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Nonlinear Parabolic Equations with
Natural Growth Terms and Measure Initial Data

DOMINIQUE BLANCHARD - ALESSIO PORRETTA

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXX (2001 ),

Abstract. We investigate the existence and the stability of the solutions of a non-
linear evolution equation with a local quadratic term with respect to the gradient
of the type and for measure initial data. We extend the notion of renor-
malized solutions for this problem. Under a natural condition on the convergence
of the initial data, we prove the compactness of the truncation of solutions in the
energy space. Then we show that the integrability of g at infinity is a necessary
and sufficient condition for the stability of the problem with respect to general
measure data, as well as for the existence of renormalized solutions.

Mathematics Subject Classification (2000): 35K55 (primary), 35K60, 35R05
(secondary).

1. - Introduction

In this paper we investigate the problem of existence of solutions of the
following initial-boundary value problem:

where Q is an open bounded subset of JRN, N &#x3E; 1, T &#x3E; 0, and we have
set Q the cylinder S2 x (0, T ) and E its lateral surface. We assume that

a (x, r, ~ ) : Q x - is a Caratheodory function (i.e. measurable with

respect to (x, t) and continuous with respect to ~) such that:

Pervenuto alla Redazione il 10 marzo 2000 e in forma definitiva il 6 febbraio 2001.
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for (~ ~ 1]) in 1R N and almost every (x, t) in Q, where a, .8 &#x3E; 0,
and that the function s H g(s) is continuous and satisfies the sign condition

The data are taken such that:

where Mt (f2) is the space of positive Radon measures on S2 with bounded
total mass (i.e.  +oo). In fact, while (gi) is a structural assumption
on equation (1.1) which plays a crucial role in our study, the assumption of
positiveness on the data is made only to simplify some technical arguments.

In this context of nonlinear operators, if holds true existence results for

problem (1.1) have been proved in [LaMu] when f belongs to L2(0, T; 
and u o is in L 2 ( S2 ) . The case where f belongs to and u o - 0 is

investigated in [DO] under few extra conditions on g that lead to a weak
solution u of ( 1.1 ) in L2 (0, T ; Hol(Q)). Finally in [P] problem ( 1.1 ) is studied
under the assumptions adopted in the present paper and in the case when uo
lies in L 1 (S2). As already pointed out in this last paper, the extension to general
measure initial data seems to be not always possible. For instance, assume that

Then looking for a weak solution u of ( 1.1 ) such that is in 

leads, in some sense, to a solution u in L 2(0, T; Hol(Q)). As a consequence
of trace results, then u o must be in 

Thus the aim of our work is to investigate the link between the behaviour
of g (s) at infinity and the measure uo which allows, or which is needed, to
have solutions in some appropriate sense.

In fact, the main point in our study is the relationship between the possibility
to find solutions of ( 1.1 ) and the stability properties of the equation, as they
naturally arise when one tries to solve ( 1.1 ) by approximating the singular data
f and uo with sequences of regular functions. For example, letting and

uo, be a standard approximation of f and uo constructed by convolution, we
consider the approximating problems:

and we study the possibility to find a solution of ( 1.1 ) as limit of a subsequence
of solutions of (1.2). We are going to prove that, regardless of any other

assumption on g(s) but for (gl), a compactness result on the sequence lu,l
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is always available. On the other hand, it may happen that the limit of u, is
not a solution of ( 1.1 ). Precisely, we prove that if uo is not assumed to be in
L1(Q), a necessary and sufficient condition to pass to the limit in (1.2) and
get a solution of ( 1.1 ) is the integrability of g (s) at infinity. In particular, if

f = 0 and uo E is singular with respect to Lebesgue measure, then
the assumption that g(s)ds = -1-0o implies that the whole sequence u,.

converges to zero.
The main tool to obtain this result is the proof that, setting, for every k &#x3E; 0,

Tk(s) = max(-k, min(s, k)) the truncation function at levels ~k, then Tk(u,) is
strongly compact in the energy space L 2(0, T; Ho (S2)). Let us recall that this
kind of compactness results on the truncations of solutions of approximating
problems, like (1.2), plays a crucial role in the existence theory for nonlinear
equations with integrable or measure data. As for parabolic initial boundary
value problems, the strong convergence in L2(0, T; Ho (S2)) of truncations of
solutions of approximating problems was proved, in case of L 1 data, in [Bl]
(see also [BIMR]) if g - 0, and in [P] with the lower order term having
natural growth. Adapting a technique recently introduced in [DMOP] for elliptic
equations, here we extend these results to the case of measures as initial data,
under the assumptions that the sequence uo, converges to uo in what is called the
narrow topology of measures (i.e. -~ for every V in 
and satisfies a sort of compatibility condition with respect to the Lebesgue
decomposition of uo, loosely speaking that the L 1 part of uo is approximated in
the strong topology of These requirements are satisfied, for instance, by
the approximation of uo constructed through convolution. Moreover we prove,
in Example 2.5, that this specific approximation of the initial data is actually
necessary in some sense since the strong convergence of the truncations may
be false if uo, is only assumed to converge to uo in the narrow topology of
measures.

As a consequence of these stability properties proved on the solutions
of (1.2), we are led to the problem of finding a suitable definition of solution
of (1.1) which may provide existence and stability at the same time, and this
is why we choose to set our results in the framework of the so-called renor-
malized solutions. Let us recall that the definition of renormalized solutions
was given first in [DL] in the context of hyperbolic equations of conservation
laws and then adapted to second order elliptic problems in [BDGM], while in
the theory of boundary value problems with L 1 data it has often been used

recently in order to get uniqueness of solutions (see [LM], for the stationary
case, [BIM], [BIMR], [CW] for evolution equations). Finally, in [DMOP] an
extension of this framework to general measure data has been given for elliptic
equations. We follow the approach of this last paper extending this notion to
problem (1.1) when u o E and showing how the renormalized solutions
emphasize the stability properties mentioned above by selecting only the stable
solutions.

We are grateful to the referee for pointing out the work of [GV] in which
a systematic study of blowing-up and extinction properties of the solutions
of nonlinear parabolic problems is performed. In [GV], the authors give a
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general construction of extended semigroups for possibly singular data which
are measurable functions on S~. Losely speaking the method uses monotone
approximations of singular functions. This allows to define generalized solutions
for such singular initial data and then to describe their blowing-up, extinction
or singular properties. It is worth noting that such a construction can not
be achieved (at least with the same technique) as far as measure initial data
are concerned (since in this case no monotone approximations are available).
Independently. of this simple technical argument, we would like to emphasize
that the existence (and stability) or nonexistence (and unstability) results obtained
in the present paper could hardly be classified in the blowing-up (or extinction)
theory for parabolic equations since they are valid on any time interval [0, T].
Our results are actually in the same spirit as those in the article [BF] which
concern the semilinear equation

They prove that the absorption term is responsible for the lack of solutions
in the case where p is large and uo is a singular measure. Similar convergence
results with possibly boundary layer phenomena (the conclusion we obtain) are
also observed in the semilinear case. Again this sort of effects seems to be
closer to removable singularity type results rather than to blow-up or extinction
properties.

The paper is planned in the following way; in Section 2 we will precise
the notion and some basic properties of renormalized solutions and we will
state the results that we obtain, whose proof, which is rather technical, is left
to Section 3.

2. - Definition of renormalized solutions and statement of the results

Let us first fix some notations. Henceforward, we will consider, for every
measure uo, its Lebesgue decomposition by writing

where uo L E is the restriction of uo to the set E, defined as a measure by
setting = uo(B fl E ) for every Borelian subset B in Q. Moreover

we will denote by C§°([0, ~’ ) x Q) the set of functions V belonging to 
such that w = 0 on £ U (Q x 

The main idea of renormalized solutions is that, if S is a function in

W2,, (R) such that S’ has compact support, multiplying formally the equation
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(1.1) by S’(u) one gets:

so that the equation is in some sense restricted to the subset of Q where lul ~ L,
if L is such that Supp(S’) C [-L, L], and u can be replaced by its truncation
TL(u), which can be asked to belong to the energy space L 2(0, f’; On
the other hand, since the equation (2.1) only considers the properties of the
truncations of u, the renormalized formulation usually needs to add an extra-
condition to recover, in some sense, the behaviour of u at infinity. Moreover, for
any such function S(r) as in (2.1), it follows from the fact that Supp(S’) is com-
pact and from the renormalized equation that S(u) belongs to L2(0, T; 
and then belongs to the space ~(6)+Z/’(0,:r;~(~)), which im-
plies that S(u) belongs to C([O, T]; L 1 (f2)) (for a proof of this trace result
see [P]). This means that (2.1) does not take into account the singular part
in the Lebesgue decomposition of the measure uo. This prompts to ask S(u)
to satisfy the initial condition S(u)(t = 0) = (as it is the case when

dealing with L 1 data, see e.g. [BIM]). To understand how the extra condition í

at infinity appears and is linked to the singular part u’ 0 of uo, the following
heuristic argument can be carried on.

Since we expect renormalized solutions to be weak solutions, let us try
to recover from (2.1) the usual weak formulation, by taking a sequence of
functions { Sn (r ) { converging to the identity function I(r) = r and such that

has compact support for every n. Since we will very often make use of
these auxiliary functions linking the renormalized and the weak formulation, let
us fix once for all the following notations.

DEFINITION ~.1. Setting, for every k &#x3E; 0, Tk (s) = max(-k, min(s, k)) the
truncation function at levels ~k, we define

Note that converges to 1 as n tends to infinity and has compact
support, so that Sn(s) is a sequence of W2,, (R) functions having a derivative
with compact support and converging, as n tends to infinity, to the identity
function I (s) = s. Let then now u satisfy the renormalized formulation (2.1),
and for simplicity assume that uo &#x3E; 0 and u 2:: 0. Let us also assume that
u satisfies some standard regularity, that is u belongs to L"(0, T ; n

Z~(0, T; so that by (a2) we also have a (x, t, Vu) in and

let belong to (we will prove later that every renormalized
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solution has this regularity). We can take S = Sn in (2.1 ) in order to see
whether u satisfies the weak formulation as n tends to infinity. Since we ask

= 0) = Sn (uo) we have for every w in Coo ([0, T ) x S2):

Thanks to the regularity satisfied by u, we can pass to the limit, as n tends to
infinity, to obtain:

Since we expect u to be also a weak solution it should also satisfy:

which compared with (2.4) gives (recall that uo = uo + u’):

At least for positive data and solutions, this is the extra-condition we were

looking for, except that we will ask it to hold true for w in C ( Q ), which is
slightly stronger. We introduce now the definition of renormalized solutions for
signed measures, later we prove that renormalized solutions corresponding to
positive data are always positive. For any signed measure uo, let denote
the positive and negative parts of u’, both being singular, u’ = (uo)+ - (u’)-.

DEFINITION 2.2. A measurable function u, almost everywhere finite, is said
to be a renormalized solution of (1.1) if

~ Tk (u) E L2 (o, T ; Ha (S2)) for every k &#x3E; 0,
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~ we have:

9 for every S E W2,, (R) such that S’ has compact support u satisfies in
the sense of distributions in Q:

and

Firstly, let us see that requiring condition (2.5) to hold true for w in C(Q)
allows to prove some standard regularity properties on renormalized solutions,
and moreover, if f and uo are positive, every renormalized solution is positive
too. Let us point out that in the following we will make use of the integration
by parts formula applied to functions which belong to L2 (o, T ; 
and have a time derivative in the space L~(0, T ; + like, for

example, the function S(u) appearing in the renormalized formulation (2.6).
Such generalizations of the classical integration by parts formula can be found,
for instance, in [BMP2], or in [CW].

PROPOSITION 2.3. Let u be a renormalized solution of ( 1.1 ) in the sense of
Definition 2.2. Then u belongs to T ; f1 T ; 

q  is in L 1 ( Q) and the following hold true:

where Co is a positive constant depending on I uo 1 (0) and Moreover, if
f &#x3E; 0 and uo &#x3E; 0 (in the sense of measures), then u &#x3E; 0.

PROOF. Let us choose Tk (u) as test function in (2.6) with S = Sn (r), where
Sn is defined in (2.2). Then for n large enough we have that Tk (u) = Tk ( Sn (u ) ),
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so that defining 8k(r) = J~ Tk (t) d t we have:

for almost every r in (0, T). Using (a1 ) and the sign condition (gi ) we obtain:

which yields, as n tends to infinity, thanks to (2.5) and Fatou’s lemma,

for almost every r in (0, T). As a consequence of (2.7) we obtain:

Thus is in L 1 ( Q), and u is in Moreover the

estimate on Tk(u) also implies that u belongs to T ; 0 for every
q  U, according to the results in [ST] (see also [BDGO]). In fact, in the
previous paper these regularity results are proved under the assumption that
N ~ 2, but the case N = 1 can be dealt with exactly as the case N = 2, and
u can still be proved to belong to Lq ( 0, T; for every q  N+2 if
N = 1. Last estimate of Proposition 2.3 is obtained through similar arguments
using Tk(u) as test function in (2.6).
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Let now f and uo be positive. To see that u &#x3E; 0, it is enough to take
Tk(u-) as test function in (2.6) with S = Sn and to use (gl ). Setting =

fo Tk (s-) ds, we have:

Since u is a renormalized solution it satisfies (2.5), so that, letting n tend to
infinity and using that (u’)- = 0, we get that u is positive. D

Note that Proposition 2.3 ensures that renormalized solutions have the reg-
ularity we asked in the above argument used to explain condition (2.5). Thus,
using Proposition 2.3 and (2.5), the same reasoning now proves that a renormal-
ized solution is also a weak solution. It is also easy to prove that the two con-

cepts are in fact equivalent if f and uo belong respectively to L2 (o, T ; 
and to L 2 (Q).

PROPOSITION 2.4. Every renonnalized solution is a weak solution, the converse
being true if f belongs to L2(0, T ; and uo belongs to L2 (S2).

PROOF. We already proved that a renormalized solution is a weak solution.
On the other hand, if f belongs to L 2 (0, T; H-1 (S2)), say f = -div(F) with
F in L2(Q)N, and uo is in L 2(Q), then a weak solution u satisfies the initial
condition u (o) = uo and the variational formulation:

for every v in where (.; ) denotes the duality
between Hol(Q) fl L’(Q) and -I- Taking v = with
S E W2,, (R) such that S’ has compact support and w is in C§°([0, T) x Q) we
easily see that u satisfies (2.6). Condition (2.5) is obtained choosing v = On (u),
where 9n is defined in (2.2). Indeed we have, using (gi) and integrating by
parts:

which yields, by and Young’s inequality,

and (2.5) follows letting n go to infinity, since in this case uo = 0. 0
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We are first concerned with the stability properties of renormalized solu-
tions, which also include, as a consequence of Proposition 2.4, the study of the
behaviour, as 8 tends to zero, of the approximating sequence (us) of solutions
of (1.2), where f, converges weakly to f in and uo, converges to uo
in what is called the narrow topology of measures, that is

We will sometimes refer to (2.8) saying that uo, converges tightly to uo, which
also implies the important estimate that is uniformly bounded with
respect to E. Under the assumptions (~i), (a2), (a3), the stability properties of
the renormalized solutions with respect to the data (uo,, fe) are strongly related
to the compactness of the sequence (for any fixed k &#x3E; 0) in the strong
topology of the energy space L~(0, T; HJ(Q)). By contrast with the case where
uo, is assumed to converge to uo strongly in the strong convergence of
the truncations may be false under the only assumption (2.8). The following
example, in the simplest case of the linear heat equation, shows that, even
for smooth functions uo and uo, satisfying (2.8) the strong convergence of the
truncations is violated if the sequence uo, does not converge to uo in measure
on S2.

EXAMPLE 2.5. Assume that uo is a positive smooth bounded function and
consider an approximation of positive functions uo, such that (uos) converges
to uo in the sense of (2.8) but uo, does not converge to uo in measure. It
is quite easy to construct a similar example, for instance the sequence 

1

-:ZX(ej-e3,ej)’ where 8 = En - n , converges tightly to 1 but it converges
to zero in measure.

Let us consider the solutions u, of the heat equation:

By standard linear theory (see also [BG]) we have that us strongly converges
in to the unique solution u of

which is a bounded smooth function on Q. Suppose now that the sequence
Tk(u,) strongly converges to Tk(u) in L 2(0, T; Ho (S2)) for every k &#x3E; 0, and
take an auxiliary function of real variable 7k(s) which is a smooth truncation,
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in the sense that 1k(s) is a C2 odd function such that ~ (s ) = s if Isl s ~, and
= k if s &#x3E; k. Then the function 1k(ue) solves the equation:

and by the strong convergence of truncations we deduce (recall that T¡’ has
compact support) that {~k (u~) } is strongly convergent in L~(0, T ; Ho (S2)) and
at is strongly convergent in the space Z~(3)+Z~(0, T; H - 1 (~2)). But the
space W = {u EL 2(0, T; + L 2(0, T; H-1 (S2))} with its

natural norm continuously injects into C([0, T]; Ll(Q)) (see [P]), which implies
that the sequence strongly converges in to 1k(uo). Since for k

large we have = uo, then for any a &#x3E; 0

which yields

Since uo, is bounded in converges to in measure,

letting first 8 tend to zero, then k go to infinity, we conclude that uo, converges
to uo in measure, getting a contradiction, so the sequence of truncations can
not converge strongly in L~(0, T; Ho’(Q)). D

The previous example shows that the strong convergence of truncations can
not in general be expected for every choice of the approximating sequence Uoe
tightly converging to uo, but in some sense we need an approximation of uo
which is consistent with its Lebesgue decomposition into u’ and u’, since the
L 1 part should be approximated in the strong topology of L 1 (S2). Moreover to
simplify a few technical arguments we will restrict the whole analysis to the
case of positive data f, and uo,, which as a consequence of Proposition 2.3
implies that we deal with positive solutions us of (1.1). Thus we consider a

sequence C such that:
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We also take a sequence of positive functions C weakly convergent
to f in and we study the stability of the sequence of renormalized
solutions of the Cauchy-Dirichlet problems:

If f, and UOE are, for instance, bounded functions, we recover from next theorem
the study of ( 1.2); in fact we allow f, to belong only to L 1 ( Q) and UOE to be
a general measure also containing a nonzero singular part in its Lebesgue
decomposition, so that we consider the cases that Uo is approximated both
with singular measures and with L 1 functions. Our main stability result is the
following, which is new even for g w 0, and which shows how the integrability
of g(s) plays a decisive role in the perturbed equation.

THEOREM 2.6. Let C L 1 ( Q) be a sequence of positive functions weakly
converging to f in L 1 (Q) and let C (S2) tightly converge to uo in the sense
of (2.8) and satisfying (2.9). Let u, be renormalized solutions of (2.10) in the sense
of Definition 2.2. Then there exist a measurable function u, and a subsequence still
indexed by 8, such that

Moreover we have:

and u is a renormalized solution of (1.1).
(ii) if f +°° g(s)ds = +oo then:

and u is a renormalized solution of problem (1.1) with initial datum ur. 11
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REMARK 2.7. Last conclusion of Theorem 2.6 says that, if uo E is
concentrated on a set of zero Lebesgue measure (like, for instance, the Dirac
mass), then every sequence of renormalized solutions us of (2.10) admits a
subsequence converging to a renormalized solution u of (1.1) with zero initial
datum, since in this case uo = 0. If also f = 0, it can be easily proved that
u = 0 is the only possible limit function u, since it is the only renormalized
solution of (1.1) with zero data (this also follows from Proposition 2.3, since
u should be positive and negative at the same time). Thus in the case that

f = 0 and uo is singular with respect to the Lebesgue measure we deduce,
under the assumption (ii) of Theorem 2.6, that every sequence of renormalized
solutions of (2.10) converges to zero. In particular this applies to every sequence
of solutions of the regular problems (1.2) defined through convolution of the
data. o

The proof of Theorem 2.6 is rather technical and will be achieved in several
steps in Section 3. In the case g(s)ds  -f-oo, Theorem 2.6 leads to our
main result, which extends those proved in [P] with L 1 data, and which is new
even for g - 0 as far as renormalized solutions are concerned.

THEOREM 2.8. Let assumptions (al) - (a3) and (gl) be satisfied, and moreover
assume that  +oo. Let f E f &#x3E; 0, and let Uo E Mt(Q).
Then there exists a renormalized solution of (1. 1).

PROOF. Choosing two sequences and of bounded functions sat-

isfying the assumptions of Theorem 2.6 as s tends to zero (for instance, it
is enough to take a standard convolution of f in Q and uo in Q), then by
the results in [BMP2] there exist weak solutions u, of (2.10), which are also
renormalized solutions thanks to Proposition 2.4. Then it is enough to apply
Theorem 2.6, (i), to conclude. 0

In the case where = the conclusion of Theorem 2.6

shows that there is no stability with respect to initial data except for 
data. This result is emphasized, in some sense, by the following theorem.

THEOREM 2.9. Assume that (al)-(a3) and (gl) hold true, and that g (s )d s =
-f-oo. Let f f &#x3E; 0, and let Uo E Then there exists a renormalized
solution of (1. 1) if and only if uo is in L 1 (Q). D

REMARK 2.10. Note that Theorem 2.9 does not say anything on the nonex-
istence of weak solutions under the assumption that g(s)ds = -E-oo, so

that this problem is still open. Nevertheless, as a consequence of Theorem 2.6,
under this condition on g, weak solutions, even if they exist, are certainly not
stable with respect to the convergence of the data as considered above. 0

REMARK 2.11. With the same techniques and very close proofs, similar
results can be obtained for the general problem
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where a (x, t, s, ~) satisfies, for every s in R, every ~, r~ (~ ~ q) in and
almost every (x, t ) in Q:

and H (x, t, s, ~ ) satisfies, for every s in R, every ~ in and almost every
(x, t) in Q:

and

In particular, under the assumption that g(s)ds  -f-oo, for every f E
L 1 ( Q), f &#x3E; 0, and for every Uo E it is possible to find a renormalized
solution of problem (2.11 ). On the other hand, the results of Theorem 2.6 in the
case (ii), and those of Theorem 2.9, can be generalized to (2.11 ) if a (x, t, s, ~ )
satisfies

t, s, ~) ~ p &#x3E; 0 for every (s, ~) E R x and a.e. (x, t) E Q,

and H (x, t, s, ~ ) satisfies, for every (s, ~ ) E R x RN and almost every (x, t) E Q,

3 L &#x3E; 0 : H(x, t, s, ~)sign(s) &#x3E; g(s) ~~ ~2 for every s 

with fL °° g(s)ds = +oo. 0

3. - Proof of the results

We start the proof of Theorem 2.6 with the following lemma on the a
priori estimates obtained on the renormalized solutions.

LEMMA 3.1. Let Ue be renormalized solutions of (2.10), with if,) and 
satisfying the assumptions of Theorem 2.6. Then there exists a positive constant C,
not depending on 8, and a positive constant Ck, which depends on k but not on E,
such that the following estimates hold true:
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Moreover there exist a subsequence, still indexed by s, and a measurable function u
belonging to L°° (0, T; f1 T ;  N+1 such that+1

Tk (u) belongs to L2(0, T; Ho(S2)) for every k &#x3E; 0 and:

where ark belongs to L2(Q)N and a belongs to every q  N+l.
PROOF. Since and are uniformly bounded on 8, the

estimates follow from Proposition 2.3. and from the growth assumption (a2).
The almost everywhere and the strong convergence of Us in Ll(Q) are standard
results (see [BG], [BIM] for example). D

In order to show that the sequence of truncations is in fact strongly
compact in L2(Q, T; Hol(Q)), we make use of different techniques already em-
ployed in similar contexts (see [BIMR], [P]). First of all, we introduce the aux-

iliary function of real variable = sePs2, which was first used in [BMP] to
deal with hamiltonian terms having quadratic growth with respect to the gradi-
ent. Indeed, an essential role will be played by the following property enjoyed
by (the proof is trivial):

We also need to recall the following definition of a time-regularization of Tk (u),
which was first introduced in [La], then used in several papers afterwards (see
[DO], [BDGO], [P], [B1MR]). Let z" be a sequence of functions such that:

Existence of such a sequence z, is easy to establish. Then, for fixed k &#x3E; 0,
and v &#x3E; 0, we denote by Tk (u) v the unique solution of the problem
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Then we have that Tk(u)v belongs to L 2(0, T; Hg(Q)) n L°°(Q) and at
belongs to L 2(0, T ; and it can be easily proved (see also [La]) that

In order to deal with the singular term uo in the initial datum, we adapt an
idea of [DMOP]. Namely, we consider a sequence of compact subsets Ks C E
(recall that Uô = uo L E) such that

and then a sequence of functions 1/Jð belonging to and satisfying:

which also implies that ~/ry converges to zero weakly-* in Then we

define vs as the solution of the heat equation:

It can be easily seen that, for fixed 8 &#x3E; 0, vs is a smooth function on Q such
that 1, and moreover, as 8 tends to zero,

We are now ready to prove our result.

PROOF OF THEOREM 2.6.
1. Proof of the strong convergence of truncations. Throughout the proof, we

will always make use of the renormalized formulation of (2.10) written with
S = Sn as defined in (2.2), that is

Our goal will be to prove the asymptotic estimate:
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for every k &#x3E; 0, since then the strict monotonicity assumption (a3 ) implies
that strongly converges to Tk(u) in L~(0, T ; Hol(Q)) (see for instance
Lemma 5 in [BMP]). In order to get (3.11), we proceed in several steps.

STEP 1. Let vs and be defined as above. We take (T - 
as test function in (3.10). Since 0 if u, &#x3E; k, choosing

n large leads to u,)+) = (fJp«k - Sn(UE))+) = (fJp«k - 
and 0. Then, setting = t)+) d t and
integrating by parts we get:

Using the fact that = 0 if Us &#x3E; k, we can replace Us with 
in all the integrals above; setting Nlk = g (s ) we get, using also (a 1 ) :

which yields
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Now we use property (3.2) with a = a and b = Mk, so that for p sufficiently
large we obtain:

Since by (3.1 ) Tk(us) weakly converges in J~(0,r;7~(~)) and =

s)+), which implies that is a bounded function with a com-

pactly supported derivative, and ~k (s ) &#x3E; 0 if s 2: 0, we have that

Using also the weak convergence in of the sequence a (x, t, 
allows then to pass to the limit as 8 tends to zero in (3.12) to obtain:

Due to the convergences properties of vs in (3.9) and to the fact that 
belongs to L2 (o, T ; and crk belongs to we conclude
that:

On the other hand, recall that vs solves (3.8), so by the properties of the heat
N

equation we have IIV8(t + for every to in (0, T)
and every t in (0, T - to), so that we have:
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which yields, by Lemma 3.1,

Then by (3.7) and (3.14) we obtain:

STEP 2. Hereafter, we study the behaviour of the sequence in
that part of the cylinder Q which is far from the support of the singular measure
uo. This is done, following the idea of [DMOP], by localizing in some sense
equation (3.10) through multiplication of each test function by 1 - vs. Apart
from this localization procedure, we take advantage of some methods already
used to get strong convergence of truncations, see [P] and [B1MR], in particular
we prove the estimate (3.11) separately reasoning on the positive and negative
parts of Tk(u). To perform this task in Step 3 and Step 4, the present
step is devoted to establish the preliminary essential estimate:

In order to obtain (3.16), we take vs) as test function in (3.10),
where Oh is defined in (2.2), and we get, integrating by parts,
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Therefore, as n tends to infinity, using condition (2.5) for renormalized solutions,
Lebesgue’s theorem and Lemma 3.1 we obtain:

Now since ~,c~ &#x3E; 0, so that uo~ &#x3E;_ we have:

It follows then from (3.17), using also 

Since

using the fact that us strongly converges in and that at,8 is bounded in

Q (for fixed 8) we obtain:
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Moreover, due to the weak convergence of in (3.1 ) and to the
smoothness of vs, we have:

so that, since a belongs to for every q  N+i and 8h (u) tends to zero
in the weak-* topology of L°°(Q), letting h tend to infinity yields

The above results, together with the fact that ul strongly converges in L 1 (S2)
while tightly converges to uo, allow to obtain from (3.18):

in view of (3.6) and (3.7). This concludes the proof of (3.16). Moreover, note
that from (3.18) we have also obtained:

STEP 3. Let us take the time-regularization defined in (3.4), which
strongly converges to Tk (u) in L 2 (0, T; Ho (SZ)), and choose 
( 1 - vs ) as a test function in (3.10). Since = 0, and k,
if ue &#x3E; k we have wp((ue - Tk(u),)-) = 0, so that wp((ue - Tk(u),)-) =

and all the integrals appearing in (3.10) are in fact taken
only on the subset {(x, t) : Us ::: k}. Finally since 0
if n &#x3E; k, we obtain, for n large enough:
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which yields, using and recalling that Mk = g (s ) (for the sake
of shortness the explicit dependence on x and t is omitted in the derivations

below),

Let us denote, henceforth, by v, 8) any quantity depending on 8, v, 3 such
that

the order in which the limit on each parameter is taken being essential in what
follows.

Due to (3.1) and since converges to 
almost everywhere in Q as E tends to zero and is bounded by we have

Now, as v tends to infinity, converges almost everywhere
(and then weakly-* in to (fJp«u - Tk (u))-) --_ 0, so that

Using (3.1), the weak convergence to f in L 1 ( Q) and the properties
of it is easy to prove that last term in (3.19) converges to zero as E
tends to zero and then v tends to infinity. As a consequence of the above

estimates, (3.19) yields:
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Now we estimate the first term in the right hand side of (3.20) as follows:

We claim that last term of the above equality goes to zero as first 8 tends to
zero and then v tends to infinity. Indeed, we have, as before,

and then the strong convergence of Tk(u)v in L 2(0, T; Ho (S2)) as v tends to
infinity implies:

because Tk (u ) ) - ) - 0. We then deduce from (3.21):

Therefore (3.20) now implies:

where (w) - denotes (w) - Tk(u)v)-(x, t)).
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Since we have, because of the weak convergence of Tk(us) and of the
strong convergence of Tk (u)" in L2(0, T; Ho(0)),

we obtain, choosing by (3.2) p sufficiently large:

Now we investigate the behaviour of the time-derivative term. Since 
= for n sufficiently large, we have, thanks

to (3.4):

Let us set = fo (fJp(t-) dt; then, since :s 0 and 0  vs  1,
integrating by parts we obtain, for n large enough:

Now we can pass to the limit as E tends to zero by means of the Lebesgue
theorem, using that converges to uo in measure (in fact we have that /,t2 E
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converges to zero in measure) and that is uniformly bounded in C.
Then, since we also have that  0, we get:

which yields, letting v tend to infinity and using (3.3),

Tk(t)) = 0 for any t, we obtain:

Thanks to (3.23) we get, from (3.22),

which in turn implies that

STEP 4. This step consists in taking Tk(u)v)+(1 - v3) as a test
function in (3.10). Since us is positive and by assumption (gl ) this leads to:
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We now investigate the behaviour of each term in the right hand side of (3.25).
Due to the definition of Sn, we have:

so that (3.1 ) implies

Thanks to (3.5), letting v tend to infinity then yields:

where lim stays for lim lim. Similarly we will write below lim sup to denote
V-+00 v--&#x3E;oo 03B4---&#x3E;0e---&#x3E;0e---&#x3E; 

V--*00
8-*0

the lim sup taken subsequently on the different parameters, first s, then v, n, 8.
In the same spirit, we have (recall that 

hence by (3.16) we get:

Similarly we have, using the weak convergence of f, in 
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and then, as v tends to infinity, we get:

Gathering (3.26), (3.27) and (3.28), we have that (3.25) implies:

where v, n, 3) is such that:

The time derivative term can be dealt with by using the following lemma, which
extends similar results of [BIMR], [DO].

LEMMA 3.2. Let k &#x3E; 0 be fixed and let Tk (u)v be the time-regularization of
Tk (u) defined in (3.4). Then we have, for n &#x3E; k:

PROOF. First note that for n &#x3E; k we have Tk(Sn(Ue)) = and Tk (Sn (u))
= Tk (u), hence Tk(Sn(u))v = Tk(u)v; moreover it can be easily seen that

(Tk(s) - Tk(u)")+ - (s - Tk(u)v)+ - (k - s)- for 0, so that we have:
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Integrating by parts, using the definition of Tk (u)" we obtain, upon setting
%Pk (r) = for (k - s) - ds:

By definition of wk(r), it can be easily seen that for every fixed z E R such

that I z I  k the function s H I(S-r+12 - is positive for every s in R+,2 
-

so that we deduce from (3.30):

Recalling that uo~ converges in measure to u’ in Q, and that Sn is bounded

by n -!- 1, we can pass to the limit as e tends to zero in (3.31) by means of
Lebesgue’s theorem and we obtain:
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which yields, since 0 almost

everywhere in Q,

Due to (3.3), (3.5), to conclude the proof it is enough to use again Lebesgue’s
theorem as v tends to infinity together with the fact that = 0
for every s in R. 11

Thanks to the previous lemma we can deduce, from (3.29):

STEP 5. In this step we establish the asymptotic estimate (3.11) through
the use of (3.15), (3.24) and (3.32). To this end we write:

As soon as n &#x3E; k, since Supp(S,,) C [- (n + 1), n + 1] and thanks to (3.1), the
first term of the right hand side of (3.33) is estimated as follows:

Using assumption (a2) and the strong convergence of Tk(u)v to Tk (u) in
L2 (0, T ; Ho (S2)), we deduce from the above equality that (recall the definition
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of 

Now the definition of in (3.1) and the pointwise convergence of u, to u
in Q imply that

It follows that:

and as a consequence of (3.9) and (3.15) we obtain:

We now estimate the second term in the right hand side of (3.33).
We have:

since (us - Tk(u)v)- = (Tk(us) - Tk(u)v)-.
Due to the estimate (3.32), and using the fact that almost

everywhere in Q and = 1 if Ue  n, we then deduce that:
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In view of estimate (3.24), it follows that:

Gathering (3.33), (3.35), (3.36), we obtain, using again the properties of Sn :

because of (3.34).
The monotone character of a (x, t, ~) together with the definition of ak

and Lemma 3.1 allow to conclude through the usual monotonicity argument
that (3.11) holds true.

From (3.11 ) and due to the strict monotonicity of a (x, t, ~) in (a3), it
follows (see for instance Lemma 5 in [BMP]) that:

For a subsequence, still indexed by s, (3.37) implies:

Let us also note that since we have, for every o- &#x3E; 0:

we can deduce, using also the L1 (Q) estimate on us, that Vu, converges to
Vu in measure, and therefore, always up to subsequences,

REMARK 3.3. If a (x, t, ~ ) is only assumed to be monotone, but not strictly
monotone, in (a3), then (3.11) still holds true while (3.37) may be false. How-
ever (3.11) in this case implies that
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2. Proof of (i) and (ii). First of all, note that the strong convergence
of truncations allows to deduce, without any further assumption on g, that u
satisfies the renormalized equation (2.6). Indeed, for any S E such
that S’ has compact support, with Supp(S’) c [-L, L], we have from the
renormalized formulation of (2.10):

Using the growth assumption (a~ and (3.37) it is easy to see that a (x, t, 
VTL(ue) is strongly convergent in L 1 (Q) to a(x, t, VTL(u))VTL(u). Since

is bounded in L°°(Q), similarly the term 

S’(TL(ue)) strongly converges in Moreover, since S is a bounded func-
tion, S(u,) converges to S(u) in as 8 tends to zero, so that 

converges to in distributional sense. Thus from (3.38) we deduce, as E
tends to zero, that u satisfies the renormalized formulation:

Note also that, as a consequence of (3.38), can be split into two sequences
such that one is strongly convergent in L2(0, T; and the other is

weakly convergent in since we also know that S(us) strongly converges
to S(u) in L2(0, T; Hol(Q)) by (3.37), we can deduce (see [P]) that S(us)
strongly converges to S(u) in C([0, T]; Ll(Q)). As a consequence of the initial
condition S(uo,,) = S(u’ ) and of (2.9) we deduce that S(u)(0) = S(u’). Thus
what really distinguishes between the case in which g is integrable or not is
the behaviour of the sequence and of the energy term in (2.5).

CASE (i). Let us now assume that g(r)dr  -f-oo in order to prove
that is strongly convergent in To this aim, we define the
function Gk(r) = fo dt and choose as a test function

in (3.10). Using (2.5) for us we have, setting Gk (oo) = g (t) dt:

Then we obtain, by (g 1 ) and (a 1 ) :
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Since Gk is non-decreasing, we easily get, using the properties of f, and uo,
and integrating by parts:

and then, as n tends to infinity,

By Lebesgue’s theorem, since g is integrable, we have that limk_+m Gk (oo) = 0,
so that we conclude:

Estimate (3.40) together with (3.37) allow to show that g(U,)IVU,12 is equi-
integrable in L 1 ( Q); indeed, for any subset B of Q we have:

which yields:

Since the sequence is equi-integrable in L2 ( Q) by (3.37), letting
meas(B) tend to zero and then k go to infinity, using (3.40) we deduce that

Note that we also have that almost everywhere converges to 
so that, by Vitali theorem,
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We are left with the proof of (2.5). To this goal, let us observe that (3.16) now
implies, thanks to (3.37),

Moreover, choosing S = Sn in (3.39) and q; E T) x Q) as a test function,
and letting n tend to infinity, we find, using the fact that a(x, t, Vu) belongs
to Lq(Q)N for C~  N+2 :

On the other hand, since renormalized solutions are weak solutions we have
that use satisfies:

Since a(x, t, VUe) strongly converges to a(x, t, Vu) in and thanks to the

strong convergence of g(ue)IVueI2 in we obtain, as s tends to zero:

for every w in C~([O, T ) x Q). Comparing with (3.42) we obtain that

Let us prove that (3.43) actually holds for w in COO(Q); indeed, we have
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where v03B4 is defined in (3.8). But for every fixed 17 &#x3E; 0 we have, since vs
solves (3.8):

because of Proposition 2.3 and of the strong convergence of and since

luoe(Q)1 is bounded. Letting first 8 and then 1J tend to zero in the above

inequality we obtain:

Then from (3.44), using also (3.41) and (3.43) with w v3(T - t) instead 
(note that for every (p E we have t ) E C~([O, T ) x Q)) we
conclude that

then by a density argument for every w in C(Q), so that u satisfies (2.5) and
is a renormalized solution of ( 1.1 ). This concludes the proof of (i).

CASE (ii). In (3.39) written with S = Sn, let us take as a test

function, where 9~ is defined in Definition 2.1, G(s) = fo g(r)dr and q; is in

C§° ([0, T) x 0), ~o &#x3E; 0. First of all observe that, if n &#x3E; sup {s : G(s) = h + 1 },
then = since G is nondecreasing, so we have, integrating
by parts, and since 0:

Then we deduce, using also that 0h (G(u)) = 1 if u &#x3E; n &#x3E; sup Is : G (s ) = h -I-1 },
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Due to (a2 ) it follows that:

Then as first n and then h tend to infinity, since u is in T; and

meas{G(M) &#x3E; h) tends to zero as h tends to infinity, we find

Choosing V = v3 (T - t) in (3.45), using (3.41 ) and reasoning as in the case (i)
we conclude that

Let us now recover the limit of the sequence Since u, is a weak
solution we have:

so that, tends to zero, we obtain:

But we can also take (3.39) with S = Sn and pass to the limit as n tends to
infinity, to get, by means of (3.46):

which compared with (3.47) gives that
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The same type of arguments as in the proof of the case (i) allow to prove
that (3.48) actually holds true in C(Q). Indeed, by density arguments,
it is enough to establish (3.48) for w in to this purpose, let us note
that we proved, at the end of Step 2 in the proof of the strong convergence of
truncations, .

Then we have, for any V in C’ (Q),

Since by (3.37) and the fact that belongs to we have, taking
the limit in 8 and then in h,

using also (3.49) and the fact that vs tends to zero almost everywhere in Q as
8 tends to zero we deduce that:

Remark that (3.50) still holds true if the limit-sup as 8 tends to zero is replaced
by the limit-inf as 8 tends to zero (because of the positive character of the
integrand in (3.49)). Now we have

Since is bounded in L 1 ( Q) (see Lemma 3.1), we can repeat the
technique that we used to control the last term of (3.44) to show that the last
term of (3.51 ) tends to zero when taking the limit-sup as 8 tends to zero and
then the limit as 8 tends to zero. Taking the limit-sup and the limit-inf as 8
tends to zero in (3.51), and then the limit as 3 tends to zero in the resulting
inequalities, using (3.48) with instead of (3.50) and the properties
of vs, we obtain (3.48) with w in C(Q). Together with (3.46), this proves the
assertion in (ii), and the fact that u is a renormalized solution with datum uo
then follows straightforwardly. D
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This strange phenomenon which happens in the case that g is not integrable
at infinity is definitely hidden in the renormalized formulation, in the sense

specified by Theorem 2.9. Due to the conclusion of the case (ii) of Theorem 2.6,
all we have to prove is that if u is a renormalized solution of ( 1.1 ) and if

g(s) ds = +oo, then = 0. The proof is similar to that of (3.45).

PROOF OF THEOREM 2.9. The existence is proved through the stability result
of Theorem 2.6, (ii). Assume now that u is a renormalized solution, hence
it satisfies (2.6). Choosing S = Sn in (2.6) and the test function 0h(G(u))w,
where G(s) = fo g(r)dr and w is in C°°([0, T) x Q), q; &#x3E; 0, we have:

Since G(s) is a positive, unbounded nondecreasing function, choosing n &#x3E;

sup[s : G(s) = h + 1 } we have that 8h(G(U)) = 8h(G(Sn(u))) and moreover
8h(G(u)) = 1 if u &#x3E; n, so that (3.52) implies, using (a2):

Since meas(G(u) &#x3E; h) tends to zero as h tends to infinity, letting first n and
then h tend to infinity, we deduce from the fact that is in 
and from (2.5):

which implies, choosing w = (T - t)1fr, where * E C~(~2), that uo must be
zero, so that the proof of Theorem 2.9 is complete. o

REMARK 3.4. If a (x, t, ~) is only assumed to be monotone, but not strictly
monotone, we can not use the result of strong convergence of truncations (3.37)
but from (3.11), which can still be obtained, we have (see Remark 3.3) that
a(x, t, VTk(us))VTk(us) weakly converges to a(x, t, VTk(u))VTk(u) in L’(Q).
This is not enough, in general, to pass to the limit in the lower order term
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of the renormalized approximating equation. Nevertheless, if
instead of ( 1.1 ) we consider the Cauchy-Dirichlet problem

under the assumptions on g, f and uo considered in the present paper similar
results to those of Theorem 2.6 can be proved for non strictly monotone oper-
ators, that is for operators satisfying standard coercivity and growth conditions
and only a large monotonicity assumption. D
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