Let
R̃ = R ⊕ R′ be the root lattice of Q̃ and W̃ (resp. W ) the Weyl groups related
to Q̃ (resp. Q). W is a parabolic subgroup of W̃ .
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Choose ṽ = ∑
i∈ Ĩ viαi ∈ R̃ such that the following conditions are satisfied:

CON1 σ ṽ = ṽ for all σ ∈ W ,
CON2 GC D(vi : i ∈ Ĩ ) = 1,
CON3 µ̃: S(Q̃, ṽ) −→ uṽ ⊕ gṽ is surjective.

Under these hypothesis if λ ∈ Z ṽ is generic then there exists a representation
of W on the cohomology of Mm,λ(ṽ).

We need the following definitions:

Reg(ṽ) = {λ ∈ Z ṽ : λ �∈ Zu for all 0 ≤ u ≤ ṽ},
Reg(ṽ) = {λ ∈ Zṽ : λ �∈ Zu for all 0 ≤ u ≤ ṽ},

�(ṽ) = {(λ, s) ∈ Z ṽ × S(Q̃, ṽ) : s ∈ �λ},
M(ṽ) = �(ṽ)//G ṽ and p : M(ṽ) −→ Z ṽ the projection,

L(ṽ) = {(ζ, s) ∈ Z × S(Q̃, ṽ) : s ∈ Lζ },
M(ṽ) = L(ṽ)/Uṽ and p̃ : M(ṽ) −→ Z the projection.

We define also MR = p−1(Reg) (resp. MR = p̃−1(Reg)) and we call pR: MR −→
Reg (resp. p̃R: MR −→ Reg) the restriction of p to MR (resp. p̃ to MR).

By Proposition 6 we have the following pullback diagram

(λ, s) ∈ M(ṽ)
p−−−→ Z ṽ � χ8 8ıM

8ıZ

8
(0, λ, s) ∈ M(ṽ)

p̃−−−→ Zṽ �(0, λ)

Lemma 48.
1) The maps pR and p̃R are locally trivial bundle.
2) The sheaves Ri pR∗(ZMR ) and Ri p̃R∗(ZMR

) are constant.

Proof. 1) By the surjectivity of µ̃ it is enough to prove that dµ̃s is surjective
for all s ∈ MR. It is easy to see that in the hyperKähler situation this is
equivalent to x · s = 0 ⇒ x = 0 for all x ∈ uṽ . If there exists such an
x = (xi ) ∈ uṽ ⊂ ⊕i∈ Ĩ u(Vi ) let ζ = (ξ, λ) = µ̃(s), and decompose each vector
space Vi in eigenspaces with respect to xi : Vi = ⊕r∈√−1R

Vi (r). Now by
x · s = 0 we see Bh(Vh0(r)) ⊂ Vh1(r) so

∑
i dim Vi (r)λi = ∑

i dim Vi (r)ξi = 0
and by ζ ∈ Reg we have that there exists r such that Vi = Vi (r) for all i and
x = 0.

2) By point 1) we know that these sheaves are locally constant. Observe now
that Reg is the complement of the the union of a finite number of linear
subspaces of real codimension 3 so %1(Reg) is trivial and each locally constant
sheaf is also constant. Finally Ri pR∗(ZMR ) = ı∗

Z Ri p̃R∗(ZMR
).
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As a consequence of this Lemma for any λ1, λ2 ∈ Reg we have a canonical
isomorphism

ψ i
λ1,λ2 : Hi (M0,λ1, Z) −→ Hi (M0,λ2, Z).

Now observe that Gṽ ⊂ Reg. So, for each (0, λ) ∈ Gṽ we can define a W action
on Hi (M0,λ(ṽ), Z) by

σ(c) = ψ i
σλ,λ◦Hi (�ṽ

σ,0,λ)(c)

for any σ ∈ W . To verify that this definition is well given we have only to
verify that

ψ i
σλ2,λ1 ◦Hi (�ṽ

σ,0,λ2)◦ψ i
λ1,λ2 = ψ i

σλ1,λ1 ◦Hi (�ṽ

σ,0,λ1).

Since {λ : (0, λ) ∈ Gv} is connected and Hi (M, Z) is discrete this is clear. So
we proved the following corollary.

Corollary 49. If (0,λ)∈Gv then there is an action of W on Hi (M0,λ(Q̃,v),Z).

6. – Some remark in the case of Nakajima’s quiver varieties

In the previous section we saw that enlarging the original quiver it is
possible to construct representations of the Weyl group W . The simplest way
to enlarge our original quiver is to add only one vertex that we call ∞. If
we call di = ai∞ and we consider element v of the root lattice of the form
ṽ = α∞ + ∑

i∈I viαi ∈ R̃ we construct a class of varieties depending on two
discrete parameters: v ∈ R and d = ∑

i∈I diωi ∈ P . These are Nakajima’s
quiver varieties: M(d, v). Observe that in this case the condition CON2 above
is always satisfied and that the condition CON1 is equivalent to v̄ = ∑

i∈I vi ᾱi =∑
i∈I diωi = d. In [12] par. 10 a criterion for condition CON3 is also given.

In this final section we want to show in the particular case of Nakajima’s
quiver varieties how to use the reduction to the dominant case to study geometric
properties of quiver varieties.

In the following we fix a quiver of finite type Q = (I, H), d = ∑
i∈I diωi ∈

P and v = ∑
i∈I viαi . We construct a new quiver Q̃ as explained above and

we choose ṽ = v + α∞ ∈ R̃ = R ⊕ Zα∞. We restrict our attention to the
case λ = 0 and m0 = ∑

i∈I ωi − (
∑

i∈I vi )ω∞. Moreover by Remark 2 we can
assume without loss of generality that vi > 0 for all i ∈ I . We would like to
give a proof of the following conjecture in some special case:

Conjecture 50. Mm0,0(d, v) is connected and M0,0(d, v) is normal.

Remark 51. The connectedness states in the conjecture has now been
proved in general by Crawley-Boevey [2]. The same author said me that he is
now able to prove normality for a much bigger class of quiver varieties.
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Remark 52. If m̃ = ∑
i∈ Ĩ miωi and mi > 0 for all i ∈ I it is easy to see

that �m̃,0 = �m0,0. Hence by the argument in Lemma 48 Mm0,0(v) is smooth
and if it is not empty has dimension dim S(Q̃, ṽ)−2 dim gṽ . On the other hand
M0,0 is a cone so it is clearly connected.

By Proposition 46 it is enough to prove the Theorem in the dominant case
which in this case can be read as 〈d−v̄, αi 〉 ≥ 0 for all i ∈ I . Unfortunately I’m
able to prove the conjecture only in the case d − v̄ regular: 〈d − v̄, αi 〉 > 0 for
all i . To prove the conjecture in this case we will use the following stratification
introduced by Lusztig in [6].

Definition 53. For any s ∈ S(Q̃, ṽ) and i ∈ I let

V +
i = V +

i (s) =
∑

α path : α1=i and α0=∞
Im(α(s)).

If v′ = ∑
i∈I v′

iαi ∈ R we define

�v′ = {s ∈ �0(Q̃, ṽ) : dim V +
i (s) = v′

i for all i ∈ I }.

Observe that �v = �m0,0(Q̃, ṽ). To prove our result we will use the
following Lemma of Lusztig.

Lemma 54 (Lusztig: [6] Proposition 4.5 and Proposition 5.3). If v′ ≤ v then

dim �v′ = dim S(Q̃, ṽ) −
∑
i∈I

dim gl(Vi ) − 〈v − v′, d − v̄〉 − 1
2 〈v − v′, v − v′〉

Our result follows trivially from the following Lemma.

Lemma 55. 1) If d − v̄ is dominant then �0,0(Q̃, ṽ) is a complete intersection.
2) If d − v̄ is regular then �0,0(Q̃, ṽ) is normal and irreducible and �m0,0(Q̃, ṽ) is
connected.

Proof. Observe that �0,0(Q̃, ṽ) = µ−1(0) so each irreducible component
of �0,0(Q̃, ṽ) must have dimension at least dim S(Q̃, ṽ) −∑

i dim gl(Vi ) = δV .
Suppose now that d−v̄ is dominant. By Nakajima’s theorem ([12] Theorem

10.2) Mm0,0 is not empty. Observe also that working as in Lemma 48 we obtain
that �m0,0(Q̃, ṽ) is a smooth subset of �0,0(Q̃, ṽ) of dimension δV .

It is well known that �m0,0(Q̃, ṽ) = �v . Hence

�0,0(Q̃, ṽ) − �m0,0(Q̃, ṽ) =
⋃

v′≤v and v′ �=v

�v′
.

By the Lemma above we have that if v′ ≤ v and v′ �= v dim �v′
< δV .

So �m0,0(Q̃, ṽ) must be dense in �0,0(Q̃, ṽ) and �0,0(Q̃, ṽ) is a complete

intersection. Moreover if d − v̄ is regular we have that dim �v′
< δV − 1 so

the singular locus has codimension at least two and normality and irreducibility
follows. Finally by our discussion it is clear that if �m0,0(Q̃, ṽ) is disconnected
then �0,0(Q̃, ṽ) is not irreducible.
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Remark 56. In the Lemma we can substitute �m0,0(Q̃, ṽ) with any other
subset Regular of regular points in �(Q̃, ṽ). In this way is indeed possible to
improve a little bit the theorem (for example can be proved completely in the
A case) but Crawley-Boevey explained to me that this strategy cannot work in
general because there are cases where d − v̄ is dominant and �0,0(Q̃, ṽ) is not
normal.
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