Lagrangian Holonomy; Characteristic Elements of a Lagrangian Foliation

CARLOS CURRÁS-BOSCH* – PIERRE MOLINO

Abstract. Let \mathcal{L} be a Lagrangian foliation on a symplectic manifold (M^{2n}, ω) . The characteristic elements of such a foliation associated to a Lagrangian total transversal are obtained; they are a generalisation of the characteristic elements given by J.J. Duistermaat [5]. This technique is applied to give a classification of the germs of Lagrangian foliation along a compact leaf. Several examples of classification are given.

Mathematics Subject Classification (2000): 53C12 (primary), 58F05 (secondary).

Let \mathcal{L} be a Lagrangian foliation on a symplectic manifold (M^{2n}, ω) , \mathcal{T} a Lagrangian total transversal, $\Gamma_{\mathcal{T}}$ the corresponding holonomy pseudogroup [7]. By using the natural affine structure of the leaves [10], one defines a pseudogroup $\Gamma_{\mathcal{T}}^*$ of canonical transformations on $T^*\mathcal{T}$. The kernel of the projection $\Gamma_{\mathcal{T}}^* \longrightarrow \Gamma_{\mathcal{T}}$ determines in $T^*\mathcal{T}$ an incomplete lattice $R_{\mathcal{T}}$; moreover, a cohomology class $c_{\mathcal{T}} \in H^1(\Gamma_{\mathcal{T}}, \underline{Z}_{\mathcal{T}}^1/\underline{R}_{\mathcal{T}})$ is associated to the foliation, where $\underline{Z}_{\mathcal{T}}^1$ is the sheaf of germs of closed 1-forms on \mathcal{T} . In the case of a Lagrangian compact fibration, the characteristic elements $R_{\mathcal{T}}$, $c_{\mathcal{T}}$ correspond to the invariants introduced by J. J. Duistermaat [5]. On the other hand, if L is a compact leaf, the previous construction gives a classification - up to symplectic equivalence-of the germs of Lagrangian foliations along L, with a given usual holonomy, by a cohomology class in $H^1(\pi(L,x_0),\mathcal{D}_{x_0})$, where \mathcal{D}_{x_0} is the space of germs at $x_0 \in L$ of x_0 -vanishing basic local functions, endowed with the structure of $\pi(L,x_0)$ -module defined by composition with the usual holonomy. Several examples of classification are given.

Throughout this paper, differentiability is assumed to be C^{∞} .

Let \mathcal{L} be a Lagrangian foliation on the symplectic manifold (M^{2n}, ω) . The Weinstein's affine structure on the leaves [10] is defined in the following way: the hamiltonian vector fields of (local) basic functions are parallel with respect to this affine structure. As observed in [4], the Weinstein's connection is related to the Bott's partial connection on the normal bundle of the foliation [1] by symplectic duality.

* DGICYT BMF 2000-0007

Pervenuto alla Redazione il 14 novembre 2000 e in forma definitiva il 12 ottobre 2001.

1. - Development; pseudogroup of Lagrangian holonomy

Let \mathcal{T} be a total transversal to the foliation (see [7]). It is always possible to choose \mathcal{T} in such a way that it is a Lagrangian submanifold of (M^{2n}, ω) .

We denote by $\hat{M}_{\mathcal{T}}$ the (not necessarily Hausdorff) manifold defined by the homotopy classes along the leaves of the paths starting from a point in \mathcal{T} . The origin and the end of such a path define a submersion $\pi_1: \hat{M}_{\mathcal{T}} \longrightarrow \mathcal{T}$ and a local diffeomorphism $\pi_2: \hat{M}_{\mathcal{T}} \longrightarrow M$; the vertical foliation of π_1 is denoted by $\hat{\mathcal{L}}_{\mathcal{T}}$. This foliation is Lagrangian with respect to the symplectic form $\hat{\omega}_{\mathcal{T}} = \pi_2^* \omega$.

We recall (see [6], [9]) that, if the n-manifold L is endowed with an affine structure, its universal covering \hat{L} (endowed with the lifted structure) admits an affine immersion \hat{D} in the euclidean space \mathbb{R}^n . This "developping map" is defined (up to composition with an affine transformation of \mathbb{R}^n) by using the natural prolongation of (local) affine morphisms. The fundamental group of L, i.e. the structural group of the fibration $\hat{L} \longrightarrow L$, corresponds, via \hat{D} , to a group of affine transformations of \mathbb{R}^n , and in this sense \hat{D} is equivariant.

By using the Weinstein's affine structure on the leaves of \mathcal{L} , and the natural identification (by using symplectic duality) of the tangent space $T_{p_0}L$ to the leaf $L \in \mathcal{L}$ at $p_0 \in \mathcal{T}$ with $T_{p_0}^*\mathcal{T}$, one obtains in the same way a developping map

$$\hat{D}_{\mathcal{T}}: \hat{M}_{\mathcal{T}} \longrightarrow T^*\mathcal{T}$$
.

Let us point out how to do it: for any $p_0 \in \mathcal{T}$, let (u^1, \ldots, u^n) be a system of coordinates of \mathcal{T} in a neighborhood V_{p_0} of p_0 . The local functions u^1, \ldots, u^n may be considered as local basic functions in a neighborhood U_{p_0} of V_{p_0} in M^{2n} . The Hamiltonian vector fields H_{u^1}, \ldots, H_{u^n} form a local basis of parallel vector fields in each leaf.

Let us denote by $p_{(u^1,...,u^n)}$ the point in V_{p_0} whose coordinates are $u^1,...,u^n$, and by $\phi^1,...,\phi^n$ the local flows associated with $H_{u^1},...,H_{u^n}$. Then

$$\hat{D}_{\mathcal{T}}|_{U_{p_0}}(\phi_{t_1}^1 \circ \cdots \circ \phi_{t_n}^n(p_{(u^1,\ldots,u^n)})) = t_1 du^1 + \cdots + t_n du^n.$$

If γ is the homotopy class of a path in $L \in \mathcal{L}$ with origin $p_0 \in \mathcal{T}$, via the holonomy associated to γ , one can use (u^1, \ldots, u^n) as a system of local basic functions in a neighborhood of γ in $\hat{M}_{\mathcal{T}}$, and by the same procedure as above, one defines $\hat{D}_{\mathcal{T}}$ in a neighborhood of γ in $\hat{M}_{\mathcal{T}}$. In this way we get the map:

$$\hat{D}_{\mathcal{T}}: \hat{M}_{\mathcal{T}} \longrightarrow T^*\mathcal{T}$$

which will be referred to as the development of the Lagrangian foliation above the transversal \mathcal{T} .

The manifold M is the space of orbits of the action on $\hat{M}_{\mathcal{T}}$ of a pseudogroup of transformations which respect $\hat{\mathcal{L}}_{\mathcal{T}}$ and $\hat{\omega}_{\mathcal{T}}$, $\hat{\Gamma}_{\mathcal{T}}$. Via the development (1),

this pseudogroup projects on $T^*\mathcal{T}$. The projection is a pseudogroup $\Gamma_{\mathcal{T}}^*$ of canonical transformations of $(T^*\mathcal{T}, \omega_0)$ (canonical means ω_0 -preserving), where ω_0 is the natural symplectic form of the cotangent bundle. The pseudogroup Γ_{τ}^* will be referred to as **the pseudogroup of Lagrangian holonomy** of (M, ω, \mathcal{L}) associated to the Lagrangian transversal T.

2. - Characteristic elements of the foliation

By using $\pi_1: \hat{M}_T \longrightarrow \mathcal{T}$ we get a projection from $\hat{\Gamma}_T$ onto Γ_T , and as Γ_T^* is obtained from $\hat{\Gamma}_T$ through the local diffeomorphism \hat{D}_T we also have a projection from $\Gamma_{\mathcal{T}}^*$ onto $\Gamma_{\mathcal{T}}$ which coincides with the one obtained from the standard projection from $T^*\mathcal{T}$ to \mathcal{T} .

Let $\gamma^* \in \Gamma_T^*$ be a vertical transformation of $T^*\mathcal{T}$, that is to say an element in the kernel of the projection $\Gamma_T^* \longrightarrow \Gamma_T$. As γ^* preserves ω_0 and acts trivially on T it is well known (see [10]) that the transformation γ^* is defined by a closed 1-form, i.e. by a Lagrangian local section of the cotangent bundle. The union of all these local sections is a lagrangian submanifold R_T of T^*T . The intersection of $R_{\mathcal{T}}$ with a fiber T_x^* is an incomplete lattice, the rank of which depends on the point x. We will say that R_T is the lattice of the Lagrangian **foliation** along \mathcal{T} .

The action of Γ_T^* on T^*T obviously respects the lattice R_T , inducing a natural action of Γ_T on the —not necessarily Hausdorff— manifold $T^*T/R_T =$ $\sqcup_{x \in \mathcal{T}} T_x^* / R_{\mathcal{T},x}$.

If $\underline{Z}_{\mathcal{T}}^1$ is the sheaf of germs of closed 1-forms on \mathcal{T} , $\underline{R}_{\mathcal{T}}$ the sheaf of germs of sections of R_T , the action of Γ_T on T^*T/R_T induces an affine action of Γ_T on the sheaf of abelian groups $\underline{Z}_T^1/\underline{R}_T$. The corresponding linear action is determined by the natural action of Γ_T on \underline{Z}_T^1 .

This affine action corresponds, via the standard construction, to a class of cohomology

(2)
$$c_{\mathcal{T}} \in H^1(\Gamma_{\mathcal{T}}, \underline{Z}_{\mathcal{T}}^1/\underline{R}_{\mathcal{T}}).$$

 R_T and c_T are the characteristic elements of the Lagrangian foliation associated to the total Lagrangian transversal \mathcal{T} . The cohomology class $c_{\mathcal{T}}$ is left invariant by a slide of \mathcal{T} along the leaves.

3. - The case of compact Lagrangian fibrations

Let $\pi:(M,\omega)\longrightarrow B$ be a compact Lagrangian fibration, whose typical fiber is \mathbb{T}^n , endowed with the canonical flat affine structure. A Lagrangian total transversal \mathcal{T} is defined by a set of local Lagrangian sections $s_i:U_i\longrightarrow M$, $\cup_{i\in I}U_i=M$. In this case, the holonomy pseudogroup $\Gamma_{\mathcal{T}}$ is generated by the vertical diffeomorphisms:

$$\alpha_{ij}: s_i(U_i \cap U_j) \longrightarrow s_i(U_i \cap U_j)$$
.

The basis B is obviously identified with the space of orbits of $\Gamma_{\mathcal{T}}$ in \mathcal{T} .

By taking the closed 1-form corresponding to each α_{ij} one has a natural injection of $\Gamma_{\mathcal{T}}$ in $\Gamma_{\mathcal{T}}^*$, so one can see $\Gamma_{\mathcal{T}}$ as a subpseudogroup of $\Gamma_{\mathcal{T}}^*$. The space of orbits of $\Gamma_{\mathcal{T}}$ in $R_{\mathcal{T}}$ is exactly the lattice R defined by J. J. Duistermaat for the Lagrangian fibration [5].

The action of Γ_T on T^*T/R_T , gives for each $U_i \cap U_j$ a map $U_i \cap U_j \longrightarrow \underline{Z}_B^1/\underline{R}$ defining a 1-cocycle whose cohomology class $c \in H^1(B, \underline{Z}_B^1/\underline{R})$ is the corresponding cohomology class in the space of orbits of Γ_T to the previous c_T .

Via the exact sequence

$$0 \longrightarrow \underline{R} \longrightarrow \underline{Z}_B^1 \longrightarrow \underline{Z}_B^1/\underline{R} \longrightarrow 0$$

the cohomology class c defines a class $\chi \in H^2(B, \underline{R})$, which is the Chern class defined by Duistermaat.

4. – Lagrangian holonomy of a leaf; classification theorem

a) Let (L, ∇_L) be a compact leaf of \mathcal{L} , endowed with its Weinstein's affine connection, and $x_0 \in L \cap \mathcal{T}$, now \mathcal{T} denotes a neighborhood of x_0 in a Lagrangian transversal. We denote by $\hat{L} = \pi_1^{-1}(x_0)$ the universal cover of L. The development $\hat{D}_{\mathcal{T}}$ applies \hat{L} in $T_{x_0}^*\mathcal{T}$. On an open neighborhood \hat{U} of \hat{L} in $\hat{M}_{\mathcal{T}}$, the development induces a local diffeomorphism

$$\hat{D}_{\mathcal{T}}: \hat{U} \longrightarrow T^*\mathcal{T}.$$

The natural action of $\pi(L, x_0)$ on \hat{U} projects via $\hat{D}_{\mathcal{T}}$ to a canonical action on the germ of $T^*\mathcal{T}$ along $T^*_{x_0}\mathcal{T}$; this action projects on the basis \mathcal{T} to the usual holonomy representation:

(5)
$$h_{x_0}: \pi(L, x_0) \longrightarrow \mathrm{Diff}_{x_0}(T)$$
.

As each germ of Lagrangian section in T^*T is defined by a germ at x_0 of x_0 -vanishing function on T, we obtain an affine representation

(6)
$$hl_{x_0}: \pi(L, x_0) \longrightarrow \text{Aff}(\mathcal{D}_{x_0}),$$

where \mathcal{D}_{x_0} is the space of these germs. The corresponding linear representation is related to the usual holonomy h_{x_0} by:

(7)
$$[hl'_{x_0}(\gamma)](f) = f \circ [h_{x_0}(\gamma)]^{-1}.$$

 hl_{x_0} is **the Lagrangian holonomy** of (L, ∇_L) at x_0 . In a previous paper [3], we have introduced this notion in the case where the affine manifold (L, ∇_L) is complete.

b) This construction gives a cohomological classification, up to symplectic diffeomorphism, of the germs of Lagrangian foliations along (L, ∇_L) , with a given (usual) holonomy.

Let $c_L \in H^1(\pi(L, x_0), \mathcal{D}_{x_0})$ the cohomology class associated with the affine representation (6). We observe that the holonomy at x_0 of the affine connection ∇_L determines an affine representation

(8)
$$h_{x_0}^{\nabla_L} : \pi(L, x_0) \longrightarrow \mathrm{Aff}(T_{x_0}^* T)$$
.

The corresponding cohomology class

(9)
$$\rho \in H^1(\pi(L, x_0), T_{x_0}^* \mathcal{T})$$

was introduced by Fried-Goldman-Hirsch [6] as **the radiant obstruction** of the affine manifold (L, ∇_L) .

Finally, the correspondence $f \longrightarrow d_{x_0} f$ defines a morphism $d_{x_0} : \mathcal{D}_{x_0} \longrightarrow T_{x_0}^* \mathcal{T}$ of $\pi(L, x_0)$ -modules, and we obtain a natural homomorphism:

(10)
$$d_{x_0}: H^1(\pi(L, x_0), \mathcal{D}_{x_0}) \longrightarrow H^1(\pi(L, x_0), T_{x_0}^* \mathcal{T}).$$

So, we can state:

THEOREM. The germs of Lagrangian foliations along (L, ∇_L) , with a given (usual) holonomy h_{x_0} are classified —up to symplectic equivalence— by elements of $d_{x_0}^{-1}(\rho)$, modulo conjugation by $\mathrm{Diff}_{x_0}(\mathcal{T})$.

PROOF. The choice of a particular Lagrangian transversal \mathcal{T} corresponds to the choice of a cocycle in c_L . On the other hand, it is possible from the knowledge of c_L to reconstruct the germ of Lagrangian foliation: if $\varphi:\pi(L,x_0)\longrightarrow \mathrm{Aff}(\mathcal{D}_{x_0})$ is a representant of c_L , we obtain by using φ a canonical action of $\pi(L,x_0)$ on the germ of $T^*\mathcal{T}$ along $T^*_{x_0}\mathcal{T}$, by $\gamma*d_xf=d_{h_{x_0}(\gamma)(x)}[\varphi(\gamma)(f)]$. This action lifts on the pull-back of this germ by the development $\hat{D}_{\mathcal{T}}:\hat{L}\longrightarrow T^*_{x_0}\mathcal{T}$. The projection on the space of orbits of this action determines the germ of Lagrangian foliation along (L,∇_L) .

The previous result was obtained in [3] in the particular case where the affine manifold (L, ∇_L) is complete.

5. – Examples of classification; the linearization problem

a) (L, ∇_L) is the torus \mathbb{T}^2 , endowed with the complete affine structure studied by Nagano-Yagi (see [8,9]), and we assume that the holonomy of the foliation at $x_0 \in L$ is linearizable.

 $\pi(L, x_0)$ is generated by γ_1, γ_2 , with

$$h_{x_0}(\gamma_1)(u, v) = (u, v), \qquad h_{x_0}(\gamma_2)(u, v) = (u, u + v).$$

A cocycle φ is defined by two functions $\varphi_1 = \varphi(\gamma_1)$, $\varphi_2 = \varphi(\gamma_2)$, with the condition

$$\varphi_1(u, v) + \varphi_2(u, v) = \varphi_2(u, v) + \varphi_1(u, u + v)$$

because $\pi(L, x_0)$ is abelian. Hence, $\varphi_1(u, v) = u \cdot \hat{u}$; with $(u \cdot \hat{u}, v \cdot \hat{u})$ as new coordinates, we can assume $\varphi_1(u, v) = u$. On the other hand, the equivalence between $\varphi = (\varphi_1, \varphi_2)$ and $\bar{\varphi} = (\bar{\varphi}_1, \bar{\varphi}_2)$, with $\varphi_1(u, v) = \bar{\varphi}_1(u, v) = u$, corresponds to the existence of a function ψ such that $\bar{\varphi}_2(u, v) = \varphi_2(u, v) + \psi(u, u + v) - \psi(u, v)$. This implies $\bar{\varphi}_2(0, v) = \varphi_2(0, v)$. Conversely, if this condition is satisfied, one can obtain such a function ψ . Hence, the germs of Lagrangian foliations are classified by the germs at 0 of functions $f(v) = \varphi_2(0, v)$, with the unique condition $\frac{\partial f}{\partial v}(0) = 1$.

Observe that in this case, $[\varphi] \in d_{x_0}^{-1}(\rho)$ is equivalent to the unique condition $\frac{\partial \varphi_2}{\partial x}(0,0) = 1$.

This result was indicated in [3].

b) A non-complete case: (L, ∇_L) is the torus \mathbb{T}^2 , endowed with the following non-complete affine structure: on \mathbb{R}^2 , we consider the commuting affine transformations $\widetilde{\gamma}_1$, $\widetilde{\gamma}_2$, defined by

$$\widetilde{\gamma}_1(x, y) = (x + y, y), \qquad \widetilde{\gamma}_2(x, y) = \left(\frac{1}{2}x + y, \frac{1}{2}y\right).$$

 (L, ∇_L) is the quotient of the half-plane y > 0 by these transformations. We assume that the holonomy of the foliation is linear, hence:

$$\gamma_1(u, v) = (u, v - u), \qquad \gamma_2(u, v) = (2u, 2v - 4u).$$

The radiant obstruction is 0.

A cocycle φ is defined by (φ_1, φ_2) with the condition

$$\varphi_1(u, v) + \varphi_2(u, v - u) = \varphi_2(u, v) + \varphi_1(2u, 2v - 4u)$$
.

This implies $\varphi_1(0, v) = \varphi_1(0, 2v) \Longrightarrow \varphi_1(0, v) = 0$.

Hence, we can find a function ψ such that $\varphi_1(u, v) = \psi(u, v - u) - \psi(u, v)$. By this way, we can assume $\varphi_1(u, v) = 0$, and φ_2 satisfies

$$\varphi_2(u,v) = \varphi_2(u,v-u).$$

Now, we resolve the system

$$\begin{cases}
\varphi_2(u, v) = \psi(2u, 2v - 4u) - \psi(u, v) \\
\psi(u, v) = \psi(u, v - u).
\end{cases}$$

The first equation can be written as: $\psi(u,v) = \psi(\frac{u}{2},\frac{v}{2}+u) + \varphi_2(\frac{u}{2},\frac{v}{2}+u)$, and by iteration we get:

$$\psi(u, v) = \sum_{n=1}^{\infty} \varphi_2\left(\frac{u}{2^n}, \frac{v}{2^n} + \frac{nu}{2^{n-1}}\right),$$

which is C^{∞} -convergent because $\varphi_2(0,0)=0$, and $\psi(u,v)=\psi(u,v-u)$ is satisfied.

Finally $[\varphi] = 0$. We have shown that all the germs of Lagrangian foliations along (L, ∇_L) , with linearizable holonomy are canonically equivalent.

c) The calculations above give the answer, in the particular cases studied, to the general problem of linearization of a Lagrangian foliation along a compact leaf (L, ∇_L) . This problem is the following one (vid. [2]): by Weinstein's embedding theorems [10], we can identify an open neighborhood U of L in (M,ω) with a neighborhood U_0 of the zero section in T^*L . By using this identification, we have in U two Lagrangian foliations with (L, ∇_L) as particular leaf: the given foliation \mathcal{L} , and the "linear" Lagrangian foliation \mathcal{L}_0 associated in T^*L with the affine structure. We will say that the germ of \mathcal{L} along L is linearizable if it is symplectically equivalent to the germ of \mathcal{L}_0 . Of course, a necessary condition is that the (usual) holonomy of L in \mathcal{L} be linearizable, as in examples a) and b) above.

The calculations above show that this condition is sufficient in the second case, but not in the first.

REFERENCES

- [1] R. Bott, "Lectures on characteristic classes and foliations", Lecture Notes in Math. 279 (1972).
- C. Currás-Bosch P. Molino, Un exemple de classification de germes de feuilletages Lagrangiens au voisinage d'une feuille compacte, Indag. Math. 9(2) (1998), 197-209.
- C. Currás-Bosch P. Molino, Holonomie, suspensions et classifications pour les feuil-[3] letages Lagrangiens, C.R. Acad. Sci. Paris Sér. I Math. 326(1) (1998), 1317-1320.
- P. DAZORD, Sur la géométrie des sous-fibrés et des feuilletages Lagrangiens, Ann. Sci. École Norm. Sup. 13 (4) (1981), 465-480.
- J. J. DUISTERMAAT, On global action-angle coordinates, Comm. Pure Appl. Math. XXXIII [5] (1980) 687-706.
- D. FRIED W. GOLDMAN M. W. HIRSCH, Affine manifolds with nilpotent holonomy, [6] Comm. Math. Helv. 56 (1981), 487-523.

- [7] A. HAEFLIGER, *Some remarks on foliations with minimal leaves*, J. Differential Geom. **15** (1980), 269-284.
- [8] N. H. Kuiper, *Sur les surfaces localement affines*, Colloque de Géom. Diff. Strasbourg (1953).
- [9] T. NAGANO K. YAGI, The affine structures on the real two-torus (1), Osaka J. Math. 11 (1974), 181-210.
- [10] A. Weinstein, "Lectures on symplectic manifolds", Regional Conference Series in Mathematics, AMS (1976).

Dpt. d'Àlgebra i Geometria Universitat de Barcelona Gran Via 585 08007 Barcelona, Spain curras@mat.ub.es

11 rue des Soldats 34000 Montpellier, France Mpmolino@aol.com