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The Hausdorff Lower Semicontinuous Envelope
of the Length in the Plane

RAPHAËL CERF

Abstract. We study the Hausdorff lower semicontinuous envelope of the
length in the plane. This envelope is taken with respect to the Hausdorff
metric on the space of the continua. The resulting quantity appeared
naturally as the rate function of a large deviation principle in a statistical
mechanics context and seems to deserve further analysis. We provide
basic simple results which parallel those available for the perimeter of
Caccioppoli and De Giorgi.
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1. – Introduction

The results reported here come as a side product of our endeavour to
provide a rigorous mathematical analysis of the phase coexistence phenomena
in models of statistical mechanics in dimension higher than 3 [3], [4], [5]. The
main obstacle that prevented the 2D proofs to be extended to dimensions higher
than 3 was to find a higher dimensional analog of the skeleton technique, an
intrinsically 2D tool relying on a combinatorial bound which is at the heart of
the probabilistic proof [1], [7]. Our strategy to go around this obstacle was to
first rewrite the 2D result in a weaker yet more robust form through a large
deviation principle, the proof of which still relied on skeletons [4]. Then we
proved a 3D version of the large deviation principle by replacing the skeleton
argument by a compactness argument with the help of the theory of Caccioppoli
sets [5]. The topology used to express the 3D large deviation principle, namely
the Lebesgue measure of the symmetric difference, is weaker than the Hausdorff
distance which was employed in 2D. In fact, in our preliminary 2D attempt [4],
we proved two different large deviation principles with both topologies. One
of the rate functions was an anisotropic version of the classical perimeter of
Caccioppoli and De Giorgi, the other was an anisotropic version of the following
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quantity: for K a continuum, we define

(1) S(K ) = inf
{

lim inf
n→∞ H1(∂Kn)

}
where the infimum is taken over all sequences (Kn)n∈N of non-degenerate poly-
hedra (that is, connected polyhedra whose boundary is a finite union of disjoint
Jordan curves) converging towards K with respect to the Hausdorff metric, and
H1 is the standard one dimensional Hausdorff measure. The difference between
S and the classical perimeter lies in the topology used in the definition, but
both are lower semicontinuous envelopes of the usual length for regular sets.
Our aim here is to provide the beginning of the analysis of this quantity and
to prove results similar in flavor to the ones available for the classical perime-
ter developed by Caccioppoli and De Giorgi [2], [6]. The interest is twofold.
First it will enable to reprove the 2D large deviation principle of [4] without
using skeletons and it might help to analyze further 2D models in statistical
mechanics. Second we think that S(K ) is a geometrically interesting quantity
on its own which deserves a thorough study.

Let us sum up briefly our main results. We start with an alternative defi-
nition of S: for any continuum K , let

(2) S(K ) = sup
U

∑
U∈U

∑
O∈C(K ,U )

H1(∂O \ ∂U )

where C(K , U ) is the collection of all residual domains of K in U and the
supremum is taken over all families U of pairwise disjoint domains of R

2. To
some extent, this definition is the analog to the distributional definition of the
perimeter (see [9]). We prove that S is lower semicontinuous with respect to
the Hausdorff metric (restricted to continua). We single out a specific subset
∂◦K of the topological boundary of a continuum K and we analyze its structure
whenever S(K ) is finite. At H1 almost all the points of ∂◦K there is a true
tangent, in a sense even stronger than the classical measure theoretic definition.
Up to a set of H1 measure zero, the subset of ∂◦K where there is a true tangent
can be further partitioned into two sets: a set ∂∗

IK consisting of the points where
K locally looks like a half-plane and a set ∂∗

I IK where K locally looks like a
line. We rewrite S(K ) as

S(K ) = H1(∂∗
IK ) + 2H1(∂∗

I IK ) .

These results parallel the corresponding ones for the reduced boundary of sets
having finite perimeter. We finally prove that both definitions (1) and (2)

of S agree. An interesting question, which is not handled at all here, is to
compare S(K ) with other classical quantities, like for instance the perimeter or
the Minkowski content.

The proofs rely on a few classical results on 1-sets in the plane and on the
Vitali covering theorem on one hand, and on arguments from planar geometry
and topology on the other hand.



THE HAUSDORFF LOWER SEMICONTINUOUS ENVELOPE OF THE LENGTH IN THE PLANE 35

The paper is organized as follows. In Section 2, we give the notation and
basic definitions. In Section 3, we state some useful topological lemmas. In
Section 4, we recall several standard results concerning 1-sets in the plane. In
Section 5, we define the subset ∂◦K of the boundary of a continuum K . The
notion of true tangents is introduced in Section 6. In Section 7, we analyze
the local structure of ∂◦K at the points where there is a tangent. In Sections 8
and 9, we consider the case of continua such that H1(∂◦K ) < ∞. In Section 10,
we define and we study the quantity S(K ) with the help of the previous results.

2. – Notation and basic definitions

In this section we fix the notation and we recall some standard definitions.

2.1. – Topology

Let E be a subset of R
2. We denote its interior by E

◦
, its closure by E ,

its boundary by ∂ E . The collection of all compact subsets of R
2 is denoted

by K. A continuum is a compact connected set with at least two points. The
collection of all compact connected sets is denoted by Kc. Our usual notation
for a set which is either a continuum or is reduced to a single point is K . If
E is a connected set, then any set F such that E ⊂ F ⊂ E is also connected.

A domain is a non-empty open connected set. Our usual notation for a
domain is O or U .

Let K be an element of Kc and let U be a domain. A residual domain
of K in U is a connected component of U \ K (i.e. a maximal connected
set included in U \ K ). The collection of all residual domains of K in U is
denoted by C(K , U ). The collection of all residual domains of K in R

2 is
denoted by C(K ). A compact set K is said to disconnect two sets A1 and A2
inside a domain U if there is no residual domain of K in U intersecting both A1
and A2. We will make use of the following facts. Every residual domain of
a continuum in R

2 is simply connected and has a connected boundary ([12,
Chapter VI, Paragraph 4.3 and Theorem 4.4]).

2.2. – Metric

For x a point of R
2, we denote by |x |2 its Euclidean norm. The associated

distance is denoted by d. The diameter of a set E is diam E = sup{|x − y|2 :
x, y ∈ E}. A set E is bounded if its diameter is finite. The distance between
two sets E1 and E2 is

d(E1, E2) = inf{|x1 − x2|2 : x1 ∈ E1, x2 ∈ E2} .

The r -neighbourhood of a set E is the set

V(E, r) = {x ∈ R
2 : d(x, E) < r} .
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Let E1, E2 be two bounded subsets of R
2. We define successively

e(E1, E2) = inf{r > 0 : E2 ⊂ V(E1, r)}

and the Hausdorff distance between E1 and E2

D(E1, E2) = max{e(E1, E2), e(E2, E1)} .

The restriction of D to K is a metric and the metric space (K, D) is complete.
We claim that Kc is a closed subspace of (K, D). Indeed, let (Kn)n∈N be
a sequence of connected compact sets converging to K . Suppose K is not
connected, so that there exist two open disjoint sets U, V such that K ⊂ U ∪ V
and K ∩ U 	= ∅, K ∩ V 	= ∅. For n sufficiently large, we will also have
Kn ⊂ U ∪V , Kn ∩U 	= ∅, Kn ∩V 	= ∅, which is absurd since Kn is connected.

2.3. – Measure

We denote by L2 the planar Lebesgue measure and by H1 the standard one
dimensional Hausdorff measure in R

2. We recall that for any subset E of R
2,

H1(E) = sup
δ>0

inf

{∑
i∈I

diam Ei : sup
i∈I

diam Ei ≤ δ, E ⊂
⋃
i∈I

Ei

}
.

2.4. – Geometry

Let x be a point of R
2 and let r be positive. The closed ball of center x and

Euclidean radius r is denoted by B(x, r). The sphere of center x and radius r
is ∂ B(x, r). Let E be a set in R

2. We define E(x, r) = E ∩ B(x, r). Let θ be
an angle. We denote by (u(θ), v(θ)) the orthonormal basis whose angle with
the canonical basis is θ , that is u(θ) = (cos θ, sin θ), v(θ) = (− sin θ, cos θ).

O
θ

u(θ)
v(θ)

B(O, 1)

Fig. 1.



THE HAUSDORFF LOWER SEMICONTINUOUS ENVELOPE OF THE LENGTH IN THE PLANE 37

x
θ

L(x, θ)

L(x, r, θ)

B(x, r)

Fig. 2.

We denote by L(x, θ) the line passing through x parallel to u(θ) (here θ is
defined modulo π ), and by L(x, r, θ) its intersection with B(x, r), that is

L(x, θ) = {x + tu(θ) : t ∈ R} , L(x, r, θ) = L(x, θ) ∩ B(x, r) .

We denote by H L(x, θ) the half-line passing through x oriented by u(θ) (here θ

is defined modulo 2π ), and by H L(x, r, θ) its intersection with B(x, r), that is

H L(x, θ) = {x + tu(θ) : t ∈ R
+} , H L(x, r, θ) = H L(x, θ) ∩ B(x, r) .

x
θ

H L(x, θ)

H L(x, r, θ)

B(x, r)

Fig. 3.

The closed angular sector of vertex x and angles φ1, φ2 is the set

S(x, φ1, φ2) = { x + ru(θ) : r ≥ 0, φ1 ≤ θ ≤ φ2} .
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x

φ1φ2

S(x, r, φ1, φ2)

S(x, φ1, φ2)

B(x, r)

Fig. 4.

We set also S(x, r, φ1, φ2) = S(x, φ1, φ2) ∩ ∂ B(x, r).
Let φ belong to [0, π/2]. We define

U−(x, r, θ, φ)= S(x, π+θ+φ, θ − φ)∩B(x, r) , U−(x, r, θ)=U−(x, r, θ, 0) ,

U+(x, r, θ, φ)= S(x, θ+φ, π+θ − φ)∩B(x, r) , U+(x, r, θ)=U+(x, r, θ, 0) ,

and
U (x, r, θ, φ) = U−(x, r, θ, φ) ∪ U+(x, r, θ, φ) .

Let ε be positive. We set also

V−(x, r, ε, θ, φ) = { y ∈ U−(x, r, θ, φ) : d(y, R
2 \ U−(x, r, θ, φ)) > εr} ,

V+(x, r, ε, θ, φ) = { y ∈ U+(x, r, θ, φ) : d(y, R
2 \ U+(x, r, θ, φ)) > εr} .

x

θ

r

rε

rε

V+(x, r, ε, θ, φ)

U+(x, r, θ,
φ)

U−(x, r, θ, φ)

−φ

+φ

Fig. 5.
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3. – Topological lemmas

This section is devoted to the statement of some basic topological results.

Lemma 3.1. Let O be a domain with compact closure. There exists a sequence
(On)n∈N of increasing domains included in O such that:

∀ n ∈ N ∀ x ∈ On d(x, ∂O) > 1/n and
⋃
n∈N

On = O .

Proof. Let n belong to N. We define a relation Rn on the points of O by:
xRn y if and only if there exists a continuous path γ : [0, 1] → O such that
γ (0) = x, γ (1) = y and d(γ (t), ∂O) > 1/n for all t in [0, 1]. For any pair x, y
of points of O there exists n0 such that xRn y for all n larger than n0. In fact, O
is an open connected subset of R

2 and is therefore arcwise connected. Thus there
exists a continuous path γ : [0, 1] → O such that γ (0) = x, γ (1) = y. Since
γ ([0, 1]) does not intersect ∂O and is compact, the distance d(γ ([0, 1]), ∂O)

is positive. It follows that xRn y as soon as d(γ ([0, 1]), ∂O) > 1/n. Let us fix
a point x0 in O and let C(x0, n) be its equivalence class for the relation Rn .
Then (C(x0, n))n∈N is an increasing sequence of open connected sets satisfying
the requirements of the lemma.

Corollary 3.2. Let O be a domain with compact closure. Let ε be positive.
There exists a domain U included in O such that e(U, O) < ε and d(U, ∂O) > 0.

Lemma 3.3. Let K be a continuum and let δ be positive. There is a finite
number of residual domains of K in R

2 of Lebesgue measure larger than δ.

Proof. Let B be a closed ball containing K in its interior. Let O0 be the
residual domain of K containing R

2 \ B and let O1, . . . , On be other residual
domains of K of Lebesgue measure larger than δ. We have then L2(O1 ∪ · · · ∪
On) ≥ nδ and O1 ∪· · ·∪ On ⊂ B whence nδ ≤ L2(B). Thus there exist at most
L2(B)/δ� residual domains of K of Lebesgue measure larger than δ.

Corollary 3.4. A continuum K has a finite or countable number of residual
domains.

4. – The 1-sets in the plane

A subset E of R
2 is a 1-set if E is H1-measurable and 0 < H1(E) < ∞.

We recall here without proofs some definitions and facts concerning 1-sets in
the plane. Everything is extracted from [8, Chapter 3].

A collection of sets U is called a Vitali class for E if for each x in E and
δ positive there exists a set U in U containing x such that 0 < diam U < δ.
We will use extensively the following result [8, Theorem 1.10].
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Theorem 4.1 (Vitali covering theorem). Let E be an H1-measurable subset
of R

2 and let U be a Vitali class of closed sets for E. Then we may select a finite or
countable disjoint sequence (Ui )i∈I from U such that either

∑
i∈I diam Ui = ∞ or

H1(E \ ⋃
i∈I Ui ) = 0. If H1(E) < ∞ then, given ε > 0, we may also require that

H1(E) ≤ ∑
i∈I diam Ui + ε.

We recall next an important result, first proved by Golab [8, Theorem 3.18].

Theorem 4.2 (Golab theorem). If (En)n∈N is a sequence of continua in R
2

converging in the Hausdorff metric to a compact connected set E then H1(E) ≤
lim infn→∞ H1(En).

For any 1-set E in the plane, we have

1/2 ≤ lim sup
r→0

1

2r
H1(E ∩ B(x, r)) ≤ 1 H1 a.e. on E .

Corollary 4.3. Let E be 1-set of R
2 and let U be a Vitali class of closed balls

for E. Then for any positive ε we may select a finite disjoint sequence (Ui )i∈I from U
such that H1(E \ ⋃

i∈I Ui ) ≤ ε
∑

i∈I diam Ui and H1(E) ≤ (1 + ε)
∑

i∈I diam Ui .

Proof. Let E∗ be the subset of E defined by

E∗ =
{

x ∈ E : 1/2 ≤ lim sup
r→0

1

2r
H1(E ∩ B(x, r)) ≤ 1

}
.

We know that H1(E \ E∗) = 0. The collection of closed balls

B(x, r), x ∈ E∗, r such that r/3 < H1(E ∩ B(x, r)) < 4r/3

is a Vitali class for E∗. We apply the Vitali covering Theorem 4.1 to E∗ and
this Vitali class; let (Ui )i∈I be the resulting collection of balls. Since

3

4
H1

(
E ∩

⋃
i∈I

Ui

)
≤

∑
i∈I

ri < 3H1(E∗) = 3H1(E) < ∞

we do not have
∑

i∈I diam Ui = ∞ and therefore H1(E \ ⋃
i∈I Ui ) = 0. By

Theorem 4.1, given ε in ]0, 1/3[, we may further impose that

H1(E) ≤
∑
i∈I

diam Ui + ε
3

8
H1(E) .

Let J be a finite subset of I such that

H1

(
E \

⋃
i∈J

Ui

)
≤ ε

3

4
H1(E),

∑
i∈I

diam Ui ≤
∑
i∈J

diam Ui + ε
3

8
H1(E) .

We have then H1(E \ ⋃
i∈J Ui ) ≤ ε

∑
i∈J diam Ui and H1(E) ≤ (1 + ε)

∑
i∈J

diam Ui .
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A set E is said to be regular if

lim
r→0

1

2r
H1(E ∩ B(x, r)) = 1 H1 a.e. on E .

Definition 4.4 (tangent of a set E at a point x). A 1-set E has a tangent
at x in the direction θ if lim supr→0 H1(E ∩ B(x, r))/r > 0 and

∀ φ ∈]0, π/2] lim
r→0

1

r
H1(E ∩ U (x, r, θ, φ)) = 0 .

Remark. Clearly the direction θ is defined modulo π . Moreover we obtain
an equivalent definition if we impose that the angle φ belongs to an arbitrarily
small interval ]0, η], η > 0.

A curve γ is a continuous injection γ : [a, b] �→ R
2 where [a, b] is a

non-degenerate closed interval. Sometimes we do not distinguish between γ

and its range γ ([a, b]). The length of a curve γ coincides with its H1-measure,
that is

H1(γ ) = H1(γ ([a, b])) = sup
a<t1<...<tl<b

∑
j

|γ (tj+1) − γ (tj )|2 ,

the supremum being taken over all finite subdivisions of [a, b]. The curve γ

is said to be rectifiable if it has finite length or equivalently if H1(γ ) < ∞. In
this case, we may parametrize γ by arc length, that is, we may suppose that the
map γ is defined on the interval [0,H1(γ )] and is Lipschitz with constant 1:
∀ t1, t2 |γ (t1) − γ (t2)|2 ≤ |t1 − t2|.

Any 1-set contained in a countable union of rectifiable curves is a regular
set and has a tangent at H1 almost all of its points. We next consider the case
of continua. Any continuum E satisfies H1(E) ≥ diam (E).

Theorem 4.5. A continuum having a finite H1-measure consists of a countable
union of rectifiable curves, together with a set of H1-measure zero.

Corollary 4.6. Any continuum E such that H1(E) < ∞ is a regular 1-set
and has a tangent at H1 almost all of its points.

5. – Lower semicontinuity of H1(∂◦K )

In this section, we define a special subset ∂◦K of the boundary of a contin-
uum K and we prove that the map K ∈ Kc �→ H1(∂◦K ) is lower semicontinuous
with respect to the Hausdorff metric.
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Definition 5.1. Let K be a continuum. Let (Oi , i ∈ I ) be the residual
domains of K . We define ∂◦K = ⋃

i∈I ∂Oi .

Remark. The sets ∂Oi are compact because they are closed subsets of
K and they are connected because the residual domains Oi , i ∈ I , are simply
connected (since K is connected). Hence the set ∂◦K is a finite or countable
union of continua. However it is not necessarily closed; in general, it is a strict
subset of ∂K .

Lemma 5.2. For any K1, K2 in Kc, we have ∂◦(K1 ∪ K2) ⊂ ∂◦K1 ∪ ∂◦K2.

Proof. Let x belong to ∂◦(K1 ∪ K2). There exists a residual domain O
of K1 ∪ K2 such that x belongs to ∂O . Moreover x belongs to K1 ∪ K2.
Suppose for instance that x is in K1. Let O1 be the residual domain of K1
containing O . Then x belongs to ∂O1 so that x is in ∂◦K1.

Corollary 5.3. For any K1, K2 in Kc, we have

H1(∂◦(K1 ∪ K2)) ≤ H1(∂◦K1) + H1(∂◦K2) .

Lemma 5.4. Let K belong toKc and let (Kn)n∈N be a sequence inKc converging
to K for the Hausdorff distance. Let O be a residual domain of K in R

2. Let
(On

i , i ∈ In) be the residual domains of Kn in R
2. We have

lim
n→∞ inf

m∈In
sup

x∈∂O
d(x, ∂On

m) = 0 .

Proof. Let ε be positive. By Corollary 3.2, there exist a positive δ and a
domain U included in O such that e(U, O) < ε and d(U, ∂O) ≥ δ. Let n0 be
such that D(Kn, K ) < δ for n ≥ n0. Let n be larger than n0. Clearly the set
Kn does not intersect U so that U is included in a residual domain of Kn: there
exists m in In such that U ⊂ On

m . Let x belong to ∂O . There exists y in Kn

such that d(x, y) < δ ≤ ε and z in U such that d(x, z) < ε. In particular the
point z belongs to On

m , therefore the segment [z y] intersects ∂On
m . It follows

that d(x, ∂On
m) < ε. We have thus proved that infm∈In sup { d(x, ∂On

m) : x ∈
∂O } < ε.

Proposition 5.5. The map K ∈ Kc �→ H1(∂◦K ) is lower semicontinuous
with respect to the Hausdorff metric i.e. for any sequence (Kn)n∈N in Kc such
that D(Kn, K ) converges to 0 as n goes to ∞, we have lim infn→∞ H1(∂◦Kn) ≥
H1(∂◦K ).

Proof. Let (Oi , i ∈ I ) be a finite family of residual domains of K . For each
i in I , there exists by Lemma 5.4 a sequence of domains (On

i )n∈N such that:
for any n in N, On

i is a residual domain of Kn , and sup { d(x, ∂On
i ) : x ∈ ∂Oi }

goes to 0 as n goes to ∞. Since we deal with a finite number of sequences of
domains (On

i )n∈N, i ∈ I , up to the extraction of a subsequence, we may assume
that:

∀ i, j ∈ I either [∀ n ∈ N ∂On
i ∩∂On

j =∅] or [∀ n ∈ N ∂On
i ∩∂On

j 	=∅] .
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We define a relation R on the set I by: i R j ⇐⇒ ∀ n ∈ N ∂On
i ∩∂On

j 	= ∅.
Let ∼ be the transitive closure of the relation R: i ∼ j ⇐⇒ ∃ i1, . . . , ir ∈
I i R i1 R · · · R ir R j . The relation ∼ is an equivalence relation on I . Let
I/ ∼ be the quotient set of the equivalence classes. By construction, the
sets

( ⋃
i∈π ∂On

i , π ∈ I/ ∼ )
are pairwise disjoint continua included in ∂◦Kn .

Therefore

H1(∂◦Kn) ≥ H1


 ⋃

π∈I/∼

⋃
i∈π

∂On
i


 =

∑
π∈I/∼

H1

(⋃
i∈π

∂On
i

)
.

Since the sequence (Kn)n∈N converges for the Hausdorff metric, it is contained
in a bounded set, and up to the extraction of another subsequence, we may
assume that for each π in I/ ∼, the sequence

( ⋃
i∈π ∂On

i

)
n∈N

converges to
some element Fπ of Kc. Necessarily the set Fπ contains

⋃
i∈π ∂Oi . Applying

Golab Theorem 4.2, we get for any π in I/ ∼

lim inf
n→∞ H1

(⋃
i∈π

∂On
i

)
≥ H1(Fπ) ≥ H1

(⋃
i∈π

∂Oi

)
.

Coming back to the preceding inequality, we obtain

lim inf
n→∞ H1(∂◦Kn) ≥

∑
π∈I/∼

lim inf
n→∞ H1

(⋃
i∈π

∂On
i

)
≥

∑
π∈I/∼

H1

(⋃
i∈π

∂Oi

)

≥ H1


 ⋃

π∈I/∼

⋃
i∈π

∂Oi


 = H1

(⋃
i∈I

∂Oi

)
.

This inequality is valid for any finite family (Oi , i ∈ I ) of residual domains
of K . The monotone continuity of H1 implies that lim infn→∞ H1(∂◦Kn) ≥
H1(∂◦K ).

6. – True tangents

In this section, we introduce a stronger definition of tangency.

Definition 6.1 (true tangent of a set E at a point x). A 1-set E has a
true tangent at x in the direction θ if it has a tangent at x in the direction θ

(in the sense of Definition 4.4) and in addition

lim
r→0

r−1e(E ∩ B(x, r), L(x, r, θ)) = 0 .

Remark. A segment has a tangent at its endpoints but not a true tangent.
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Proposition 6.2. Let γ : [0, 1] �→ R
2 be a rectifiable curve and let t0 belong to

]0, 1[. If γ is differentiable at t0 and γ ′(t0) 	= 0, then the curve γ has a true tangent
at γ (t0).

Proof. Set x = γ (t0). The density of γ at x is at least 1/2 because γ is a
continuum. Let θ be the angle such that L(x, θ) = x +γ ′(t0)(R). The derivative
γ ′(t0) maps linearly R onto L(x, θ); it can be written γ ′(t0)(s) = x + αsu(θ)

for some α 	= 0. Yet, by definition of the derivative,

∀ ε > 0 ∃ η > 0 |t − t0| < η ⇒ |γ (t) − x − α(t − t0)u(θ)| ≤ ε|t − t0| .
Let ε > 0 and let η > 0 be associated to ε as in the above formula. Let φ be
the angle such that tan φ = ε/α. The preceding inequality implies that for t in
[t0−η, t0+η], γ (t) belongs to the cone S(x, π+θ−φ, π+θ+φ)∪S(x, θ−φ, θ+
φ). Since γ is one to one and continuous, the set γ ([0, t0 − η] ∪ [t0 + η, 1])
is compact and does not contain x . Hence there exists r0 such that 0 <

r0 < d(x, γ ([0, t0 − η] ∪ [t0 + η, 1])). Therefore for r smaller than r0, the set
γ ∩ B(x, r) \ (S(x, π + θ − φ, π + θ + φ) ∪ S(x, θ − φ, θ + φ)) is empty. This
proves that γ has a tangent at x in the direction θ in the sense of Definition 4.4.
We finally prove that this tangent is a true tangent. Let r be smaller than αη

and set r ′ = r(1−ε/α). For s in [−r ′, r ′], we have |γ (t0 + s/α)− x − su(θ)| ≤
sε/α ≤ r ′ε/α and also |γ (t0 + s/α)− x | ≤ s + r ′ε/α ≤ r ′(1+ ε/α) ≤ r , whence
γ (t0 + s/α) belongs to B(x, r). Consequently,

e(γ ∩ B(x, r), L(x, r, θ)) ≤ e(γ ∩ B(x, r), L(x, r ′, θ))+e(L(x, r ′, θ), L(x, r, θ))

≤ r ′ε/α + r − r ′ ≤ 2rε/α ,

so that r−1e(γ ∩ B(x, r), L(x, r, θ)) goes to zero as r goes to zero.

By [8, Theorem 3.8], we know that a rectifiable curve has a tangent at H1

almost all of its points. We have a slightly stronger result.

Corollary 6.3. A rectifiable curve has a true tangent at H1 almost all of its
points.

Proof. Let γ : [0, 1] �→ R
2 be a Lipschitz parametrization of the curve γ .

By the Rademacher Theorem [11, Theorem 7.3], the map γ is differentiable H1

almost everywhere in [0, 1]; we denote by γ ′ its derivative when it is defined.
Since γ is a Lipschitz map,

H1({γ (t) : t such that γ is not differentiable at t}) = 0 .

By Proposition 6.2, the curve γ has a true tangent at the point γ (t), 0 < t < 1,
whenever γ ′(t) 	= 0. However, by the Sard-type theorem for Lipschitz maps
[11, Theorem 7.6], we have H1({ γ (t) : γ ′(t) = 0 }) = 0.

Corollary 6.4. A continuum E such that H1(E) is finite has a true tangent at
H1 almost all of its points.

Proof. This result is an easy consequence of Theorem 4.5 and Corollar-
ies 4.6, 6.3.



THE HAUSDORFF LOWER SEMICONTINUOUS ENVELOPE OF THE LENGTH IN THE PLANE 45

7. – Structure of ∂◦K

In this section we analyze the local behavior of ∂◦K .

7.1. – Preparatory lemmas

Lemma 7.1. Let U be a domain, let K be a continuum. If H1(∂◦K ∩ U ) = 0
then either U ⊂ K or U ⊂ R

2 \ K .

Proof. Suppose that neither U ⊂ K nor U ⊂ R
2 \ K . Then there exists

a pair (x, y) in U ∩ K × U ∩ (R2 \ K ). Let O be the residual domain of K
containing y. Clearly ∂O ⊂ ∂◦K and H1(∂O ∩ U ) ≤ H1(∂◦K ∩ U ) whence
by hypothesis H1(∂O ∩ U ) = 0. If H1(∂O) = 0 then diam O = 0, which is
impossible. Therefore ∂O ∩(R2 \U ) 	= ∅. Let γ be a curve in U joining x to y
(U is arcwise connected). This curve intersects ∂O at some point z. Yet ∂O
is connected and contains z and some point in R

2 \ U . Thus H1(∂O ∩ U ) ≥
d(z, R

2 \ U ) > 0, which is absurd.

The next lemma is a technical result which will be used repeatedly in the
proofs.

Lemma 7.2. Let K be a continuum and let A be a closed set such that both
A and R

2 \ A are connected. We suppose that K is not included in A and that
H1(∂◦K ∩ A) ≤ δ. Let V be a domain included in A such that d(V, R

2 \ A) > δ.
Then either K ⊂ R

2 \ V or V ⊂ V(K , δ). If K ∩ V 	= ∅, no residual domain of K
intersects both V and R

2 \ A.

Remark. The final conclusion of Lemma 7.2 is still valid for residual
domains of K in a domain W .

Proof. Suppose we have not K ⊂ R
2 \ V i.e. there exists x in K ∩ V .

Suppose there exists a residual domain O of K intersecting both V and R
2 \ A.

Let y belong to O ∩ V and let γ be a curve in V joining x to y. This
curve intersects ∂O at some point z. Similarly, considering x ′ in K ∩ (R2 \ A)

and y′ in O ∩ (R2 \ A), we see that ∂O contains some point z′ of R
2 \ A.

Yet ∂O is connected and contains z and z′. Thus H1(∂O ∩ A) ≥ d(z, R
2 \ A) ≥

d(V, R
2 \ A) > δ which is absurd. Suppose now that there exists y in V

such that d(y, K ) ≥ δ. Let O be the residual domain of K containing y.
The previous argument shows that O ∩ (R2 \ A) = ∅ whence O ⊂ A and
H1(∂O) ≤ H1(∂◦K ∩ A) ≤ δ, implying diam O ≤ δ, which is absurd since O
contains the interior of the ball B(y, δ).

Lemma 7.3. For any continuum K , any point x, any angles θ, φ and any r > 0,
we have

e(R2 \ U−(x, r, θ, φ), K ) + e(K , U−(x, r, θ, φ)) ≥ r cos φ(1 + cos φ)−1 .
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Proof. Let x(r) = x + r(1 + cos φ)−1u(θ − π/2). We have

d(R2 \ U−(x, r, θ, φ), x(r)) = r cos φ(1 + cos φ)−1

≤ e(R2 \ U−(x, r, θ, φ), U−(x, r, θ, φ))

≤ e(R2 \ U−(x, r, θ, φ), K ) + e(K , U−(x, r, θ, φ)) .

Lemma 7.4. Let x belong to R
2 and let θ be an arbitrary angle. For φ

in ]0, π/4[, ε in ]0, 1/4[, r positive, the set
⋃

0<s<rV−(x, s, ε, θ, φ) is a domain
containing x in its boundary.

Proof. Indeed, for φ in ]0, π/4[, ε in ]0, 1/4[, s in ]0, r [, the point x +
(s/2)u(θ−π/2) belongs to V−(x, s, ε, θ, φ). Therefore the open segment ]x, x+
(r/2)u(θ − π/2)[ is in the union

⋃
0<s<r V−(x, s, ε, θ, φ), which implies the

claims of the lemma.

7.2. – Classification of the points in ∂◦K

We classify now the points of ∂◦K .

Proposition 7.5. Let K be a continuum. Let x be a point of ∂◦K such that ∂◦K
has a tangent at x in the direction of θ . One and only one of the two following cases
occurs:

either lim
r→0

r−1e(R2\U−(x, r, θ), K )=0, lim inf
r→0

r−1e(K , U−(x, r, θ))≥1/6 ,

or lim
r→0

r−1e(K , U−(x, r, θ))=0, lim inf
r→0

r−1e(R2\U−(x, r, θ), K )≥1/6 .

The same result holds for U+(x, r, θ).

Proof. Since the point x and the direction θ are fixed for the whole proof,
we will omit them in the notation. For instance U (r, φ) stands for U (x, r, θ, φ).
By the definition of a tangent, we have

∀ φ > 0 ∀ ε > 0 ∃ r0 ∀ r < r0 H1(∂◦K ∩ U (x, r, θ, φ)) ≤ rε .

We work with ε, φ small, r0 smaller than diam K/2 and r < r0. More specif-
ically, we require that cos φ (1 + cos φ)−1 > 1/4 (for instance φ < π/4)
and ε < 1/48. Let us consider the set V−(r, 2ε, φ). Clearly this set is in-
cluded in U−(r, φ). Moreover, for ε small enough, U−(r, φ) is included in
V(V−(r, 2ε, φ), 3εr). We apply Lemma 7.2 to the sets K , U−(r, φ), V−(r, 2ε, φ).
Since K is not included in U−(r, φ) (because r < diam K/2), H1(∂◦K ∩
U−(r, φ)) ≤ rε and d(V−(r, 2ε, φ), R

2 \ U−(r, φ)) > rε then either K ⊂
R

2 \ V−(r, 2ε, φ) or V−(r, 2ε, φ) ⊂ V(K , rε). Therefore, for any r smaller
than r0,

either K ⊂ V(R2 \ U−(r, φ), 4rε) or U−(r, φ) ⊂ V(K , 4rε) .
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Fix some r < r0.
• Suppose that K ⊂ V(R2 \ U−(r, φ), 4rε). For s < r , we have K ⊂ V(R2 \

U−(s, φ), 4rε) and e(R2 \ U−(s, φ), K ) ≤ 4rε. Suppose that U−(s, φ) ⊂
V(K , 4sε). Then e(K , U−(s, φ)) ≤ 4sε and Lemma 7.3 implies that
s cos φ (1 + cos φ)−1 ≤ 4rε + 4sε. Because of the conditions imposed
on φ, ε, this inequality implies that s < r/2. Thus for s in [r/2, r ] we
have K ⊂ V(R2 \ U−(s, φ), 4sε).

• Suppose that U−(r, φ) ⊂ V(K , 4rε). For s < r , we have U−(s, φ) ⊂
V(K , 4rε) and e(K , U−(s, φ)) ≤ 4rε. Suppose that K ⊂ V(R2 \ U−(s, φ),
4sε). Then e(R2 \ U−(s, φ), K ) ≤ 4sε and Lemma 7.3 implies that
s cos φ(1 + cos φ)−1 ≤ 4rε + 4sε. Because of the conditions imposed
on φ, ε, this inequality implies that s < r/2. Thus for s in [r/2, r ] we
have U−(s, φ) ⊂ V(K , 4sε).
Since ]0, r ] = ⋃

n∈N
]2−n−1r, 2−nr ], we see that

either ∀ r < r0 K ⊂ V(R2 \ U−(r, φ), 4rε)

or ∀ r < r0 U−(r, φ) ⊂ V(K , 4rε) .

Because of Lemma 7.3, we have the two exclusive cases:

either ∀ r <r0 r−1e(R2\U−(r, φ), K )≤4ε and r−1e(K , U−(r, φ))≥1/6

or ∀ r <r0 r−1e(K , U−(r, φ))≤4ε and r−1e(R2\U−(r, φ), K )≥1/6 .

For ε < 1/48, we have 4ε < 1/6, so that the case which occurs does not
depend on ε. Therefore, for any φ in ]0, π/4[, we have

either lim
r→0

r−1e(R2\U−(r, φ), K )=0 and

lim inf
r→0

r−1e(K , U−(r, φ))≥1/6

or lim
r→0

r−1e(K , U−(r, φ))=0 and

lim inf
r→0

r−1e(R2\U−(r, φ), K )≥1/6 .

Moreover, for 0 < φ1 < φ2 < π/4 and r > 0, we have U−(r, φ2) ⊂
U−(r, φ1), so that

e(K , U−(r, φ2))≤e(K , U−(r, φ1)),

e(R2 \ U−(r, φ2), K )≤e(R2 \ U−(r, φ1), K ) .

Consequently if one of the two cases occurs for some φ in ]0, π/4[, it
occurs for all φ in ]0, π/4[. Therefore

either ∀ φ ∈]0, π/4[ lim
r→0

r−1e(R2\U−(r, φ), K )=0,

lim inf
r→0

r−1e(K , U−(r, φ))≥1/6

or ∀ φ ∈]0, π/4[ lim
r→0

r−1e(K , U−(r, φ))=0,

lim inf
r→0

r−1e(R2\U−(r, φ), K )≥1/6 .
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Finally, for any φ > 0, we have

e(U−(x, r, θ, φ), U−(x, r, θ))=e(R2\U−(x, r, θ), R
2\U−(x, r, θ, φ))≤rφ .

Suppose for instance that the first case occurs. Then for any φ in ]0, π/4[,
we have

lim inf
r→0

r−1e(K , U−(x, r, θ)) ≥ lim inf
r→0

r−1e(K , U−(x, r, θ, φ)) ≥ 1/6

and also
lim sup

r→0
r−1e(R2 \ U−(x, r, θ), K ) ≤ φ .

Letting φ go to zero, we get

lim
r→0

r−1e(R2 \ U−(x, r, θ), K ) = 0 .

The second case can be handled analogously.

Proposition 7.6. Let K be a continuum. Let x be a point of ∂◦K such that ∂◦K
has a tangent at x in the direction of θ . Then

lim
r→0

min
{

r−1e(K , H L(x, r, θ)), r−1e(K , H L(x, r, π + θ))
} = 0 .

Proof. If r−1e(K , U−(x, r, θ)) or r−1e(K , U+(x, r, θ)) converges to 0 as
r goes to 0, then clearly so does r−1e(K , L(x, r, θ)). According to Proposi-
tion 7.5, the only remaining possibility is that

lim
r→0

r−1e(R2\U−(x, r, θ), K )=0 and lim
r→0

r−1e(R2\U+(x, r, θ), K ) = 0 .

By the definition of ∂◦K , the point x belongs to the boundary ∂O of some
residual domain O of K . Yet ∂O is a continuum. Let r be smaller than
diam O/2 and let F(r) be the connected component of ∂O ∩ B(x, r) contain-
ing x . Because of the particular shapes of the sets U−(x, r, θ), U+(x, r, θ), we
have for any positive s

V(R2\U−(x, r, θ), s)∩V(R2\U+(x, r, θ), s)=V(L(x, r, θ)∪(R2 \ B(x, r)), s)

whence

e(L(x, r, θ) ∪ (R2 \ B(x, r)), K )

≤ max
{

e(R2 \ U−(x, r, θ), K ), e(R2 \ U+(x, r, θ), K )
}

and
lim
r→0

r−1e(L(x, r, θ) ∪ (R2 \ B(x, r)), K ) = 0 .
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Let ε be positive. There exists r0 such that e(L(x, r, θ)∪(R2\B(x, r)), K ) < rε

for r < r0. Then for r < r0 the set V(L(x, r, θ)∪(R2 \ B(x, r)), rε)∩ B(x, r(1−
2ε)) is included in V(L(x, r, θ), rε) whence F(r(1 − 2ε)) ⊂ V(L(x, r, θ), rε).
Moreover F(r(1 − 2ε)) intersects the sphere ∂ B(x, r(1 − 2ε)). Let φ be the
angle in ]0, π/2[ such that sin φ = 2ε/(1 − 2ε). With these choices, the set
V(L(x, r, θ), rε)∩∂ B(x, r(1−2ε)) is included in S(x, r(1−2ε), π +θ −φ, π +
θ + φ) ∪ S(x, r(1 − 2ε), θ − φ, θ + φ). Suppose for instance that

F(r(1 − 2ε)) ∩ S(x, r(1 − 2ε), θ − φ, θ + φ) 	= ∅ .

Let y be a point of the above set. The continuum F(r(1−2ε)) contains x and y
and is included in V(L(x, r, θ), rε). Yet for any s positive smaller than r(1−4ε),
the segment [x +su(θ)−rεv(θ), x +su(θ)+rεv(θ)] disconnects x from y inside
V(L(x, r, θ), rε). Therefore F(r(1−2ε)) intersects this segment and e(F(r(1−
2ε)), H L(x, r(1 − 4ε), θ)) ≤ rε. Since e(H L(x, r(1 − 4ε), θ), H L(x, r, θ)) ≤
4rε, it follows that e(F(r), H L(x, r, θ)) ≤ 5rε. We handle similarly the case
where F(r(1 − 2ε))∩ S(x, r(1 − 2ε), π + θ −φ, π + θ +φ) 	= ∅ to get that for
r < r0, either e(F(r), H L(x, r, θ)) ≤ 5rε or e(F(r), H L(x, r, π +θ)) ≤ 5rε.

Propositions 7.5, 7.6 allow to introduce the following classification of tan-
gent points.

Definition 7.7 (classification of tangent points). Let K be a continuum.
Let x be a point of ∂◦K such that ∂◦K has a tangent at x in the direction of θ .
The point x is of exactly one of the following types.

• type O: lim
r→0

r−1e(K ,U−(x,r,θ))=0, lim
r→0

r−1e(K ,U+(x,r,θ))=0.

• type 1/2: lim
r→0

r−1e(R2\U−(x,r,θ),K )=0, lim
r→0

r−1e(R2\U+(x,r,θ),K )=0,

lim inf
r→0

r−1e(K ,L(x,r,θ))>0.

• type I: either lim
r→0

r−1e(K , U−(x,r,θ))=0, lim
r→0

r−1e(R2\U+(x,r,θ),K )=0

or lim
r→0

r−1e(K ,U+(x,r,θ))=0, lim
r→0

r−1e(R2\U−(x,r,θ),K )=0.

• type II: lim
r→0

r−1e(R2\U−(x,r,θ),K )=0, lim
r→0

r−1e(R2\U+(x,r,θ),K )=0,

lim
r→0

r−1e(K ,L(x,r,θ))=0.

We denote respectively by ∂OK , ∂1/2K , ∂IK , ∂I IK the points of ∂◦K where there
is a tangent and which are respectively of type O, type 1/2, type I, type II.

Remark. Because the maps (x, r, θ)∈R
2×R

+×R �→U−(x, r, θ), L(x, r, θ),
U+(x, r, θ) are continuous with respect to the Hausdorff distance D, for any
continuum K , the sets ∂OK , ∂1/2K , ∂IK , ∂I IK are all H1-measurable.
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Notation 7.8. Let K be a continuum. Let x be a point of ∂◦K such that
∂◦K has a tangent at x . From now onwards, we denote by θ(x) the direction of
the tangent to ∂◦K at x . As a line direction, this angle θ(x) is defined modulo
π . But whenever x is of type I, we choose θ(x) modulo 2π so that

lim
r→0

r−1e(K , U−(x, r, θ(x))) = 0, lim
r→0

r−1e(R2 \ U+(x, r, θ(x)), K ) = 0 .

Proposition 7.9. Let K be a continuum. Let x be a point of ∂◦K such that ∂◦K
has a tangent at x. We have the following characterization of the type of x (recall
that K (x, r) = K ∩ B(x, r)):

• x is of type O ⇐⇒ limr→0 r−1 D(K (x, r), B(x, r)) = 0 .

• x is of type 1/2 ⇐⇒ lim infr→0 r−1e(K (x, r), L(x, r, θ(x))) > 0 .

• x is of type I ⇐⇒ limr→0 r−1 D(K (x, r), U−(x, r, θ(x))) = 0 .

• x is of type II ⇐⇒ limr→0 r−1 D(K (x, r), L(x, r, θ(x))) = 0 .

Proof. It is clear that the four conditions on the right are mutually exclusive.
Hence it is enough to check the implications from the left to the right for each
type. From Definition 7.7, the cases of the points of type O and type 1/2 are
immediate. Let us consider a point x of type I. Let θ = θ(x) be the direction
of the tangent at x . By Definition 7.7 and Notation 7.8, we have

lim
r→0

r−1e(K , U−(x, r, θ(x))) = 0, lim
r→0

r−1e(R2 \ U+(x, r, θ(x)), K ) = 0 .

Thus for any positive ε, there exists r0 > 0 such that for r < r0, e(K ,

U−(x, r, θ)) ≤ rε, e(R2 \ U+(x, r, θ), K ) ≤ rε. We have then for r < r0

e(K (x, r), U−(x, r, θ)) ≤ e(K (x, r), U−(x, r(1 − 2ε), θ))

+ e(U−(x, r(1 − 2ε), θ), U−(x, r, θ))

≤ r(1 − 2ε)ε + 2rε ≤ 3rε .

Therefore r−1e(K (x, r), U−(x, r, θ(x))) goes to 0 as r goes to 0.



THE HAUSDORFF LOWER SEMICONTINUOUS ENVELOPE OF THE LENGTH IN THE PLANE 51

Similarly, for ε in ]0, 1/2[ and for r < r1 = r0/(1 + 2ε),

e(U−(x, r, θ), K (x, r)) ≤ 2εr + e(U−(x, r(1 + 2ε), θ), K (x, r)) .

Because r(1 + 2ε) < r0, we have e(R2 \ U+(x, r(1 + 2ε), θ), K ) ≤ r(1 + 2ε)ε.
Moreover d(K (x, r), ∂ B(x, r(1 + 2ε))) ≥ 2εr > r(1 + 2ε)ε. Therefore

e(U−(x, r(1 + 2ε), θ), K (x, r)) ≤ e(L(x, r(1 + 2ε), θ), K (x, r) ∩ U+(x, r, θ))

= e(R2 \ U+(x, r(1 + 2ε), θ), K (x, r))

≤ r(1 + 2ε)ε

and we obtain e(U−(x, r, θ),K (x, r))≤2rε+r(1+2ε)ε. Thus r−1e(U−(x,r,θ(x)),
K (x, r)) goes to 0 as r goes to 0.

Let us consider finally a point x of type II. Let θ = θ(x) be the direction of
the tangent at x . By Definition 7.7, the three quantities r−1e(R2\U−(x, r, θ), K ),
r−1e(R2 \ U+(x, r, θ), K ), r−1e(K , L(x, r, θ)) go to 0 as r goes to 0. Thus for
any positive ε, there exists r0 > 0 such that for r < r0, the three of them are
smaller than ε. For r < r0 we have then

e(K (x, r), L(x, r, θ)) ≤ e(K (x, r), L(x, r(1 − 2ε), θ))

+ e(L(x, r(1 − 2ε), θ), L(x, r, θ))

≤ r(1 − 2ε)ε + 2rε .

Hence r−1e(K (x, r), L(x, r, θ)) goes to 0 when r goes to 0.
Similarly, for ε in ]0, 1/2[ and for r < r1 = r0/(1 + 2ε),

e(L(x, r, θ), K (x, r)) ≤ 2εr + e(L(x, r(1 + 2ε), θ), K (x, r)) .

Because r(1+2ε) < r0 both e(R2\U−(x, r(1+2ε), θ), K ) and e(R2\U+(x, r(1+
2ε), θ), K ) are smaller than r(1 + 2ε)ε so that

e(∂ B(x, r(1 + 2ε)) ∪ L(x, r(1 + 2ε), θ), K (x, r)) ≤ r(1 + 2ε)ε .

Moreover d(K (x, r), ∂ B(x, r(1 + 2ε))) ≥ 2εr > r(1 + 2ε)ε. Therefore

e(L(x, r(1 + 2ε), θ), K (x, r)) ≤ r(1 + 2ε)ε

and we obtain e(L(x, r, θ), K (x, r)) ≤ 2rε+r(1+2ε)ε. Thus r−1e(L(x, r, θ(x)),
K (x, r)) goes to 0 as r goes to 0.
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7.3. – Local structure of ∂◦K

We next analyze successively the local structure of ∂◦K near each type of
tangent point.

Lemma 7.10 (type 0). Let K be a continuum. Let x be a point of ∂◦K such that
∂◦K has a tangent at x. Suppose x is of type O. Then there exists a positive r such
that for any domain U containing x and included in B(x, r), there does not exist a
residual domain O of K in U such that ∂O has a true tangent at x.

Proof. The point x and the direction θ(x) being fixed for the whole proof,
we will omit them in the notation as usual. Since x if of type O, we have:

∀ φ ∈]0, π/4[ ∀ ε ∈]0, 1/8[ ∃ r0 ∀ r < r0

H1(∂◦K ∩ U (r, φ)) ≤ rε, e(K , U (r, φ)) ≤ rε .

We impose in addition that r0 < diam K/2. As in the proof of Proposition 7.5,
we consider the set V−(r, 2ε, φ) for r < r0. We check that the hypothesis of
Lemma 7.2 are satisfied by the sets K , U−(r, φ), V−(r, 2ε, φ). The set K is
not included in U−(r, φ), H1(∂◦K ∩ U−(r, φ)) ≤ rε and d(V−(r, 2ε, φ), R

2 \
U−(r, φ)) > rε. If K ∩ V−(r, 2ε, φ) = ∅ then

e(R2 \ V−(r, 2ε, φ), V−(r, 2ε, φ)) ≤ e(K , U−(r, φ)) ≤ e(K , U (r, φ)) ≤ rε .

A direct computation gives e(R2\V−(r, 2ε, φ), V−(r, 2ε, φ)) = r(1−4ε) cos φ(1+
cos φ)−1. Hence the preceding inequality cannot occur when 0 < φ < π/4,
0 < ε < 1/8 so that we have K ∩V−(r, 2ε, φ) 	= ∅. The last part of Lemma 7.2
then implies that no residual domain of K intersects both V−(r, 2ε, φ) and
R

2 \U−(r, φ). The same result holds for the sets V+(r, 2ε, φ) and R
2 \U+(r, φ).

Let us consider the set F0 defined by

F0 =
⋃

0<r<r0

V−(r, 2ε, φ) ∪ {x} ∪
⋃

0<r<r0

V+(r, 2ε, φ) .

This set is connected: Lemma 7.4 shows that it is the union of two connected
sets having a common point. Moreover the set F0 contains the segment [x −
(r0/2)v(θ), x + (r0/2)v(θ)] which disconnects the interior of the angular sectors
S(x, π + θ − φ, π + θ + φ), S(x, θ − φ, θ + φ) inside B(x, r0/2).

Let U be a domain containing x and included in B(x, r0/2). Let r1
positive be such that B(x, r1) ⊂ U . Suppose there exists a residual domain O
of K in U such that ∂O has a true tangent at x . By definition, we have
then lims→0 s−1e(∂O ∩ B(x, s), L(x, s, θ)) = 0. Hence there exists s0 smaller
than r0/2 and r1 such that e(∂O ∩ B(x, s), L(x, s, θ)) < (s/4) sin φ for s < s0.
Let s be smaller than s0. We have then

d(x ± (s/2)u(θ), ∂O) < (s/4) sin φ

< d
(
x ± (s/2)u(θ), R

2 \ (S(x, π + θ − φ, π + θ + φ) ∪ S(x, θ − φ, θ + φ))
)
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so that O intersects both S(x, π + θ − φ, π + θ + φ) and S(x, θ − φ, θ + φ)

inside B(x, s). Thus the domain O intersects R
2 \ (U−(s, φ) ∪ U+(s, φ)) for

s > 0. By Lemma 7.2, this implies that O does not intersect V−(s, 2ε, φ) nor
V+(s, 2ε, φ) for 0 < s < r0. Since x does not belong to O , it follows that O
does not intersect F0, which is absurd.

Lemma 7.11 (type 1/2). Let K be a continuum, let O be a residual domain
of K . Let x be a point of ∂O where ∂◦K has a tangent. If ∂O has a true tangent
at x then x is not of type 1/2.

Proof. Since ∂O has a true tangent in the direction θ = θ(x) (the direction
of the tangent is the same for ∂O and ∂◦K ), then r−1e(∂O ∩ B(x, r), L(x, r, θ))

goes to 0 when r goes to 0. But ∂O is a subset of K , whence r−1e(K (x, r),
L(x, r, θ)) goes to 0 as well when r goes to 0.

Lemma 7.12 (type I). Let K be a continuum and let x belong to ∂IK . For any
positive ε there exists a positive r(x, ε) such that

∀ r < r(x, ε) ∀ K ′ ∈ Kc D(K , K ′) ≤ rε ⇒ D(K ′(x, r), U−(x, r, θ(x))) ≤ 4rε .

Proof. By Proposition 7.9, since x is a point of type I, then r−1 D(K (x, r),
U−(x, r, θ(x))) goes to 0 when r goes to 0. Let ε be positive and smaller than
one. There exists a positive r0 such that D(K (x, r), U−(x, r, θ(x))) ≤ rε for
r < r0. We set r1 = r0(1−ε). Let r be smaller than r1 and let K ′ be a compact
connected set such that D(K , K ′) ≤ rε. We have then e(K ′(x, r), K (x, r(1 −
ε))) ≤ rε so that

e(K ′(x, r), U−(x, r, θ(x))) ≤ e(K ′(x, r), K (x, r(1 − ε)))

+ e(K (x, r(1 − ε)), U−(x, r(1 − ε), θ(x)))

+ e(U−(x, r(1 − ε), θ(x)), U−(x, r, θ(x)))

≤ rε + r(1 − ε)ε + rε ≤ 3rε .

Since r(1 + ε) ≤ r0(1 − ε2) < r0, we have e(U−(x, r(1 + ε), θ(x)), K (x, r(1 +
ε))) ≤ r(1 + ε)ε so that

e(U−(x, r, θ(x)), K ′(x, r)) ≤ e(U−(x, r, θ(x)), U−(x, r(1 + ε), θ(x)))

+ e(U−(x, r(1 + ε), θ(x)), K (x, r(1 + ε)))

+ e(K (x, r(1 + ε)), K ′(x, r))

≤ rε + rε(1 + ε) + rε ≤ 4rε .

Thus r(x, ε) = r1 answers the problem.

Lemma 7.13 (type II). Let K be a continuum and let x belong to ∂I IK . For
any positive ε there exists a positive r(x, ε) such that

∀ r < r(x, ε) ∀ K ′ ∈ Kc D(K , K ′) ≤ rε ⇒ D(K ′(x, r), L(x, r, θ(x))) ≤ 4rε .

Proof. The proof is similar to the proof of Lemma 7.12.
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Lemma 7.14. For any compact sets K1, K2, the sets ∂I I (K1∪K2)∩(∂IK1∪∂IK2)

and ∂I (K1 ∪ K2) ∩ ∂I IK1 ∩ ∂I IK2 are empty.

Proof. By K1∪K2(x, r) we denote the set (K1∪K2)(x, r). For any point x ,
any positive r and any angles θ1, θ , we have

r ≤ e(L(x, r, θ), U−(x, r, θ1))

≤ e(L(x, r, θ), K1 ∪ K2(x, r)) + e(K1(x, r), U−(x, r, θ1))

so that r−1e(L(x, r, θ), K1 ∪ K2(x, r)) and r−1e(K1(x, r), U−(x, r, θ1)) cannot
go simultaneously to 0 when r goes to 0. Therefore ∂I I (K1 ∪ K2) ∩ ∂IK1 is
empty. Analogously, for any point x , any positive r and any angles θ1, θ2, θ ,
we have

r/
√

2 ≤ e(L(x, r, θ1) ∪ L(x, r, θ2), U−(x, r, θ))

≤ max
{

e(L(x, r, θ1), K1(x, r)), e(L(x, r, θ2), K2(x, r))
}

+ e(K1 ∪ K2(x, r), U−(x, r, θ))

so that the three quantities

r−1e(L(x, r, θ1), K1(x, r)), r−1e(L(x, r, θ2), K2(x, r)),

r−1e(K1 ∪ K2(x, r), U−(x, r, θ))

cannot go simultaneously to 0 when r goes to 0. Therefore ∂I (K1 ∪ K2) ∩
∂I IK1 ∩ ∂I IK2 is empty.

8. – The continua K with H1(∂◦K ) finite

The goal of this section is to show that if K is a continuum withH1(∂◦K ) < ∞,
then H1 almost all points of ∂◦K have true tangents and are of type I or II.

Notation 8.1. If O is a domain, we denote by ∂∗O the set of the points
of ∂O where ∂O has a true tangent.

Definition 8.2. Let K be a continuum. We set

∂∗K = (
∂OK ∪ ∂1/2K ∪ ∂IK ∪ ∂I IK

) \
⋃
U

⋃
O

(∂O \ (∂∗O ∪ ∂U ))

where the first union is over all the domains U of the plane and the second
union is over all domains O in C(K , U ). We set also ∂∗

IK = ∂∗K ∩ ∂IK and
∂∗

I IK = ∂∗K ∩ ∂I IK .

Lemma 8.3. Let O be a domain such that H1(∂O) is finite. Let x belong to R
2

and let s, r be two positive real numbers with s < r . There is at most a finite number
of connected components of O ∩ B

◦
(x, r) which intersect B(x, s).
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Proof. Let n ≥ 2 and suppose that O1, . . . , On are connected components
of O ∩ B

◦
(x, r) intersecting B(x, s). Let t be such that s < t < r . For

each i in {1 · · · n}, the domain Oi intersects both spheres ∂ B(x, s) and ∂ B(x, t)
(otherwise Oi would not be connected). Since Oi is arcwise connected, there
exists a simple arc γi : [0, 1] �→ Oi such that: γi (0) ∈ ∂ B(x, t), γi (1) ∈
∂ B(x, s) and γi (u) ∈ B

◦
(x, t) \ B(x, s) for u in ]0, 1[ (we first consider an

arc in Oi joining ∂ B(x, t) to ∂ B(x, s) and we look at the portion between
the last visit to ∂ B(x, t) and the hitting time of ∂ B(x, s)). Clearly the arcs
γi , 1 ≤ i ≤ n, are pairwise disjoint. We may order the sequence γ1, . . . , γn

so that when we move counterclockwise on ∂ B(x, t) we observe successively
γ1(0), . . . , γn(0). Necessarily, if we move counterclockwise on ∂ B(x, s) we
observe γ1(1), . . . , γn(1) in the same order (otherwise two arcs would intersect).
These n arcs separate the annulus B(x, t) \ B

◦
(x, s) into n domains A1, . . . , An ,

where A1 is delimited by (γ1, γ2), . . . , An−1 by (γn−1, γn), An by (γn, γn+1)

(we make the convention that γn+1 = γ1). Let ψ be the map from R
2 to R

+
defined by ψ(y) = |y − x |2. Clearly ψ is Lipschitz with constant 1. Applying
[11, Theorem 7.7, p. 104], we have

H1(∂O) ≥ H1(∂O ∩ (B(x, t) \ B
◦
(x, s))

) ≥
∫ t

s
card

(
∂O ∩ ψ−1(u)

)
du .

Let u belong to ]s, t[. Each arc γi , 1 ≤ i ≤ n, intersects the sphere ∂ B(x, u).
For i in {1 · · · n}, let xi xi+1 be a subarc of ∂ B(x, u) such that xi ∈ γi , xi+1 ∈ γi+1
and the arcs γj , j ∈ {1 · · · n + 1} \ {i, i + 1}, do not intersect xi xi+1 \ {xi , xi+1}.
Necessarily the arc xi xi+1 \{xi , xi+1} meets ∂O . Since there are n such subarcs
with pairwise disjoint interiors, we see that ∂O ∩ ψ−1(u) contains at least n
points. Therefore n(t−s) ≤ H1(∂O) and the number n of connected components
of O ∩ B

◦
(x, r) is bounded.

Lemma 8.4. Let O be a domain such that H1(∂O) is finite. Let x belong to ∂O.
For any domain U containing x, there exists a connected component O ′ of O ∩ U
such that x belongs to ∂O ′.

Proof. Let s, r be such that 0 < s < r and B(x, r) ⊂ U . By Lemma 8.3,
there is at most a finite number of connected components of O ∩ B

◦
(x, r)

intersecting B(x, s), say O1, . . . , On . We have then ∂O ∩ B(x, s) = (∂O1 ∪
· · · ∪ ∂On) ∩ B(x, s) so that there exists i in {1 · · · n} such that x belongs to
∂Oi . Let O ′ be the connected component of O ∩ U containing Oi . Then
∂Oi \ ∂ B(x, r) ⊂ ∂O ′ so that x is in ∂O ′.

Corollary 8.5. Let K be a continuum such that H1(∂◦K ) < ∞. Let x be a
point of ∂◦K . Let U be a domain containing x. There exists a residual domain O
of K in U such that x belong to ∂O.

Lemma 8.6. Let K be a continuum such that H1(∂◦K ) < ∞. Let x be a point
of ∂◦K where ∂◦K has a tangent. Let U be a domain containing x and suppose that
there exists a residual domain O of K in U such that x belongs to ∂O and ∂O has
not a true tangent at x. Then for any domain U ′ containing x and included in U,
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there exists a residual domain O ′ of K in U ′ such that O ′ is included in O, x belongs
to ∂O ′ and ∂O ′ has not a true tangent at x.

Proof. Let K , U, O, U ′ be as in the statement of the lemma. Let s, r be
such that 0 < s < r and B(x, r) ⊂ U ′. Certainly H1(∂O) is finite, hence
by Lemma 8.3, there is at most a finite number of connected components of
O ∩ B

◦
(x, r) intersecting B(x, s), say O1, . . . , On . We have then ∂O ∩ B(x, s) =

(∂O1 ∪· · ·∪∂On)∩ B(x, s) so that there exists i in {1 · · · n} such that x belongs
to ∂Oi . Let O ′ be the connected component of O ∩ U ′ containing Oi . Then
∂Oi \ ∂ B(x, r) ⊂ ∂O ′ so that x is in ∂O ′. Moreover ∂O ′ ∩ U ′ ⊂ ∂O . Since
∂◦K has a tangent at x , necessarily

∀ φ ∈]0, π/2] lim
t→0

1

t
H1(∂O ∩ U (x, t, θ, φ)) = 0 .

However ∂O has not a true tangent at x . Either limt→0 H1(∂O∩B(x, t))/t = 0
or

lim inf
t→0

1

t
e(∂O ∩ B(x, t), L(x, t, θ)) > 0 .

In both cases, the same property holds for ∂O ′, hence ∂O ′ has not a true
tangent at x .

Corollary 8.7. Let K be a continuum such that H1(∂◦K ) < ∞. Let (Un)n∈N

be a sequence of domains which is a basis for the topology of R
2. Then

∂∗K = (
∂OK ∪ ∂1/2K ∪ ∂IK ∪ ∂I IK

) \
⋃
n∈N

⋃
O∈C(K ,Un)

(∂O \ (∂∗O ∪ ∂Un)) .

Proof. Indeed, let x be a point of ∂◦K where ∂◦K has a tangent and suppose
that for some domain U , there exists O in C(K , U ) such that x belongs to ∂O \
(∂∗O ∪∂U ). Since (Un)n∈N is a basis for the topology of R

2, there exists n in N

such that x belongs to Un and Un is included in U . By Lemma 8.6, there exists
a residual domain On of K in Un such that x belongs to ∂On \(∂∗On ∪∂Un).

Proposition 8.8. Let K be a continuum. If H1(∂◦K ) < ∞ then ∂◦K is a
regular 1-set and moreover H1(∂◦K \ ∂∗K ) = 0.

Proof. We recall that ∂◦K = ⋃
i∈I ∂Oi where (Oi , i ∈ I ) are the residual

domains of K (see Definition 5.1), and the set I is finite or countable. Each
set ∂Oi is a continuum of finite H1-measure because H1(∂Oi ) ≤ H1(∂◦K ) < ∞.
Theorem 4.5 implies that each ∂Oi , i ∈ I , as well as ∂◦K , consists of a countable
union of rectifiable curves, together with a set of H1-measure zero. Hence ∂◦K is
a regular 1-set and has a tangent at H1-almost all of its points (by Corollaries 3.4,
6.3 or [8, Corollaries 3.9, 3.10]). Therefore we have

H1(∂◦K \ (∂OK ∪ ∂1/2K ∪ ∂IK ∪ ∂I IK )
) = 0 .

Let (Un)n∈N be a sequence of domains which is a basis for the topology of R
2

and such that H1(∂Un) is finite for any n (choose for instance a collection of
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open balls). Then for any n in N and any O in C(K , Un) we have ∂O \ ∂Un ⊂
∂◦K (if O ′ is the residual domain of K in R

2 containing O then ∂O\∂Un ⊂ ∂O ′)
and

H1(∂O) ≤ H1(∂O \ ∂Un) + H1(∂Un) ≤ H1(∂◦K ) + H1(∂Un) < ∞ .

By Corollary 6.4, H1(∂O \ ∂∗O) = 0. Therefore the set

⋃
n∈N

⋃
O∈C(K ,Un)

(∂O \ (∂∗O ∪ ∂Un))

is a countable union of sets having zero H1-measure (by Corollary 3.4) and
therefore it has H1-measure zero. By Corollary 8.7, this set contains (∂OK ∪
∂1/2K ∪ ∂IK ∪ ∂I IK ) \ ∂∗K whence H1(∂◦K \ ∂∗K ) = 0.

Proposition 8.9. Let K be a continuum. If H1(∂◦K ) < ∞ then H1(∂OK ∪
∂1/2K ) = 0.

Proof. By Lemma 7.11, the set ∂1/2K is included in
⋃

O∈C(K )(∂O\∂∗O) and
by Corollary 6.4, H1(∂O \∂∗O) = 0 for any O in C(K ). Hence H1(∂1/2K ) = 0.

We finally prove that H1(∂OK ) = 0. Let (Un)n∈N be a sequence of domains
which is a basis for the topology of R

2 and such that H1(∂Un) is finite for
any n (choose for instance a collection of open balls). Let x belong to ∂OK .
We apply Lemma 7.10: there exists a positive r such that for any domain U
containing x and included in B(x, r), there does not exist a residual domain O
of K in U such that ∂O has a true tangent at x . Let n in N be such that Un

contains x and is included in B(x, r). By Lemma 8.5, there exists a residual
domain O of K in Un such that x belongs to ∂O . Since Un is included
in B(x, r), ∂O has not a true tangent at x so that x belongs to ∂O \ ∂∗O .
Therefore we have

∂OK ⊂
⋃
n∈N

⋃
O∈C(K ,Un)

(∂O \ ∂∗O) .

For any n in N and O in C(K , Un), we have ∂O \ ∂Un ⊂ ∂◦K (if O ′ is the
residual domain of K in R

2 containing O then ∂O \ ∂Un ⊂ ∂O ′) and

H1(∂O) ≤ H1(∂O \ ∂Un) + H1(∂Un) ≤ H1(∂◦K ) + H1(∂Un) < ∞ ,

whence by Corollary 6.4, H1(∂O \ ∂∗O) = 0. Hence ∂OK is included in the
countable union of sets of H1-measure zero and H1(∂OK ) = 0.

Corollary 8.10. Let K be a continuum. If H1(∂◦K ) < ∞ then H1(∂◦K \
∂∗

IK \ ∂∗
I IK ) = 0.
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9. – Local structure of ∂∗
IK and ∂∗

I IK

In this section, we focus further on the points of types I and II where
there is a true tangent. We recall that a point x belonging to the boundary ∂O
of an open set O is said to be accessible from O if there exists a continuous
arc γ : [0, 1] �→ O such that γ ([0, 1[) ⊂ O and γ (1) = x .

Proposition 9.1. Let K be a continuum and let x belong to ∂∗
IK . There exists r

positive such that for any domain U containing x and included in B(x, r), there exists
a unique residual domain O of K in U such that x belongs to ∂O. Moreover x is
accessible from O.

Proof. Let θ = θ(x) be the direction of the tangent to ∂◦K at x . Since x
is of type I, we have: ∀ φ ∈]0, π/4[ ∀ ε ∈]0, 1/8[ ∃ r0 ∀ r < r0

H1(∂◦K ∩ U (r, φ)) ≤ rε , e(K , U−(r, φ)) ≤ rε , e(R2 \ U+(r, φ), K ) ≤ rε .

We impose that r0 < diam K/2. We have then U−(r, φ) ⊂ V(K , rε) for r < r0.
Let us consider the set V+(r, 2ε, φ). Since d(V+(r, 2ε, φ), R

2 \ U+(r, φ)) > rε

we have V+(r, 2ε, φ) ∩ K = ∅ for r < r0. Let F+ be the domain F+ =⋃
r<r0

V+(r, 2ε, φ). Then F+ does not intersect K and contains the segment
]x, x + r0(1 − 3ε)v(θ)].

Let U be a domain containing x and included in B(x, r0/2). Let O be
the residual domain of K in U containing F+ ∩ B(x, r0/2). Clearly x belongs
to ∂O and x is accessible from O . Suppose there is another residual domain O ′
of K in U such that x belongs to ∂O ′. Since O ∩ O ′ = ∅ then O ′ ∩ F+ = ∅.
Yet x belongs to ∂∗

IK , so that ∂O ′ must have a true tangent at x . This tangent
is necessarily in the direction θ (because ∂O ′ \ ∂U ⊂ ∂◦K ). Necessarily, O ′
meets both S(x, π + θ − φ, π + θ + φ) and S(x, θ − φ, θ + φ) inside B(x, r)

for r sufficiently small, say r < r1 < r0/2.
We check that the hypothesis of Lemma 7.2 are satisfied by the sets

K , U−(r, φ), V−(r, 2ε, φ) for r < r0:

K ∩ (R2 \ U−(r, φ)) 	= ∅, H1(∂◦K ∩ U−(r, φ)) ≤ rε,

d(V−(r, 2ε, φ), R
2 \ U−(r, φ)) > rε .

If K ∩ V−(r, 2ε, φ) = ∅ then

e(R2 \ V−(r, 2ε, φ), V−(r, 2ε, φ)) ≤ e(K , U−(r, φ)) ≤ rε .

A direct computation gives e(R2\V−(r, 2ε, φ), V−(r, 2ε, φ)) = r(1−4ε) cos φ(1+
cos φ)−1. Hence the preceding inequality cannot occur when 0 < φ < π/4,
0 < ε < 1/8 so that we have K ∩V−(r, 2ε, φ) 	= ∅. The last part of Lemma 7.2
then implies that no residual domain of K intersects both V−(r, 2ε, φ) and
R

2 \ U−(r, φ).
The set O ′ intersects B(x, r) \ U−(r, φ) for r < r1, hence it intersects

R
2 \ U−(r, φ) for r < r0 and thus it does not intersect V−(r, 2ε, φ) for r <
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r0. If we set F− = ⋃
r<r0

V−(r, 2ε, φ) then O ′ ∩ F− = ∅. It follows that
O ′ ∩ (F− ∪ {x} ∪ F+) = ∅. However F− ∪ {x} ∪ F+ disconnects the interior
of the angular sectors S(x, π + θ − φ, π + θ + φ), S(x, θ − φ, θ + φ) inside
B(x, r0/2), which is absurd.

Proposition 9.2. Let K be a continuum and let x belong to ∂∗
I IK . There

exists r positive such that for any domain U containing x and included in B(x, r),
there exist either one or two residual domains O of K in U such that x belongs
to ∂O. Moreover x is accessible from each such domain.

Proof. Let θ = θ(x) be the direction of the tangent to ∂◦K at x . Since x
is of type II, we have: ∀ φ ∈]0, π/4[ ∀ ε ∈]0, 1/8[ ∃ r0 ∀ r < r0

H1(∂◦K ∩U (r, φ)) ≤ rε , e(R2 \U−(r, φ), K ) ≤ rε , e(R2 \U+(r, φ), K ) ≤ rε .

We impose that r0 < diam K/2. Let us consider as usual the set V−(r, 2ε, φ).
Since d(V−(r, 2ε, φ), R

2 \ U−(r, φ)) > rε we have V−(r, 2ε, φ) ∩ K = ∅ for
r < r0. Let F− be the domain F− = ⋃

r<r0
V−(r, 2ε, φ). Then F− does

not intersect K and contains the segment ]x, x − r0(1 − 3ε)v(θ)]. Similarly,
the domain F+ = ⋃

r<r0
V+(r, 2ε, φ) does not intersect K and contains the

segment ]x, x + r0(1 − 3ε)v(θ)]. Let U be a domain containing x and included
in B(x, r0/2). Let O− (respectively O+) be the residual domain of K in U
containing F− (respectively F+). It might happen that O− = O+. Clearly x
belongs to ∂O− and ∂O+ and x is accessible from both O− and O+. Suppose
there is another residual domain O ′ of K in U such that x belongs to ∂O ′.
Since (O− ∪ O+) ∩ O ′ = ∅ then O ′ ∩ (F− ∪ F+) = ∅. Yet x belongs to ∂∗

IK ,
so that ∂O ′ must have a true tangent at x . This tangent is necessarily in the
direction θ (because ∂O ′ \ ∂U ⊂ ∂◦K ). Necessarily, O ′ meets both S(x, π +
θ − φ, π + θ + φ) and S(x, θ − φ, θ + φ) inside B(x, r) for r sufficiently
small. However F− ∪ {x} ∪ F+ disconnects the interior of the angular sectors
S(x, π + θ − φ, π + θ + φ), S(x, θ − φ, θ + φ) inside B(x, r0/2), which is
absurd.

Corollary 9.3. Let K be a continuum such that H1(∂◦K ) < ∞ and let U be
a domain.

• Any x in ∂∗
IK ∩U belongs to the boundary of exactly one residual domain of K

in U.
• Any x in ∂∗

I IK ∩ U belongs to the boundary of one or two residual domains
of K in U.

Proof. This result is a consequence of Lemma 8.4 and Propositions 9.1,
9.2.
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10. – The surface energy S

We first prove a covering lemma for the sets of points of type I and type II.

Lemma 10.1. Let K be a continuum such that H1(∂◦K ) < ∞. Let ε be positive.
Suppose that to each point of ∂∗

IK (respectively ∂∗
I IK ) there is associated a positive

number r1(x) (respectively r2(x)), possibly depending on ε. There exists a finite
family of disjoint balls B(xi , ri ), i ∈ I1 ∪ I2, such that: for i in I1, xi belongs to ∂∗

IK
and 0 < ri < r1(xi ), for i in I2, xi belongs to ∂∗

I IK and 0 < ri < r2(xi ), and

H1(∂∗
IK ) + 2H1(∂∗

I IK ) ≤ (1 + 2ε)

(
2

∑
i∈I1

ri + 4
∑
i∈I2

ri

)
,

H1

(
∂◦K \

⋃
i∈I1∪I2

B(xi , ri )

)
≤ 2ε

∑
i∈I1∪I2

ri .

Proof. Under the hypothesis that H1(∂◦K ) < ∞, the sets ∂∗
IK and ∂∗

I IK
are H1-measurable and their H1-measures are finite (see the remark after Def-
inition 7.7 together with Definition 8.2 and Proposition 8.8). Moreover ∂◦K is
a regular 1-set by Proposition 8.8 and has density 1 at H1 almost all of its
points. Hence if we define

∂◦ ∗K = {x ∈ ∂∗K : lim
r→0

(2r)−1H1(∂◦K ∩ B(x, r)) = 1}

and
∂∗∗

I K = ∂∗
IK ∩ ∂◦ ∗K , ∂∗∗

I IK = ∂∗
I IK ∩ ∂◦ ∗K ,

then we have H1(∂◦K \∂◦ ∗K ) = 0 so that H1(∂∗
IK\∂∗∗

I K )=0, H1(∂∗
I IK\∂∗∗

I IK )=0.
Now for each x in ∂∗∗

I K ∪ ∂∗∗
I IK , there exists r(x, ε) positive such that

∀ r ∈]0, r(x, ε)[ 2r(1 − ε) ≤ H1(∂◦K ∩ B(x, r)) ≤ 2r(1 + ε) .

The family of closed balls {B(x, r) : x ∈ ∂∗∗
I IK , 0 < r < min{r2(x), r(x, ε)}} is

a Vitali class for ∂∗∗
I IK . By the Corollary 4.3 to the Vitali covering theorem,

we may select a finite disjoint sequence of balls in this class, (B(xi , ri ), i ∈ I2),
such that

H1

(
∂∗∗

I IK \
⋃
i∈I2

B(xi , ri )

)
≤ 2ε

∑
i∈I2

ri , H1(∂∗∗
I IK ) ≤ 2(1 + ε)

∑
i∈I2

ri .

The family of closed balls

{
B(x, r) : x ∈ ∂∗∗

I K , 0 < r < min

{
r1(x), r(x, ε), d

(
x,

⋃
i∈I2

B(xi , ri )

)}}
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is a Vitali class for ∂∗∗
I K \ ⋃

i∈I2
B(xi , ri ). By the Corollary 4.3 to the Vitali

covering theorem, we may select a finite disjoint sequence of balls in this class,
(B(xi , ri ), i ∈ I1), such that

H1


∂∗∗

I K \
⋃

i∈I1∪I2

B(xi , ri )


 ≤ 2ε

∑
i∈I1

ri ,

H1


∂∗∗

I K \
⋃
i∈I2

B(xi , ri )


 ≤ 2(1 + ε)

∑
i∈I1

ri .

We have then

H1(∂∗
IK ∪ ∂∗

I IK ) = H1


(∂∗∗

I K ∪ ∂∗∗
I IK ) \

⋃
i∈I1∪I2

B(xi , ri )




+ H1


(∂∗∗

I K ∪ ∂∗∗
I IK ) ∩

⋃
i∈I1∪I2

B(xi , ri )




≤ 2ε
∑

i∈I1∪I2

ri +
∑

i∈I1∪I2

H1(∂◦K ∩ B(xi , ri ))

≤ 2(1 + 2ε)
∑

i∈I1∪I2

ri .

Combining this inequality with H1(∂∗∗
I IK ) ≤ 2(1+ε)

∑
i∈I2

ri , we get the desired
estimation.

We now define the surface energy of a continuum K .

Definition 10.2. Let K be a continuum. For A a domain we define the
surface energy S(K , A) of K in A by

S(K , A) = sup
U

∑
U∈U

∑
O∈C(K ,U )

H1(∂O \ ∂U )

the supremum being taken over all families U of pairwise disjoint domains
included in A. The surface energy of the whole set K is S(K ) = S(K , R

2).

Remark. Obviously, for any continuum K , any domains A1, A2 such that
A1 ⊂ A2, we have S(K , A1) ≤ S(K , A2).

Lemma 10.3. For any continuum K , we have S(K ) ≥ 2 diam K .

Proof. Let x, y belong to K with |x − y|2 = diam K . Let θ be the angle
between the horizontal axis and the vector xy. Let U be the open strip

U = {x + au(θ) + bv(θ) : 0 < a < |x − y|2, b ∈ R} .
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For b larger than diam K and any a, the point x + au(θ) + bv(θ) does not
belong to K . Let O+ (respectively O−) be the residual domain of K in U
containing the set

{x + au(θ) + bv(θ) : 0 < a < |x − y|2, b > diam K }

(respectively the set { x + au(θ) − bv(θ) : 0 < a < |x − y|2, b > diam K }).
Suppose that O− = O+. Then there exists an arc γ in U \K joining (x + y)/2+
2(diam K )v(θ) to (x +y)/2−2(diam K )v(θ); we can extend this arc in R

2\K to
a Jordan curve γ ′ such that x is in the interior of γ ′ and y is in the exterior of γ ′,
contradicting the fact that K is connected. Thus the domains O− and O+ are
distinct. Clearly, for any a in ]0, |x − y|2[, the line x +au(θ)+Rv(θ) intersects
both ∂O− and ∂O+. Thus S(K ) ≥ H1(∂O−\∂U )+H1(∂O+\∂U )≥2diam K .

Lemma 10.4. Let K be a continuum and let A1, A2 be two disjoint domains
in R

2. We have S(K , A1 ∪ A2) = S(K , A1) + S(K , A2).

Proof. Let U be a family of pairwise disjoint domains included in A1 ∪ A2.
Since A1 and A2 are disjoint, each domain U of U is either a subdomain of
A1 or a subdomain of A2. Let us define

U1 = {U ∈ U : U ⊂ A1}, U2 = {U ∈ U : U ⊂ A2} .

We have then

∑
U∈U

∑
O∈C(K ,U )

H1(∂O \ ∂U ) =
∑

U∈U1

∑
O∈C(K ,U )

H1(∂O \ ∂U )

+
∑

U∈U2

∑
O∈C(K ,U )

H1(∂O \ ∂U )

≤ S(K , A1) + S(K , A2) .

Taking the supremum over U , we get S(K , A1 ∪ A2) ≤ S(K , A1) + S(K , A2).
To prove the converse inequality, we consider two families of pairwise disjoint
domains U1, U2 included in A1 and A2 respectively. Let U be the union of U1
and U2. Then

∑
U∈U1

∑
O∈C(K ,U )

H1(∂O \ ∂U ) +
∑

U∈U2

∑
O∈C(K ,U )

H1(∂O \ ∂U )

=
∑
U∈U

∑
O∈C(K ,U )

H1(∂O \ ∂U ) ≤ S(K , A1 ∪ A2) .

Taking the supremum over U1 and U2, we get S(K , A1)+S(K , A2) ≤ S(K , A1∪
A2).
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Lemma 10.5. Let K be a continuum such that H1(∂◦K ) < ∞. For any
domain A we have

S(K , A) ≤ H1(∂IK ∩ A) + 2H1(∂I IK ∩ A) .

Remark. When H1(∂◦K ) is finite, we have H1(∂◦K \ (∂∗
IK ∪∂∗

I IK )) = 0 by
Corollary 8.10 so that H1(∂IK ∩A) = H1(∂∗

IK ∩A), H1(∂I IK ∩A) = H1(∂∗
I IK ∩A)

for any domain A.

Proof. Let U be a domain. By Corollary 9.3, we have

∀ x ∈ ∂∗
IK ∩ U

∑
O∈C(K ,U )

χ(x ∈ ∂O) = 1

whence by integrating over ∂∗
IK ∩ U with respect to H1

∑
O∈C(K ,U )

H1(∂O ∩ ∂∗
IK \ ∂U ) = H1(∂∗

IK ∩ U )

and for any x in ∂∗
I IK ∩ U , we have

∑
O∈C(K ,U ) χ(x ∈ ∂O) ≤ 2 whence by

integrating over ∂∗
I IK ∩ U

∑
O∈C(K ,U )

H1(∂O ∩ ∂∗
I IK \ ∂U ) ≤ 2H1(∂∗

I IK ∩ U ) .

Adding the two previous relations yields

∑
O∈C(K ,U )

H1(∂O ∩ (∂∗
IK ∪ ∂∗

I IK ) \ ∂U ) ≤ H1(∂∗
IK ∩ U ) + 2H1(∂∗

I IK ∩ U ) .

For any O in C(K , U ), we have H1(∂O ∩ (∂∗
IK ∪ ∂∗

I IK ) \ ∂U ) = H1(∂O \ ∂U )

because ∂O \ ∂U ⊂ ∂◦K and H1(∂◦K \ (∂∗
IK ∪ ∂∗

I IK )) = 0 by Corollary 8.10;
therefore the preceding inequality can be rewritten as

∑
O∈C(K ,U )

H1(∂O \ ∂U ) ≤ H1(∂∗
IK ∩ U ) + 2H1(∂∗

I IK ∩ U ) .

Let U be a family of pairwise disjoint domains included in A. Summing the
preceding inequality over all the domains U in U we get

∑
U∈U

∑
O∈C(K ,U )

H1(∂O \ ∂U ) ≤ H1(∂∗
IK ∩ A) + 2H1(∂∗

I IK ∩ A) .

Taking the supremum over all families U , together with the remark stated before
the proof, we obtain the claim of the lemma.

Corollary 10.6. For any x, y in R
2, we have S([x, y]) = 2|y − x |2.
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Proof. By Lemma 10.3, we have S([x, y]) ≥ 2|y − x |2. Since ∂∗
I I[x, y] =

]x, y[, Lemma 10.5 yields S([x, y]) ≤ 2H1(]x, y[).

Lemma 10.7. Let x be a point in R
2 and let θ be an angle. For any positive r ,

any ε in ]0, 1/4[, any continuum K , we have the implication

diam K > 2r, D(K (x, r), U−(x, r, θ)) ≤ rε �⇒ S(K , B
◦
(x, r)) ≥ 2r(1 − 3ε) .

Proof. There exists y in K (x, r) such that |y − x |2 ≤ rε. Let P be the
union of the two segments P = [y, x] ∪ [x, x + rv(θ)]. Since diam K > 2r , y
is connected by K ∪ [x, y] to some point outside B(x, r). Because ε < 1/4 <

sin(π/8), K does not meet S(x, r, θ +π/8, π +θ −π/8), so that y is connected
by K (x, r)∪ [x, y] to some point of S(x, r, π + θ −π/8, θ +π/8). Moreover y
is connected in K (x, r) ∪ P to x + rv(θ). Since D(K (x, r), U−(x, r, θ)) ≤ rε,
then K (x, r) does not intersect the set B

◦
(x, r) \ V(U−(x, r, θ), rε). This set is

disconnected into two components by the segment [x, x + rv(θ)]; let O1 be the
component containing x +2εrv(θ)−r(1−2ε)u(θ) and let O2 be the component
containing x+2εrv(θ)+r(1 − 2ε)u(θ). Notice that K ∩ O1 = K∩O2 =∅. Let O ′

1
(respectively O ′

2) be the residual domain of K in B
◦
(x, r) \ P containing O1

(respectively O2). Suppose that O ′
1 = O ′

2. Then there would exist an arc γ :
[0, 1] �→ B(x, r) such that: γ (0) = x + ru(θ + 3π/4), γ (1) = x + ru(θ +
π/4) and γ (]0, 1[) ⊂ B

◦
(x, r) \ K \ P . This arc γ is a cross cut of the

sphere ∂ B(x, r) disconnecting x + rv(θ) from S(x, r, π + θ − π/8, θ + π/8),
which is absurd, since K ∪ P realizes this connection. Hence O ′

1 and O ′
2 are

distinct. Let z = x + 2εrv(θ). The segment ]z − rεu(θ), z − r(1 − 2ε)u(θ)[
(respectively ]z+rεu(θ), z+r(1−2ε)u(θ)[) is included in O ′

1 (respectively O ′
2).

Therefore each arc S(z, s, π, 0), rε < s < r(1 − 2ε), intersects both ∂O ′
1 \ P

and ∂O ′
2 \ P . It follows that

S(K , B
◦
(x, r)\P) ≥ H1(∂O ′

1\∂ B(x, r)\P)+H1(∂O ′
2\∂ B(x, r)\P) ≥ 2r(1−3ε) .

Applying the remark after Definition 10.2, we conclude that S(K , B
◦
(x, r)) ≥

2r(1 − 3ε).

Lemma 10.8. Let x be a point in R
2 and let θ be an angle. For any positive r

and ε in ]0, 1/4[, any continuum K , we have the implication

diam K > 2r, D(K (x, r), L(x, r, θ)) ≤ rε �⇒ S(K , B
◦
(x, r)) ≥ 4r(1 − 4ε) .

Proof. We have K ∩∂ B(x, r) ⊂ S(x, r, π + θ −2ε, π + θ +2ε)∪ S(x, r, θ −
2ε, θ + 2ε) and K ∩ ∂ B(x, r) 	= ∅. Therefore the set K (x, r) ∪ S(x, r, π + θ −
2ε, π+θ+2ε)∪S(x, r, θ−2ε, θ+2ε) has either one or two components. Suppose
it has two components, and let K1 (respectively K2) be the one containing
S(x, r, π + θ − 2ε, π + θ + 2ε) (respectively S(x, r, θ − 2ε, θ + 2ε)). These
components are closed sets. Let (y1, y2) in K1 × K2 be such that d(K1, K2) =
|y1 − y2|2. Let y = (y1 + y2)/2 be the middle of y1 and y2. Since the set
V(L(x, r, θ), rε) ∩ B(x, r) is convex, then y is still in this set, so that the ball
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B(y, rε) intersects L(x, r, θ); thus the ball B(y, 2rε) intersects K (x, r) and
meets either K1 or K2. Therefore either d(y, K1) ≤ 2rε or d(y, K2) ≤ 2rε. By
the very construction of y, we have d(K1, K2) = 2d(y, K1) = 2d(y, K2), so that
d(K1, K2) ≤ 4rε. In case the initial set is connected, we choose y1 = y2 to be
any point of K (x, r) and the end of the argument is the same. The component
of K (x, r) ∪ [y1, y2] containing [y1, y2] meets both S(x, r, π + θ − 2ε, π + θ +
2ε) and S(x, r, θ − 2ε, θ + 2ε). Moreover K (x, r) ∪ [y1, y2] is included in
V(L(x, r, θ), rε)∩ B(x, r). Let z1 = x +2rεv(θ) and z2 = x −2rεv(θ). Let O1
(respectively O2) be the residual domain of V(L(x, r, θ), rε) inside B

◦
(x, r)

containing z1 (respectively z2). Clearly K (x, r)∪[y1, y2] disconnects O1 and O2
inside B(x, r). Let O ′

1 (respectively O ′
2) be the residual domain of K (x, r)

inside B
◦
(x, r)\[y1, y2] containing O1 (respectively O2). Necessarily, O ′

1 and O ′
2

are distinct. The segment [z1 − r(1 − 2ε)u(θ), z1 + r(1 − 2ε)u(θ)] (respectively
[z2 − r(1 − 2ε)u(θ), z2 + r(1 − 2ε)u(θ)]) is included in O ′

1 (respectively O ′
2).

Therefore each segment [z1 + su(θ), z2 + su(θ)], |s| ≤ r(1 − 2ε), meets both
∂O ′

1 and ∂O ′
2. It follows that

S(K , B
◦
(x, r) \ [y1, y2]) ≥ H1(∂O ′

1 \ ∂ B(x, r) \ [y1, y2])

+ H1(∂O ′
2 \ ∂ B(x, r) \ [y1, y2])

≥ H1(∂O ′
1 \ ∂ B(x, r))

+ H1(∂O ′
2 \ ∂ B(x, r)) − 2H1([y1, y2])

≥ 4r(1 − 4ε) .

Applying the remark after Definition 10.2, we conclude that S(K , B
◦
(x, r)) ≥

4r(1 − 4ε).

Proposition 10.9. Let K be a continuum such that H1(∂◦K ) < ∞. For any
domain A we have

S(K , A) = H1(∂IK ∩ A) + 2H1(∂I IK ∩ A) .

In particular, S(K ) = H1(∂IK ) + 2H1(∂I IK ).

Proof. By Lemma 10.5, we already have S(K , A) ≤ H1(∂IK ∩ A) +
2H1(∂I IK ∩ A). We now prove the converse inequality. Let ε be positive.
By Proposition 7.9, to each point x of ∂∗

IK ∩ A we can associate r1(x, ε) such
that

∀ x ∈ ∂∗
IK ∩ A diam K ∩ A > 2r1(x, ε), B(x, r1(x, ε)) ⊂ A ,

∀ r < r1(x, ε) D(K (x, r), U−(x, r, θ)) ≤ rε .

Similarly, to each point x of ∂∗
I IK ∩ A we can associate r2(x, ε) such that

∀ x ∈ ∂∗
I IK ∩ A diam K ∩ A > 2r2(x, ε), B(x, r2(x, ε)) ⊂ A ,

∀ r < r2(x, ε) D(K (x, r), L(x, r, θ)) ≤ rε .
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We apply the covering Lemma 10.1 with these functions r1(x, ε) and r2(x, ε):
there exists a finite family of disjoint balls B(xi , ri ), i ∈ I1 ∪ I2 such that: for
i in I1, xi belongs to ∂∗

IK ∩ A and 0 < ri < r1(xi , ε), for i in I2, xi belongs
to ∂∗

I IK ∩ A and 0 < ri < r2(xi , ε), and

H1(∂∗
IK ∩ A) + 2H1(∂∗

I IK ∩ A) ≤ (1 + 2ε)


2

∑
i∈I1

ri + 4
∑
i∈I2

ri


 .

By Lemmas 10.4, 10.7, 10.8, we have

S(K , A) ≥
∑

i∈I1∪I2

S(K , B
◦
(xi , ri )) ≥

∑
i∈I1

2ri (1 − 3ε) +
∑
i∈I2

4ri (1 − 4ε) .

Therefore we have S(K , A) ≥ (H1(∂∗
IK ∩ A)+2H1(∂∗

I IK ∩ A))(1−4ε)/(1+2ε)

for any positive ε. Letting ε go to zero, we get S(K , A) ≥ H1(∂∗
IK ∩ A) +

2H1(∂∗
I IK ∩ A).

Corollary 10.10. Let K be a continuum such thatH1(∂◦K)<∞. ThenH1(∂◦K )

≤ S(K ) ≤ 2H1(∂◦K ).

Proposition 10.11. Let K1, K2 be any continua. We have S(K1 ∪ K2) ≤
S(K1) + S(K2). For any domain A, we have also S(K1 ∪ K2, A) ≤ S(K1, A) +
S(K2, A).

Proof. We do the proof only for the case A = R
2: the general case is

similar, just by considering the intersections of the sets with A. We need only
to consider the case where S(K1) < ∞ and S(K2) < ∞, otherwise there is
nothing to prove. By Corollary 10.10, H1(∂◦K1) and H1(∂◦K2) are finite. By
Corollary 5.3, H1(∂◦(K1∪K2)) is also finite. By Lemma 5.2 and Corollary 8.10,
we have

H1(∂∗
I(K1 ∪ K2)) = H1(∂∗

I(K1 ∪ K2) ∩ (∂◦K1 ∪ ∂◦K2))

= H1(∂∗
I(K1 ∪ K2) ∩ (∂∗

IK1 ∪ ∂∗
IK2))

+ H1(∂∗
I(K1 ∪ K2) ∩ (∂∗

I IK1 ∪ ∂∗
I IK2)) .

By Lemmas 5.2, 7.14 and Corollary 8.10, we have also

H1(∂∗
I I(K1 ∪ K2)) = H1(∂∗

I I(K1 ∪ K2) ∩ (∂◦K1 ∪ ∂◦K2))

= H1(∂∗
I I(K1 ∪ K2) ∩ (∂∗

I IK1 ∪ ∂∗
I IK2)) .

The two previous equalities yield

H1(∂∗
I(K1 ∪ K2)) + 2H1(∂∗

I I(K1 ∪ K2))

≤ H1(∂∗
IK1 ∪ ∂∗

IK2) + H1(∂∗
I(K1 ∪ K2) ∩ (∂∗

I IK1 ∪ ∂∗
I IK2))

+ 2H1(∂∗
I I(K1 ∪ K2) ∩ (∂∗

I IK1 ∪ ∂∗
I IK2))

≤ H1(∂∗
IK1 ∪ ∂∗

IK2) + 2H1(∂∗
I IK1 ∪ ∂∗

I IK2)

≤ H1(∂∗
IK1) + 2H1(∂∗

I IK1) + H1(∂∗
IK2) + 2H1(∂∗

I IK2)

whence S(K1 ∪ K2) ≤ S(K1) + S(K2).
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Remark. There is a natural way to extend the surface energy S to sets
which are a countable union of pairwise disjoint continua, by simply summing
the surface energy of all the continua. One should then define a suitable metric
on these sets in order to ensure the lower semicontinuity of this functional. A
possible way would be to build a metric using a technique similar to the one
used for Caccioppoli partitions [5], [10].

Our next goal is to prove that the surface energy S is lower semicontinuous.

Theorem 10.12. The map K ∈ Kc �→ S(K ) is lower semicontinuous with
respect to the Hausdorff metric i.e. for any sequence (Kn)n∈N in Kc such that
D(Kn, K ) converges to 0 as n goes to ∞, we have lim infn→∞ S(Kn) ≥ S(K ).

Proof. Let (Kn)n∈N be a sequence of continua converging for the Hausdorff
distance to a compact connected set K . We may suppose that lim infn→∞ S(Kn)

is finite and that diam K > 0 (otherwise there is nothing to prove). We have
by Proposition 5.5 and Corollary 10.10

1

2
S(K ) ≤ H1(∂◦K ) ≤ lim inf

n→∞ H1(∂◦Kn) ≤ lim inf
n→∞ S(Kn)

so that H1(∂◦K ) is finite, as well as S(K ). Let ε be positive smaller than 1/16.
To each point x of ∂∗

IK (respectively ∂∗
I IK ) we associate r1(x, ε) (respec-

tively r2(x, ε)) as in Lemma 7.12 (respectively Lemma 7.13). We impose
the additional conditions:

∀ x ∈ ∂∗
IK r1(x, ε) < diam K/4, ∀ x ∈ ∂∗

I IK r2(x, ε) < diam K/4 .

We apply the covering Lemma 10.1 with these functions r1(x, ε) and r2(x, ε):
there exists a finite family of disjoint balls B(xi , ri ), i ∈ I1 ∪ I2, such that: for
i in I1, xi belongs to ∂∗

IK and 0 < ri < r1(xi , ε), for i in I2, xi belongs to
∂∗

I IK and 0 < ri < r2(xi , ε), and

S(K ) = H1(∂∗
IK ) + 2H1(∂∗

I IK ) ≤ (1 + 2ε)


2

∑
i∈I1

ri + 4
∑
i∈I2

ri


 .

Let η = ε min{ri : i ∈ I1 ∪ I2}. Let n0 be such that diam Kn > diam K/2 and
D(Kn, K ) < η for n larger than n0. Fix an integer n larger than n0. Let i
belong to I1. By construction, we have

diam Kn > 2ri , D(Kn(xi , ri ), U−(xi , ri , θ(xi ))) ≤ 4riε .

Lemma 10.7 implies that S(Kn, B
◦
(xi , ri )) ≥ 2ri (1 − 4ε).

Let i belong to I2. By construction, we have

diam Kn > 2ri , D(Kn(xi , ri ), L(xi , ri , θ(xi ))) ≤ 4riε .

Lemma 10.8 implies that S(Kn, B
◦
(xi , ri )) ≥ 4ri (1 − 16ε). Therefore for any n

larger than n0, by Lemma 10.4,

S(Kn)≥
∑

i∈I1∪I2

S(Kn, B
◦
(xi , ri ))≥(1 − 16ε)


∑

i∈I1

2ri +
∑
i∈I2

4ri


≥ 1 − 16ε

1 + 2ε
S(K ) .

The result follows by letting n go to ∞ and then ε go to 0.
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We finally prove an important approximation result, namely, a continuum
can be approximated simultaneously in the sense of the Hausdorff metric and
in the sense of surface energy by a set belonging to a simple class, for instance
a polygon.

Proposition 10.13. Let K be a continuum such that H1(∂◦K ) < ∞. For any
positive ε, there exists a continuum F such that ∂ F is a finite union of segments and
circular arcs, every point of ∂ F apart the vertices is of type I, and

K ⊂ F ⊂ V(K , ε), |S(K ) − S(F)| < ε .

Proof. Since H1(∂◦K ) < ∞, for any δ > 0, there exists at most a finite
number of residual domains O1, . . . , On of K having diameter larger than δ.
Let O∞ be the unbounded residual domain of K and let K ′(δ) = R

2 \ (O∞ ∪
O1 ∪ · · · ∪ On). Clearly, we have K ⊂ K ′(δ) and

lim
δ→0

D(K , K ′(δ)) = 0 , lim
δ→0

S(K ′(δ)) = S(K ) .

Therefore we need only to consider the case where K itself has a finite number
of residual components. We shall next approximate conveniently each residual
domain of K from inside by a suitable domain. Let O1, . . . , On be the residual
domains of K . Let ε be positive smaller than 1/16. By Proposition 7.9, to
each point x of ∂∗

IK we can associate r1(x, ε) such that

∀ r < r1(x, ε) D(K (x, r), U−(x, r, θ(x))) < rε .

Similarly, to each point x of ∂∗
I IK we can associate r2(x, ε) such that

∀ r < r2(x, ε) D(K (x, r), L(x, r, θ(x))) < rε .

Let α be the angle in ]0, π/2[ such that sin α = ε. By Definition 4.4, to each
point x of ∂∗

IK ∪∂∗
I IK we can associate r(x, ε) > 0 such that for any r < r(x, ε)

H1(∂◦K ∩ U (x, r, θ(x), α)) < rε/8 .

We impose in addition that

∀ x ∈ ∂∗
IK ∪ ∂∗

I IK r(x, ε) <
1

3
min{diam O1, . . . , diam On, 1} .

We apply the covering Lemma 10.1 with the functions (1 + ε)−1 min{ r1(x, ε),
r(x, ε) } and (1 + ε)−1 min{ r2(x, ε), r(x, ε) }: there exists a finite family of
disjoint balls B(xi , ri ), i ∈ I1 ∪ I2, such that: for i in I1, xi belongs to
∂∗

IK and 0 < ri < r1(xi , ε)/(1 + ε), for i in I2, xi belongs to ∂∗
I IK and

0 < ri < r2(xi , ε)/(1 + ε), and

H1


∂◦K \

⋃
i∈I1∪I2

B(xi , ri )


 ≤ 2ε

∑
i∈I1∪I2

ri .
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Applying Lemmas 10.4, 10.7, 10.8, we get

S(K ) ≥
∑

i∈I1∪I2

S(K , B
◦
(xi , ri )) ≥ (1 − 4ε)


2

∑
i∈I1

ri + 4
∑
i∈I2

ri


 ≥ 3

2

∑
i∈I1∪I2

ri .

Let
A =

⋃
1≤k≤n

∂Ok \
⋃

i∈I1∪I2

B
◦
(xi , ri ) .

The set A is closed and H1(A) ≤ 2εS(K ). Let δ = (ε/2) min{ri : i ∈ I1 ∪ I2}.
If A1, . . . , Am are connected components of A, we have H1(A) ≥ H1(A1) +
· · · + H1(Am) ≥ diam A1 + · · · + diam Am . Therefore there is at most a finite
number of connected components of A of diameter larger than δ. Since the
sets ∂O1, . . . , ∂On are connected, then each connected component of A intersects
the set

⋃
i∈I1∪I2

∂ B(xi , ri ). It follows that there is at most a finite number of com-
ponents of A, say A1, . . . , Am , which are not included in

⋃
i∈I1∪I2

B
◦
(xi , ri + δ).

For i in I1, we set

γi = [xi + (ri + δ)u(π + θi − α), xi + (ri + δ)u(θi + α)]

∪ S(xi , ri + δ, π + θi − α, θi + α) .

For i in I2, we set

γi = S(xi , ri + δ, π + θi − α, π + θi + α)

∪ [xi + (ri + δ)u(π + θi − α), xi + (ri + δ)u(θi + α)]

∪ S(xi , ri + δ, θi − α, θi + α)

∪ [xi + (ri + δ)u(π + θi + α), xi + (ri + δ)u(θi − α)] .

The sets γi , i ∈ I1 ∪ I2, are Jordan curves. We denote by int γi the bounded
component of R

2 \ γi for i ∈ I1 ∪ I2. For l in {1 · · · m}, we choose a point al

in Al . We define finally

F = K ∪
⋃

i∈I1∪I2

int γi ∪
⋃

1≤l≤m

B(al, 2diam Al) .

By construction, for i in I1, we have e(U−(xi , ri + δ, θ(xi )), γi ) ≤ (ri + δ)ε

and also ri + δ ≤ ri (1 + ε/2) < r1(xi , ε) whence D(K (xi , ri + δ), U−(xi , ri +
δ, θ(xi ))) < (ri + δ)ε < ε. Similarly, for i in I2, we have e(L(xi , ri +
δ, θ(xi )), γi ) ≤ (ri + δ)ε and also ri + δ ≤ ri (1 + ε/2) < r2(xi , ε) whence
D(K (xi , ri +δ), L(xi , ri +δ, θ(xi ))) < (ri +δ)ε < ε. For l in {1 · · · m}, we have
also e(K , B(al, 2diam Al)) ≤ 4diam Al ≤ 4δ < 2ε. Therefore e(K , F) < 2ε

(notice here that it was necessary to perform the covering with the func-
tions r1(x, ε)/(1+ε), r2(x, ε)/(1+ε) in order to get this inequality). The previ-
ous considerations show also that for any i in I1∪I2, we have K ∩B

◦
(xi , ri + δ) ⊂

int γi , therefore ⋃
1≤k≤n

∂Ok ⊂
⋃

i∈I1∪I2

int γi ∪
⋃

1≤l≤m

B
◦
(al, 2diam Al)
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whence in particular

∂ F ⊂
⋃

i∈I1∪I2

γi ∪
⋃

1≤l≤m

∂ B(al, 2diam Al) .

The definition of F implies furthermore that ∂ F ∩∂K = ∅, and since F is built
by adding to K a finite number of sets delimited by circular arcs and segments,
then ∂ F is a finite union of segments and circular arcs, and every point of ∂ F
apart the vertices is of type I. Let i belong to I1. We apply Lemma 7.2 with
the sets

U−(xi , ri (1 + ε), θ(xi ), α) , V−(xi , ri (1 + ε), ε/2, θ(xi ), α) .

Since

H1(∂◦K ∩ U (xi , ri (1 + ε), θ(xi ), α)) < ri (1 + ε)ε/8 < riε/2 ,

and since no residual component of K is contained in B(xi , ri (1 + ε)), then

V−(xi , ri (1 + ε), ε/2, θ(xi ), α) ⊂ K
◦
.

Thus ∂ F does not intersect S(xi , ri + δ, π + θi + 3α, θi − 3α). It follows that

S(F) ≤
∑
i∈I1

H1(γi \ S(xi , ri + δ, π + θi + 3α, θi − 3α))

+
∑
i∈I2

H1(γi ) +
∑

1≤l≤m

H1(∂ B(al, 2diam Al))

≤
∑
i∈I1

2(ri + δ)(1 + 4α) +
∑
i∈I2

4(ri + δ)(1 + α) +
∑

1≤l≤m

4πdiam Al

≤ (1 + ε)(1 + 4α)


∑

i∈I1

2ri +
∑
i∈I2

4ri


 + 8πεS(K )

≤ S(K )((1 + ε)(1 + 4α)/(1 − 4ε) + 8πε) .

Recalling that sin α = ε, we have the desired estimate and the set F answers
the problem.

Corollary 10.14. For any continuum K , the surface energy S(K ) is equal to

S(K ) = inf
{

lim inf
n→∞ H1(∂Kn) : (Kn)n∈N ∈ (KJ

c )N, lim
n→∞ D(K , Kn) = 0

}

where KJ
c is the class of the connected compact sets K such that R

2 \ K has a finite
number of bounded components, the boundaries of which are disjoint Jordan curves.
The equality is still valid if we require that these Jordan curves are polygonal, i.e.,
they consist of a finite number of segments.
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