The Hausdorff Lower Semicontinuous Envelope of the Length in the Plane

RAPHAËL CERF

Abstract

We study the Hausdorff lower semicontinuous envelope of the length in the plane. This envelope is taken with respect to the Hausdorff metric on the space of the continua. The resulting quantity appeared naturally as the rate function of a large deviation principle in a statistical mechanics context and seems to deserve further analysis. We provide basic simple results which parallel those available for the perimeter of Caccioppoli and De Giorgi.

Mathematics Subject Classification (2000): 28A75.

1. - Introduction

The results reported here come as a side product of our endeavour to provide a rigorous mathematical analysis of the phase coexistence phenomena in models of statistical mechanics in dimension higher than 3 [3], [4], [5]. The main obstacle that prevented the 2 D proofs to be extended to dimensions higher than 3 was to find a higher dimensional analog of the skeleton technique, an intrinsically 2D tool relying on a combinatorial bound which is at the heart of the probabilistic proof [1], [7]. Our strategy to go around this obstacle was to first rewrite the 2 D result in a weaker yet more robust form through a large deviation principle, the proof of which still relied on skeletons [4]. Then we proved a 3D version of the large deviation principle by replacing the skeleton argument by a compactness argument with the help of the theory of Caccioppoli sets [5]. The topology used to express the 3D large deviation principle, namely the Lebesgue measure of the symmetric difference, is weaker than the Hausdorff distance which was employed in 2D. In fact, in our preliminary 2D attempt [4], we proved two different large deviation principles with both topologies. One of the rate functions was an anisotropic version of the classical perimeter of Caccioppoli and De Giorgi, the other was an anisotropic version of the following
quantity: for K a continuum, we define

$$
\begin{equation*}
\mathcal{S}(K)=\inf \left\{\liminf _{n \rightarrow \infty} \mathcal{H}^{1}\left(\partial K_{n}\right)\right\} \tag{1}
\end{equation*}
$$

where the infimum is taken over all sequences $\left(K_{n}\right)_{n \in \mathbb{N}}$ of non-degenerate polyhedra (that is, connected polyhedra whose boundary is a finite union of disjoint Jordan curves) converging towards K with respect to the Hausdorff metric, and \mathcal{H}^{1} is the standard one dimensional Hausdorff measure. The difference between \mathcal{S} and the classical perimeter lies in the topology used in the definition, but both are lower semicontinuous envelopes of the usual length for regular sets. Our aim here is to provide the beginning of the analysis of this quantity and to prove results similar in flavor to the ones available for the classical perimeter developed by Caccioppoli and De Giorgi [2], [6]. The interest is twofold. First it will enable to reprove the 2D large deviation principle of [4] without using skeletons and it might help to analyze further 2D models in statistical mechanics. Second we think that $\mathcal{S}(K)$ is a geometrically interesting quantity on its own which deserves a thorough study.

Let us sum up briefly our main results. We start with an alternative definition of \mathcal{S} : for any continuum K, let

$$
\begin{equation*}
\mathcal{S}(K)=\sup _{\mathcal{U}} \sum_{U \in \mathcal{U}} \sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}(\partial O \backslash \partial U) \tag{2}
\end{equation*}
$$

where $\mathcal{C}(K, U)$ is the collection of all residual domains of K in U and the supremum is taken over all families \mathcal{U} of pairwise disjoint domains of \mathbb{R}^{2}. To some extent, this definition is the analog to the distributional definition of the perimeter (see [9]). We prove that \mathcal{S} is lower semicontinuous with respect to the Hausdorff metric (restricted to continua). We single out a specific subset $\partial^{\circ} K$ of the topological boundary of a continuum K and we analyze its structure whenever $\mathcal{S}(K)$ is finite. At \mathcal{H}^{1} almost all the points of $\partial^{\circ} K$ there is a true tangent, in a sense even stronger than the classical measure theoretic definition. Up to a set of \mathcal{H}^{1} measure zero, the subset of $\partial^{\circ} K$ where there is a true tangent can be further partitioned into two sets: a set $\partial_{I}^{*} K$ consisting of the points where K locally looks like a half-plane and a set $\partial_{I I}^{*} K$ where K locally looks like a line. We rewrite $\mathcal{S}(K)$ as

$$
\mathcal{S}(K)=\mathcal{H}^{1}\left(\partial_{I}^{*} K\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K\right) .
$$

These results parallel the corresponding ones for the reduced boundary of sets having finite perimeter. We finally prove that both definitions (1) and (2) of \mathcal{S} agree. An interesting question, which is not handled at all here, is to compare $\mathcal{S}(K)$ with other classical quantities, like for instance the perimeter or the Minkowski content.

The proofs rely on a few classical results on 1 -sets in the plane and on the Vitali covering theorem on one hand, and on arguments from planar geometry and topology on the other hand.

The paper is organized as follows. In Section 2, we give the notation and basic definitions. In Section 3, we state some useful topological lemmas. In Section 4, we recall several standard results concerning 1 -sets in the plane. In Section 5, we define the subset $\partial^{\circ} K$ of the boundary of a continuum K. The notion of true tangents is introduced in Section 6. In Section 7, we analyze the local structure of $\partial^{\circ} K$ at the points where there is a tangent. In Sections 8 and 9 , we consider the case of continua such that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$. In Section 10 , we define and we study the quantity $\mathcal{S}(K)$ with the help of the previous results.

2. - Notation and basic definitions

In this section we fix the notation and we recall some standard definitions.

2.1. - Topology

Let E be a subset of \mathbb{R}^{2}. We denote its interior by $\stackrel{\circ}{E}$, its closure by \bar{E}, its boundary by ∂E. The collection of all compact subsets of \mathbb{R}^{2} is denoted by \mathcal{K}. A continuum is a compact connected set with at least two points. The collection of all compact connected sets is denoted by \mathcal{K}_{c}. Our usual notation for a set which is either a continuum or is reduced to a single point is K. If E is a connected set, then any set F such that $E \subset F \subset \bar{E}$ is also connected.

A domain is a non-empty open connected set. Our usual notation for a domain is O or U.

Let K be an element of \mathcal{K}_{c} and let U be a domain. A residual domain of K in U is a connected component of $U \backslash K$ (i.e. a maximal connected set included in $U \backslash K$). The collection of all residual domains of K in U is denoted by $\mathcal{C}(K, U)$. The collection of all residual domains of K in \mathbb{R}^{2} is denoted by $\mathcal{C}(K)$. A compact set K is said to disconnect two sets A_{1} and A_{2} inside a domain U if there is no residual domain of K in U intersecting both A_{1} and A_{2}. We will make use of the following facts. Every residual domain of a continuum in \mathbb{R}^{2} is simply connected and has a connected boundary ([12, Chapter VI, Paragraph 4.3 and Theorem 4.4]).

2.2. - Metric

For x a point of \mathbb{R}^{2}, we denote by $|x|_{2}$ its Euclidean norm. The associated distance is denoted by d. The diameter of a set E is $\operatorname{diam} E=\sup \left\{|x-y|_{2}\right.$: $x, y \in E\}$. A set E is bounded if its diameter is finite. The distance between two sets E_{1} and E_{2} is

$$
d\left(E_{1}, E_{2}\right)=\inf \left\{\left|x_{1}-x_{2}\right|_{2}: x_{1} \in E_{1}, x_{2} \in E_{2}\right\}
$$

The r-neighbourhood of a set E is the set

$$
\mathcal{V}(E, r)=\left\{x \in \mathbb{R}^{2}: d(x, E)<r\right\} .
$$

Let E_{1}, E_{2} be two bounded subsets of \mathbb{R}^{2}. We define successively

$$
e\left(E_{1}, E_{2}\right)=\inf \left\{r>0: E_{2} \subset \mathcal{V}\left(E_{1}, r\right)\right\}
$$

and the Hausdorff distance between E_{1} and E_{2}

$$
D\left(E_{1}, E_{2}\right)=\max \left\{e\left(E_{1}, E_{2}\right), e\left(E_{2}, E_{1}\right)\right\}
$$

The restriction of D to \mathcal{K} is a metric and the metric space (\mathcal{K}, D) is complete. We claim that \mathcal{K}_{c} is a closed subspace of (\mathcal{K}, D). Indeed, let $\left(K_{n}\right)_{n \in \mathbb{N}}$ be a sequence of connected compact sets converging to K. Suppose K is not connected, so that there exist two open disjoint sets U, V such that $K \subset U \cup V$ and $K \cap U \neq \varnothing, K \cap V \neq \varnothing$. For n sufficiently large, we will also have $K_{n} \subset U \cup V, K_{n} \cap U \neq \varnothing, K_{n} \cap V \neq \varnothing$, which is absurd since K_{n} is connected.

2.3. - Measure

We denote by \mathcal{L}^{2} the planar Lebesgue measure and by \mathcal{H}^{1} the standard one dimensional Hausdorff measure in \mathbb{R}^{2}. We recall that for any subset E of \mathbb{R}^{2},

$$
\mathcal{H}^{1}(E)=\sup _{\delta>0} \inf \left\{\sum_{i \in I} \operatorname{diam} E_{i}: \sup _{i \in I} \operatorname{diam} E_{i} \leq \delta, E \subset \bigcup_{i \in I} E_{i}\right\} .
$$

2.4. - Geometry

Let x be a point of \mathbb{R}^{2} and let r be positive. The closed ball of center x and Euclidean radius r is denoted by $B(x, r)$. The sphere of center x and radius r is $\partial B(x, r)$. Let E be a set in \mathbb{R}^{2}. We define $E(x, r)=E \cap B(x, r)$. Let θ be an angle. We denote by $(u(\theta), v(\theta))$ the orthonormal basis whose angle with the canonical basis is θ, that is $u(\theta)=(\cos \theta, \sin \theta), v(\theta)=(-\sin \theta, \cos \theta)$.

Fig. 1.

Fig. 2.

We denote by $L(x, \theta)$ the line passing through x parallel to $u(\theta)$ (here θ is defined modulo π), and by $L(x, r, \theta)$ its intersection with $B(x, r)$, that is

$$
L(x, \theta)=\{x+t u(\theta): t \in \mathbb{R}\}, \quad L(x, r, \theta)=L(x, \theta) \cap B(x, r)
$$

We denote by $H L(x, \theta)$ the half-line passing through x oriented by $u(\theta)$ (here θ is defined modulo 2π), and by $H L(x, r, \theta)$ its intersection with $B(x, r)$, that is

$$
H L(x, \theta)=\left\{x+t u(\theta): t \in \mathbb{R}^{+}\right\}, \quad H L(x, r, \theta)=H L(x, \theta) \cap B(x, r)
$$

Fig. 3.

The closed angular sector of vertex x and angles ϕ_{1}, ϕ_{2} is the set

$$
S\left(x, \phi_{1}, \phi_{2}\right)=\left\{x+r u(\theta): r \geq 0, \phi_{1} \leq \theta \leq \phi_{2}\right\}
$$

Fig. 4.
We set also $S\left(x, r, \phi_{1}, \phi_{2}\right)=S\left(x, \phi_{1}, \phi_{2}\right) \cap \partial B(x, r)$.
Let ϕ belong to $[0, \pi / 2]$. We define

$$
\begin{array}{ll}
U_{-}(x, r, \theta, \phi)=S(x, \pi+\theta+\phi, \theta-\phi) \cap B(x, r), & U_{-}(x, r, \theta)=U_{-}(x, r, \theta, 0), \\
U_{+}(x, r, \theta, \phi)=S(x, \theta+\phi, \pi+\theta-\phi) \cap B(x, r), & U_{+}(x, r, \theta)=U_{+}(x, r, \theta, 0),
\end{array}
$$

and

$$
U(x, r, \theta, \phi)=U_{-}(x, r, \theta, \phi) \cup U_{+}(x, r, \theta, \phi)
$$

Let ε be positive. We set also

$$
\begin{aligned}
& V_{-}(x, r, \varepsilon, \theta, \phi)=\left\{y \in U_{-}(x, r, \theta, \phi): d\left(y, \mathbb{R}^{2} \backslash U_{-}(x, r, \theta, \phi)\right)>\varepsilon r\right\}, \\
& V_{+}(x, r, \varepsilon, \theta, \phi)=\left\{y \in U_{+}(x, r, \theta, \phi): d\left(y, \mathbb{R}^{2} \backslash U_{+}(x, r, \theta, \phi)\right)>\varepsilon r\right\} .
\end{aligned}
$$

Fig. 5.

3. - Topological lemmas

This section is devoted to the statement of some basic topological results.
Lemma 3.1. Let O be a domain with compact closure. There exists a sequence $\left(O_{n}\right)_{n \in \mathbb{N}}$ of increasing domains included in O such that:

$$
\forall n \in \mathbb{N} \quad \forall x \in O_{n} \quad d(x, \partial O)>1 / n \quad \text { and } \quad \bigcup_{n \in \mathbb{N}} O_{n}=O .
$$

Proof. Let n belong to \mathbb{N}. We define a relation \mathcal{R}_{n} on the points of O by: $x \mathcal{R}_{n} y$ if and only if there exists a continuous path $\gamma:[0,1] \rightarrow O$ such that $\gamma(0)=x, \gamma(1)=y$ and $d(\gamma(t), \partial O)>1 / n$ for all t in [0, 1]. For any pair x, y of points of O there exists n_{0} such that $x \mathcal{R}_{n} y$ for all n larger than n_{0}. In fact, O is an open connected subset of \mathbb{R}^{2} and is therefore arcwise connected. Thus there exists a continuous path $\gamma:[0,1] \rightarrow O$ such that $\gamma(0)=x, \gamma(1)=y$. Since $\gamma([0,1])$ does not intersect ∂O and is compact, the distance $d(\gamma([0,1]), \partial O)$ is positive. It follows that $x \mathcal{R}_{n} y$ as soon as $d(\gamma([0,1]), \partial O)>1 / n$. Let us fix a point x_{0} in O and let $C\left(x_{0}, n\right)$ be its equivalence class for the relation \mathcal{R}_{n}. Then $\left(C\left(x_{0}, n\right)\right)_{n \in \mathbb{N}}$ is an increasing sequence of open connected sets satisfying the requirements of the lemma.

Corollary 3.2. Let O be a domain with compact closure. Let ε be positive. There exists a domain U included in O such that $e(U, \bar{O})<\varepsilon$ and $d(U, \partial O)>0$.

Lemma 3.3. Let K be a continuum and let δ be positive. There is a finite number of residual domains of K in \mathbb{R}^{2} of Lebesgue measure larger than δ.

Proof. Let B be a closed ball containing K in its interior. Let O_{0} be the residual domain of K containing $\mathbb{R}^{2} \backslash B$ and let O_{1}, \ldots, O_{n} be other residual domains of K of Lebesgue measure larger than δ. We have then $\mathcal{L}^{2}\left(O_{1} \cup \cdots \cup\right.$ $\left.O_{n}\right) \geq n \delta$ and $O_{1} \cup \cdots \cup O_{n} \subset B$ whence $n \delta \leq \mathcal{L}^{2}(B)$. Thus there exist at most $\left\lceil\mathcal{L}^{2}(B) / \delta\right\rceil$ residual domains of K of Lebesgue measure larger than δ.

Corollary 3.4. A continuum K has a finite or countable number of residual domains.

4. - The 1-sets in the plane

A subset E of \mathbb{R}^{2} is a 1 -set if E is \mathcal{H}^{1}-measurable and $0<\mathcal{H}^{1}(E)<\infty$. We recall here without proofs some definitions and facts concerning 1 -sets in the plane. Everything is extracted from [8, Chapter 3].

A collection of sets \mathcal{U} is called a Vitali class for E if for each x in E and δ positive there exists a set U in \mathcal{U} containing x such that $0<\operatorname{diam} U<\delta$. We will use extensively the following result [8, Theorem 1.10].

Theorem 4.1 (Vitali covering theorem). Let E be an \mathcal{H}^{1}-measurable subset of \mathbb{R}^{2} and let \mathcal{U} be a Vitali class of closed sets for E. Then we may select a finite or countable disjoint sequence $\left(U_{i}\right)_{i \in I}$ from \mathcal{U} such that either $\sum_{i \in I} \operatorname{diam} U_{i}=\infty$ or $\mathcal{H}^{1}\left(E \backslash \bigcup_{i \in I} U_{i}\right)=0$. If $\mathcal{H}^{1}(E)<\infty$ then, given $\varepsilon>0$, we may also require that $\mathcal{H}^{1}(E) \leq \sum_{i \in I} \operatorname{diam} U_{i}+\varepsilon$.

We recall next an important result, first proved by Golab [8, Theorem 3.18].
Theorem 4.2 (Golab theorem). If $\left(E_{n}\right)_{n \in \mathbb{N}}$ is a sequence of continua in \mathbb{R}^{2} converging in the Hausdorff metric to a compact connected set E then $\mathcal{H}^{1}(E) \leq$ $\liminf _{n \rightarrow \infty} \mathcal{H}^{1}\left(E_{n}\right)$.

For any 1 -set E in the plane, we have

$$
1 / 2 \leq \limsup _{r \rightarrow 0} \frac{1}{2 r} \mathcal{H}^{1}(E \cap B(x, r)) \leq 1 \quad \mathcal{H}^{1} \text { a.e. on } E .
$$

Corollary 4.3. Let E be 1 -set of \mathbb{R}^{2} and let \mathcal{U} be a Vitali class of closed balls for E. Then for any positive ε we may select a finite disjoint sequence $\left(U_{i}\right)_{i \in I}$ from \mathcal{U} such that $\mathcal{H}^{1}\left(E \backslash \bigcup_{i \in I} U_{i}\right) \leq \varepsilon \sum_{i \in I} \operatorname{diam} U_{i}$ and $\mathcal{H}^{1}(E) \leq(1+\varepsilon) \sum_{i \in I} \operatorname{diam} U_{i}$.

Proof. Let E^{*} be the subset of E defined by

$$
E^{*}=\left\{x \in E: 1 / 2 \leq \limsup _{r \rightarrow 0} \frac{1}{2 r} \mathcal{H}^{1}(E \cap B(x, r)) \leq 1\right\}
$$

We know that $\mathcal{H}^{1}\left(E \backslash E^{*}\right)=0$. The collection of closed balls

$$
B(x, r), \quad x \in E^{*}, \quad r \text { such that } r / 3<\mathcal{H}^{1}(E \cap B(x, r))<4 r / 3
$$

is a Vitali class for E^{*}. We apply the Vitali covering Theorem 4.1 to E^{*} and this Vitali class; let $\left(U_{i}\right)_{i \in I}$ be the resulting collection of balls. Since

$$
\frac{3}{4} \mathcal{H}^{1}\left(E \cap \bigcup_{i \in I} U_{i}\right) \leq \sum_{i \in I} r_{i}<3 \mathcal{H}^{1}\left(E^{*}\right)=3 \mathcal{H}^{1}(E)<\infty
$$

we do not have $\sum_{i \in I} \operatorname{diam} U_{i}=\infty$ and therefore $\mathcal{H}^{1}\left(E \backslash \bigcup_{i \in I} U_{i}\right)=0$. By Theorem 4.1, given ε in $] 0,1 / 3$ [, we may further impose that

$$
\mathcal{H}^{1}(E) \leq \sum_{i \in I} \operatorname{diam} U_{i}+\varepsilon \frac{3}{8} \mathcal{H}^{1}(E)
$$

Let J be a finite subset of I such that

$$
\mathcal{H}^{1}\left(E \backslash \bigcup_{i \in J} U_{i}\right) \leq \varepsilon \frac{3}{4} \mathcal{H}^{1}(E), \quad \sum_{i \in I} \operatorname{diam} U_{i} \leq \sum_{i \in J} \operatorname{diam} U_{i}+\varepsilon \frac{3}{8} \mathcal{H}^{1}(E)
$$

We have then $\mathcal{H}^{1}\left(E \backslash \bigcup_{i \in J} U_{i}\right) \leq \varepsilon \sum_{i \in J} \operatorname{diam} U_{i}$ and $\mathcal{H}^{1}(E) \leq(1+\varepsilon) \sum_{i \in J}$ $\operatorname{diam} U_{i}$.

A set E is said to be regular if

$$
\lim _{r \rightarrow 0} \frac{1}{2 r} \mathcal{H}^{1}(E \cap B(x, r))=1 \quad \mathcal{H}^{1} \text { a.e. on } E
$$

Definition 4.4 (tangent of a set E at a point x). A 1-set E has a tangent at x in the direction θ if $\lim \sup _{r \rightarrow 0} \mathcal{H}^{1}(E \cap B(x, r)) / r>0$ and

$$
\forall \phi \in] 0, \pi / 2] \quad \lim _{r \rightarrow 0} \frac{1}{r} \mathcal{H}^{1}(E \cap U(x, r, \theta, \phi))=0 .
$$

Remark. Clearly the direction θ is defined modulo π. Moreover we obtain an equivalent definition if we impose that the angle ϕ belongs to an arbitrarily small interval $] 0, \eta$], $\eta>0$.

A curve γ is a continuous injection $\gamma:[a, b] \mapsto \mathbb{R}^{2}$ where $[a, b]$ is a non-degenerate closed interval. Sometimes we do not distinguish between γ and its range $\gamma([a, b])$. The length of a curve γ coincides with its \mathcal{H}^{1}-measure, that is

$$
\mathcal{H}^{1}(\gamma)=\mathcal{H}^{1}(\gamma([a, b]))=\sup _{a<t_{1}<\ldots<t_{l}<b} \sum_{j}\left|\gamma\left(t_{j+1}\right)-\gamma\left(t_{j}\right)\right|_{2},
$$

the supremum being taken over all finite subdivisions of $[a, b]$. The curve γ is said to be rectifiable if it has finite length or equivalently if $\mathcal{H}^{1}(\gamma)<\infty$. In this case, we may parametrize γ by arc length, that is, we may suppose that the map γ is defined on the interval $\left[0, \mathcal{H}^{1}(\gamma)\right]$ and is Lipschitz with constant 1: $\forall t_{1}, t_{2} \quad\left|\gamma\left(t_{1}\right)-\gamma\left(t_{2}\right)\right|_{2} \leq\left|t_{1}-t_{2}\right|$.

Any 1-set contained in a countable union of rectifiable curves is a regular set and has a tangent at \mathcal{H}^{1} almost all of its points. We next consider the case of continua. Any continuum E satisfies $\mathcal{H}^{1}(E) \geq \operatorname{diam}(E)$.

Theorem 4.5. A continuum having a finite \mathcal{H}^{1}-measure consists of a countable union of rectifiable curves, together with a set of \mathcal{H}^{1}-measure zero.

Corollary 4.6. Any continuum E such that $\mathcal{H}^{1}(E)<\infty$ is a regular 1 -set and has a tangent at \mathcal{H}^{1} almost all of its points.

5. - Lower semicontinuity of $\mathcal{H}^{1}\left(\partial^{\circ} K\right)$

In this section, we define a special subset $\partial^{\circ} K$ of the boundary of a continuum K and we prove that the map $K \in \mathcal{K}_{c} \mapsto \mathcal{H}^{1}\left(\partial^{\circ} K\right)$ is lower semicontinuous with respect to the Hausdorff metric.

Definition 5.1. Let K be a continuum. Let $\left(O_{i}, i \in I\right)$ be the residual domains of K. We define $\partial^{\circ} K=\bigcup_{i \in I} \partial O_{i}$.

Remark. The sets ∂O_{i} are compact because they are closed subsets of K and they are connected because the residual domains $O_{i}, i \in I$, are simply connected (since K is connected). Hence the set $\partial^{\circ} K$ is a finite or countable union of continua. However it is not necessarily closed; in general, it is a strict subset of ∂K.

Lemma 5.2. For any K_{1}, K_{2} in \mathcal{K}_{c}, we have $\partial^{\circ}\left(K_{1} \cup K_{2}\right) \subset \partial^{\circ} K_{1} \cup \partial^{\circ} K_{2}$.
Proof. Let x belong to $\partial^{\circ}\left(K_{1} \cup K_{2}\right)$. There exists a residual domain O of $K_{1} \cup K_{2}$ such that x belongs to ∂O. Moreover x belongs to $K_{1} \cup K_{2}$. Suppose for instance that x is in K_{1}. Let O_{1} be the residual domain of K_{1} containing O. Then x belongs to ∂O_{1} so that x is in $\partial^{\circ} K_{1}$.

Corollary 5.3. For any K_{1}, K_{2} in \mathcal{K}_{c}, we have

$$
\mathcal{H}^{1}\left(\partial^{\circ}\left(K_{1} \cup K_{2}\right)\right) \leq \mathcal{H}^{1}\left(\partial^{\circ} K_{1}\right)+\mathcal{H}^{1}\left(\partial^{\circ} K_{2}\right) .
$$

Lemma 5.4. Let K belong to \mathcal{K}_{c} and let $\left(K_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{K}_{c} converging to K for the Hausdorff distance. Let O be a residual domain of K in \mathbb{R}^{2}. Let ($O_{i}^{n}, i \in I_{n}$) be the residual domains of K_{n} in \mathbb{R}^{2}. We have

$$
\lim _{n \rightarrow \infty} \inf _{m \in I_{n}} \sup _{x \in \partial O} d\left(x, \partial O_{m}^{n}\right)=0
$$

Proof. Let ε be positive. By Corollary 3.2, there exist a positive δ and a domain U included in O such that $e(U, \bar{O})<\varepsilon$ and $d(U, \partial O) \geq \delta$. Let n_{0} be such that $D\left(K_{n}, K\right)<\delta$ for $n \geq n_{0}$. Let n be larger than n_{0}. Clearly the set K_{n} does not intersect U so that U is included in a residual domain of K_{n} : there exists m in I_{n} such that $U \subset O_{m}^{n}$. Let x belong to ∂O. There exists y in K_{n} such that $d(x, y)<\delta \leq \varepsilon$ and z in U such that $d(x, z)<\varepsilon$. In particular the point z belongs to O_{m}^{n}, therefore the segment $[z y]$ intersects ∂O_{m}^{n}. It follows that $d\left(x, \partial O_{m}^{n}\right)<\varepsilon$. We have thus proved that $\inf _{m \in I_{n}} \sup \left\{d\left(x, \partial O_{m}^{n}\right): x \in\right.$ $\partial O\}<\varepsilon$.

Proposition 5.5. The map $K \in \mathcal{K}_{c} \mapsto \mathcal{H}^{1}\left(\partial^{\circ} K\right)$ is lower semicontinuous with respect to the Hausdorff metric i.e. for any sequence $\left(K_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{K}_{c} such that $D\left(K_{n}, K\right)$ converges to 0 as n goes to ∞, we have $\liminf _{n \rightarrow \infty} \mathcal{H}^{1}\left(\partial^{\circ} K_{n}\right) \geq$ $\mathcal{H}^{1}\left(\partial^{\circ} K\right)$.

Proof. Let $\left(O_{i}, i \in I\right)$ be a finite family of residual domains of K. For each i in I, there exists by Lemma 5.4 a sequence of domains $\left(O_{i}^{n}\right)_{n \in \mathbb{N}}$ such that: for any n in \mathbb{N}, O_{i}^{n} is a residual domain of K_{n}, and $\sup \left\{d\left(x, \partial O_{i}^{n}\right): x \in \partial O_{i}\right\}$ goes to 0 as n goes to ∞. Since we deal with a finite number of sequences of domains $\left(O_{i}^{n}\right)_{n \in \mathbb{N}}, i \in I$, up to the extraction of a subsequence, we may assume that:
$\forall i, j \in I \quad$ either $\quad\left[\forall n \in \mathbb{N} \quad \partial O_{i}^{n} \cap \partial O_{j}^{n}=\varnothing\right] \quad$ or $\quad\left[\forall n \in \mathbb{N} \quad \partial O_{i}^{n} \cap \partial O_{j}^{n} \neq \varnothing\right]$.

We define a relation \mathcal{R} on the set I by: $i \mathcal{R} j \Longleftrightarrow \forall n \in \mathbb{N} \quad \partial O_{i}^{n} \cap \partial O_{j}^{n} \neq \varnothing$. Let \sim be the transitive closure of the relation $\mathcal{R}: i \sim j \Longleftrightarrow \exists i_{1}, \ldots, i_{r} \in$ $I \quad i \mathcal{R} i_{1} \mathcal{R} \cdots \mathcal{R} i_{r} \mathcal{R} j$. The relation \sim is an equivalence relation on I. Let I / \sim be the quotient set of the equivalence classes. By construction, the sets $\left(\bigcup_{i \in \pi} \partial O_{i}^{n}, \pi \in I / \sim\right)$ are pairwise disjoint continua included in $\partial^{\circ} K_{n}$. Therefore

$$
\mathcal{H}^{1}\left(\partial^{\circ} K_{n}\right) \geq \mathcal{H}^{1}\left(\bigcup_{\pi \in I / \sim} \bigcup_{i \in \pi} \partial O_{i}^{n}\right)=\sum_{\pi \in I / \sim} \mathcal{H}^{1}\left(\bigcup_{i \in \pi} \partial O_{i}^{n}\right) .
$$

Since the sequence $\left(K_{n}\right)_{n \in \mathbb{N}}$ converges for the Hausdorff metric, it is contained in a bounded set, and up to the extraction of another subsequence, we may assume that for each π in I / \sim, the sequence $\left(\bigcup_{i \in \pi} \partial O_{i}^{n}\right)_{n \in \mathbb{N}}$ converges to some element F_{π} of \mathcal{K}_{c}. Necessarily the set F_{π} contains $\bigcup_{i \in \pi} \partial O_{i}$. Applying Golab Theorem 4.2, we get for any π in I / \sim

$$
\liminf _{n \rightarrow \infty} \mathcal{H}^{1}\left(\bigcup_{i \in \pi} \partial O_{i}^{n}\right) \geq \mathcal{H}^{1}\left(F_{\pi}\right) \geq \mathcal{H}^{1}\left(\bigcup_{i \in \pi} \partial O_{i}\right)
$$

Coming back to the preceding inequality, we obtain

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \mathcal{H}^{1}\left(\partial^{\circ} K_{n}\right) & \geq \sum_{\pi \in I / \sim} \liminf _{n \rightarrow \infty} \mathcal{H}^{1}\left(\bigcup_{i \in \pi} \partial O_{i}^{n}\right) \geq \sum_{\pi \in I / \sim} \mathcal{H}^{1}\left(\bigcup_{i \in \pi} \partial O_{i}\right) \\
& \geq \mathcal{H}^{1}\left(\bigcup_{\pi \in I / \sim i \in \pi} \bigcup_{i \in \pi} \partial O_{i}\right)=\mathcal{H}^{1}\left(\bigcup_{i \in I} \partial O_{i}\right) .
\end{aligned}
$$

This inequality is valid for any finite family ($O_{i}, i \in I$) of residual domains of K. The monotone continuity of \mathcal{H}^{1} implies that $\liminf _{n \rightarrow \infty} \mathcal{H}^{1}\left(\partial^{\circ} K_{n}\right) \geq$ $\mathcal{H}^{1}\left(\partial^{\circ} K\right)$.

6. - True tangents

In this section, we introduce a stronger definition of tangency.
Definition 6.1 (true tangent of a set E at a point x). A 1 -set E has a true tangent at x in the direction θ if it has a tangent at x in the direction θ (in the sense of Definition 4.4) and in addition

$$
\lim _{r \rightarrow 0} r^{-1} e(E \cap B(x, r), L(x, r, \theta))=0
$$

Remark. A segment has a tangent at its endpoints but not a true tangent.

Proposition 6.2. Let $\gamma:[0,1] \mapsto \mathbb{R}^{2}$ be a rectifiable curve and let t_{0} belong to $] 0,1\left[\right.$. If γ is differentiable at t_{0} and $\gamma^{\prime}\left(t_{0}\right) \neq 0$, then the curve γ has a true tangent at $\gamma\left(t_{0}\right)$.

Proof. Set $x=\gamma\left(t_{0}\right)$. The density of γ at x is at least $1 / 2$ because γ is a continuum. Let θ be the angle such that $L(x, \theta)=x+\gamma^{\prime}\left(t_{0}\right)(\mathbb{R})$. The derivative $\gamma^{\prime}\left(t_{0}\right)$ maps linearly \mathbb{R} onto $L(x, \theta)$; it can be written $\gamma^{\prime}\left(t_{0}\right)(s)=x+\alpha s u(\theta)$ for some $\alpha \neq 0$. Yet, by definition of the derivative,

$$
\forall \varepsilon>0 \quad \exists \eta>0 \quad\left|t-t_{0}\right|<\eta \quad \Rightarrow \quad\left|\gamma(t)-x-\alpha\left(t-t_{0}\right) u(\theta)\right| \leq \varepsilon\left|t-t_{0}\right| .
$$

Let $\varepsilon>0$ and let $\eta>0$ be associated to ε as in the above formula. Let ϕ be the angle such that $\tan \phi=\varepsilon / \alpha$. The preceding inequality implies that for t in $\left[t_{0}-\eta, t_{0}+\eta\right], \gamma(t)$ belongs to the cone $S(x, \pi+\theta-\phi, \pi+\theta+\phi) \cup S(x, \theta-\phi, \theta+$ $\phi)$. Since γ is one to one and continuous, the set $\gamma\left(\left[0, t_{0}-\eta\right] \cup\left[t_{0}+\eta, 1\right]\right)$ is compact and does not contain x. Hence there exists r_{0} such that $0<$ $r_{0}<d\left(x, \gamma\left(\left[0, t_{0}-\eta\right] \cup\left[t_{0}+\eta, 1\right]\right)\right)$. Therefore for r smaller than r_{0}, the set $\gamma \cap B(x, r) \backslash(S(x, \pi+\theta-\phi, \pi+\theta+\phi) \cup S(x, \theta-\phi, \theta+\phi))$ is empty. This proves that γ has a tangent at x in the direction θ in the sense of Definition 4.4. We finally prove that this tangent is a true tangent. Let r be smaller than $\alpha \eta$ and set $r^{\prime}=r(1-\varepsilon / \alpha)$. For s in $\left[-r^{\prime}, r^{\prime}\right]$, we have $\left|\gamma\left(t_{0}+s / \alpha\right)-x-\operatorname{su}(\theta)\right| \leq$ $s \varepsilon / \alpha \leq r^{\prime} \varepsilon / \alpha$ and also $\left|\gamma\left(t_{0}+s / \alpha\right)-x\right| \leq s+r^{\prime} \varepsilon / \alpha \leq r^{\prime}(1+\varepsilon / \alpha) \leq r$, whence $\gamma\left(t_{0}+s / \alpha\right)$ belongs to $B(x, r)$. Consequently,

$$
\begin{aligned}
e(\gamma \cap B(x, r), L(x, r, \theta)) & \leq e\left(\gamma \cap B(x, r), L\left(x, r^{\prime}, \theta\right)\right)+e\left(L\left(x, r^{\prime}, \theta\right), L(x, r, \theta)\right) \\
& \leq r^{\prime} \varepsilon / \alpha+r-r^{\prime} \leq 2 r \varepsilon / \alpha,
\end{aligned}
$$

so that $r^{-1} e(\gamma \cap B(x, r), L(x, r, \theta))$ goes to zero as r goes to zero.
By [8, Theorem 3.8], we know that a rectifiable curve has a tangent at \mathcal{H}^{1} almost all of its points. We have a slightly stronger result.

Corollary 6.3. A rectifiable curve has a true tangent at \mathcal{H}^{1} almost all of its points.

Proof. Let $\gamma:[0,1] \mapsto \mathbb{R}^{2}$ be a Lipschitz parametrization of the curve γ. By the Rademacher Theorem [11, Theorem 7.3], the map γ is differentiable \mathcal{H}^{1} almost everywhere in $[0,1]$; we denote by γ^{\prime} its derivative when it is defined. Since γ is a Lipschitz map,

$$
\mathcal{H}^{1}(\{\gamma(t): t \text { such that } \gamma \text { is not differentiable at } t\})=0 .
$$

By Proposition 6.2, the curve γ has a true tangent at the point $\gamma(t), 0<t<1$, whenever $\gamma^{\prime}(t) \neq 0$. However, by the Sard-type theorem for Lipschitz maps [11, Theorem 7.6], we have $\mathcal{H}^{1}\left(\left\{\gamma(t): \gamma^{\prime}(t)=0\right\}\right)=0$.

Corollary 6.4. A continuum E such that $\mathcal{H}^{1}(E)$ is finite has a true tangent at \mathcal{H}^{1} almost all of its points.

Proof. This result is an easy consequence of Theorem 4.5 and Corollaries 4.6, 6.3.

7. - Structure of $\partial^{\circ} K$

In this section we analyze the local behavior of $\partial^{\circ} K$.

7.1. - Preparatory lemmas

Lemma 7.1. Let U be a domain, let K be a continuum. If $\mathcal{H}^{1}\left(\partial^{\circ} K \cap U\right)=0$ then either $U \subset K$ or $U \subset \mathbb{R}^{2} \backslash K$.

Proof. Suppose that neither $U \subset K$ nor $U \subset \mathbb{R}^{2} \backslash K$. Then there exists a pair (x, y) in $U \cap K \times U \cap\left(\mathbb{R}^{2} \backslash K\right)$. Let O be the residual domain of K containing y. Clearly $\partial O \subset \partial^{\circ} K$ and $\mathcal{H}^{1}(\partial O \cap U) \leq \mathcal{H}^{1}\left(\partial^{\circ} K \cap U\right)$ whence by hypothesis $\mathcal{H}^{1}(\partial O \cap U)=0$. If $\mathcal{H}^{1}(\partial O)=0$ then $\operatorname{diam} O=0$, which is impossible. Therefore $\partial O \cap\left(\mathbb{R}^{2} \backslash U\right) \neq \varnothing$. Let γ be a curve in U joining x to y (U is arcwise connected). This curve intersects ∂O at some point z. Yet ∂O is connected and contains z and some point in $\mathbb{R}^{2} \backslash U$. Thus $\mathcal{H}^{1}(\partial O \cap U) \geq$ $d\left(z, \mathbb{R}^{2} \backslash U\right)>0$, which is absurd.

The next lemma is a technical result which will be used repeatedly in the proofs.

Lemma 7.2. Let K be a continuum and let A be a closed set such that both A and $\mathbb{R}^{2} \backslash A$ are connected. We suppose that K is not included in A and that $\mathcal{H}^{1}\left(\partial^{\circ} K \cap A\right) \leq \delta$. Let V be a domain included in A such that $d\left(V, \mathbb{R}^{2} \backslash A\right)>\delta$. Then either $K \subset \mathbb{R}^{2} \backslash V$ or $V \subset \mathcal{V}(K, \delta)$. If $K \cap V \neq \varnothing$, no residual domain of K intersects both V and $\mathbb{R}^{2} \backslash A$.

Remark. The final conclusion of Lemma 7.2 is still valid for residual domains of K in a domain W.

Proof. Suppose we have not $K \subset \mathbb{R}^{2} \backslash V$ i.e. there exists x in $K \cap V$. Suppose there exists a residual domain O of K intersecting both V and $\mathbb{R}^{2} \backslash A$. Let y belong to $O \cap V$ and let γ be a curve in V joining x to y. This curve intersects ∂O at some point z. Similarly, considering x^{\prime} in $K \cap\left(\mathbb{R}^{2} \backslash A\right)$ and y^{\prime} in $O \cap\left(\mathbb{R}^{2} \backslash A\right)$, we see that ∂O contains some point z^{\prime} of $\mathbb{R}^{2} \backslash A$. Yet ∂O is connected and contains z and z^{\prime}. Thus $\mathcal{H}^{1}(\partial O \cap A) \geq d\left(z, \mathbb{R}^{2} \backslash A\right) \geq$ $d\left(V, \mathbb{R}^{2} \backslash A\right)>\delta$ which is absurd. Suppose now that there exists y in V such that $d(y, K) \geq \delta$. Let O be the residual domain of K containing y. The previous argument shows that $O \cap\left(\mathbb{R}^{2} \backslash A\right)=\varnothing$ whence $\bar{O} \subset A$ and $\mathcal{H}^{1}(\partial O) \leq \mathcal{H}^{1}\left(\partial^{\circ} K \cap A\right) \leq \delta$, implying diam $O \leq \delta$, which is absurd since O contains the interior of the ball $B(y, \delta)$.

Lemma 7.3. For any continuum K, any point x, any angles θ, ϕ and any $r>0$, we have

$$
e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta, \phi), K\right)+e\left(K, U_{-}(x, r, \theta, \phi)\right) \geq r \cos \phi(1+\cos \phi)^{-1}
$$

Proof. Let $x(r)=x+r(1+\cos \phi)^{-1} u(\theta-\pi / 2)$. We have

$$
\begin{aligned}
d\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta, \phi), x(r)\right) & =r \cos \phi(1+\cos \phi)^{-1} \\
& \leq e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta, \phi), U_{-}(x, r, \theta, \phi)\right) \\
& \leq e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta, \phi), K\right)+e\left(K, U_{-}(x, r, \theta, \phi)\right)
\end{aligned}
$$

Lemma 7.4. Let x belong to \mathbb{R}^{2} and let θ be an arbitrary angle. For ϕ in $] 0, \pi / 4[, \varepsilon$ in $] 0,1 / 4\left[\right.$, r positive, the set $\bigcup_{0<s<r} V_{-}(x, s, \varepsilon, \theta, \phi)$ is a domain containing x in its boundary.

Proof. Indeed, for ϕ in $] 0, \pi / 4[, \varepsilon$ in $] 0,1 / 4[, s$ in $] 0, r[$, the point $x+$ $(s / 2) u(\theta-\pi / 2)$ belongs to $V_{-}(x, s, \varepsilon, \theta, \phi)$. Therefore the open segment $] x, x+$ $(r / 2) u(\theta-\pi / 2)\left[\right.$ is in the union $\bigcup_{0<s<r} V_{-}(x, s, \varepsilon, \theta, \phi)$, which implies the claims of the lemma.

7.2. - Classification of the points in $\partial^{\circ} K$

We classify now the points of $\partial^{\circ} K$.
Proposition 7.5. Let K be a continuum. Let x be a point of $\partial^{\circ} K$ such that $\partial^{\circ} K$ has a tangent at x in the direction of θ. One and only one of the two following cases occurs:
either $\lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), K\right)=0, \quad \liminf _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(x, r, \theta)\right) \geq 1 / 6$, or $\quad \lim _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(x, r, \theta)\right)=0, \quad \liminf _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), K\right) \geq 1 / 6$. The same result holds for $U_{+}(x, r, \theta)$.

Proof. Since the point x and the direction θ are fixed for the whole proof, we will omit them in the notation. For instance $U(r, \phi)$ stands for $U(x, r, \theta, \phi)$. By the definition of a tangent, we have

$$
\forall \phi>0 \quad \forall \varepsilon>0 \quad \exists r_{0} \quad \forall r<r_{0} \quad \mathcal{H}^{1}\left(\partial^{\circ} K \cap U(x, r, \theta, \phi)\right) \leq r \varepsilon
$$

We work with ε, ϕ small, r_{0} smaller than $\operatorname{diam} K / 2$ and $r<r_{0}$. More specifically, we require that $\cos \phi(1+\cos \phi)^{-1}>1 / 4$ (for instance $\phi<\pi / 4$) and $\varepsilon<1 / 48$. Let us consider the set $V_{-}(r, 2 \varepsilon, \phi)$. Clearly this set is included in $U_{-}(r, \phi)$. Moreover, for ε small enough, $U_{-}(r, \phi)$ is included in $\mathcal{V}\left(V_{-}(r, 2 \varepsilon, \phi), 3 \varepsilon r\right)$. We apply Lemma 7.2 to the sets $K, U_{-}(r, \phi), V_{-}(r, 2 \varepsilon, \phi)$. Since K is not included in $U_{-}(r, \phi)$ (because $\left.r<\operatorname{diam} K / 2\right), \mathcal{H}^{1}\left(\partial^{\circ} K \cap\right.$ $\left.U_{-}(r, \phi)\right) \leq r \varepsilon$ and $d\left(V_{-}(r, 2 \varepsilon, \phi), \mathbb{R}^{2} \backslash U_{-}(r, \phi)\right)>r \varepsilon$ then either $K \subset$ $\mathbb{R}^{2} \backslash V_{-}(r, 2 \varepsilon, \phi)$ or $V_{-}(r, 2 \varepsilon, \phi) \subset \mathcal{V}(K, r \varepsilon)$. Therefore, for any r smaller than r_{0},

$$
\text { either } \quad K \subset \mathcal{V}\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi), 4 r \varepsilon\right) \quad \text { or } \quad U_{-}(r, \phi) \subset \mathcal{V}(K, 4 r \varepsilon)
$$

Fix some $r<r_{0}$.

- Suppose that $K \subset \mathcal{V}\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi), 4 r \varepsilon\right)$. For $s<r$, we have $K \subset \mathcal{V}\left(\mathbb{R}^{2} \backslash\right.$ $\left.U_{-}(s, \phi), 4 r \varepsilon\right)$ and $e\left(\mathbb{R}^{2} \backslash U_{-}(s, \phi), K\right) \leq 4 r \varepsilon$. Suppose that $U_{-}(s, \phi) \subset$ $\mathcal{V}(K, 4 s \varepsilon)$. Then $e\left(K, U_{-}(s, \phi)\right) \leq 4 s \varepsilon$ and Lemma 7.3 implies that $s \cos \phi(1+\cos \phi)^{-1} \leq 4 r \varepsilon+4 s \varepsilon$. Because of the conditions imposed on ϕ, ε, this inequality implies that $s<r / 2$. Thus for s in $[r / 2, r]$ we have $K \subset \mathcal{V}\left(\mathbb{R}^{2} \backslash U_{-}(s, \phi), 4 s \varepsilon\right)$.
- Suppose that $U_{-}(r, \phi) \subset \mathcal{V}(K, 4 r \varepsilon)$. For $s<r$, we have $U_{-}(s, \phi) \subset$ $\mathcal{V}(K, 4 r \varepsilon)$ and $e\left(K, U_{-}(s, \phi)\right) \leq 4 r \varepsilon$. Suppose that $K \subset \mathcal{V}\left(\mathbb{R}^{2} \backslash U_{-}(s, \phi)\right.$, $4 s \varepsilon)$. Then $e\left(\mathbb{R}^{2} \backslash U_{-}(s, \phi), K\right) \leq 4 s \varepsilon$ and Lemma 7.3 implies that $s \cos \phi(1+\cos \phi)^{-1} \leq 4 r \varepsilon+4 s \varepsilon$. Because of the conditions imposed on ϕ, ε, this inequality implies that $s<r / 2$. Thus for s in $[r / 2, r]$ we have $U_{-}(s, \phi) \subset \mathcal{V}(K, 4 s \varepsilon)$.
Since $\left.\left.] 0, r]=\bigcup_{n \in \mathbb{N}}\right] 2^{-n-1} r, 2^{-n} r\right]$, we see that

$$
\begin{array}{rll}
\text { either } & \forall r<r_{0} & K \subset \mathcal{V}\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi), 4 r \varepsilon\right) \\
\text { or } & \forall r<r_{0} & U_{-}(r, \phi) \subset \mathcal{V}(K, 4 r \varepsilon) .
\end{array}
$$

Because of Lemma 7.3, we have the two exclusive cases:
either $\forall r<r_{0} \quad r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi), K\right) \leq 4 \varepsilon$ and $r^{-1} e\left(K, U_{-}(r, \phi)\right) \geq 1 / 6$
or $\quad \forall r<r_{0} r^{-1} e\left(K, U_{-}(r, \phi)\right) \leq 4 \varepsilon \quad$ and $r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi), K\right) \geq 1 / 6$.
For $\varepsilon<1 / 48$, we have $4 \varepsilon<1 / 6$, so that the case which occurs does not depend on ε. Therefore, for any ϕ in $] 0, \pi / 4[$, we have

$$
\begin{array}{ll}
\text { either } & \lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi), K\right)=0 \quad \text { and } \\
& \liminf _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(r, \phi)\right) \geq 1 / 6 \\
\text { or } \quad & \lim _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(r, \phi)\right)=0 \quad \text { and } \\
& \liminf _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi), K\right) \geq 1 / 6
\end{array}
$$

Moreover, for $0<\phi_{1}<\phi_{2}<\pi / 4$ and $r>0$, we have $U_{-}\left(r, \phi_{2}\right) \subset$ $U_{-}\left(r, \phi_{1}\right)$, so that

$$
\begin{aligned}
e\left(K, U_{-}\left(r, \phi_{2}\right)\right) & \leq e\left(K, U_{-}\left(r, \phi_{1}\right)\right), \\
e\left(\mathbb{R}^{2} \backslash U_{-}\left(r, \phi_{2}\right), K\right) & \leq e\left(\mathbb{R}^{2} \backslash U_{-}\left(r, \phi_{1}\right), K\right) .
\end{aligned}
$$

Consequently if one of the two cases occurs for some ϕ in $] 0, \pi / 4[$, it occurs for all ϕ in $] 0, \pi / 4[$. Therefore

$$
\begin{array}{ll}
\text { either } & \forall \phi \in] 0, \pi / 4\left[\lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi), K\right)=0,\right. \\
& \liminf _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(r, \phi)\right) \geq 1 / 6 \\
\text { or } \quad & \forall \phi \in] 0, \pi / 4\left[\lim _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(r, \phi)\right)=0,\right. \\
& \liminf _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi), K\right) \geq 1 / 6
\end{array}
$$

Finally, for any $\phi>0$, we have

$$
e\left(U_{-}(x, r, \theta, \phi), U_{-}(x, r, \theta)\right)=e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), \mathbb{R}^{2} \backslash U_{-}(x, r, \theta, \phi)\right) \leq r \phi
$$

Suppose for instance that the first case occurs. Then for any ϕ in $] 0, \pi / 4[$, we have

$$
\liminf _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(x, r, \theta)\right) \geq \liminf _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(x, r, \theta, \phi)\right) \geq 1 / 6
$$

and also

$$
\underset{r \rightarrow 0}{\limsup } r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), K\right) \leq \phi
$$

Letting ϕ go to zero, we get

$$
\lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), K\right)=0
$$

The second case can be handled analogously.
Proposition 7.6. Let K be a continuum. Let x be a point of $\partial^{\circ} K$ such that $\partial^{\circ} K$ has a tangent at x in the direction of θ. Then

$$
\lim _{r \rightarrow 0} \min \left\{r^{-1} e(K, H L(x, r, \theta)), r^{-1} e(K, H L(x, r, \pi+\theta))\right\}=0
$$

Proof. If $r^{-1} e\left(K, U_{-}(x, r, \theta)\right)$ or $r^{-1} e\left(K, U_{+}(x, r, \theta)\right)$ converges to 0 as r goes to 0 , then clearly so does $r^{-1} e(K, L(x, r, \theta))$. According to Proposition 7.5 , the only remaining possibility is that

$$
\lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), K\right)=0 \text { and } \lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{+}(x, r, \theta), K\right)=0
$$

By the definition of $\partial^{\circ} K$, the point x belongs to the boundary ∂O of some residual domain O of K. Yet ∂O is a continuum. Let r be smaller than diam $O / 2$ and let $F(r)$ be the connected component of $\partial O \cap B(x, r)$ containing x. Because of the particular shapes of the sets $U_{-}(x, r, \theta), U_{+}(x, r, \theta)$, we have for any positive s

$$
\mathcal{V}\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), s\right) \cap \mathcal{V}\left(\mathbb{R}^{2} \backslash U_{+}(x, r, \theta), s\right)=\mathcal{V}\left(L(x, r, \theta) \cup\left(\mathbb{R}^{2} \backslash B(x, r)\right), s\right)
$$

whence

$$
\begin{aligned}
& e\left(L(x, r, \theta) \cup\left(\mathbb{R}^{2} \backslash B(x, r)\right), K\right) \\
& \quad \leq \max \left\{e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), K\right), e\left(\mathbb{R}^{2} \backslash U_{+}(x, r, \theta), K\right)\right\}
\end{aligned}
$$

and

$$
\lim _{r \rightarrow 0} r^{-1} e\left(L(x, r, \theta) \cup\left(\mathbb{R}^{2} \backslash B(x, r)\right), K\right)=0
$$

Let ε be positive. There exists r_{0} such that $e\left(L(x, r, \theta) \cup\left(\mathbb{R}^{2} \backslash B(x, r)\right), K\right)<r \varepsilon$ for $r<r_{0}$. Then for $r<r_{0}$ the set $\mathcal{V}\left(L(x, r, \theta) \cup\left(\mathbb{R}^{2} \backslash B(x, r)\right), r \varepsilon\right) \cap B(x, r(1-$ $2 \varepsilon)$) is included in $\mathcal{V}(L(x, r, \theta), r \varepsilon)$ whence $F(r(1-2 \varepsilon)) \subset \mathcal{V}(L(x, r, \theta), r \varepsilon)$. Moreover $F(r(1-2 \varepsilon))$ intersects the sphere $\partial B(x, r(1-2 \varepsilon))$. Let ϕ be the angle in $] 0, \pi / 2[$ such that $\sin \phi=2 \varepsilon /(1-2 \varepsilon)$. With these choices, the set $\mathcal{V}(L(x, r, \theta), r \varepsilon) \cap \partial B(x, r(1-2 \varepsilon))$ is included in $S(x, r(1-2 \varepsilon), \pi+\theta-\phi, \pi+$ $\theta+\phi) \cup S(x, r(1-2 \varepsilon), \theta-\phi, \theta+\phi)$. Suppose for instance that

$$
F(r(1-2 \varepsilon)) \cap S(x, r(1-2 \varepsilon), \theta-\phi, \theta+\phi) \neq \varnothing
$$

Let y be a point of the above set. The continuum $F(r(1-2 \varepsilon))$ contains x and y and is included in $\mathcal{V}(L(x, r, \theta), r \varepsilon)$. Yet for any s positive smaller than $r(1-4 \varepsilon)$, the segment $[x+\operatorname{su}(\theta)-r \varepsilon v(\theta), x+\operatorname{su}(\theta)+r \varepsilon v(\theta)]$ disconnects x from y inside $\mathcal{V}(L(x, r, \theta), r \varepsilon)$. Therefore $F(r(1-2 \varepsilon))$ intersects this segment and $e(F(r(1-$ $2 \varepsilon)), H L(x, r(1-4 \varepsilon), \theta)) \leq r \varepsilon$. Since $e(H L(x, r(1-4 \varepsilon), \theta), H L(x, r, \theta)) \leq$ $4 r \varepsilon$, it follows that $e(F(r), H L(x, r, \theta)) \leq 5 r \varepsilon$. We handle similarly the case where $F(r(1-2 \varepsilon)) \cap S(x, r(1-2 \varepsilon), \pi+\theta-\phi, \pi+\theta+\phi) \neq \varnothing$ to get that for $r<r_{0}$, either $e(F(r), H L(x, r, \theta)) \leq 5 r \varepsilon$ or $e(F(r), H L(x, r, \pi+\theta)) \leq 5 r \varepsilon$.

Propositions 7.5, 7.6 allow to introduce the following classification of tangent points.

Definition 7.7 (classification of tangent points). Let K be a continuum. Let x be a point of $\partial^{\circ} K$ such that $\partial^{\circ} K$ has a tangent at x in the direction of θ. The point x is of exactly one of the following types.

- type O: $\quad \lim _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(x, r, \theta)\right)=0, \quad \lim _{r \rightarrow 0} r^{-1} e\left(K, U_{+}(x, r, \theta)\right)=0$.
- type $1 / 2: \lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), K\right)=0, \quad \lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{+}(x, r, \theta), K\right)=0$,

$$
\liminf _{r \rightarrow 0} r^{-1} e(K, L(x, r, \theta))>0
$$

- type I: either $\lim _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(x, r, \theta)\right)=0, \lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{+}(x, r, \theta), K\right)=0$

$$
\text { or } \lim _{r \rightarrow 0} r^{-1} e\left(K, U_{+}(x, r, \theta)\right)=0, \quad \lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), K\right)=0 .
$$

- type II: $\quad \lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), K\right)=0, \quad \lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{+}(x, r, \theta), K\right)=0$,

$$
\lim _{r \rightarrow 0} r^{-1} e(K, L(x, r, \theta))=0 .
$$

We denote respectively by $\partial_{O} K, \partial_{1 / 2} K, \partial_{I} K, \partial_{I I} K$ the points of $\partial^{\circ} K$ where there is a tangent and which are respectively of type O, type $1 / 2$, type I, type II.

REMARK. Because the maps $(x, r, \theta) \in \mathbb{R}^{2} \times \mathbb{R}^{+} \times \mathbb{R} \mapsto U_{-}(x, r, \theta), L(x, r, \theta)$, $U_{+}(x, r, \theta)$ are continuous with respect to the Hausdorff distance D, for any continuum K, the sets $\partial_{O} K, \partial_{1 / 2} K, \partial_{I} K, \partial_{I I} K$ are all \mathcal{H}^{1}-measurable.

type O

type $1 / 2$

type I

type II

Fig. 6.

Notation 7.8. Let K be a continuum. Let x be a point of $\partial^{\circ} K$ such that $\partial^{\circ} K$ has a tangent at x. From now onwards, we denote by $\theta(x)$ the direction of the tangent to $\partial^{\circ} K$ at x. As a line direction, this angle $\theta(x)$ is defined modulo π. But whenever x is of type I , we choose $\theta(x)$ modulo 2π so that

$$
\lim _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(x, r, \theta(x))\right)=0, \quad \lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{+}(x, r, \theta(x)), K\right)=0
$$

Proposition 7.9. Let K be a continuum. Let x be a point of $\partial^{\circ} K$ such that $\partial^{\circ} K$ has a tangent at x. We have the following characterization of the type of x (recall that $K(x, r)=K \cap B(x, r))$:

- x is of type $O \Longleftrightarrow \lim _{r \rightarrow 0} r^{-1} D(K(x, r), B(x, r))=0$.
- x is of type $1 / 2 \Longleftrightarrow \liminf _{r \rightarrow 0} r^{-1} e(K(x, r), L(x, r, \theta(x)))>0$.
$\bullet x$ is of type $I \Longleftrightarrow \lim _{r \rightarrow 0} r^{-1} D\left(K(x, r), U_{-}(x, r, \theta(x))\right)=0$.
- x is of type $I I \Longleftrightarrow \lim _{r \rightarrow 0} r^{-1} D(K(x, r), L(x, r, \theta(x)))=0$.

Proof. It is clear that the four conditions on the right are mutually exclusive. Hence it is enough to check the implications from the left to the right for each type. From Definition 7.7, the cases of the points of type O and type $1 / 2$ are immediate. Let us consider a point x of type I. Let $\theta=\theta(x)$ be the direction of the tangent at x. By Definition 7.7 and Notation 7.8, we have

$$
\lim _{r \rightarrow 0} r^{-1} e\left(K, U_{-}(x, r, \theta(x))\right)=0, \quad \lim _{r \rightarrow 0} r^{-1} e\left(\mathbb{R}^{2} \backslash U_{+}(x, r, \theta(x)), K\right)=0
$$

Thus for any positive ε, there exists $r_{0}>0$ such that for $r<r_{0}, e(K$, $\left.U_{-}(x, r, \theta)\right) \leq r \varepsilon, e\left(\mathbb{R}^{2} \backslash U_{+}(x, r, \theta), K\right) \leq r \varepsilon$. We have then for $r<r_{0}$

$$
\begin{aligned}
e\left(K(x, r), U_{-}(x, r, \theta)\right) \leq & e\left(K(x, r), U_{-}(x, r(1-2 \varepsilon), \theta)\right) \\
& +e\left(U_{-}(x, r(1-2 \varepsilon), \theta), U_{-}(x, r, \theta)\right) \\
\leq & r(1-2 \varepsilon) \varepsilon+2 r \varepsilon \leq 3 r \varepsilon
\end{aligned}
$$

Therefore $r^{-1} e\left(K(x, r), U_{-}(x, r, \theta(x))\right)$ goes to 0 as r goes to 0 .

Similarly, for ε in $] 0,1 / 2\left[\right.$ and for $r<r_{1}=r_{0} /(1+2 \varepsilon)$,

$$
e\left(U_{-}(x, r, \theta), K(x, r)\right) \leq 2 \varepsilon r+e\left(U_{-}(x, r(1+2 \varepsilon), \theta), K(x, r)\right)
$$

Because $r(1+2 \varepsilon)<r_{0}$, we have $e\left(\mathbb{R}^{2} \backslash U_{+}(x, r(1+2 \varepsilon), \theta), K\right) \leq r(1+2 \varepsilon) \varepsilon$. Moreover $d(K(x, r), \partial B(x, r(1+2 \varepsilon))) \geq 2 \varepsilon r>r(1+2 \varepsilon) \varepsilon$. Therefore

$$
\begin{aligned}
e\left(U_{-}(x, r(1+2 \varepsilon), \theta), K(x, r)\right) & \leq e\left(L(x, r(1+2 \varepsilon), \theta), K(x, r) \cap U_{+}(x, r, \theta)\right) \\
& =e\left(\mathbb{R}^{2} \backslash U_{+}(x, r(1+2 \varepsilon), \theta), K(x, r)\right) \\
& \leq r(1+2 \varepsilon) \varepsilon
\end{aligned}
$$

and we obtain $e\left(U_{-}(x, r, \theta), K(x, r)\right) \leq 2 r \varepsilon+r(1+2 \varepsilon) \varepsilon$. Thus $r^{-1} e\left(U_{-}(x, r, \theta(x))\right.$, $K(x, r))$ goes to 0 as r goes to 0 .

Let us consider finally a point x of type II. Let $\theta=\theta(x)$ be the direction of the tangent at x. By Definition 7.7, the three quantities $r^{-1} e\left(\mathbb{R}^{2} \backslash U_{-}(x, r, \theta), K\right)$, $r^{-1} e\left(\mathbb{R}^{2} \backslash U_{+}(x, r, \theta), K\right), r^{-1} e(K, L(x, r, \theta))$ go to 0 as r goes to 0 . Thus for any positive ε, there exists $r_{0}>0$ such that for $r<r_{0}$, the three of them are smaller than ε. For $r<r_{0}$ we have then

$$
\begin{aligned}
e(K(x, r), L(x, r, \theta)) \leq & e(K(x, r), L(x, r(1-2 \varepsilon), \theta)) \\
& +e(L(x, r(1-2 \varepsilon), \theta), L(x, r, \theta)) \\
\leq & r(1-2 \varepsilon) \varepsilon+2 r \varepsilon
\end{aligned}
$$

Hence $r^{-1} e(K(x, r), L(x, r, \theta))$ goes to 0 when r goes to 0 .
Similarly, for ε in]0, $1 / 2\left[\right.$ and for $r<r_{1}=r_{0} /(1+2 \varepsilon)$,

$$
e(L(x, r, \theta), K(x, r)) \leq 2 \varepsilon r+e(L(x, r(1+2 \varepsilon), \theta), K(x, r))
$$

Because $r(1+2 \varepsilon)<r_{0}$ both $e\left(\mathbb{R}^{2} \backslash U_{-}(x, r(1+2 \varepsilon), \theta), K\right)$ and $e\left(\mathbb{R}^{2} \backslash U_{+}(x, r(1+\right.$ $2 \varepsilon), \theta), K$) are smaller than $r(1+2 \varepsilon) \varepsilon$ so that

$$
e(\partial B(x, r(1+2 \varepsilon)) \cup L(x, r(1+2 \varepsilon), \theta), K(x, r)) \leq r(1+2 \varepsilon) \varepsilon
$$

Moreover $d(K(x, r), \partial B(x, r(1+2 \varepsilon))) \geq 2 \varepsilon r>r(1+2 \varepsilon) \varepsilon$. Therefore

$$
e(L(x, r(1+2 \varepsilon), \theta), K(x, r)) \leq r(1+2 \varepsilon) \varepsilon
$$

and we obtain $e(L(x, r, \theta), K(x, r)) \leq 2 r \varepsilon+r(1+2 \varepsilon) \varepsilon$. Thus $r^{-1} e(L(x, r, \theta(x))$, $K(x, r))$ goes to 0 as r goes to 0 .

7.3. - Local structure of $\partial^{\circ} K$

We next analyze successively the local structure of $\partial^{\circ} K$ near each type of tangent point.

Lemma 7.10 (type 0). Let K be a continuum. Let x be a point of $\partial^{\circ} K$ such that $\partial^{\circ} K$ has a tangent at x. Suppose x is of type O. Then there exists a positive r such that for any domain U containing x and included in $B(x, r)$, there does not exist a residual domain O of K in U such that ∂O has a true tangent at x.

Proof. The point x and the direction $\theta(x)$ being fixed for the whole proof, we will omit them in the notation as usual. Since x if of type O, we have:

$$
\begin{gathered}
\forall \phi \in] 0, \pi / 4[\quad \forall \varepsilon \in] 0,1 / 8\left[\quad \exists r_{0} \quad \forall r<r_{0}\right. \\
\mathcal{H}^{1}\left(\partial^{\circ} K \cap U(r, \phi)\right) \leq r \varepsilon, \quad e(K, U(r, \phi)) \leq r \varepsilon .
\end{gathered}
$$

We impose in addition that $r_{0}<\operatorname{diam} K / 2$. As in the proof of Proposition 7.5, we consider the set $V_{-}(r, 2 \varepsilon, \phi)$ for $r<r_{0}$. We check that the hypothesis of Lemma 7.2 are satisfied by the sets $K, U_{-}(r, \phi), V_{-}(r, 2 \varepsilon, \phi)$. The set K is not included in $U_{-}(r, \phi), \mathcal{H}^{1}\left(\partial^{\circ} K \cap U_{-}(r, \phi)\right) \leq r \varepsilon$ and $d\left(V_{-}(r, 2 \varepsilon, \phi), \mathbb{R}^{2} \backslash\right.$ $\left.U_{-}(r, \phi)\right)>r \varepsilon$. If $K \cap V_{-}(r, 2 \varepsilon, \phi)=\varnothing$ then

$$
e\left(\mathbb{R}^{2} \backslash V_{-}(r, 2 \varepsilon, \phi), V_{-}(r, 2 \varepsilon, \phi)\right) \leq e\left(K, U_{-}(r, \phi)\right) \leq e(K, U(r, \phi)) \leq r \varepsilon
$$

A direct computation gives $e\left(\mathbb{R}^{2} \backslash V_{-}(r, 2 \varepsilon, \phi), V_{-}(r, 2 \varepsilon, \phi)\right)=r(1-4 \varepsilon) \cos \phi(1+$ $\cos \phi)^{-1}$. Hence the preceding inequality cannot occur when $0<\phi<\pi / 4$, $0<\varepsilon<1 / 8$ so that we have $K \cap V_{-}(r, 2 \varepsilon, \phi) \neq \varnothing$. The last part of Lemma 7.2 then implies that no residual domain of K intersects both $V_{-}(r, 2 \varepsilon, \phi)$ and $\mathbb{R}^{2} \backslash U_{-}(r, \phi)$. The same result holds for the sets $V_{+}(r, 2 \varepsilon, \phi)$ and $\mathbb{R}^{2} \backslash U_{+}(r, \phi)$.

Let us consider the set F_{0} defined by

$$
F_{0}=\bigcup_{0<r<r_{0}} V_{-}(r, 2 \varepsilon, \phi) \cup\{x\} \cup \bigcup_{0<r<r_{0}} V_{+}(r, 2 \varepsilon, \phi) .
$$

This set is connected: Lemma 7.4 shows that it is the union of two connected sets having a common point. Moreover the set F_{0} contains the segment $[x-$ $\left.\left(r_{0} / 2\right) v(\theta), x+\left(r_{0} / 2\right) v(\theta)\right]$ which disconnects the interior of the angular sectors $S(x, \pi+\theta-\phi, \pi+\theta+\phi), S(x, \theta-\phi, \theta+\phi)$ inside $B\left(x, r_{0} / 2\right)$.

Let U be a domain containing x and included in $B\left(x, r_{0} / 2\right)$. Let r_{1} positive be such that $B\left(x, r_{1}\right) \subset U$. Suppose there exists a residual domain O of K in U such that ∂O has a true tangent at x. By definition, we have then $\lim _{s \rightarrow 0} s^{-1} e(\partial O \cap B(x, s), L(x, s, \theta))=0$. Hence there exists s_{0} smaller than $r_{0} / 2$ and r_{1} such that $e(\partial O \cap B(x, s), L(x, s, \theta))<(s / 4) \sin \phi$ for $s<s_{0}$. Let s be smaller than s_{0}. We have then

$$
\begin{aligned}
& d(x \pm(s / 2) u(\theta), \partial O)<(s / 4) \sin \phi \\
& \quad<d\left(x \pm(s / 2) u(\theta), \mathbb{R}^{2} \backslash(S(x, \pi+\theta-\phi, \pi+\theta+\phi) \cup S(x, \theta-\phi, \theta+\phi))\right)
\end{aligned}
$$

so that O intersects both $S(x, \pi+\theta-\phi, \pi+\theta+\phi)$ and $S(x, \theta-\phi, \theta+\phi)$ inside $B(x, s)$. Thus the domain O intersects $\mathbb{R}^{2} \backslash\left(U_{-}(s, \phi) \cup U_{+}(s, \phi)\right)$ for $s>0$. By Lemma 7.2, this implies that O does not intersect $V_{-}(s, 2 \varepsilon, \phi)$ nor $V_{+}(s, 2 \varepsilon, \phi)$ for $0<s<r_{0}$. Since x does not belong to O, it follows that O does not intersect F_{0}, which is absurd.

Lemma 7.11 (type $1 / 2$). Let K be a continuum, let O be a residual domain of K. Let x be a point of ∂O where $\partial^{\circ} K$ has a tangent. If ∂O has a true tangent at x then x is not of type $1 / 2$.

Proof. Since ∂O has a true tangent in the direction $\theta=\theta(x)$ (the direction of the tangent is the same for ∂O and $\left.\partial^{\circ} K\right)$, then $r^{-1} e(\partial O \cap B(x, r), L(x, r, \theta))$ goes to 0 when r goes to 0 . But ∂O is a subset of K, whence $r^{-1} e(K(x, r)$, $L(x, r, \theta))$ goes to 0 as well when r goes to 0 .

Lemma 7.12 (type I). Let K be a continuum and let x belong to $\partial_{I} K$. For any positive ε there exists a positive $r(x, \varepsilon)$ such that
$\forall r<r(x, \varepsilon) \forall K^{\prime} \in \mathcal{K}_{c} D\left(K, K^{\prime}\right) \leq r \varepsilon \Rightarrow D\left(K^{\prime}(x, r), U_{-}(x, r, \theta(x))\right) \leq 4 r \varepsilon$.
Proof. By Proposition 7.9, since x is a point of type I , then $r^{-1} D(K(x, r)$, $\left.U_{-}(x, r, \theta(x))\right)$ goes to 0 when r goes to 0 . Let ε be positive and smaller than one. There exists a positive r_{0} such that $D\left(K(x, r), U_{-}(x, r, \theta(x))\right) \leq r \varepsilon$ for $r<r_{0}$. We set $r_{1}=r_{0}(1-\varepsilon)$. Let r be smaller than r_{1} and let K^{\prime} be a compact connected set such that $D\left(K, K^{\prime}\right) \leq r \varepsilon$. We have then $e\left(K^{\prime}(x, r), K(x, r(1-\right.$ $\varepsilon))) \leq r \varepsilon$ so that

$$
\begin{aligned}
e\left(K^{\prime}(x, r), U_{-}(x, r, \theta(x))\right) \leq & e\left(K^{\prime}(x, r), K(x, r(1-\varepsilon))\right) \\
& +e\left(K(x, r(1-\varepsilon)), U_{-}(x, r(1-\varepsilon), \theta(x))\right) \\
& +e\left(U_{-}(x, r(1-\varepsilon), \theta(x)), U_{-}(x, r, \theta(x))\right) \\
\leq & r \varepsilon+r(1-\varepsilon) \varepsilon+r \varepsilon \leq 3 r \varepsilon
\end{aligned}
$$

Since $r(1+\varepsilon) \leq r_{0}\left(1-\varepsilon^{2}\right)<r_{0}$, we have $e\left(U_{-}(x, r(1+\varepsilon), \theta(x)), K(x, r(1+\right.$ $\varepsilon))) \leq r(1+\varepsilon) \varepsilon$ so that

$$
\begin{aligned}
e\left(U_{-}(x, r, \theta(x)), K^{\prime}(x, r)\right) \leq & e\left(U_{-}(x, r, \theta(x)), U_{-}(x, r(1+\varepsilon), \theta(x))\right) \\
& +e\left(U_{-}(x, r(1+\varepsilon), \theta(x)), K(x, r(1+\varepsilon))\right) \\
& +e\left(K(x, r(1+\varepsilon)), K^{\prime}(x, r)\right) \\
\leq & r \varepsilon+r \varepsilon(1+\varepsilon)+r \varepsilon \leq 4 r \varepsilon
\end{aligned}
$$

Thus $r(x, \varepsilon)=r_{1}$ answers the problem.
Lemma 7.13 (type II). Let K be a continuum and let x belong to $\partial_{I I} K$. For any positive ε there exists a positive $r(x, \varepsilon)$ such that

$$
\forall r<r(x, \varepsilon) \forall K^{\prime} \in \mathcal{K}_{c} D\left(K, K^{\prime}\right) \leq r \varepsilon \Rightarrow D\left(K^{\prime}(x, r), L(x, r, \theta(x))\right) \leq 4 r \varepsilon .
$$

Proof. The proof is similar to the proof of Lemma 7.12.

Lemma 7.14. For any compact sets K_{1}, K_{2}, the sets $\partial_{I I}\left(K_{1} \cup K_{2}\right) \cap\left(\partial_{I} K_{1} \cup \partial_{I} K_{2}\right)$ and $\partial_{I}\left(K_{1} \cup K_{2}\right) \cap \partial_{I I} K_{1} \cap \partial_{I I} K_{2}$ are empty.

Proof. By $K_{1} \cup K_{2}(x, r)$ we denote the set $\left(K_{1} \cup K_{2}\right)(x, r)$. For any point x, any positive r and any angles θ_{1}, θ, we have

$$
\begin{aligned}
r & \leq e\left(L(x, r, \theta), U_{-}\left(x, r, \theta_{1}\right)\right) \\
& \leq e\left(L(x, r, \theta), K_{1} \cup K_{2}(x, r)\right)+e\left(K_{1}(x, r), U_{-}\left(x, r, \theta_{1}\right)\right)
\end{aligned}
$$

so that $r^{-1} e\left(L(x, r, \theta), K_{1} \cup K_{2}(x, r)\right)$ and $r^{-1} e\left(K_{1}(x, r), U_{-}\left(x, r, \theta_{1}\right)\right)$ cannot go simultaneously to 0 when r goes to 0 . Therefore $\partial_{I I}\left(K_{1} \cup K_{2}\right) \cap \partial_{I} K_{1}$ is empty. Analogously, for any point x, any positive r and any angles $\theta_{1}, \theta_{2}, \theta$, we have

$$
\begin{aligned}
r / \sqrt{2} \leq & e\left(L\left(x, r, \theta_{1}\right) \cup L\left(x, r, \theta_{2}\right), U_{-}(x, r, \theta)\right) \\
\leq & \max \left\{e\left(L\left(x, r, \theta_{1}\right), K_{1}(x, r)\right), e\left(L\left(x, r, \theta_{2}\right), K_{2}(x, r)\right)\right\} \\
& +e\left(K_{1} \cup K_{2}(x, r), U_{-}(x, r, \theta)\right)
\end{aligned}
$$

so that the three quantities

$$
\begin{gathered}
r^{-1} e\left(L\left(x, r, \theta_{1}\right), K_{1}(x, r)\right), r^{-1} e\left(L\left(x, r, \theta_{2}\right), K_{2}(x, r)\right), \\
r^{-1} e\left(K_{1} \cup K_{2}(x, r), U_{-}(x, r, \theta)\right)
\end{gathered}
$$

cannot go simultaneously to 0 when r goes to 0 . Therefore $\partial_{I}\left(K_{1} \cup K_{2}\right) \cap$ $\partial_{I I} K_{1} \cap \partial_{I I} K_{2}$ is empty.

8. - The continua K with $\mathcal{H}^{1}\left(\partial^{\circ} K\right)$ finite

The goal of this section is to show that if K is a continuum with $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$, then \mathcal{H}^{1} almost all points of $\partial^{\circ} K$ have true tangents and are of type I or II.

Notation 8.1. If O is a domain, we denote by $\partial^{*} O$ the set of the points of ∂O where ∂O has a true tangent.

Definition 8.2. Let K be a continuum. We set

$$
\partial^{*} K=\left(\partial_{O} K \cup \partial_{1 / 2} K \cup \partial_{I} K \cup \partial_{I I} K\right) \backslash \bigcup_{U} \bigcup_{O}\left(\partial O \backslash\left(\partial^{*} O \cup \partial U\right)\right)
$$

where the first union is over all the domains U of the plane and the second union is over all domains O in $\mathcal{C}(K, U)$. We set also $\partial_{I}^{*} K=\partial^{*} K \cap \partial_{I} K$ and $\partial_{I I}^{*} K=\partial^{*} K \cap \partial_{I I} K$.

Lemma 8.3. Let O be a domain such that $\mathcal{H}^{1}(\partial O)$ is finite. Let x belong to \mathbb{R}^{2} and let s, r be two positive real numbers with $s<r$. There is at most a finite number of connected components of $O \cap \stackrel{\circ}{B}(x, r)$ which intersect $B(x, s)$.

Proof. Let $n \geq 2$ and suppose that O_{1}, \ldots, O_{n} are connected components of $O \cap \stackrel{\circ}{B}(x, r)$ intersecting $B(x, s)$. Let t be such that $s<t<r$. For each i in $\{1 \cdots n\}$, the domain O_{i} intersects both spheres $\partial B(x, s)$ and $\partial B(x, t)$ (otherwise O_{i} would not be connected). Since O_{i} is arcwise connected, there exists a simple arc $\gamma_{i}:[0,1] \mapsto O_{i}$ such that: $\gamma_{i}(0) \in \partial B(x, t), \gamma_{i}(1) \in$ $\partial B(x, s)$ and $\gamma_{i}(u) \in B(x, t) \backslash B(x, s)$ for u in $] 0$, 1 (we first consider an arc in O_{i} joining $\partial B(x, t)$ to $\partial B(x, s)$ and we look at the portion between the last visit to $\partial B(x, t)$ and the hitting time of $\partial B(x, s))$. Clearly the arcs $\gamma_{i}, 1 \leq i \leq n$, are pairwise disjoint. We may order the sequence $\gamma_{1}, \ldots, \gamma_{n}$ so that when we move counterclockwise on $\partial B(x, t)$ we observe successively $\gamma_{1}(0), \ldots, \gamma_{n}(0)$. Necessarily, if we move counterclockwise on $\partial B(x, s)$ we observe $\gamma_{1}(1), \ldots, \gamma_{n}(1)$ in the same order (otherwise two arcs would intersect). These n arcs separate the annulus $B(x, t) \backslash \dot{B}(x, s)$ into n domains A_{1}, \ldots, A_{n}, where A_{1} is delimited by $\left(\gamma_{1}, \gamma_{2}\right), \ldots, A_{n-1}$ by $\left(\gamma_{n-1}, \gamma_{n}\right), A_{n}$ by $\left(\gamma_{n}, \gamma_{n+1}\right)$ (we make the convention that $\gamma_{n+1}=\gamma_{1}$). Let ψ be the map from \mathbb{R}^{2} to \mathbb{R}^{+} defined by $\psi(y)=|y-x|_{2}$. Clearly ψ is Lipschitz with constant 1. Applying [11, Theorem 7.7, p. 104], we have

$$
\mathcal{H}^{1}(\partial O) \geq \mathcal{H}^{1}(\partial O \cap(B(x, t) \backslash \stackrel{\circ}{B}(x, s))) \geq \int_{s}^{t} \operatorname{card}\left(\partial O \cap \psi^{-1}(u)\right) d u .
$$

Let u belong to $] s, t\left[\right.$. Each arc $\gamma_{i}, 1 \leq i \leq n$, intersects the sphere $\partial B(x, u)$. For i in $\{1 \cdots n\}$, let $\overline{x_{i} x_{i+1}}$ be a subarc of $\partial B(x, u)$ such that $x_{i} \in \gamma_{i}, x_{i+1} \in \gamma_{i+1}$ and the $\operatorname{arcs} \gamma_{j}, j \in\{1 \cdots n+1\} \backslash\{i, i+1\}$, do not intersect $\overline{x_{i} x_{i+1}} \backslash\left\{x_{i}, x_{i+1}\right\}$. Necessarily the arc $\overline{x_{i} x_{i+1}} \backslash\left\{x_{i}, x_{i+1}\right\}$ meets ∂O. Since there are n such subarcs with pairwise disjoint interiors, we see that $\partial O \cap \psi^{-1}(u)$ contains at least n points. Therefore $n(t-s) \leq \mathcal{H}^{1}(\partial O)$ and the number n of connected components of $O \cap \stackrel{\circ}{B}(x, r)$ is bounded.

Lemma 8.4. Let O be a domain such that $\mathcal{H}^{1}(\partial O)$ is finite. Let x belong to ∂O. For any domain U containing x, there exists a connected component O^{\prime} of $O \cap U$ such that x belongs to ∂O^{\prime}.

Proof. Let s, r be such that $0<s<r$ and $B(x, r) \subset U$. By Lemma 8.3, there is at most a finite number of connected components of $O \cap \stackrel{\circ}{B}(x, r)$ intersecting $B(x, s)$, say O_{1}, \ldots, O_{n}. We have then $\partial O \cap B(x, s)=\left(\partial O_{1} \cup\right.$ $\left.\cdots \cup \partial O_{n}\right) \cap B(x, s)$ so that there exists i in $\{1 \cdots n\}$ such that x belongs to ∂O_{i}. Let O^{\prime} be the connected component of $O \cap U$ containing O_{i}. Then $\partial O_{i} \backslash \partial B(x, r) \subset \partial O^{\prime}$ so that x is in ∂O^{\prime}.

Corollary 8.5. Let K be a continuum such that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$. Let x be a point of $\partial^{\circ} K$. Let U be a domain containing x. There exists a residual domain O of K in U such that x belong to ∂O.

Lemma 8.6. Let K be a continuum such that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$. Let x be a point of $\partial^{\circ} K$ where $\partial^{\circ} K$ has a tangent. Let U be a domain containing x and suppose that there exists a residual domain O of K in U such that x belongs to ∂O and ∂O has not a true tangent at x. Then for any domain U^{\prime} containing x and included in U,
there exists a residual domain O^{\prime} of K in U^{\prime} such that O^{\prime} is included in O, x belongs to ∂O^{\prime} and ∂O^{\prime} has not a true tangent at x.

Proof. Let K, U, O, U^{\prime} be as in the statement of the lemma. Let s, r be such that $0<s<r$ and $B(x, r) \subset U^{\prime}$. Certainly $\mathcal{H}^{1}(\partial O)$ is finite, hence by Lemma 8.3, there is at most a finite number of connected components of $O \cap \stackrel{\circ}{B}(x, r)$ intersecting $B(x, s)$, say O_{1}, \ldots, O_{n}. We have then $\partial O \cap B(x, s)=$ $\left(\partial O_{1} \cup \cdots \cup \partial O_{n}\right) \cap B(x, s)$ so that there exists i in $\{1 \cdots n\}$ such that x belongs to ∂O_{i}. Let O^{\prime} be the connected component of $O \cap U^{\prime}$ containing O_{i}. Then $\partial O_{i} \backslash \partial B(x, r) \subset \partial O^{\prime}$ so that x is in ∂O^{\prime}. Moreover $\partial O^{\prime} \cap U^{\prime} \subset \partial O$. Since $\partial^{\circ} K$ has a tangent at x, necessarily

$$
\forall \phi \in] 0, \pi / 2] \quad \lim _{t \rightarrow 0} \frac{1}{t} \mathcal{H}^{1}(\partial O \cap U(x, t, \theta, \phi))=0 .
$$

However ∂O has not a true tangent at x. Either $\lim _{t \rightarrow 0} \mathcal{H}^{1}(\partial O \cap B(x, t)) / t=0$ or

$$
\liminf _{t \rightarrow 0} \frac{1}{t} e(\partial O \cap B(x, t), L(x, t, \theta))>0 .
$$

In both cases, the same property holds for ∂O^{\prime}, hence ∂O^{\prime} has not a true tangent at x.

Corollary 8.7. Let K be a continuum such that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$. Let $\left(U_{n}\right)_{n \in \mathbb{N}}$ be a sequence of domains which is a basis for the topology of \mathbb{R}^{2}. Then

$$
\partial^{*} K=\left(\partial_{O} K \cup \partial_{1 / 2} K \cup \partial_{I} K \cup \partial_{I I} K\right) \backslash \bigcup_{n \in \mathbb{N}} \bigcup_{O \in \mathcal{C}\left(K, U_{n}\right)}\left(\partial O \backslash\left(\partial^{*} O \cup \partial U_{n}\right)\right)
$$

Proof. Indeed, let x be a point of $\partial^{\circ} K$ where $\partial^{\circ} K$ has a tangent and suppose that for some domain U, there exists O in $\mathcal{C}(K, U)$ such that x belongs to $\partial O \backslash$ $\left(\partial^{*} O \cup \partial U\right)$. Since $\left(U_{n}\right)_{n \in \mathbb{N}}$ is a basis for the topology of \mathbb{R}^{2}, there exists n in \mathbb{N} such that x belongs to U_{n} and U_{n} is included in U. By Lemma 8.6, there exists a residual domain O_{n} of K in U_{n} such that x belongs to $\partial O_{n} \backslash\left(\partial^{*} O_{n} \cup \partial U_{n}\right)$.

Proposition 8.8. Let K be a continuum. If $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$ then $\partial^{\circ} K$ is a regular 1 -set and moreover $\mathcal{H}^{1}\left(\partial^{\circ} K \backslash \partial^{*} K\right)=0$.

Proof. We recall that $\partial^{\circ} K=\bigcup_{i \in I} \partial O_{i}$ where $\left(O_{i}, i \in I\right)$ are the residual domains of K (see Definition 5.1), and the set I is finite or countable. Each set ∂O_{i} is a continuum of finite \mathcal{H}^{1}-measure because $\mathcal{H}^{1}\left(\partial O_{i}\right) \leq \mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$. Theorem 4.5 implies that each $\partial O_{i}, i \in I$, as well as $\partial^{\circ} K$, consists of a countable union of rectifiable curves, together with a set of \mathcal{H}^{1}-measure zero. Hence $\partial^{\circ} K$ is a regular 1 -set and has a tangent at \mathcal{H}^{1}-almost all of its points (by Corollaries 3.4, 6.3 or [8, Corollaries 3.9, 3.10]). Therefore we have

$$
\mathcal{H}^{1}\left(\partial^{\circ} K \backslash\left(\partial_{O} K \cup \partial_{1 / 2} K \cup \partial_{I} K \cup \partial_{I I} K\right)\right)=0
$$

Let $\left(U_{n}\right)_{n \in \mathbb{N}}$ be a sequence of domains which is a basis for the topology of \mathbb{R}^{2} and such that $\mathcal{H}^{1}\left(\partial U_{n}\right)$ is finite for any n (choose for instance a collection of
open balls). Then for any n in \mathbb{N} and any O in $\mathcal{C}\left(K, U_{n}\right)$ we have $\partial O \backslash \partial U_{n} \subset$ $\partial^{\circ} K$ (if O^{\prime} is the residual domain of K in \mathbb{R}^{2} containing O then $\partial O \backslash \partial U_{n} \subset \partial O^{\prime}$) and

$$
\mathcal{H}^{1}(\partial O) \leq \mathcal{H}^{1}\left(\partial O \backslash \partial U_{n}\right)+\mathcal{H}^{1}\left(\partial U_{n}\right) \leq \mathcal{H}^{1}\left(\partial^{\circ} K\right)+\mathcal{H}^{1}\left(\partial U_{n}\right)<\infty .
$$

By Corollary 6.4, $\mathcal{H}^{1}\left(\partial O \backslash \partial^{*} O\right)=0$. Therefore the set

$$
\bigcup_{n \in \mathbb{N}} \bigcup_{O \in \mathcal{C}\left(K, U_{n}\right)}\left(\partial O \backslash\left(\partial^{*} O \cup \partial U_{n}\right)\right)
$$

is a countable union of sets having zero \mathcal{H}^{1}-measure (by Corollary 3.4) and therefore it has \mathcal{H}^{1}-measure zero. By Corollary 8.7, this set contains ($\partial_{O} K \cup$ $\left.\partial_{1 / 2} K \cup \partial_{I} K \cup \partial_{I I} K\right) \backslash \partial^{*} K$ whence $\mathcal{H}^{1}\left(\partial^{\circ} K \backslash \partial^{*} K\right)=0$.

Proposition 8.9. Let K be a continuum. If $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$ then $\mathcal{H}^{1}\left(\partial_{O} K \cup\right.$ $\left.\partial_{1 / 2} K\right)=0$.

Proof. By Lemma 7.11, the set $\partial_{1 / 2} K$ is included in $\bigcup_{O \in \mathcal{C}(K)}\left(\partial O \backslash \partial^{*} O\right)$ and by Corollary 6.4, $\mathcal{H}^{1}\left(\partial O \backslash \partial^{*} O\right)=0$ for any O in $\mathcal{C}(K)$. Hence $\mathcal{H}^{1}\left(\partial_{1 / 2} K\right)=0$.

We finally prove that $\mathcal{H}^{1}\left(\partial_{O} K\right)=0$. Let $\left(U_{n}\right)_{n \in \mathbb{N}}$ be a sequence of domains which is a basis for the topology of \mathbb{R}^{2} and such that $\mathcal{H}^{1}\left(\partial U_{n}\right)$ is finite for any n (choose for instance a collection of open balls). Let x belong to $\partial_{O} K$. We apply Lemma 7.10: there exists a positive r such that for any domain U containing x and included in $B(x, r)$, there does not exist a residual domain O of K in U such that ∂O has a true tangent at x. Let n in \mathbb{N} be such that U_{n} contains x and is included in $B(x, r)$. By Lemma 8.5, there exists a residual domain O of K in U_{n} such that x belongs to ∂O. Since U_{n} is included in $B(x, r), \partial O$ has not a true tangent at x so that x belongs to $\partial O \backslash \partial^{*} O$. Therefore we have

$$
\partial_{O} K \subset \bigcup_{n \in \mathbb{N}} \bigcup_{O \in \mathcal{C}\left(K, U_{n}\right)}\left(\partial O \backslash \partial^{*} O\right) .
$$

For any n in \mathbb{N} and O in $\mathcal{C}\left(K, U_{n}\right)$, we have $\partial O \backslash \partial U_{n} \subset \partial^{\circ} K$ (if O^{\prime} is the residual domain of K in \mathbb{R}^{2} containing O then $\partial O \backslash \partial U_{n} \subset \partial O^{\prime}$) and

$$
\mathcal{H}^{1}(\partial O) \leq \mathcal{H}^{1}\left(\partial O \backslash \partial U_{n}\right)+\mathcal{H}^{1}\left(\partial U_{n}\right) \leq \mathcal{H}^{1}\left(\partial^{\circ} K\right)+\mathcal{H}^{1}\left(\partial U_{n}\right)<\infty
$$

whence by Corollary 6.4, $\mathcal{H}^{1}\left(\partial O \backslash \partial^{*} O\right)=0$. Hence $\partial_{O} K$ is included in the countable union of sets of \mathcal{H}^{1}-measure zero and $\mathcal{H}^{1}\left(\partial_{O} K\right)=0$.

Corollary 8.10. Let K be a continuum. If $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$ then $\mathcal{H}^{1}\left(\partial^{\circ} K \backslash\right.$ $\left.\partial_{I}^{*} K \backslash \partial_{I I}^{*} K\right)=0$.

9. - Local structure of $\partial_{I}^{*} K$ and $\partial_{I I}^{*} K$

In this section, we focus further on the points of types I and II where there is a true tangent. We recall that a point x belonging to the boundary ∂O of an open set O is said to be accessible from O if there exists a continuous arc $\gamma:[0,1] \mapsto \bar{O}$ such that $\gamma([0,1[) \subset O$ and $\gamma(1)=x$.

Proposition 9.1. Let K be a continuum and let x belong to $\partial_{I}^{*} K$. There exists r positive such that for any domain U containing x and included in $B(x, r)$, there exists a unique residual domain O of K in U such that x belongs to ∂O. Moreover x is accessible from O.

Proof. Let $\theta=\theta(x)$ be the direction of the tangent to $\partial^{\circ} K$ at x. Since x is of type I, we have: $\forall \phi \in] 0, \pi / 4[\quad \forall \varepsilon \in] 0,1 / 8\left[\quad \exists r_{0} \quad \forall r<r_{0}\right.$

$$
\mathcal{H}^{1}\left(\partial^{\circ} K \cap U(r, \phi)\right) \leq r \varepsilon, \quad e\left(K, U_{-}(r, \phi)\right) \leq r \varepsilon, \quad e\left(\mathbb{R}^{2} \backslash U_{+}(r, \phi), K\right) \leq r \varepsilon .
$$

We impose that $r_{0}<\operatorname{diam} K / 2$. We have then $U_{-}(r, \phi) \subset \mathcal{V}(K, r \varepsilon)$ for $r<r_{0}$. Let us consider the set $V_{+}(r, 2 \varepsilon, \phi)$. Since $d\left(V_{+}(r, 2 \varepsilon, \phi), \mathbb{R}^{2} \backslash U_{+}(r, \phi)\right)>r \varepsilon$ we have $V_{+}(r, 2 \varepsilon, \phi) \cap K=\varnothing$ for $r<r_{0}$. Let F_{+}be the domain $F_{+}=$ $\bigcup_{r<r_{0}} V_{+}(r, 2 \varepsilon, \phi)$. Then F_{+}does not intersect K and contains the segment $\left.] x, x+r_{0}(1-3 \varepsilon) v(\theta)\right]$.

Let U be a domain containing x and included in $B\left(x, r_{0} / 2\right)$. Let O be the residual domain of K in U containing $F_{+} \cap B\left(x, r_{0} / 2\right)$. Clearly x belongs to ∂O and x is accessible from O. Suppose there is another residual domain O^{\prime} of K in U such that x belongs to ∂O^{\prime}. Since $O \cap O^{\prime}=\varnothing$ then $O^{\prime} \cap F_{+}=\varnothing$. Yet x belongs to $\partial_{I}^{*} K$, so that ∂O^{\prime} must have a true tangent at x. This tangent is necessarily in the direction θ (because $\partial O^{\prime} \backslash \partial U \subset \partial^{\circ} K$). Necessarily, O^{\prime} meets both $S(x, \pi+\theta-\phi, \pi+\theta+\phi)$ and $S(x, \theta-\phi, \theta+\phi)$ inside $B(x, r)$ for r sufficiently small, say $r<r_{1}<r_{0} / 2$.

We check that the hypothesis of Lemma 7.2 are satisfied by the sets $K, U_{-}(r, \phi), V_{-}(r, 2 \varepsilon, \phi)$ for $r<r_{0}$:

$$
\begin{gathered}
K \cap\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi)\right) \neq \varnothing, \quad \mathcal{H}^{1}\left(\partial^{\circ} K \cap U_{-}(r, \phi)\right) \leq r \varepsilon \\
d\left(V_{-}(r, 2 \varepsilon, \phi), \mathbb{R}^{2} \backslash U_{-}(r, \phi)\right)>r \varepsilon
\end{gathered}
$$

If $K \cap V_{-}(r, 2 \varepsilon, \phi)=\varnothing$ then

$$
e\left(\mathbb{R}^{2} \backslash V_{-}(r, 2 \varepsilon, \phi), V_{-}(r, 2 \varepsilon, \phi)\right) \leq e\left(K, U_{-}(r, \phi)\right) \leq r \varepsilon
$$

A direct computation gives $e\left(\mathbb{R}^{2} \backslash V_{-}(r, 2 \varepsilon, \phi), V_{-}(r, 2 \varepsilon, \phi)\right)=r(1-4 \varepsilon) \cos \phi(1+$ $\cos \phi)^{-1}$. Hence the preceding inequality cannot occur when $0<\phi<\pi / 4$, $0<\varepsilon<1 / 8$ so that we have $K \cap V_{-}(r, 2 \varepsilon, \phi) \neq \varnothing$. The last part of Lemma 7.2 then implies that no residual domain of K intersects both $V_{-}(r, 2 \varepsilon, \phi)$ and $\mathbb{R}^{2} \backslash U_{-}(r, \phi)$.

The set O^{\prime} intersects $B(x, r) \backslash U_{-}(r, \phi)$ for $r<r_{1}$, hence it intersects $\mathbb{R}^{2} \backslash U_{-}(r, \phi)$ for $r<r_{0}$ and thus it does not intersect $V_{-}(r, 2 \varepsilon, \phi)$ for $r<$
r_{0}. If we set $F_{-}=\bigcup_{r<r_{0}} V_{-}(r, 2 \varepsilon, \phi)$ then $O^{\prime} \cap F_{-}=\varnothing$. It follows that $O^{\prime} \cap\left(F_{-} \cup\{x\} \cup F_{+}\right)=\varnothing$. However $F_{-} \cup\{x\} \cup F_{+}$disconnects the interior of the angular sectors $S(x, \pi+\theta-\phi, \pi+\theta+\phi), S(x, \theta-\phi, \theta+\phi)$ inside $B\left(x, r_{0} / 2\right)$, which is absurd.

Proposition 9.2. Let K be a continuum and let x belong to $\partial_{I I}^{*} K$. There exists r positive such that for any domain U containing x and included in $B(x, r)$, there exist either one or two residual domains O of K in U such that x belongs to ∂O. Moreover x is accessible from each such domain.

Proof. Let $\theta=\theta(x)$ be the direction of the tangent to $\partial^{\circ} K$ at x. Since x is of type II, we have: $\forall \phi \in] 0, \pi / 4[\quad \forall \varepsilon \in] 0,1 / 8\left[\quad \exists r_{0} \quad \forall r<r_{0}\right.$
$\mathcal{H}^{1}\left(\partial^{\circ} K \cap U(r, \phi)\right) \leq r \varepsilon, \quad e\left(\mathbb{R}^{2} \backslash U_{-}(r, \phi), K\right) \leq r \varepsilon, \quad e\left(\mathbb{R}^{2} \backslash U_{+}(r, \phi), K\right) \leq r \varepsilon$.

We impose that $r_{0}<\operatorname{diam} K / 2$. Let us consider as usual the set $V_{-}(r, 2 \varepsilon, \phi)$. Since $d\left(V_{-}(r, 2 \varepsilon, \phi), \mathbb{R}^{2} \backslash U_{-}(r, \phi)\right)>r \varepsilon$ we have $V_{-}(r, 2 \varepsilon, \phi) \cap K=\varnothing$ for $r<r_{0}$. Let F_{-}be the domain $F_{-}=\bigcup_{r<r_{0}} V_{-}(r, 2 \varepsilon, \phi)$. Then F_{-}does not intersect K and contains the segment $\left.] x, x-r_{0}(1-3 \varepsilon) v(\theta)\right]$. Similarly, the domain $F_{+}=\bigcup_{r<r_{0}} V_{+}(r, 2 \varepsilon, \phi)$ does not intersect K and contains the segment $\left.] x, x+r_{0}(1-3 \varepsilon) v(\theta)\right]$. Let U be a domain containing x and included in $B\left(x, r_{0} / 2\right)$. Let O_{-}(respectively O_{+}) be the residual domain of K in U containing F_{-}(respectively F_{+}). It might happen that $O_{-}=O_{+}$. Clearly x belongs to ∂O_{-}and ∂O_{+}and x is accessible from both O_{-}and O_{+}. Suppose there is another residual domain O^{\prime} of K in U such that x belongs to ∂O^{\prime}. Since $\left(O_{-} \cup O_{+}\right) \cap O^{\prime}=\varnothing$ then $O^{\prime} \cap\left(F_{-} \cup F_{+}\right)=\varnothing$. Yet x belongs to $\partial_{I}^{*} K$, so that ∂O^{\prime} must have a true tangent at x. This tangent is necessarily in the direction θ (because $\partial O^{\prime} \backslash \partial U \subset \partial^{\circ} K$). Necessarily, O^{\prime} meets both $S(x, \pi+$ $\theta-\phi, \pi+\theta+\phi)$ and $S(x, \theta-\phi, \theta+\phi)$ inside $B(x, r)$ for r sufficiently small. However $F_{-} \cup\{x\} \cup F_{+}$disconnects the interior of the angular sectors $S(x, \pi+\theta-\phi, \pi+\theta+\phi), S(x, \theta-\phi, \theta+\phi)$ inside $B\left(x, r_{0} / 2\right)$, which is absurd.

Corollary 9.3. Let K be a continuum such that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$ and let U be a domain.

- Any x in $\partial_{I}^{*} K \cap U$ belongs to the boundary of exactly one residual domain of K in U.
- Any x in $\partial_{I I}^{*} K \cap U$ belongs to the boundary of one or two residual domains of K in U.

Proof. This result is a consequence of Lemma 8.4 and Propositions 9.1, 9.2.

10. - The surface energy \mathcal{S}

We first prove a covering lemma for the sets of points of type I and type II.
Lemma 10.1. Let K be a continuum such that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$. Let ε be positive. Suppose that to each point of $\partial_{I}^{*} K$ (respectively $\partial_{I I}^{*} K$) there is associated a positive number $r_{1}(x)$ (respectively $r_{2}(x)$), possibly depending on ε. There exists a finite family of disjoint balls $B\left(x_{i}, r_{i}\right), i \in I_{1} \cup I_{2}$, such that: for i in I_{1}, x_{i} belongs to $\partial_{I}^{*} K$ and $0<r_{i}<r_{1}\left(x_{i}\right)$, for i in I_{2}, x_{i} belongs to $\partial_{I I}^{*} K$ and $0<r_{i}<r_{2}\left(x_{i}\right)$, and

$$
\begin{gathered}
\mathcal{H}^{1}\left(\partial_{I}^{*} K\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K\right) \leq(1+2 \varepsilon)\left(2 \sum_{i \in I_{1}} r_{i}+4 \sum_{i \in I_{2}} r_{i}\right), \\
\mathcal{H}^{1}\left(\partial^{\circ} K \backslash \bigcup_{i \in I_{1} \cup I_{2}} B\left(x_{i}, r_{i}\right)\right) \leq 2 \varepsilon \sum_{i \in I_{1} \cup I_{2}} r_{i}
\end{gathered}
$$

Proof. Under the hypothesis that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$, the sets $\partial_{I}^{*} K$ and $\partial_{I I}^{*} K$ are \mathcal{H}^{1}-measurable and their \mathcal{H}^{1}-measures are finite (see the remark after Definition 7.7 together with Definition 8.2 and Proposition 8.8). Moreover $\partial^{\circ} K$ is a regular 1 -set by Proposition 8.8 and has density 1 at \mathcal{H}^{1} almost all of its points. Hence if we define

$$
\partial^{\circ *} K=\left\{x \in \partial^{*} K: \lim _{r \rightarrow 0}(2 r)^{-1} \mathcal{H}^{1}\left(\partial^{\circ} K \cap B(x, r)\right)=1\right\}
$$

and

$$
\partial_{I}^{* *} K=\partial_{I}^{*} K \cap \partial^{\circ} K, \quad \partial_{I I}^{* *} K=\partial_{I I}^{*} K \cap \partial^{\circ *} K
$$

then we have $\mathcal{H}^{1}\left(\partial^{\circ} K \backslash \partial^{\circ} * K\right)=0$ so that $\mathcal{H}^{1}\left(\partial_{I}^{*} K \backslash \partial_{I}^{* *} K\right)=0, \mathcal{H}^{1}\left(\partial_{I I}^{*} K \backslash \partial_{I I}^{* *} K\right)=0$. Now for each x in $\partial_{I}^{* *} K \cup \partial_{I I}^{* *} K$, there exists $r(x, \varepsilon)$ positive such that

$$
\forall r \in] 0, r(x, \varepsilon)\left[\quad 2 r(1-\varepsilon) \leq \mathcal{H}^{1}\left(\partial^{\circ} K \cap B(x, r)\right) \leq 2 r(1+\varepsilon) .\right.
$$

The family of closed balls $\left\{B(x, r): x \in \partial_{I I}^{* *} K, 0<r<\min \left\{r_{2}(x), r(x, \varepsilon)\right\}\right\}$ is a Vitali class for $\partial_{I I}^{* *} K$. By the Corollary 4.3 to the Vitali covering theorem, we may select a finite disjoint sequence of balls in this class, $\left(B\left(x_{i}, r_{i}\right), i \in I_{2}\right)$, such that

$$
\mathcal{H}^{1}\left(\partial_{I I}^{* *} K \backslash \bigcup_{i \in I_{2}} B\left(x_{i}, r_{i}\right)\right) \leq 2 \varepsilon \sum_{i \in I_{2}} r_{i}, \quad \mathcal{H}^{1}\left(\partial_{I I}^{* *} K\right) \leq 2(1+\varepsilon) \sum_{i \in I_{2}} r_{i}
$$

The family of closed balls

$$
\left\{B(x, r): x \in \partial_{I}^{* *} K, 0<r<\min \left\{r_{1}(x), r(x, \varepsilon), d\left(x, \bigcup_{i \in I_{2}} B\left(x_{i}, r_{i}\right)\right)\right\}\right\}
$$

is a Vitali class for $\partial_{I}^{* *} K \backslash \bigcup_{i \in I_{2}} B\left(x_{i}, r_{i}\right)$. By the Corollary 4.3 to the Vitali covering theorem, we may select a finite disjoint sequence of balls in this class, $\left(B\left(x_{i}, r_{i}\right), i \in I_{1}\right)$, such that

$$
\begin{aligned}
\mathcal{H}^{1}\left(\partial_{I}^{* *} K \backslash \bigcup_{i \in I_{1} \cup I_{2}} B\left(x_{i}, r_{i}\right)\right) & \leq 2 \varepsilon \sum_{i \in I_{1}} r_{i}, \\
\mathcal{H}^{1}\left(\partial_{I}^{* *} K \backslash \bigcup_{i \in I_{2}} B\left(x_{i}, r_{i}\right)\right) & \leq 2(1+\varepsilon) \sum_{i \in I_{1}} r_{i} .
\end{aligned}
$$

We have then

$$
\begin{aligned}
\mathcal{H}^{1}\left(\partial_{I}^{*} K \cup \partial_{I I}^{*} K\right)= & \mathcal{H}^{1}\left(\left(\partial_{I}^{* *} K \cup \partial_{I I}^{* *} K\right) \backslash \bigcup_{i \in I_{1} \cup I_{2}} B\left(x_{i}, r_{i}\right)\right) \\
& +\mathcal{H}^{1}\left(\left(\partial_{I}^{* *} K \cup \partial_{I I}^{* *} K\right) \cap \bigcup_{i \in I_{1} \cup I_{2}} B\left(x_{i}, r_{i}\right)\right) \\
\leq & 2 \varepsilon \sum_{i \in I_{1} \cup I_{2}} r_{i}+\sum_{i \in I_{1} \cup I_{2}} \mathcal{H}^{1}\left(\partial^{\circ} K \cap B\left(x_{i}, r_{i}\right)\right) \\
\leq & 2(1+2 \varepsilon) \sum_{i \in I_{1} \cup I_{2}} r_{i} .
\end{aligned}
$$

Combining this inequality with $\mathcal{H}^{1}\left(\partial_{I I}^{* *} K\right) \leq 2(1+\varepsilon) \sum_{i \in I_{2}} r_{i}$, we get the desired estimation.

We now define the surface energy of a continuum K.
Definition 10.2. Let K be a continuum. For A a domain we define the surface energy $\mathcal{S}(K, A)$ of K in A by

$$
\mathcal{S}(K, A)=\sup _{\mathcal{U}} \sum_{U \in \mathcal{U}} \sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}(\partial O \backslash \partial U)
$$

the supremum being taken over all families \mathcal{U} of pairwise disjoint domains included in A. The surface energy of the whole set K is $\mathcal{S}(K)=\mathcal{S}\left(K, \mathbb{R}^{2}\right)$.

Remark. Obviously, for any continuum K, any domains A_{1}, A_{2} such that $A_{1} \subset A_{2}$, we have $\mathcal{S}\left(K, A_{1}\right) \leq \mathcal{S}\left(K, A_{2}\right)$.

Lemma 10.3. For any continuum K, we have $\mathcal{S}(K) \geq 2 \operatorname{diam} K$.
Proof. Let x, y belong to K with $|x-y|_{2}=\operatorname{diam} K$. Let θ be the angle between the horizontal axis and the vector $x y$. Let U be the open strip

$$
U=\left\{x+a u(\theta)+b v(\theta): 0<a<|x-y|_{2}, b \in \mathbb{R}\right\} .
$$

For b larger than diam K and any a, the point $x+a u(\theta)+b v(\theta)$ does not belong to K. Let O_{+}(respectively O_{-}) be the residual domain of K in U containing the set

$$
\left\{x+a u(\theta)+b v(\theta): 0<a<|x-y|_{2}, b>\operatorname{diam} K\right\}
$$

(respectively the set $\left\{x+a u(\theta)-b v(\theta): 0<a<|x-y|_{2}, b>\operatorname{diam} K\right\}$). Suppose that $O_{-}=O_{+}$. Then there exists an arc γ in $U \backslash K$ joining $(x+y) / 2+$ $2(\operatorname{diam} K) v(\theta)$ to $(x+y) / 2-2(\operatorname{diam} K) v(\theta)$; we can extend this arc in $\mathbb{R}^{2} \backslash K$ to a Jordan curve γ^{\prime} such that x is in the interior of γ^{\prime} and y is in the exterior of γ^{\prime}, contradicting the fact that K is connected. Thus the domains O_{-}and O_{+}are distinct. Clearly, for any a in $] 0,|x-y|_{2}[$, the line $x+a u(\theta)+\mathbb{R} v(\theta)$ intersects both ∂O_{-}and ∂O_{+}. Thus $\mathcal{S}(K) \geq \mathcal{H}^{1}\left(\partial O_{-} \backslash \partial U\right)+\mathcal{H}^{1}\left(\partial O_{+} \backslash \partial U\right) \geq 2 \operatorname{diam} K$.

Lemma 10.4. Let K be a continuum and let A_{1}, A_{2} be two disjoint domains in \mathbb{R}^{2}. We have $\mathcal{S}\left(K, A_{1} \cup A_{2}\right)=\mathcal{S}\left(K, A_{1}\right)+\mathcal{S}\left(K, A_{2}\right)$.

Proof. Let \mathcal{U} be a family of pairwise disjoint domains included in $A_{1} \cup A_{2}$. Since A_{1} and A_{2} are disjoint, each domain U of \mathcal{U} is either a subdomain of A_{1} or a subdomain of A_{2}. Let us define

$$
\mathcal{U}_{1}=\left\{U \in \mathcal{U}: U \subset A_{1}\right\}, \quad \mathcal{U}_{2}=\left\{U \in \mathcal{U}: U \subset A_{2}\right\}
$$

We have then

$$
\begin{aligned}
\sum_{U \in \mathcal{U}} \sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}(\partial O \backslash \partial U)= & \sum_{U \in \mathcal{U}_{1}} \sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}(\partial O \backslash \partial U) \\
& +\sum_{U \in \mathcal{U}_{2}} \sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}(\partial O \backslash \partial U) \\
\leq & \mathcal{S}\left(K, A_{1}\right)+\mathcal{S}\left(K, A_{2}\right)
\end{aligned}
$$

Taking the supremum over \mathcal{U}, we get $\mathcal{S}\left(K, A_{1} \cup A_{2}\right) \leq \mathcal{S}\left(K, A_{1}\right)+\mathcal{S}\left(K, A_{2}\right)$. To prove the converse inequality, we consider two families of pairwise disjoint domains $\mathcal{U}_{1}, \mathcal{U}_{2}$ included in A_{1} and A_{2} respectively. Let \mathcal{U} be the union of \mathcal{U}_{1} and \mathcal{U}_{2}. Then

$$
\begin{gathered}
\sum_{U \in \mathcal{U}_{1}} \sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}(\partial O \backslash \partial U)+\sum_{U \in \mathcal{U}_{2}} \sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}(\partial O \backslash \partial U) \\
=\sum_{U \in \mathcal{U}} \sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}(\partial O \backslash \partial U) \leq \mathcal{S}\left(K, A_{1} \cup A_{2}\right)
\end{gathered}
$$

Taking the supremum over \mathcal{U}_{1} and \mathcal{U}_{2}, we get $\mathcal{S}\left(K, A_{1}\right)+\mathcal{S}\left(K, A_{2}\right) \leq \mathcal{S}\left(K, A_{1} \cup\right.$ A_{2}).

Lemma 10.5. Let K be a continuum such that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$. For any domain A we have

$$
\mathcal{S}(K, A) \leq \mathcal{H}^{1}\left(\partial_{I} K \cap A\right)+2 \mathcal{H}^{1}\left(\partial_{I I} K \cap A\right) .
$$

Remark. When $\mathcal{H}^{1}\left(\partial^{\circ} K\right)$ is finite, we have $\mathcal{H}^{1}\left(\partial^{\circ} K \backslash\left(\partial_{I}^{*} K \cup \partial_{I I}^{*} K\right)\right)=0$ by Corollary 8.10 so that $\mathcal{H}^{1}\left(\partial_{I} K \cap A\right)=\mathcal{H}^{1}\left(\partial_{I}^{*} K \cap A\right), \mathcal{H}^{1}\left(\partial_{I I} K \cap A\right)=\mathcal{H}^{1}\left(\partial_{I I}^{*} K \cap A\right)$ for any domain A.

Proof. Let U be a domain. By Corollary 9.3, we have

$$
\forall x \in \partial_{I}^{*} K \cap U \quad \sum_{O \in \mathcal{C}(K, U)} \chi(x \in \partial O)=1
$$

whence by integrating over $\partial_{I}^{*} K \cap U$ with respect to \mathcal{H}^{1}

$$
\sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}\left(\partial O \cap \partial_{I}^{*} K \backslash \partial U\right)=\mathcal{H}^{1}\left(\partial_{I}^{*} K \cap U\right)
$$

and for any x in $\partial_{I I}^{*} K \cap U$, we have $\sum_{o \in \mathcal{C}(K, U)} \chi(x \in \partial O) \leq 2$ whence by integrating over $\partial_{I I}^{*} K \cap U$

$$
\sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}\left(\partial O \cap \partial_{I I}^{*} K \backslash \partial U\right) \leq 2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K \cap U\right)
$$

Adding the two previous relations yields

$$
\sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}\left(\partial O \cap\left(\partial_{I}^{*} K \cup \partial_{I I}^{*} K\right) \backslash \partial U\right) \leq \mathcal{H}^{1}\left(\partial_{I}^{*} K \cap U\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K \cap U\right) .
$$

For any O in $\mathcal{C}(K, U)$, we have $\mathcal{H}^{1}\left(\partial O \cap\left(\partial_{I}^{*} K \cup \partial_{I I}^{*} K\right) \backslash \partial U\right)=\mathcal{H}^{1}(\partial O \backslash \partial U)$ because $\partial O \backslash \partial U \subset \partial^{\circ} K$ and $\mathcal{H}^{1}\left(\partial^{\circ} K \backslash\left(\partial_{I}^{*} K \cup \partial_{I I}^{*} K\right)\right)=0$ by Corollary 8.10; therefore the preceding inequality can be rewritten as

$$
\sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}(\partial O \backslash \partial U) \leq \mathcal{H}^{1}\left(\partial_{I}^{*} K \cap U\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K \cap U\right) .
$$

Let \mathcal{U} be a family of pairwise disjoint domains included in A. Summing the preceding inequality over all the domains U in \mathcal{U} we get

$$
\sum_{U \in \mathcal{U}} \sum_{O \in \mathcal{C}(K, U)} \mathcal{H}^{1}(\partial O \backslash \partial U) \leq \mathcal{H}^{1}\left(\partial_{I}^{*} K \cap A\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K \cap A\right)
$$

Taking the supremum over all families \mathcal{U}, together with the remark stated before the proof, we obtain the claim of the lemma.

Corollary 10.6. For any x, y in \mathbb{R}^{2}, we have $\mathcal{S}([x, y])=2|y-x|_{2}$.

Proof. By Lemma 10.3, we have $\mathcal{S}([x, y]) \geq 2|y-x|_{2}$. Since $\partial_{I I}^{*}[x, y]=$] x, y [, Lemma 10.5 yields $\mathcal{S}([x, y]) \leq 2 \mathcal{H}^{1}(] x, y[)$.

Lemma 10.7. Let x be a point in \mathbb{R}^{2} and let θ be an angle. For any positive r, any ε in $] 0,1 / 4[$, any continuum K, we have the implication
$\operatorname{diam} K>2 r, \quad D\left(K(x, r), U_{-}(x, r, \theta)\right) \leq r \varepsilon \Longrightarrow \mathcal{S}(K, \stackrel{\circ}{B}(x, r)) \geq 2 r(1-3 \varepsilon)$.
Proof. There exists y in $K(x, r)$ such that $|y-x|_{2} \leq r \varepsilon$. Let P be the union of the two segments $P=[y, x] \cup[x, x+r v(\theta)]$. Since $\operatorname{diam} K>2 r, y$ is connected by $K \cup[x, y]$ to some point outside $B(x, r)$. Because $\varepsilon<1 / 4<$ $\sin (\pi / 8), K$ does not meet $S(x, r, \theta+\pi / 8, \pi+\theta-\pi / 8)$, so that y is connected by $K(x, r) \cup[x, y]$ to some point of $S(x, r, \pi+\theta-\pi / 8, \theta+\pi / 8)$. Moreover y is connected in $K(x, r) \cup P$ to $x+r v(\theta)$. Since $D\left(K(x, r), U_{-}(x, r, \theta)\right) \leq r \varepsilon$, then $K(x, r)$ does not intersect the set $B(x, r) \backslash \mathcal{V}\left(U_{-}(x, r, \theta), r \varepsilon\right)$. This set is disconnected into two components by the segment $[x, x+r v(\theta)]$; let O_{1} be the component containing $x+2 \varepsilon r v(\theta)-r(1-2 \varepsilon) u(\theta)$ and let O_{2} be the component containing $x+2 \varepsilon r v(\theta)+r(1-2 \varepsilon) u(\theta)$. Notice that $K \cap O_{1}=K \cap O_{2}=\varnothing$. Let O_{1}^{\prime} (respectively O_{2}^{\prime}) be the residual domain of K in $\stackrel{\circ}{B}(x, r) \backslash P$ containing O_{1} (respectively O_{2}). Suppose that $O_{1}^{\prime}=O_{2}^{\prime}$. Then there would exist an arc γ : $[0,1] \mapsto B(x, r)$ such that: $\gamma(0)=x+r u(\theta+3 \pi / 4), \gamma(1)=x+r u(\theta+$ $\pi / 4)$ and $\gamma(] 0,1[) \subset \stackrel{\circ}{B}(x, r) \backslash K \backslash P$. This arc γ is a cross cut of the sphere $\partial B(x, r)$ disconnecting $x+r v(\theta)$ from $S(x, r, \pi+\theta-\pi / 8, \theta+\pi / 8)$, which is absurd, since $K \cup P$ realizes this connection. Hence O_{1}^{\prime} and O_{2}^{\prime} are distinct. Let $z=x+2 \varepsilon r v(\theta)$. The segment $] z-r \varepsilon u(\theta), z-r(1-2 \varepsilon) u(\theta)[$ (respectively $] z+r \varepsilon u(\theta), z+r(1-2 \varepsilon) u(\theta)\left[\right.$) is included in O_{1}^{\prime} (respectively O_{2}^{\prime}). Therefore each arc $S(z, s, \pi, 0), r \varepsilon<s<r(1-2 \varepsilon)$, intersects both $\partial O_{1}^{\prime} \backslash P$ and $\partial O_{2}^{\prime} \backslash P$. It follows that
$\mathcal{S}(K, \stackrel{\circ}{B}(x, r) \backslash P) \geq \mathcal{H}^{1}\left(\partial O_{1}^{\prime} \backslash \partial B(x, r) \backslash P\right)+\mathcal{H}^{1}\left(\partial O_{2}^{\prime} \backslash \partial B(x, r) \backslash P\right) \geq 2 r(1-3 \varepsilon)$.
Applying the remark after Definition 10.2 , we conclude that $\mathcal{S}(K, \stackrel{\circ}{B}(x, r)) \geq$ $2 r(1-3 \varepsilon)$.

Lemma 10.8. Let x be a point in \mathbb{R}^{2} and let θ be an angle. For any positive r and ε in $] 0,1 / 4[$, any continuum K, we have the implication

$$
\operatorname{diam} K>2 r, \quad D(K(x, r), L(x, r, \theta)) \leq r \varepsilon \Longrightarrow \mathcal{S}(K, \stackrel{\circ}{B}(x, r)) \geq 4 r(1-4 \varepsilon) .
$$

Proof. We have $K \cap \partial B(x, r) \subset S(x, r, \pi+\theta-2 \varepsilon, \pi+\theta+2 \varepsilon) \cup S(x, r, \theta-$ $2 \varepsilon, \theta+2 \varepsilon$) and $K \cap \partial B(x, r) \neq \varnothing$. Therefore the set $K(x, r) \cup S(x, r, \pi+\theta-$ $2 \varepsilon, \pi+\theta+2 \varepsilon) \cup S(x, r, \theta-2 \varepsilon, \theta+2 \varepsilon)$ has either one or two components. Suppose it has two components, and let K_{1} (respectively K_{2}) be the one containing $S(x, r, \pi+\theta-2 \varepsilon, \pi+\theta+2 \varepsilon)$ (respectively $S(x, r, \theta-2 \varepsilon, \theta+2 \varepsilon)$). These components are closed sets. Let $\left(y_{1}, y_{2}\right)$ in $K_{1} \times K_{2}$ be such that $d\left(K_{1}, K_{2}\right)=$ $\left|y_{1}-y_{2}\right|_{2}$. Let $y=\left(y_{1}+y_{2}\right) / 2$ be the middle of y_{1} and y_{2}. Since the set $\mathcal{V}(L(x, r, \theta), r \varepsilon) \cap B(x, r)$ is convex, then y is still in this set, so that the ball
$B(y, r \varepsilon)$ intersects $L(x, r, \theta)$; thus the ball $B(y, 2 r \varepsilon)$ intersects $K(x, r)$ and meets either K_{1} or K_{2}. Therefore either $d\left(y, K_{1}\right) \leq 2 r \varepsilon$ or $d\left(y, K_{2}\right) \leq 2 r \varepsilon$. By the very construction of y, we have $d\left(K_{1}, K_{2}\right)=2 d\left(y, K_{1}\right)=2 d\left(y, K_{2}\right)$, so that $d\left(K_{1}, K_{2}\right) \leq 4 r \varepsilon$. In case the initial set is connected, we choose $y_{1}=y_{2}$ to be any point of $K(x, r)$ and the end of the argument is the same. The component of $K(x, r) \cup\left[y_{1}, y_{2}\right]$ containing $\left[y_{1}, y_{2}\right]$ meets both $S(x, r, \pi+\theta-2 \varepsilon, \pi+\theta+$ $2 \varepsilon)$ and $S(x, r, \theta-2 \varepsilon, \theta+2 \varepsilon)$. Moreover $K(x, r) \cup\left[y_{1}, y_{2}\right]$ is included in $\mathcal{V}(L(x, r, \theta), r \varepsilon) \cap B(x, r)$. Let $z_{1}=x+2 r \varepsilon v(\theta)$ and $z_{2}=x-2 r \varepsilon v(\theta)$. Let O_{1} (respectively O_{2}) be the residual domain of $\mathcal{V}(L(x, r, \theta), r \varepsilon)$ inside $B(x, r)$ containing z_{1} (respectively z_{2}). Clearly $K(x, r) \cup\left[y_{1}, y_{2}\right]$ disconnects O_{1} and O_{2} inside $B(x, r)$. Let O_{1}^{\prime} (respectively O_{2}^{\prime}) be the residual domain of $K(x, r)$ inside $\stackrel{\circ}{B}(x, r) \backslash\left[y_{1}, y_{2}\right]$ containing O_{1} (respectively O_{2}). Necessarily, O_{1}^{\prime} and O_{2}^{\prime} are distinct. The segment $\left[z_{1}-r(1-2 \varepsilon) u(\theta), z_{1}+r(1-2 \varepsilon) u(\theta)\right]$ (respectively [$\left.\left.z_{2}-r(1-2 \varepsilon) u(\theta), z_{2}+r(1-2 \varepsilon) u(\theta)\right]\right)$ is included in O_{1}^{\prime} (respectively O_{2}^{\prime}). Therefore each segment $\left[z_{1}+\operatorname{su}(\theta), z_{2}+\operatorname{su}(\theta)\right],|s| \leq r(1-2 \varepsilon)$, meets both ∂O_{1}^{\prime} and ∂O_{2}^{\prime}. It follows that

$$
\begin{aligned}
\mathcal{S}\left(K, \stackrel{\circ}{B}(x, r) \backslash\left[y_{1}, y_{2}\right]\right) \geq & \mathcal{H}^{1}\left(\partial O_{1}^{\prime} \backslash \partial B(x, r) \backslash\left[y_{1}, y_{2}\right]\right) \\
& +\mathcal{H}^{1}\left(\partial O_{2}^{\prime} \backslash \partial B(x, r) \backslash\left[y_{1}, y_{2}\right]\right) \\
\geq & \mathcal{H}^{1}\left(\partial O_{1}^{\prime} \backslash \partial B(x, r)\right) \\
& +\mathcal{H}^{1}\left(\partial O_{2}^{\prime} \backslash \partial B(x, r)\right)-2 \mathcal{H}^{1}\left(\left[y_{1}, y_{2}\right]\right) \\
\geq & 4 r(1-4 \varepsilon) .
\end{aligned}
$$

Applying the remark after Definition 10.2 , we conclude that $\mathcal{S}(K, \stackrel{\circ}{B}(x, r)) \geq$ $4 r(1-4 \varepsilon)$.

Proposition 10.9. Let K be a continuum such that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$. For any domain A we have

$$
\mathcal{S}(K, A)=\mathcal{H}^{1}\left(\partial_{I} K \cap A\right)+2 \mathcal{H}^{1}\left(\partial_{I I} K \cap A\right) .
$$

In particular, $\mathcal{S}(K)=\mathcal{H}^{1}\left(\partial_{I} K\right)+2 \mathcal{H}^{1}\left(\partial_{I I} K\right)$.
Proof. By Lemma 10.5 , we already have $\mathcal{S}(K, A) \leq \mathcal{H}^{1}\left(\partial_{I} K \cap A\right)+$ $2 \mathcal{H}^{1}\left(\partial_{I I} K \cap A\right)$. We now prove the converse inequality. Let ε be positive. By Proposition 7.9 , to each point x of $\partial_{I}^{*} K \cap A$ we can associate $r_{1}(x, \varepsilon)$ such that

$$
\begin{gathered}
\forall x \in \partial_{I}^{*} K \cap A \quad \operatorname{diam} K \cap A>2 r_{1}(x, \varepsilon), \quad B\left(x, r_{1}(x, \varepsilon)\right) \subset A, \\
\forall r<r_{1}(x, \varepsilon) \quad D\left(K(x, r), U_{-}(x, r, \theta)\right) \leq r \varepsilon .
\end{gathered}
$$

Similarly, to each point x of $\partial_{I I}^{*} K \cap A$ we can associate $r_{2}(x, \varepsilon)$ such that

$$
\begin{gathered}
\forall x \in \partial_{I I}^{*} K \cap A \quad \operatorname{diam} K \cap A>2 r_{2}(x, \varepsilon), \quad B\left(x, r_{2}(x, \varepsilon)\right) \subset A, \\
\forall r<r_{2}(x, \varepsilon) \quad D(K(x, r), L(x, r, \theta)) \leq r \varepsilon .
\end{gathered}
$$

We apply the covering Lemma 10.1 with these functions $r_{1}(x, \varepsilon)$ and $r_{2}(x, \varepsilon)$: there exists a finite family of disjoint balls $B\left(x_{i}, r_{i}\right), i \in I_{1} \cup I_{2}$ such that: for i in I_{1}, x_{i} belongs to $\partial_{I}^{*} K \cap A$ and $0<r_{i}<r_{1}\left(x_{i}, \varepsilon\right)$, for i in I_{2}, x_{i} belongs to $\partial_{I I}^{*} K \cap A$ and $0<r_{i}<r_{2}\left(x_{i}, \varepsilon\right)$, and

$$
\mathcal{H}^{1}\left(\partial_{I}^{*} K \cap A\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K \cap A\right) \leq(1+2 \varepsilon)\left(2 \sum_{i \in I_{1}} r_{i}+4 \sum_{i \in I_{2}} r_{i}\right)
$$

By Lemmas 10.4, 10.7, 10.8, we have

$$
\mathcal{S}(K, A) \geq \sum_{i \in I_{1} \cup I_{2}} \mathcal{S}\left(K, \stackrel{\circ}{B}\left(x_{i}, r_{i}\right)\right) \geq \sum_{i \in I_{1}} 2 r_{i}(1-3 \varepsilon)+\sum_{i \in I_{2}} 4 r_{i}(1-4 \varepsilon) .
$$

Therefore we have $\mathcal{S}(K, A) \geq\left(\mathcal{H}^{1}\left(\partial_{I}^{*} K \cap A\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K \cap A\right)\right)(1-4 \varepsilon) /(1+2 \varepsilon)$ for any positive ε. Letting ε go to zero, we get $\mathcal{S}(K, A) \geq \mathcal{H}^{1}\left(\partial_{I}^{*} K \cap A\right)+$ $2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K \cap A\right)$.

Corollary 10.10. Let K be a continuum such that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$. Then $\mathcal{H}^{1}\left(\partial^{\circ} K\right)$ $\leq \mathcal{S}(K) \leq 2 \mathcal{H}^{1}\left(\partial^{\circ} K\right)$.

Proposition 10.11. Let K_{1}, K_{2} be any continua. We have $\mathcal{S}\left(K_{1} \cup K_{2}\right) \leq$ $\mathcal{S}\left(K_{1}\right)+\mathcal{S}\left(K_{2}\right)$. For any domain A, we have also $\mathcal{S}\left(K_{1} \cup K_{2}, A\right) \leq \mathcal{S}\left(K_{1}, A\right)+$ $\mathcal{S}\left(K_{2}, A\right)$.

Proof. We do the proof only for the case $A=\mathbb{R}^{2}$: the general case is similar, just by considering the intersections of the sets with A. We need only to consider the case where $\mathcal{S}\left(K_{1}\right)<\infty$ and $\mathcal{S}\left(K_{2}\right)<\infty$, otherwise there is nothing to prove. By Corollary 10.10, $\mathcal{H}^{1}\left(\partial^{\circ} K_{1}\right)$ and $\mathcal{H}^{1}\left(\partial^{\circ} K_{2}\right)$ are finite. By Corollary 5.3, $\mathcal{H}^{1}\left(\partial^{\circ}\left(K_{1} \cup K_{2}\right)\right)$ is also finite. By Lemma 5.2 and Corollary 8.10, we have

$$
\begin{aligned}
\mathcal{H}^{1}\left(\partial_{I}^{*}\left(K_{1} \cup K_{2}\right)\right)= & \mathcal{H}^{1}\left(\partial_{I}^{*}\left(K_{1} \cup K_{2}\right) \cap\left(\partial^{\circ} K_{1} \cup \partial^{\circ} K_{2}\right)\right) \\
= & \mathcal{H}^{1}\left(\partial_{I}^{*}\left(K_{1} \cup K_{2}\right) \cap\left(\partial_{I}^{*} K_{1} \cup \partial_{I}^{*} K_{2}\right)\right) \\
& +\mathcal{H}^{1}\left(\partial_{I}^{*}\left(K_{1} \cup K_{2}\right) \cap\left(\partial_{I I}^{*} K_{1} \cup \partial_{I I}^{*} K_{2}\right)\right) .
\end{aligned}
$$

By Lemmas 5.2, 7.14 and Corollary 8.10, we have also

$$
\begin{aligned}
\mathcal{H}^{1}\left(\partial_{I I}^{*}\left(K_{1} \cup K_{2}\right)\right) & =\mathcal{H}^{1}\left(\partial_{I I}^{*}\left(K_{1} \cup K_{2}\right) \cap\left(\partial^{\circ} K_{1} \cup \partial^{\circ} K_{2}\right)\right) \\
& =\mathcal{H}^{1}\left(\partial_{I I}^{*}\left(K_{1} \cup K_{2}\right) \cap\left(\partial_{I I}^{*} K_{1} \cup \partial_{I I}^{*} K_{2}\right)\right) .
\end{aligned}
$$

The two previous equalities yield

$$
\begin{aligned}
& \mathcal{H}^{1}\left(\partial_{I}^{*}\left(K_{1} \cup K_{2}\right)\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*}\left(K_{1} \cup K_{2}\right)\right) \\
& \leq \mathcal{H}^{1}\left(\partial_{I}^{*} K_{1} \cup \partial_{I}^{*} K_{2}\right)+\mathcal{H}^{1}\left(\partial_{I}^{*}\left(K_{1} \cup K_{2}\right) \cap\left(\partial_{I I}^{*} K_{1} \cup \partial_{I I}^{*} K_{2}\right)\right) \\
&+2 \mathcal{H}^{1}\left(\partial_{I I}^{*}\left(K_{1} \cup K_{2}\right) \cap\left(\partial_{I I}^{*} K_{1} \cup \partial_{I I}^{*} K_{2}\right)\right) \\
& \leq \mathcal{H}^{1}\left(\partial_{I}^{*} K_{1} \cup \partial_{I}^{*} K_{2}\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K_{1} \cup \partial_{I I}^{*} K_{2}\right) \\
& \leq \mathcal{H}^{1}\left(\partial_{I}^{*} K_{1}\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K_{1}\right)+\mathcal{H}^{1}\left(\partial_{I}^{*} K_{2}\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K_{2}\right)
\end{aligned}
$$

whence $\mathcal{S}\left(K_{1} \cup K_{2}\right) \leq \mathcal{S}\left(K_{1}\right)+\mathcal{S}\left(K_{2}\right)$.

Remark. There is a natural way to extend the surface energy \mathcal{S} to sets which are a countable union of pairwise disjoint continua, by simply summing the surface energy of all the continua. One should then define a suitable metric on these sets in order to ensure the lower semicontinuity of this functional. A possible way would be to build a metric using a technique similar to the one used for Caccioppoli partitions [5], [10].

Our next goal is to prove that the surface energy \mathcal{S} is lower semicontinuous.
Theorem 10.12. The map $K \in \mathcal{K}_{c} \mapsto \mathcal{S}(K)$ is lower semicontinuous with respect to the Hausdorff metric i.e. for any sequence $\left(K_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{K}_{c} such that $D\left(K_{n}, K\right)$ converges to 0 as n goes to ∞, we have $\liminf _{n \rightarrow \infty} \mathcal{S}\left(K_{n}\right) \geq \mathcal{S}(K)$.

Proof. Let $\left(K_{n}\right)_{n \in \mathbb{N}}$ be a sequence of continua converging for the Hausdorff distance to a compact connected set K. We may suppose that $\liminf _{n \rightarrow \infty} \mathcal{S}\left(K_{n}\right)$ is finite and that diam $K>0$ (otherwise there is nothing to prove). We have by Proposition 5.5 and Corollary 10.10

$$
\frac{1}{2} \mathcal{S}(K) \leq \mathcal{H}^{1}\left(\partial^{\circ} K\right) \leq \liminf _{n \rightarrow \infty} \mathcal{H}^{1}\left(\partial^{\circ} K_{n}\right) \leq \liminf _{n \rightarrow \infty} \mathcal{S}\left(K_{n}\right)
$$

so that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)$ is finite, as well as $\mathcal{S}(K)$. Let ε be positive smaller than $1 / 16$. To each point x of $\partial_{I}^{*} K$ (respectively $\partial_{I I}^{*} K$) we associate $r_{1}(x, \varepsilon)$ (respectively $r_{2}(x, \varepsilon)$) as in Lemma 7.12 (respectively Lemma 7.13). We impose the additional conditions:

$$
\forall x \in \partial_{I}^{*} K \quad r_{1}(x, \varepsilon)<\operatorname{diam} K / 4, \quad \forall x \in \partial_{I I}^{*} K \quad r_{2}(x, \varepsilon)<\operatorname{diam} K / 4 .
$$

We apply the covering Lemma 10.1 with these functions $r_{1}(x, \varepsilon)$ and $r_{2}(x, \varepsilon)$: there exists a finite family of disjoint balls $B\left(x_{i}, r_{i}\right), i \in I_{1} \cup I_{2}$, such that: for i in I_{1}, x_{i} belongs to $\partial_{I}^{*} K$ and $0<r_{i}<r_{1}\left(x_{i}, \varepsilon\right)$, for i in I_{2}, x_{i} belongs to $\partial_{I I}^{*} K$ and $0<r_{i}<r_{2}\left(x_{i}, \varepsilon\right)$, and

$$
\mathcal{S}(K)=\mathcal{H}^{1}\left(\partial_{I}^{*} K\right)+2 \mathcal{H}^{1}\left(\partial_{I I}^{*} K\right) \leq(1+2 \varepsilon)\left(2 \sum_{i \in I_{1}} r_{i}+4 \sum_{i \in I_{2}} r_{i}\right)
$$

Let $\eta=\varepsilon \min \left\{r_{i}: i \in I_{1} \cup I_{2}\right\}$. Let n_{0} be such that $\operatorname{diam} K_{n}>\operatorname{diam} K / 2$ and $D\left(K_{n}, K\right)<\eta$ for n larger than n_{0}. Fix an integer n larger than n_{0}. Let i belong to I_{1}. By construction, we have

$$
\operatorname{diam} K_{n}>2 r_{i}, \quad D\left(K_{n}\left(x_{i}, r_{i}\right), U_{-}\left(x_{i}, r_{i}, \theta\left(x_{i}\right)\right)\right) \leq 4 r_{i} \varepsilon
$$

Lemma 10.7 implies that $\mathcal{S}\left(K_{n}, \stackrel{\circ}{B}\left(x_{i}, r_{i}\right)\right) \geq 2 r_{i}(1-4 \varepsilon)$.
Let i belong to I_{2}. By construction, we have

$$
\operatorname{diam} K_{n}>2 r_{i}, \quad D\left(K_{n}\left(x_{i}, r_{i}\right), L\left(x_{i}, r_{i}, \theta\left(x_{i}\right)\right)\right) \leq 4 r_{i} \varepsilon
$$

Lemma 10.8 implies that $\mathcal{S}\left(K_{n}, \dot{B}\left(x_{i}, r_{i}\right)\right) \geq 4 r_{i}(1-16 \varepsilon)$. Therefore for any n larger than n_{0}, by Lemma 10.4,

$$
\mathcal{S}\left(K_{n}\right) \geq \sum_{i \in I_{1} \cup I_{2}} \mathcal{S}\left(K_{n}, \stackrel{\circ}{B}\left(x_{i}, r_{i}\right)\right) \geq(1-16 \varepsilon)\left(\sum_{i \in I_{1}} 2 r_{i}+\sum_{i \in I_{2}} 4 r_{i}\right) \geq \frac{1-16 \varepsilon}{1+2 \varepsilon} \mathcal{S}(K) .
$$

The result follows by letting n go to ∞ and then ε go to 0 .

We finally prove an important approximation result, namely, a continuum can be approximated simultaneously in the sense of the Hausdorff metric and in the sense of surface energy by a set belonging to a simple class, for instance a polygon.

Proposition 10.13. Let K be a continuum such that $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$. For any positive ε, there exists a continuum F such that ∂F is a finite union of segments and circular arcs, every point of ∂F apart the vertices is of type I , and

$$
K \subset F \subset \mathcal{V}(K, \varepsilon), \quad|\mathcal{S}(K)-\mathcal{S}(F)|<\varepsilon .
$$

Proof. Since $\mathcal{H}^{1}\left(\partial^{\circ} K\right)<\infty$, for any $\delta>0$, there exists at most a finite number of residual domains O_{1}, \ldots, O_{n} of K having diameter larger than δ. Let O_{∞} be the unbounded residual domain of K and let $K^{\prime}(\delta)=\mathbb{R}^{2} \backslash\left(O_{\infty} \cup\right.$ $\left.O_{1} \cup \cdots \cup O_{n}\right)$. Clearly, we have $K \subset K^{\prime}(\delta)$ and

$$
\lim _{\delta \rightarrow 0} D\left(K, K^{\prime}(\delta)\right)=0, \quad \lim _{\delta \rightarrow 0} \mathcal{S}\left(K^{\prime}(\delta)\right)=\mathcal{S}(K)
$$

Therefore we need only to consider the case where K itself has a finite number of residual components. We shall next approximate conveniently each residual domain of K from inside by a suitable domain. Let O_{1}, \ldots, O_{n} be the residual domains of K. Let ε be positive smaller than $1 / 16$. By Proposition 7.9, to each point x of $\partial_{I}^{*} K$ we can associate $r_{1}(x, \varepsilon)$ such that

$$
\forall r<r_{1}(x, \varepsilon) \quad D\left(K(x, r), U_{-}(x, r, \theta(x))\right)<r \varepsilon .
$$

Similarly, to each point x of $\partial_{I I}^{*} K$ we can associate $r_{2}(x, \varepsilon)$ such that

$$
\forall r<r_{2}(x, \varepsilon) \quad D(K(x, r), L(x, r, \theta(x)))<r \varepsilon
$$

Let α be the angle in $] 0, \pi / 2[$ such that $\sin \alpha=\varepsilon$. By Definition 4.4, to each point x of $\partial_{I}^{*} K \cup \partial_{I I}^{*} K$ we can associate $r(x, \varepsilon)>0$ such that for any $r<r(x, \varepsilon)$

$$
\mathcal{H}^{1}\left(\partial^{\circ} K \cap U(x, r, \theta(x), \alpha)\right)<r \varepsilon / 8
$$

We impose in addition that

$$
\forall x \in \partial_{I}^{*} K \cup \partial_{I I}^{*} K \quad r(x, \varepsilon)<\frac{1}{3} \min \left\{\operatorname{diam} O_{1}, \ldots, \operatorname{diam} O_{n}, 1\right\} .
$$

We apply the covering Lemma 10.1 with the functions $(1+\varepsilon)^{-1} \min \left\{r_{1}(x, \varepsilon)\right.$, $r(x, \varepsilon)\}$ and $(1+\varepsilon)^{-1} \min \left\{r_{2}(x, \varepsilon), r(x, \varepsilon)\right\}$: there exists a finite family of disjoint balls $B\left(x_{i}, r_{i}\right), i \in I_{1} \cup I_{2}$, such that: for i in I_{1}, x_{i} belongs to $\partial_{I}^{*} K$ and $0<r_{i}<r_{1}\left(x_{i}, \varepsilon\right) /(1+\varepsilon)$, for i in I_{2}, x_{i} belongs to $\partial_{I I}^{*} K$ and $0<r_{i}<r_{2}\left(x_{i}, \varepsilon\right) /(1+\varepsilon)$, and

$$
\mathcal{H}^{1}\left(\partial^{\circ} K \backslash \bigcup_{i \in I_{1} \cup I_{2}} B\left(x_{i}, r_{i}\right)\right) \leq 2 \varepsilon \sum_{i \in I_{1} \cup I_{2}} r_{i} .
$$

Applying Lemmas $10.4,10.7,10.8$, we get

$$
\mathcal{S}(K) \geq \sum_{i \in I_{1} \cup I_{2}} \mathcal{S}\left(K, \stackrel{\circ}{B}\left(x_{i}, r_{i}\right)\right) \geq(1-4 \varepsilon)\left(2 \sum_{i \in I_{1}} r_{i}+4 \sum_{i \in I_{2}} r_{i}\right) \geq \frac{3}{2} \sum_{i \in I_{1} \cup I_{2}} r_{i}
$$

Let

$$
A=\bigcup_{1 \leq k \leq n} \partial O_{k} \backslash \bigcup_{i \in I_{1} \cup I_{2}} \stackrel{\circ}{B}\left(x_{i}, r_{i}\right)
$$

The set A is closed and $\mathcal{H}^{1}(A) \leq 2 \varepsilon \mathcal{S}(K)$. Let $\delta=(\varepsilon / 2) \min \left\{r_{i}: i \in I_{1} \cup I_{2}\right\}$. If A_{1}, \ldots, A_{m} are connected components of A, we have $\mathcal{H}^{1}(A) \geq \mathcal{H}^{1}\left(A_{1}\right)+$ $\cdots+\mathcal{H}^{1}\left(A_{m}\right) \geq \operatorname{diam} A_{1}+\cdots+\operatorname{diam} A_{m}$. Therefore there is at most a finite number of connected components of A of diameter larger than δ. Since the sets $\partial O_{1}, \ldots, \partial O_{n}$ are connected, then each connected component of A intersects the set $\bigcup_{i \in I_{1} \cup I_{2}} \partial B\left(x_{i}, r_{i}\right)$. It follows that there is at most a finite number of components of A, say A_{1}, \ldots, A_{m}, which are not included in $\bigcup_{i \in I_{1} \cup U_{2}} \stackrel{\circ}{B}\left(x_{i}, r_{i}+\delta\right)$. For i in I_{1}, we set

$$
\begin{aligned}
\gamma_{i} & =\left[x_{i}+\left(r_{i}+\delta\right) u\left(\pi+\theta_{i}-\alpha\right), x_{i}+\left(r_{i}+\delta\right) u\left(\theta_{i}+\alpha\right)\right] \\
& \cup S\left(x_{i}, r_{i}+\delta, \pi+\theta_{i}-\alpha, \theta_{i}+\alpha\right) .
\end{aligned}
$$

For i in I_{2}, we set

$$
\begin{aligned}
\gamma_{i} & =S\left(x_{i}, r_{i}+\delta, \pi+\theta_{i}-\alpha, \pi+\theta_{i}+\alpha\right) \\
& \cup\left[x_{i}+\left(r_{i}+\delta\right) u\left(\pi+\theta_{i}-\alpha\right), x_{i}+\left(r_{i}+\delta\right) u\left(\theta_{i}+\alpha\right)\right] \\
& \cup S\left(x_{i}, r_{i}+\delta, \theta_{i}-\alpha, \theta_{i}+\alpha\right) \\
& \cup\left[x_{i}+\left(r_{i}+\delta\right) u\left(\pi+\theta_{i}+\alpha\right), x_{i}+\left(r_{i}+\delta\right) u\left(\theta_{i}-\alpha\right)\right]
\end{aligned}
$$

The sets $\gamma_{i}, i \in I_{1} \cup I_{2}$, are Jordan curves. We denote by int γ_{i} the bounded component of $\mathbb{R}^{2} \backslash \gamma_{i}$ for $i \in I_{1} \cup I_{2}$. For l in $\{1 \cdots m\}$, we choose a point a_{l} in A_{l}. We define finally

$$
F=K \cup \bigcup_{i \in I_{1} \cup I_{2}} \overline{\operatorname{int} \gamma_{i}} \cup \bigcup_{1 \leq l \leq m} B\left(a_{l}, 2 \operatorname{diam} A_{l}\right) .
$$

By construction, for i in I_{1}, we have $e\left(U_{-}\left(x_{i}, r_{i}+\delta, \theta\left(x_{i}\right)\right), \gamma_{i}\right) \leq\left(r_{i}+\delta\right) \varepsilon$ and also $r_{i}+\delta \leq r_{i}(1+\varepsilon / 2)<r_{1}\left(x_{i}, \varepsilon\right)$ whence $D\left(K\left(x_{i}, r_{i}+\delta\right), U_{-}\left(x_{i}, r_{i}+\right.\right.$ $\left.\left.\delta, \theta\left(x_{i}\right)\right)\right)<\left(r_{i}+\delta\right) \varepsilon<\varepsilon$. Similarly, for i in I_{2}, we have $e\left(L\left(x_{i}, r_{i}+\right.\right.$ $\left.\left.\delta, \theta\left(x_{i}\right)\right), \gamma_{i}\right) \leq\left(r_{i}+\delta\right) \varepsilon$ and also $r_{i}+\delta \leq r_{i}(1+\varepsilon / 2)<r_{2}\left(x_{i}, \varepsilon\right)$ whence $D\left(K\left(x_{i}, r_{i}+\delta\right), L\left(x_{i}, r_{i}+\delta, \theta\left(x_{i}\right)\right)\right)<\left(r_{i}+\delta\right) \varepsilon<\varepsilon$. For l in $\{1 \cdots m\}$, we have also $e\left(K, B\left(a_{l}, 2 \operatorname{diam} A_{l}\right)\right) \leq 4 \operatorname{diam} A_{l} \leq 4 \delta<2 \varepsilon$. Therefore $e(K, F)<2 \varepsilon$ (notice here that it was necessary to perform the covering with the functions $r_{1}(x, \varepsilon) /(1+\varepsilon), r_{2}(x, \varepsilon) /(1+\varepsilon)$ in order to get this inequality). The previous considerations show also that for any i in $I_{1} \cup I_{2}$, we have $K \cap B\left(x_{i}, r_{i}+\delta\right) \subset$ int γ_{i}, therefore

$$
\bigcup_{1 \leq k \leq n} \partial O_{k} \subset \bigcup_{i \in I_{1} \cup I_{2}} \operatorname{int} \gamma_{i} \cup \bigcup_{1 \leq l \leq m} \stackrel{\circ}{B}\left(a_{l}, 2 \operatorname{diam} A_{l}\right)
$$

whence in particular

$$
\partial F \subset \bigcup_{i \in I_{1} \cup I_{2}} \gamma_{i} \cup \bigcup_{1 \leq l \leq m} \partial B\left(a_{l}, 2 \operatorname{diam} A_{l}\right)
$$

The definition of F implies furthermore that $\partial F \cap \partial K=\varnothing$, and since F is built by adding to K a finite number of sets delimited by circular arcs and segments, then ∂F is a finite union of segments and circular arcs, and every point of ∂F apart the vertices is of type I. Let i belong to I_{1}. We apply Lemma 7.2 with the sets

$$
U_{-}\left(x_{i}, r_{i}(1+\varepsilon), \theta\left(x_{i}\right), \alpha\right), \quad V_{-}\left(x_{i}, r_{i}(1+\varepsilon), \varepsilon / 2, \theta\left(x_{i}\right), \alpha\right) .
$$

Since

$$
\mathcal{H}^{1}\left(\partial^{\circ} K \cap U\left(x_{i}, r_{i}(1+\varepsilon), \theta\left(x_{i}\right), \alpha\right)\right)<r_{i}(1+\varepsilon) \varepsilon / 8<r_{i} \varepsilon / 2,
$$

and since no residual component of K is contained in $B\left(x_{i}, r_{i}(1+\varepsilon)\right)$, then

$$
V_{-}\left(x_{i}, r_{i}(1+\varepsilon), \varepsilon / 2, \theta\left(x_{i}\right), \alpha\right) \subset \stackrel{\circ}{K}
$$

Thus ∂F does not intersect $S\left(x_{i}, r_{i}+\delta, \pi+\theta_{i}+3 \alpha, \theta_{i}-3 \alpha\right)$. It follows that

$$
\begin{aligned}
\mathcal{S}(F) \leq & \sum_{i \in I_{1}} \mathcal{H}^{1}\left(\gamma_{i} \backslash S\left(x_{i}, r_{i}+\delta, \pi+\theta_{i}+3 \alpha, \theta_{i}-3 \alpha\right)\right) \\
& +\sum_{i \in I_{2}} \mathcal{H}^{1}\left(\gamma_{i}\right)+\sum_{1 \leq l \leq m} \mathcal{H}^{1}\left(\partial B\left(a_{l}, 2 \operatorname{diam} A_{l}\right)\right) \\
\leq & \sum_{i \in I_{1}} 2\left(r_{i}+\delta\right)(1+4 \alpha)+\sum_{i \in I_{2}} 4\left(r_{i}+\delta\right)(1+\alpha)+\sum_{1 \leq l \leq m} 4 \pi \operatorname{diam} A_{l} \\
\leq & (1+\varepsilon)(1+4 \alpha)\left(\sum_{i \in I_{1}} 2 r_{i}+\sum_{i \in I_{2}} 4 r_{i}\right)+8 \pi \varepsilon \mathcal{S}(K) \\
\leq & \mathcal{S}(K)((1+\varepsilon)(1+4 \alpha) /(1-4 \varepsilon)+8 \pi \varepsilon) .
\end{aligned}
$$

Recalling that $\sin \alpha=\varepsilon$, we have the desired estimate and the set F answers the problem.

Corollary 10.14. For any continuum K, the surface energy $\mathcal{S}(K)$ is equal to

$$
\mathcal{S}(K)=\inf \left\{\liminf _{n \rightarrow \infty} \mathcal{H}^{1}\left(\partial K_{n}\right):\left(K_{n}\right)_{n \in \mathbb{N}} \in\left(\mathcal{K}_{c}^{J}\right)^{\mathbb{N}}, \lim _{n \rightarrow \infty} D\left(K, K_{n}\right)=0\right\}
$$

where \mathcal{K}_{c}^{J} is the class of the connected compact sets K such that $\mathbb{R}^{2} \backslash K$ has a finite number of bounded components, the boundaries of which are disjoint Jordan curves. The equality is still valid if we require that these Jordan curves are polygonal, i.e., they consist of a finite number of segments.

REFERENCES

[1] K. S. Alexander - J. T. Chayes - L. Chayes, The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation, Comm. Math. Phys. 131 no. 1 (1990), 1-50.
[2] R. CACcIoppoli, Misura e integrazione sugli insiemi dimensionalmente orientati I, II, Rend. Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., Ser. VIII Vol. XII fasc. 1,2 (gennaiofebbraio 1952) 3-11, 137-146.
[3] R. Cerf, Large deviations for i.i.d. random compact sets, Proc. Amer. Math. Soc. 127 (1999), 2431-2436.
[4] R. CERF, Large deviations of the finite cluster shape for two-dimensional percolation in the Hausdorff and L^{1} metric, J. Theoret. Probab. 12 no. 4 (1999), 1137-1163.
[5] R. CERF, Large deviations for three dimensional supercritical percolation, Astérisque 267 (2000).
[6] E. De Giorgi, Nuovi teoremi relativi alle misure ($r-1$)-dimensionali in uno spazio ad r dimensioni, Ricerche Mat. 4 (1995), 95-113.
[7] R. L. Dobrushin - R. Kotecký - S. B. Shlosman, "Wulff construction: a global shape from local interaction", AMS translations series, Providence (Rhode Island) 1992.
[8] K. J. Falconer, "The geometry of fractal sets", Cambridge studies in advanced mathematics, Cambridge University Press, 1985.
[9] E. Giustr, "Minimal surfaces and Functions of bounded variation", Monographs in Mathematics, Birkhäuser, Basel, 1984.
[10] G. P. Leonardi, Optimal subdivisions of n-dimensional domains, PhD Thesis, Università di Trento, 1998.
[11] P. Mattila, "Geometry of sets and measures in Euclidean spaces", Cambridge studies in advanced mathematics, Cambridge University Press, 1995.
[12] M. H. A. Newman, "Elements of the topology of plane sets of points", 2nd edition, Cambridge University Press, 1954.

Université Paris Sud
Mathématique
Bâtiment 425
91405 Orsay Cedex, France
Raphael.Cerf@math.u-psud.fr

