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New Solutions of Equations on Rn

EDWARD NORMAN DANCER

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXX (2001 ),

Abstract. We consider some weakly nonlinear elliptic equations on the whole
space and use local and global bifurcations methods to construct solutions periodic
in one variable and decaying in the other variables. We then use analyticity
techniques to prove there are many subharmonic bifurcations from these solutions.

Mathematics Subject Classification (2000): 35B32 (primary), 35J65, 37K50,
58E07 (secondary).

In this paper, we construct positive bounded solutions of

which are decay to zero in some variables and are periodic in the remaining
variables. We also show that there are frequently solutions of this type with
large supremum (and with rapid local changes in magnitude).

These solutions are of interest for a number of reasons. Firstly little is
known about the structure of the positive bounded solutions on We provide
more examples. Note that solutions on lRn are also of interest because they arise
in a limiting problem for equations on bounded domains as the diffusion goes
to zero (and hence arise in populations models and combustion theory, just to
give two examples). Secondly, these examples are of interest in connection with
understanding the limits of results such as those of Zou [37] on the positive
bounded solutions of Au = uP on Rn for p supercritical. The author became
interested in this problem (for uP) because it arises as a limiting problem for
studying the asymptotic behaviour of the branches of
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when f is superlinear (and in fact supercritical) and D is a bounded domain.
This is discussed in [13]. In [13], the results assume symmetry of the domain
and to try to avoid this, we need to understand more general positive bounded
solutions of -Au = uP on JRn.

Thirdly, our results can be used to study the problem -c2AU = f (u) on
rectangular domains (in RI) with Neumann boundary conditions. Our methods
can be used to construct solutions with a sharp peak on a planar hypersurface
but at the same time the solutions have large variation along the hypersurface.
These seem to be the first such solutions of this type.

Fourthly, our solutions show the limits of some as yet unpublished work
of Busca and Felmer on solutions on RI which decay in some variables.

We now discuss in more detail what we prove. Firstly, by a bifurcation
argument we construct solutions periodic in one variable and decaying in the
others. We also show that for positive nonlinearities, these are much more
difficult to construct. We show they cannot occur if n = 2, 3. On the other
hand for some supercritical nonlinearities which are a small perturbation with
compact support (away from zero) of uP with p = n±3 and n &#x3E; 3 we construct
such solutions. These seem of interest in connection with Zou’s results. Here
we have to be very careful in the choice of spaces.

For some nonlinearities (including uP - u), we use Fredholm degree theory
to construct a global branch. This gives the solutions with large variation claimed
earlier. We also show that in many supercritical cases with n = 3 this branch
oscillates (as in [13]) as it becomes unbounded. This ensures non-uniqueness
for many À.

Finally, for certain real analytic nonlinearities and n = 3, we show that
there are many bifurcations off the primary branch to solutions with large min-
imal period. These solutions decrease and increase many times as we move
across the period. This distinguishes them from the primary branch of solu-
tions. To construct these, we use the techniques from Buffoni, Dancer and
Toland [3], [4]. In particular, we obtain a band spectrum theory for operators
- 0 + (a(x’, xn) + I)I on where a is periodic in xn and decays in x’.
(Here we are writing x = (x’, xn ) where x’ E R.) This appears of

independent interest.
In Section 1, we do the local bifurcation theory, and in Section 2, we

do global bifurcation. In Section 3, we construct the band theory while in
Section 4, we prove the subharmonic bifurcation.

1. - Solutions by local bifurcation

We consider the equation



537

on through the methods hold for more general nonlinearities. We prove the
existence of positive solutions which are periodic in some variables and decay
to zero in the others. Later in the section we discuss other nonlinearities. For

simplicity for the moment we look for solutions which decay in all but one of
the variables. Thus we look for positive bounded solutions of the form u (x’, xn )
where u decay in x’ and are 2xa periodic in xn (but are not constant in xn).
By an obvious rescaling this is equivalent to looking for solutions of

on R’ which decay in x’ and are 2x periodic in xn where X &#x3E; 0. We will

obtain these solutions by a secondary bifurcation from the family of solution

uo(À)(x’) = where uo is the unique decaying radial solution of -Au =
uP - u on Here we must assume 2  p  n±3 (p &#x3E; 2 if n  3) to
ensure the existence of uo. We need p &#x3E; 2 (rather than p &#x3E; 1) for purely
technical reasons which can be avoided as we indicate at the end of the proof.
Let Y = x [-x, 7r]. We will use the space T = JU E L°°(Y) : u is

continuous, u (x’, 2013jr) = u (x’, ;r), u 2013~ 0 as Ix’l -~ oo uniformly in xn, u is
even } .

Note that T is a closed subspace of L°°(Y). It is easy to see that the

map u -~ uP is a C2 mapping on T. (This uses p &#x3E; 2). We extend our
nonlinearity for u  0 to keep it C2. Moreover if y &#x3E; 0, (- 0 + y I ) -1 1 maps
T into itself. (More precisely, we mean that for each f E T, the equation
-Au + y u = f has a unique solution in W 2,p (y) n T satisfying the extra
boundary condition To prove uniqueness, we useaxn axn
the maximum principle and think of solutions as defined on Rn and periodic in
one variable (and thus they and their differences achieve their maximum). To
obtain existence we first choose g a function of ix’l only so g E T and g.
We then find a radial function ûo E (i.e. vanishing at infinity) such
that -0394u0 + y uo - g where A’ is the Laplacian in the x’ variables. It is
well known and easy to prove that Ûo exists though it is difficult to find a

good reference. (For example, one first assumes g has compact support and
solve our equation on the ball Bk with Dirichlet boundary conditions to obtain
a solution ~k, extend uk to be zero outside Bk and prove uk converge uniformly
to ~o. To prove the uniform convergence we use the natural uniform (in k) L 2
estimates for the Dirichlet problem on Bk. To prove the result for general g one
approximates g by functions of compact support and use natural L°° estimates.)
We then solve our equation -Auk + yuk = f on Yk = {x E Y : kl with
periodic boundary conditions on xn = and Dirichlet boundary conditions
on ix’l = k. (Alternatively we could think on this as solving a Dirichlet
problem on the "strip" Bk x R.) We can easily use the maximum principle
to prove -uo (x’)  on Yk and then we can easily use a
diagonalization argument to obtain a solution of our equation on Y. We can
also easily using the maximum principle to prove that (-A + (with
the boundary conditions) is bounded on T (for the sup norm) with normal at
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most We can think is a closed operator on T with domain
D = f u E T n -7r) = 2u-(x’, 7r), AU E Tl. (Here we could
also think of functions as defined on Rn and 2n periodic in xn rather than the
strip. Note that this implies aXn is 2n periodic in xn.) If g E T, it is easy toaxn

check the map u is relatively compact as a map of D with the graph
norm to D and hence the linear map u (with domain D)
is Fredholm of index zero on T when y &#x3E; 0.

We now need to consider the spectrum of the operator Z(h) - - 0 h -

I)h on T with domain D. First note that Z(À) - BI is a relatively
compact perturbation and hence is Fredholm of index zero for
B  h and in particular for B ~ 0. We can calculate the spectrum by separating
variables. Before doing this, note that the operator - A - ong p 0 - I
the even functions in has spectrum consisting of a simple negative
eigenvalue at I and all of the rest of the spectrum is real and lies &#x3E; 0.

(Very similar arguments appear in [8], p. 965-966, and p. 970-971 or [9].) By
a rescaling and the separation of variables, one finds the spectrum of Z(h)
consists of simple eigenvalues aih + n 2 for n &#x3E; 0, n an integer, and the rest
of the spectrum is real and lies in fl Hence a simple eigenvalue crosses
zero when h crosses -al i - ~,*.

We now prove there is a Crandall-Rabinowitz bifurcation at X = À* off the

primary branch We have shown above that the operators are Fredholm
of index zero nearby so the only thing to check that there is a strict crossing
of eigenvalues across zero as we move along the branch. In fact this is a

consequence of the result that -I- 1 has non-zero derivation in h at À*.

Formally, to apply Crandall-Rabinowitz, we consider H : D x R - T where
H(u, À) = -A - (where f(u) - uP - u and D is given the graph
norm for -A + I). We then apply Theorem 1.7 in [6] to the map F(u, À) =
H(u + uo(À), À). The transversality condition they require is equivalent to our
comment above that the derivative of the eigenvalue alÀ + 1 has non-zero
derivative in h at h* (cp. the proof of the first part of Theorem 1.16 in the
later paper of Crandall and Rabinowitz [7].)

Hence we have a second curve (u, À) of solutions of our equation in
T branching off the original curve Eo(h) at À = ~.*. It remains to prove
they are positive solutions. If not there must exist an open set S in Rn such
that u  0 on S, u = 0 on as and f’ (u (x ) )  - 2 on S. (Remember that
f’ (0) _ -1, on Rn by continuity and u can only be negative where

is small.) Here once again it is convenient to think of solutions as defined
on Rn (and periodic in xn ). Hence -u on S is a bounded positive solution of
0 w = a(x)w on S, w = 0 on as where ~(jc) ~ T &#x3E; 0 on, S such that w is 2x
periodic in xn and w -~ 0 as --~ oo uniformly in xn . This contradicts
the maximum principle since w achieves its maximum.

We have proved the following theorem.

THEOREM 1. Assume that 2  p  n±3 ( p &#x3E; 2 3). Then there is a curve
of positive solutions of (2) in which are bounded, periodic in xn (but not
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constant in xn ) and decay to zero uniformly in Xn as Ix’l -~ oo and which bifurcate
from the trivial solution uo.

REMARKS.

1. With a little more care we find that we really only need f is C 1. To prove
this, one reduces our problem locally to a one dimensional bifurcation equation
by a Liapounov-Schmitt reduction and uses a degree argument. This enables us
to replace p &#x3E; 2 by p &#x3E; 1 which is more natural especially for large n. (We
could also use degree theory for Fredholm maps as in Section 2.) However, in
the C2 case, we know that the bifurcating solutions form a smooth curve.

2. Our argument clearly works for much more general nonlinearities. We need
a nonlinearity f(u) with f (0) = 0, f ’(0)  0 (to obtain the Fredholm con-
dition) such that the problem -0’u = f (u) has a radial solution which is

non-degenerate in the space of radial functions. Note that it follows automat-

ically that the there must be a negative eigenvalue (as in [8]) and that it is

possible to use transversality (as in [33] and the end of Section 4 here) to prove
that the non-degeneracy condition holds for "most" f. Note that we do not
need to assume uniqueness.
3. Note that, if p &#x3E; n±3 , one can prove that -Au = uP - u has no positive
solution uo(x’) such that uo(x’) -~ 0 as To prove this one first

proves the decay is exponential and then uses the Pokojaev identity. This is
discussed in more detail in Section 4.

4. Our techniques can be used to look for solutions where u decays in
x’ and u is periodic in x (where x E Rk with k &#x3E; 1). To apply our techniques
directly, we need to choose the ratio of the periods to retain simplicity. This
can be avoided by using a Liapounov-Schmidt reduction and the variational
structure (and ideas of Rabinowitz in [29].) A similar result is proved near
the end of Section 4 (in a more complicated case). Note that the solutions we
construct are all radial in x’. This is not an accident as we will see later.

5. One might try to obtain further solutions by looking atk so that is the

square of an integer greater than 1. However, by a careful bifurcation analysis
one can prove that these solutions are simply a rescaling and translation of the
solutions already obtained. In some cases, we obtain many more solutions later
by secondary bifurcations.
It might be asked whether we always have solutions of this type.

PROPOSITION 1. Assume that f is continuous, f (0) = 0 and f ( y) &#x3E; 0 if y &#x3E;- 0.
If n &#x3E; 3, assume that f (y) &#x3E; 0 for y &#x3E; 0, f (y) &#x3E; ay’for small positive y where
JL &#x3E; 0 and 1  r  n-1 (r &#x3E; 1 if n = 2,3). Then the equation -A u = f(u)n-3 -
has no positive bounded solution which is 27r periodic in xn and decays to zero as
Ix’l 20132013~ 00 uniform in xn.

PROOF. Let w(x’) = udxn. Then -A’w = f (u)dxn and w - 0
as I x’l 2013~ oo. If n = 2 or 3, - 0 w &#x3E; 0 on Ilgn-1 I and hence by well-known
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results (cp. [20]), w is constant. Since w 2013~ 0 as ---~ oo, w - 0. This
is impossible since u &#x3E; 0. If n &#x3E; 3, f (y) &#x3E; jiyr on [0, and hence by
Jensen’s inequality (cp. [21, p. 202] ) - 0 w &#x3E; itwr where it &#x3E; 0. We then
obtain a contradiction by using this differential inequality as in Toland [34] or
Gidas [7] and that r  n- 1

REMARK. We can use analogous techniques if u is periodic in more than
one variable. It would be interesting to weaken the upper inequality on r.

On the other hand, there are examples with n &#x3E; 4 and f (y) &#x3E; 0 for y &#x3E; 0
where there are solutions of our type.

THEOREM 2. If 4  n  7 and p* = n±3 there is a non-linearity f(y) =
yP* -E- r (y) such that f (y) &#x3E; 0 for y &#x3E; 0, f is C 1, r has compact support and 0 is
not in the support of r such that the equation -A u = f (u) has a curve of positive
solutions which are periodic in xn (but not constant in xn ) and decay to zero as

2013~ oo uniformly in xn.

REMARK. We assume n  7 purely for simplicity. Note that our p* is the
critical exponent in dimension n - 1.

Here it seems convenient to use a different space L °°· P* which is the
measurable functions on Y for which 11 is finite. This
is easily seen to be a norm (denoted by II The space is complete
(cp. [28]).

The construction is in two steps. We first construct a radial solution uo of
an equation -0394u = in where r is C2 and has compact
support (not containing zero) such that uo is non-degenerate in the space of even
functions in Here is the closure of in the
norm This is by a local perturbation of a critical manifold. Note that
we cannot simply use the nonlinearity uP* because the extra symmetry ensures
the non-degeneracy fails for the nonlinearity u P* in the space of even functions.
Secondly, we obtain the solutions we require by modifying our earlier argument.
We actually will do the second step first. This is the more technical step. Note
that our nonlinearity behaves like uP* if u is small or u is large. Note that
n  7 ensures yP* is C2 on R. (We extend our nonlinearity on R to be even.)
These solutions we construct are of interest in connection with the results of
Zou [37] on positive solutions of -Du = uP.

PROOF OF STEP 2. Firstly, we modify our nonlinearity y P* + r (y) for I y &#x3E;
+ 1 so that the new nonlinearity g (y) is C2 on R and g is constant for

large y. This simplifies the proof though it could be avoided. We now consider
the equation

1
on on It is easy to see that the curve uo(À) = is
a C2 family of solutions. As earlier, our proof is by a Crandall-Rabinowitz
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bifurction. The argument is very similar to earlier. The only points we have to
worry about is the smoothness of the nonlinearity in our space, the separation of
variables to justify the crossing and the Fredholm condition. The main difficulty
is the last of these. We need to be more precise on our spaces. We will prove
I -(-a,)-1(~,g’(uo(~,))I) is Fredholm of index zero as a map of T = Loo,p*(y)
into itself. To do this we write = a (x’) -I- b (x’) where a has compact
support and -A’ - b I is coercive on We explain this later in the
proof of Step 2. We then consider the problem

where we look for a solution u in T, u is 2x periodic in xn (more precisely
u (x’, 7r) u(x’, -.7r)) and = £(x’, -7r)) and h E Loo,q*, whereaxn axn

q* + 1. To solve this equation, we first solve the corresponding equation
on B, x R with solutions zero on I x’ I = r and 2x periodic in xn and h E
L°° (B,. x [-7r, 7r]). It is easy to prove this truncated problem has a unique
weak solution Lrh in W1,2(Br x [-7r, 7r]) satisfying the boundary conditions
(by using coercivity). is coercive in we easily
see that this solution is non-negative if h is non negative. (Simply multiply the
equation by u -. )

Now h  h, 1 where ~i(J~) = Then Lrhl 1
by positivity. Since 1 is independent of xn (and thus Lrh1 1 is a solution of
a Dirichlet problem in one dimension lower). By standard estimates and the
Sobolev embedding theorem (as in [19]), Kllhll1q*
where K and k1 are independent of r. (This uses that 
Hence we see that K IIh lloo,q* where K is independent
of r. Now by multiplying the equation for u by u = Lrh, we see that

(by our estimate above for L,.h). On the other hand by our coercivity assumption
on b, the left hand side is at least where ki &#x3E; 0 and is

independent of r. Hence II V u 112 ::: K3 (I h II ao,q* where I~3 is independent of r.
By using truncations and passing to the limit, we can delete the assumption
that h is bounded.

We can now pass to the limit as r tends to infinity and obtain a solution
of (4) in T fl D’(Ilgn-1 x [ - 7r, 7r ]). Here D’ is the closure in the norm IIVull2 of
the smooth functions in x [-7r, 7r] which have compact support in x’ and
are 2x periodic in xn . By multiplying by u -, and using the coercivity we can
easily check the solution is unique (and positivity is preserved by the solution
operator.)
We now prove the operator Z = - 0 - a (x’ ) I - b (x ‘) I is Fredholm as a map

of T = JU E X [-1l’, 7r]) : Au -bu E with the graph norm into
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L oo,q*. This is a little complicated because it does not seem obvious that the map
u -~ a(x’)u is a relatively compact perturbation. Hence we proceed indirectly.
In the space D’, we can easily calculate the kernel by
separation of variables and find it is finite dimensional. (Note that the Fourier
series expansion converges in D’.) We now prove the range 7Z of Z is closed.
Once we do this, our operator is semi-Fredholm and by using the deformation
a - ta we deduce that the index is zero who proves our claim. It suffices to

prove the estimate 11 - Au - (a if u E T (and is the

graph norm on T ) and u is in a closed complement M to the kernel in T . If

not, there exists un E M, = 1, -Dun - (a -f- b)un = fn --~ 0 in L°°°q*.
We write un - vn -I- wn where (2013A 2013 -~ 0 in f as

n ~ oo by our earlier results. Now

By induction, ((-0 - + rn,k where rn,k - 0 in T as n
tends to infinity. Now by bootstrapping on compact sets (starting from vn
converges in L2 on compact sets and using a has compact support), we find
((-A - converges in L~ on compact sets. Hence by our formula
for vn, vn converges in LP*’oo on compact subsets of D. Hence since a has

compact support, we see a(wn + vn) converges in L°°°q* and hence, by (5), vn
(and thus converges to z in T. Hence we see z E M and z is in the kernel.
This is a contradiction and we have proved our claim.

As we commented above the separation of variables is justified because
any element of the kernel is in D’ where the eigenfunction expansions most
converge. (One easily checks kernel elements in D’ also belong to T.) Thus
the spectral conditions are much as before. Once again, we need to work in
the space of even functions. We need to explain one more point here. We see
from [2] or by a similar argument to that in [8] that the operator -A - g’(uo)I
on has exactly one eigenvalue (where the operator is Fredholm) and
this eigenvalue is simple (as in [8], p. 966-967). When we separate variables,
this is the one which generate the crucial eigenvalue crossing zero. Thus our
argument in the proof of Theorem 1 generalizes to this case.

We still have to obtain our decomposition of g’(u). By Holder’s inequality
and the Sobolev embedding theorem

if s is large since ’( ) ~ _ Klylp*-1 I on R ensures g’(u) E L 7 I (- 1) (D). Hence
we see that if we choose X a smooth function such that X = 1 if 2s, X = 0
if I  s and 0 _ X  1 and if we set b(x’) = then -0 - bI
is coercive on and a has compact support, as required.
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To check the differentiability, it suffices to prove that the map u - g(u)
is C2 as a map of LP*,10 to (by our regularity for (-0 - (a + b)1)~~).
This is a slight modification of results in [35] for maps in LP spaces. Hence,
to prove that g is C1, it suffices to prove (u, h) 2013~ g’(u)h is continuous
as a map of into B(LP*,00, Lq*,oo) (cp. [26] or [35]). Here B(X, Y)
denotes the continuous linear operator from X to Y with the usual norm. (It
is easy to check the Gateaux differentiability of g.) By Holder’s inequality, it
suffices to prove the map u - g’(u) is continuous as a map of LP*’oo into
LS*’oo where s* = 2 (n - 1). Since KlyI4/(n-3) on R. it is easy to

prove that g’(u) E LS*·°° if u E LP*’oo and we can easily prove continuity by
using Fatou’s lemma and our growth condition. (Similar arguments also appear
in [35].) Similarly, we can prove the map u - g’(u) is continuous as a map
of into L"*,’ where r* = 27 n . Here we use that 4  n  7 to ensure

r* &#x3E; 1 and use that ~g"(y)~  on R. Much as before it easily
from Holder’s inequality follows that the map u - g’(u)hk is continuous as
a map of Lp*·°° into the continuous bilinear maps of Lp*·°° into (with
the natural norm) (which is the same as B(LP*’oo, B(LP*’oo, cpo [5],
p. 26). Hence we see that the map u -~ g’(u) considered as a map of

into B(Lp*·°°, will be C1 if it is Gateaux differentiable. By
Holder’s inequality again, it suffices to prove the map u - g’(u) is Gateaux
differentiable as a map of LP*’oo to LS*’oo. As before, this is easy to prove.
This completes Step 2.

It remains to obtain Step 1, that is. to modify g to obtain a non-degenerate
solution. We look at a nonlinearity g(y) = yP* r2(y)) where ri
and r2 are C 1 of compact support and support away from zero and we choose
a particular positive solution Ûo of -0’u = uP*. We will work in the space
of even functions in By well known results (cp. [2] or [31 ] ) the
positive solutions = uP* in this space are a one-dimensional manifold

(due to the symmetry a 2013~ and the kernel of the linearization
at Ûo is one dimensional spanned by w = 2/( p * -1 )uo +jc~ - V’ûo. We will
use results on the persistence of solutions when a smooth manifold of solutions
is perturbed. It is proved in Dancer [14], [15] or Ambrosetti et al. [ 1 ] (by a
modified Liapounov Schmidt reduction and by looking at the dominating term
of the reduced equation) that we obtain a solution of the perturbed equation
near u(ao) for all small c if ao is a non-degenerate critical
point of the reduced functional

where q5 : R -~ R and 0’(y) - Br(y) - r2(y). Moreover, the perturbed
solution is non-degenerate. The technical conditions in [14] on [ 1 ] are very
easily checked. (Note that the theory in [14] assumes compactness of the group
of symmetries but this does not matter as we work purely locally and the group
action is easily seen to be locally proper.) Thus, we need to choose B, ri, r2
so that G’ ( 1 ) = 0, G"(1) # 0. We choose rl (y) = ql (y+)ql, r2(y) = q2 ( y+)q2
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where q, and q2 are both large. Note that these do not satisfy our original
conditions on g 1 and g2 but we will rectify this in a moment. Then

where A 1, A2 &#x3E; 0 (by the change of variable y = ax’). If q 1 ; q2, it is
then an easy computation to check that, if B is chosen suitably, G’ ( 1 ) = 0
and G"(1) # 0. If we choose ql, q2 &#x3E; 2(,-1) (so there are no convergence
problems), truncate rl and r2 for ’yl &#x3E; + 1 so their support is bounded
and then replace rl and r2 by rl (8 -I- y), r2 (8 ~- y) where 8 is small and negative,
then it is easy to see that our assumptions continue to hold and we have the
required example.

REMARK. As before, we can remove the condition that n  7 will a little
more care and we can produce solutions that are periodic in several variables
by similar arguments.

2. - Global theory

In this section, we show that our bifurcating branches frequently persist
globally and become unbounded.

Let D2 = {(u, h) E D x [0, oo) : u is positive, -Au = Àf(u), u =j:. U

1(0,,X.)l where Ð, À* and were defined in Section 1.

THEOREM 3. Assume that f is C1, f (o) - 0, f’(0)  0, f has a unique
positive zero which is non-degenerate (on R) and the equation -A’u = f (u) has
a unique even positive solution uo on in which is non-degenerate
in the space of even functions in Co ). Then the component of D2 containing
(0, h* ) is unbounded in L°° (D) x R.

REMARK. For example as in [8], we could take f (y) - yP - y where
if n &#x3E; 3.

PROOF. We will in fact prove a stronger result. We will look only at

solutions on S, = x [0, which satisfy Neumann boundary conditions on
xn = 0, 1r because these can then be reflected to obtain 2n periodic solutions.
We will also restrict ourselves to solutions which are functions of and

xn only. It can be shown by a modified sliding plane argument that this is
in fact not a restriction. (In other words, all positive solutions are functions
of and xn.) This will appear separately. Let X = JU E u is

continuous, u = u(lx’l, xn ), u (x’, xn) - 0 as Ix’l 2013~ oo uniformly in xn } and
let A(u, h) = (-A -f-1)-1 (~,f (u) + u) on X x R.



545

Here we will use the degree theory for C 1 Fredholm maps f : X - X
which have the property that I - tf’(x) is Fredholm for 0  t  1. Then the

degree of these can be defined on open subset U such that I - f is proper
on U and the degree is homotopy invariant within this class. See for example
Isnard [22] or [ 11 ] in the C2 case. Since a simple eigenvalue crosses zero as
h crosses X. along u = uo(À), the formula for the degree of a non-degenerate
fixed point in [11] shows that index (I - A ( , X), uo(À)) changes sign as h
crosses X*. Thus we have another proof of bifurcation. Note that the condition
I - t f ’ (u ) is Fredholm for 0  t  1 is easily obtained by similar arguments to
those in the proof of Theorem 1. Hence we can very easily modify the proof
of Theorem 1 in [11] to prove that the component D containing (Eo(h*), h*)
of the closure in X x R of

is such that D is either non-compact in X x R or it contains (uo(À), À) where
À :0 i.. Note that points (0, À) or (u, 0) are not in the closure of Ð1, as is

easily proved. We now prove that the former alternative holds. To prove this,
we first show that if (u, h) E D, has fixed sign on the interior of S, (and
xl &#x3E; 0 if i  n). This is by continuity arguments. First assume i = n. Then

au is a solution of -Ah h = 0 on xn = 0,7T and it is easily to beix-n
in (since u decays exponentially).

We consider the eigenvalue problem

Since f ’(0)  0, we easily see that this operator is Fredholm in if
a0

We need the following lemma. We prove this after the proof of Theorem 3.

LEMMA 1. If (u, h) E D, the smallest eigenvalue B(u, À) of (6) exists, B(u, À) 
0, B(u, h) is simple, the eigenfunction corresponding to B(u, À) is positive on int
Sl and B (u, h) is the only eigenvalue which has a non-negative eigenfunction.

Now suppose (u, h) E D and au  0 for xn E (0, x) (or &#x3E; 0 for xn Eaxn

(0,7r)). is a positive eigenfunction corresponding to the eigenvalue
zero, by Lemma 1, B(u, h) = 0. If (um, Àm) E D is close to (u, À) in x

R, then by continuous dependence of eigenvalues, B(um, Àm) must be small.
However since B(u, h) is simple, continuous dependence ensures that the only
eigenvalue of (6) for u = um,,X = Xn near zero must be the least eigenvalue.
Moreover zero is an eigenvalue as before with eigenfunction ±aum. Hence

axn

B(um, Xn) = 0 &#x3E; 0 on S1. Now, for Xm near X,, and um close up toaxn

Wo (),.), B(um, Àm) is close to the principal eigenvalue * 

on S, with Dirichlet boundary conditions. By separation of variables (as before),
this eigenvalue is zero and the eigenfunction is positive. Hence we can use the
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argument we have just used to deduce B(um, hm) = 0 and has fixed signaxn
on Si. Hence by connectedness, we see +£  0 on 8 1 if (u, À) belongs to
any component D2 of Dl with X,) in its closure. We can use a similar
argument to prove that  0 if (u, h) E &#x3E; 0 and i  n by considering
the same eigenvalue problem on S4 = {x E Si : xi &#x3E; 0} with Neumann boundary
conditions on the boundary 854. Note that here we use that decreases
in xi for xl &#x3E; 0. 

We now show that our branch cannot return to (MoM, À) where h ~ À*.
If this occurs, by Ward [36], Theorem 110, there is a connected subset D3
of Dl with (uo(À*), X*) and (uo(À), À) where 1 ~ h* in its closure. Thus,
by the previous paragraph, aau has fixed sign on int S, if (u, h) E D3. Nowaxn
if D3 converge to À)in X as m ---&#x3E; oo, it is easy to see
that a subsequence (normalized) will converge in X to a solutionaxn

of = 0 in SI, h = 0 on aS,, h E L 2(SI ), h &#x3E; 0. Note
that because our limit operator is Fredholm our eigenfunctions cannot become
non-compact. Since we can separate variables, it is easy to see that this is

impossible. (This uses that -A’w - f’(uo)w on has a unique eigenvalue
to which there corresponds a positive eigenfunction.)

It now follows that axn has fixed sign in ints, if (u, h) E D and (u, h) #axn
(E0(h*) , h*) . 

We will complete our proof of a global branch if we preclude a bounded
sequence (um, in D being non-compact. It is easy to see from standard
estimates that the un are bounded in C1 1 and hence no non-compactness of {um }
can occur on bounded subsets of Sl. It follows easily by a simple diagonalization
argument that D is compact if it is bounded in X’ and given E &#x3E; 0 there
is an a &#x3E; 0 such that if E D, if 
and if &#x3E; a. Hence, if compactness fails and D is bounded, there exists
(X’., Xnm) E Si, (u m , Àm) E D and E 1 &#x3E; 0 such that 2013~ oo as m 2013~ oo and

xnm) = E1 for all m. Now um is a solution of - 1 m r 8r ar axn
Àmf(um). · Here r = ix’l. We look at um (s, xn) --- um (s + Ixm 1, xn). Thus um
is defined on oo) x [0, x] and = El. Now standard estimates

applied on compact sets imply that is bounded in C1. Thus by a standard
convergence argument a subsequence of um will converge on compact sets of
(- oo, oo) x [0,7r] to a solution u of -A2E = which is decreasing in
xl and monotone in x2 if 0  x2 s 1C, and u satisfies Neumann boundary
conditions on x2 - 0, ~ . (It is decreasing in xl because um is decreasing in
r for r &#x3E; 0). Note that the term ~~ vanishes in the limit because Vum
is bounded and s + Ix:n I is large if s is bounded. Moreover E(0, £n) = El
where £n is the limit of a subsequence of fxm)oo 1. Note that by the decreasing
properties, we can choose E 1 to be small. This ensures îi must depend on x i .
To see this, we note that solutions independent of xl are non-negative solutions
~ of
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satisfying Neumann boundary conditions on x2 = 0, n. By the maximum prin-
ciple, either u n 0 &#x3E; so where so = i n f { t &#x3E; 0, f (t ) &#x3E; 0) &#x3E; 0. In the
latter case, by the Harnack inequality, inf û has a positive lower bound which is
impossible since E is small. Note here that h is bounded since D is bounded and
I is bounded away from zero since our earlier Dirichlet boundary problem for

implies a positive lower bound for Àm (and hence for À). Hence u depends
on x i . It is then easy and standard to check that Û:f: X2) are
solutions of (7) (since u is decreasing in lIû+ 1100 ::: E 1 (and hence E+ w 0)
and Now by a slight variant of the theory in Sections 1-2 of [10]
(in particular p. 8 and p. 14), M± must be stable or neutrally stable solutions
of (7) (for the natural parabolic) and must have the same energy. (The theory
in [10] is for Dirichlet boundary conditions rather than Neumann boundary con-
ditions.) This ensures M- is not identically equal to so (on either count). More-
over, if E- depends on x2, it isr unstable. This follows because 8x2 is a fixed2
sign solution with eigenvalue zero of the Dirichlet eigenvalue problem (for a)
- v" = + av, = v(O) = 0. It then follows easily from the
variational characterization of eigenvalues that the first eigenvalue for the same
eigenvalue problem with Neumann boundary conditions is negative and hence
E- is unstable. Hence if f has only one positive zero, there is no suitable
candidate for E- and hence u does not exist. Hence the component must be
unbounded as required. This proves Theorem 3.

PROOF OF LEMMA 1. If (u, À) E D, axn is an eigenfunction of (6) corre-8xn
sponding to the eigenvalue zero. Hence B(u, h)  0. Since (6) is Fredholm for
a  0, it is easy to see that Q (h ) = JJRn-l IV fl2 - achieves its infi-

mum on W 1’2 (Sl ) subject to the constraint IIhll2 = 1. This infimum is B(u, X).
If h minimizes Q(h) subject to the constraint so does Ihl and hence Ihl is
an eigenfunction of (6) corresponding to the eigenvalue B(u, ~.). By Harnack’s
inequality, Ihl I &#x3E; 0 in int Si. This is only possible if h &#x3E; 0 in Sl , or h  0
in int 51. The orthogonality of eigenfunctions then ensures that the eigenspace
corresponding to B(u, À) is one-dimensional and B(u, À) is the only eigenvalue
to which there corresponds a non-negative eigenfunction. This completes the
proof.

Note that, since (u(x’, -xn ), À) is a solution of ( 1 ) when (u (x‘, xn), À) is,
we can assume without loss of generality that -2u- &#x3E; 0 on int Sl along ouraxn
unbounded branch. It is easy to that the parts D+ and D- of D corresponding
to axn &#x3E; 0 and au  0 have closures only intersecting at (Eo(h*), À.).axn axn

Now assume our nonlinearity is real analytic on (- y, oo) where y &#x3E; 0.

(For example, if n = 3, we could use u for p E Z, p &#x3E; 2.) In this case
it is not difficult to prove the map u - f (u) is real analytic on X and Eo is
real analytic. Hence, as in [13], the local Crandall Rabinowitz bifurcation for
analytic maps applies and the bifurcating curve (u (a), h(a)) when they bifurcate
from (u o (~, *) , ~, *) has the property that and u (a ) are real analytic in a.
Hence either h(a) is constant near zero (and the bifurcation is locally purely
vertical) or h’(a) ~ 0 for small non-zero a in which case Theorem 1.17 in [6]
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implies that the natural linearized equation in X at (u (a ), ~, (a ) ) is invertible
for small positive a. In the former case, there is an unbounded curve set in

y = {(u, h) E V : À = X,) which contains (uo(~,*), À*). This is proved by
using the Lemma 8 in [12] to prove that Y contains a closed one-dimensional
real analytic set which contains (u (a), ~.*) for small a (and which necessarily
intersects closed bounded sets in compact sets). Now it is well known that a
one-dimensional real analytic set has only isolated singular points and an even
number of branches meeting at each singular point (cp. [4], appendix, or [12]).
Hence we see that is a graph with every vertex but one (corresponding
to (uo(~,*), h*)) has an even number of edges meeting at a vertex. Hence, the
result follows as in [12] by elementary combinatorics. Thus there are many
solutions of our equation, in particular at least one will II u II 00 = r for any
r &#x3E; We will prove in Section 4 that frequently these solutions have
quite sharp peaks at their maximum if r is large (by blowing up). In the latter
case, we will prove in certain circumstances in Section 4 that there are many
secondary bifurcations to solutions 2kx periodic in xn and hence in either case
there are many distinct solutions periodic in xn and decaying in x’. (A variant
of our arguments in Section 4 also implies that the former case does not hold
if 1 ~(~+2)/(~-2)-~)

When the branch does not start off vertical, we can argue as in Section 2
and the appendix of [4] to deduce that there is a natural unbounded analytic arc
D’ in D (that is with only isolated self intersections) containing h*) in
its closure such that the map h ~ -Ah - Xf (u)h is invertible for all points
(u, ~.) of D’ except for isolated points. We can then refine D’ by removing
"loops" to obtain an unbounded arc in D with no self-intersections containing
(uo(~,*), À*) in its closure such that the map h 2013~ is invertible

except at isolated points of D’. Note that this curve need not be analytic. We
refer to D’ as the good branch.

We have established the following theorem.

THEOREM 4. Assume that the assumptions of Theorem 3 hold and f : R 
is real analytic on (-y, oo) where y &#x3E; 0. Then one of the following two possibilities
hold. Either

(i) there is an unbounded curve of positive solutions of -Au = in D+ n

(h = ~,*} bifurcating from (uo(À*), X*)
or

(ii) there is an unbounded arc D’ in D+ with no self intersection bifurcating from
(uo(À*), X*) such that except at isolated points of D’, the map h --&#x3E;0394h
Àf’(u)h is invertible on X.

3. - Band theory

In this section we construct a band theory for the spectrum of certain linear
operators on This is motivated by the theory for Hill’s equation [3] and [30].
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We need this work for the subharmonic bifurcation theory in Section 4.
To construct our band theory, we will use a variant of ideas in [4] and [30],

Section XIII. 16. We consider the problem

on L2(JRn) where a is 2jr periodic in xn and decays to zero as -~ oo

uniformly in xn (and a is continuous). Let W denotes the operator on the
left hand side with domain To study this problem we use Fourier
transform in xn. Now a = where the series converges in L2.

We write u = where E L2(JRn).
Taking the Fourier transforms we find

As usual, we then split the À’s into equivalence classes parameterized by
T E [o, 1 ) . (The equivalence class is {T + k : k E Z}).

Hence we have for fixed r E [0, 1) an infinite discrete system of equations
(parametrized by k). We prove this is a Fredholm system for a  1 on the space
of functions for which ¿f:,- 00 is finite, that is, .~2 (LZ (Il~n-1 )) n Z.
(The operator is closed for the natural definition of its domain.) If the ak were
all zero, we have a diagonal system and the result is easy.

We have the system of equations

Denote the operator on the left hand side by A(r). To study some of the
properties of this system and to check the infinite sum term makes sense, it is
convenient to proceed indirectly. We consider the eigenvalue problem on the
strip S = x [-x, n] where our space is L2(S)

(This gives two boundary conditions relating u on xn = -~z and xn = 7r.) This
problem is easily seen to be self-adjoint with domain {u E W2’2(S): u satisfies
the boundary conditions}. (To prove this, it is easiest to use that the a term is
a bounded perturbation and to use Fourier decompositions.) We can write
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Note that u - a (x’, xn ) u is clearly bounded on L2 (S) and we see that the
infinite sum term in (8) is just this term written in the other notation (which
ensures the infinite sum term makes sense in (8) suitably interpreted). Now, if we
use the above Fourier decomposition for u, it is easily seen that (9) becomes (8)
and that (8) and (9) are equivalent. (Remember u E L 2[-7r, 7r] ~2013~ M E .~2 (Z)).
This ensures that the left hand side of (8) defines a closed operator (with the
obvious domain). Now u - a (x’, xn ) u is relatively compact (as a map of the
domain of (9) into L2(S)). This is easy to see since we can write a = al + a2
where a 1 = 0 if ix’l &#x3E; K and on S. (The map u - a 1 u is then

relatively compact because sequences bounded in the graph norm of (9) are
relatively compact when restricted to 8 n {(x’, xn) : ix’l ::5 K1 }). Now, it is

easily proved by a Fourier decomposition on with
our periodic boundary conditions is invertible if a  1. Hence (9) is Fredholm
if a  1. Thus (8) is Fredholm if a  1.

Note that this is best possible since it is not hard to show [I, oo) is in
the essential spectrum of A(r). Moreover, it is easy to see A(r) is self adjoint
and bounded below on Z. (Remember that the map u - a u is bounded on

L2 (S).) Note that A(t’) continues to be defined for complex r. Note that the
problem (9) is often called the Bloch function decomposition.

Let ki (r) denote the ordered (increasing) eigenvalues of A(r) counting mul-
tiplicity where we take Xi (r) to be 1 if there are fewer than (i - 1) eigenvalues
of A ( t’) counting multiplicity less than 1.

We next prove A depends analytically on r in the sense of Kato [23],
p. 366. It suffices to prove this when a = 0 since the u - au term is
bounded and independent of r (cp. [23], p. 367). We use the representation (8)
and note that, since a = 0, our system is diagonal in k. By Theorem VII. 1.2.3
in [23], it suffices to prove (A(r) + analytic in r for fixed y. Since

(A(t’)+yI)-1 1 is diagonal in k, Theorem 3.3.12 and the remark after it in [23]
imply that it suffices to prove that each of the operators for fixed k which make
up (A(r) + y I ) -1 1 are analytic in r. This is easy to prove. Hence our claim
for A ( t’) follows.

We now show hi (r) is never constant on any interval (zo - 8, zo + 8) of
the real axis where  1. Here 0  To  1.

If Xi (r) were constant on this interval, then by the analyticity of A(t’),
we see by Theorem VII. 1.9 in [23], that is an eigenvalue of A(r) on
an open neighbourhood of G = {z + is : zo - 8  r  zo + S, s &#x3E; 0} in the
complex plane. Here to apply the result we need to prove that 
is Fredholm on G. We will prove this in a moment. Note that Kato assumes a

compactness condition but an examination of his proof shows that the Fredholm
condition suffices. Hence we will have a contradiction if we prove the Fredholm
condition and prove that is not an eigenvalue of A (zo + is) for large
positive s. For the first result, it suffices as before to prove A(r + is) - B I
is Fredholm if B  1 and s &#x3E; 0. As before, it suffices to prove this when
a = 0 (since the map u - au is relatively compact). Since our system is then
diagonal in k, it suffices to prove each individual operator is Fredholm and the
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operators are invertible for Ikl large with uniformly bounded inverse. The first
of these is easy to check and the second is clear when we note

Since the real part is large positive for Ikllarge, it is easy to see that the inverses
are small for Iki [ large (since u) &#x3E; ((i -f- k)2 - s2 + 1)(u, u)). Here

is the kth component of A(-r). Lastly to prove that is not an

eigenvalue if s is large it suffices to prove has small

norm if s is large. Here A(r) = A(r) + T where T is the bounded operator
induced by a. This follows since we can write the equation

Now, once again, A(-ro+is) is diagonal in k and so it suffices to prove the inverse
of each component is uniformly (in k) small if s is large. Since To + k ,-~ 0
for all k (remember that 0  zo  1) and is bounded below in absolute

value, our estimate follows from (10) since, for a self adjoint operator C,
2013 is B is real and non-zero. Hence we see Ài(i) is not

constant on any non-trivial subinterval of [0, 1).
Our arguments imply a little more. In fact Xi has isolated zeros. This

follows since Kato’s theorem quoted in the previous paragraph implies either
that A ( i) is invertible except at isolated points or fails to be invertible
at all points near [0, 1). Our argument in the previous paragraph shows the
second case does not occur.

Next we show - 1 as i 2013~ 00 uniformly in r. Since 2013~ 1
as i - oo for each i and is continuous in r (including at z = 1) this
follows by a simple contradiction argument.

THEOREM 5. Q (W) fl (- oo, 1) = (~.1 ([0, 1]) fl (- oo, 1)). Moreover each
Xi has only isolated zeros and is not a constant function.

REMARK. This is a partial band description of or (W).
PROOF. Since - 1 as i - oo uniformly in r, the right hand

side is closed in (- oo, 1). To prove this result, we use the Fourier transform
decomposition in xn . In this space we can write our operator as earlier as an
uncountable direct sum (technically a direct integral as in [30]) of operators (8)
(parameterized by z E [0, 1 ) ) . If a is not a member of the right hand side of the
equation in Theorem 5, and a  1, there exists T &#x3E; 0 such that 
for all i and all r in [0, 1 ]. Here we are using that hi (r) is continuous in T and
- I as i - oo uniformly in T. Hence I I (A ( z ) - a I ) -1 I I 2  for

all T by self adjointness and hence putting these inverses together, we obtain
a bounded inverse of W - a I of norm at most (More formally, we can
use direct integral theory and Theorem XIIL85 (d) in [30].) On the other hand
if a = Ài(i), we can obtain the converse by applying the same theorem again.
Alternatively and this is useful later, we can obtain approximate eigenvectors
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in by choosing an eigenvector fojx’)Ijtl, of A(r) corresponding to the
eigenvalue Ài (i) and then choosing 1/1/ smooth of L2 norm 1 where Fourier
transform has support close to {j + i } and then using as

the approximate eigenvector. (One could avoid convergence questions by taking
large finite sums.) This proves Theorem 5.

By using Fourier series rather than Fourier transforms, one can similarly
prove that the operator Wm = -~ - (a + 1 ) I on L2(JRn-l x [2013yM7r, with

periodic boundary conditions on xn = ±m7r has spectrum in (- oo, 1),

Thus we see 1) is the closure of the union of 
(- oo, 1) (since Xi is continuous).

REMARK 1. In the next section, we need to prove that each of our bands
1]) becomes negative as a parameter varies. To prove this, we use the

representation (9) of A(r). By our earlier remarks, 1 are simply the
eigenvalues less than 1 of the self-adjoint = a u

on L2(JRn-l x [-7r,.7r]) with the boundary conditions that is 27r periodic
in xn. If we can find m smooth orthogonal functions of compact support
in R x (-1l’, 7r) so that f S ( ~7~~ ) 2 - a (~l ) 2  0 for each i, then since Oi are
suitable test functions for every r it follows from the variational characterization
of eigenvalues that hi (r)  0 if r E [o, 1), i = 1, ~ ~ ~ , m.. This will be useful
in Section 4.

REMARK 2. There are a number of variants. We could clearly replace
- 0 -I- ( 1-~ a) I by - A + (B + a) I where B &#x3E; 0. We have analogous theories
if we restrict to functions radial in x’ (if a is radial in x’) or as in [3] restrict
to functions even (if a is even) or functions radial in x’ and even in xn (if a
is both radial in x’ and even in xn ). The proofs need very few modifications.

REMARK 3. In fact, the spectrum in (- oo, 1 ) is unchanged by working in
the space of even functions. We explain this. Remembering that a closed self
adjoint operator on a Hilbert space is invertible if it is onto and noting that,
if W(u) - a u = h has a solution for every h in then it has an even
solution for every even h in (since, if W (u) - a u = h, 2 (u (x) + u (-x))
is also a solution), we see that the spectrum can only decrease by going to the
space of even functions. Conversely, since the spectrum is closed, it suffices
to prove that if a - Xi (r)  1 where 0  r  1, z ~ 4, then a is an

approximate eigenvalue in the space of even functions. If um (x) are approximate
eigenvectors corresponding to a on the whole space, 2 (um (x) + um (-x)) is an
even approximate eigenvector unless um (x) + um (-x) - 0 in as

m - oo, that is unless um are asymptotically odd. We show that this does
not happen which will complete the proof. By our construction of approximate
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eigenvectors in the proof of Theorem 5, this is valid unless the eigenvector vi
of (9) corresponding to the eigenvalue a = Ài (L) is an odd function of x. Since

does not intersect that this is not the case is obvious
from the Fourier expansion of vi (x), that is, similar
result holds if we restrict to the functions radial in x’.

REMARK 4. We can use standard regularity theory to show that the spectrum
of our operators in (- 00, 1) on strips is unchanged if we replace X

[-q1l’, by the continuous functions in x [-q1l’, that decay
to zero as Ix’l - oo uniformly in xn. (Note that as in [10] eigenfunctions
corresponding to eigenvalues less than 1 will decay exponentially in x’.)

4. - Subharmonic bifurcations

In this section, we obtain many subharmonic bifurcations to solutions of
large minimal period in certain cases where the nonlinearity grows so as to be
subcritical in dimension n - 1 but supercritical in dimension n. We also obtain
more information about the global branch in more general cases.

We assume throughout the section that f satisfies the assumptions at the
beginning of Section 2, that - B E (0, oo) as y - oo where
p &#x3E; 1, that f is real analytic on (-y, oo) where y &#x3E; 0 and that the local

bifurcating branch at X.) is not purely vertical, that is À is not locally
constant on the branch near the bifurcation point. We also assume that n &#x3E; 3
and n+2  p j n-1 though some results hold without this. (If n = 3, then-2 n-3
second inequality is to be interpreted as p  oo.) Finally, we assume that

(or more generally -Du = f (u) has no positive radial solution on R" decaying
to zero as r = lix 11 tends to infinity). (Note that this assumption implies
p &#x3E; (n + 2)/(n - 2).) Here F (y ) = fo f(s)ds. We will show later that

there are many examples where these conditions are satisfied and indeed the
not purely vertical condition is "generic". Our main interest is the case where
n = 3 and indeed our main results are only proved if n = 3.

We will modify the theory in Buffoni, Dancer and Toland [4]. We prove
that the branch oscillates as it becomes unbounded and there are many secondary
bifurcations off this branch. We eventually will assume that n = 3 but we study
more general n as long as we can.

We will need the following lemma.

LEMMA 2. Assume that - Au = f (u) on where u is bounded and f satisfies
the assumption at the beginning on this section and u is monotone in xn for xn &#x3E; 0

and not constant for xn &#x3E; 0. Finally assume that xn ) = h decays to
zero as 2013~ oo. Then h = 0.
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PROOF. This is an easy modification of the proof on p. 965 of [8] if we
note that since 8" has fixed sign for 0 and solves - 0394 v = f’ (u) v, theaxn axn
weak maximum principle ensures that 0 at any point of xn &#x3E; 0.

REMARK. This holds much more generally and does not use any growth
condition on f at infinity.

We first consider the behaviour of the global branch of Section 2. Most
of this does not use the analyticity. It is easy to see that solutions in X (where
X was defined in Section 2) are after reflection the same as the even positive
solutions on W-1 x [-x, 7r] which are radial in x’ and decay to zero uniformly
in xn as - oo. In this section it is convenient to think of our functions
as defined on x [-1l’,1l’]. By the decreasing properties of our solutions
proved in Section 2, we may assume (u, À) E D+ attains its global maximum
at (0, 0). We know the branch D+ in X is unbounded. Hence there exists

(um, hm) E D+ such that

(1) - 00 or

(ii) and Xn - oo as m 2013~ oo.

We first eliminate possibility (ii). Note that um (o, 0) is the maximum of

um (and 0 if lxn 1 ::5 x). By a standard rescaling and limit argument,
a subsequence of the um (which is um rescaled) will converge uniformly on
compact sets to a positive solution of

on R’ which is decreasing in xi for Xi 2: 0 and even in each xi. (It is

easy to show that has a positive lower bound since f(lIum 
by considering where um has its maximum.) Now, we can easily follow the
arguments in the proof of Lemmas 2-4 in [8] to show that u - a or u is the

unique positive decaying (to zero) solution of (13) or is a decaying (to zero)
solution of fewer variables. (Note that this part of the arguments in [8] did
not use p was subcritical.) Here we use part of the proof of Lemma 1 in [8]
to prove u &#x3E; is impossible. Since u = u(lx’l, xn), u can only be a
function of fewer variables if u = u (xn ) or u = Suppose u = u (xn ) .
In this case, since um decays in x’ while u does not, there must exist rm large
with u (r,,,, 0) = E I where E I is small and fixed. (rm --~ oo as m - oo.)
Much as in the proof of the compactness of bounded sequences in D in the
proof of Theorem 3 we can translate and take a limit and obtain a positive
bounded solution U on R2 of - A u = f (u ), u is decreasing in x 1, u (0, 0) = E 1, u
is even and decreasing in x2 for x2 &#x3E; 0. As in the last part of the proof of
Lemma 4 in [8] (cp. also the last part of the proof of Theorem 3 here), we
see that -~ 0 as x 1 -~ oo and -~ g (x2 ) as x 
where g is a positive solution of (13). By using the first integral of the ordinary
differential equation for g, one easily sees that g is constant (in which case

where or g --~ 0 as 2013~ oo. By Lemma 2, the second
case is impossible and hence g - b. However, in this case, u is bounded and



555

subharmonic on R2 and non-constant which is impossible. Thus this case does
not occur.

We now show the case that u = can not occur. Here uo decays
in x’. Now, in this case, there is a positive solution of -Ohm - f’(um)hm

i

on JRn-1 X [0, with Dirichlet boundary conditions on the boundary and
is rescaled.) Now um ----&#x3E; on compact sets.

axn
If u m ----&#x3E; uniformly, we have by a translation to where h m has it
maximum and a limiting argument, a positive bounded solution of

or - 0 h = f ’ (o) h on I 
x [0, too) or I 

x (- oo, 0) or (In the first
two cases with Dirichlet boundary conditions on xn - 0.) Now the problem
- 0’h - , f’(uo(lx’Dh = a h on I has a negative eigenvalue a corresponding
to an exponential decaying positive radial eigenfunction 00. (cp. the proof on
p. 966-967 in [8].) Much as in [8], if we multiply (14) by §o and integrate
over Ilgn-1 using the exponential decay of 00 and its derivative, we easily find
that w(xn) = £n-i hoodx’ satisfies w" = aw, w is non-trivial (and w(O) = 0
if w is defined only on a half space). Since a  0, we find by explicitly
solving this equation, this case does not occur. The cases where the equation
is -Oh = f’(O)h on Rn or a half space and h is positive and bounded (and
h = 0 on the boundary of the half space) are also impossible by using a slight
generalisation of Remark 2 in of Dancer [16] to reduce the half space case
to the full space case and by taking radial averages in the case of R n (which
reduces our problem to a standard ordinary differential equation).

Next we consider the case that Wn does not converge uniformly to uo(lx’D.
We can use a similar argument to the previous paragraph if um does not con-
verge uniformly (in m and xn) to zero as - oo. (By a translation and
limiting argument, we would obtain a "homoclinic" solution as before. This is
impossible.) By the decreasing properties and the uniform convergence on com-
pact sets, um (x’, xn )  uo(lx’D +E for x’ in a compact set for large m. Thus the
lack of uniform convergence must be from below. Hence if there is not uniform

convergence, for all m (for suitable xm , xmn ) . By our
comments above, [ is bounded and lxmnl 2013~ oo as m - oo (after taking
subsequences). By decreasing xmn, we can assume 2E  lim 
Thus after a shift of origin in xn and a limiting argument we obtain a positive
bounded solution U of -A u = f (u ) on R n such that = W

decreasing in xn (or even in xn and increasing in xn for 0), u is radial in
x’ and decreasing in Ix’l and u (x’, xn ) _ The last result follows from
the uniform convergence from above. If u is strictly decreasing in xn always,
it is easy to see as before (or see p. 965 of [8]) that xn) are
distinct solutions of -0’u = f (u) on which are less than or equal to uo.
Hence one must be positive. This contradicts Lemma 2. If îi is independent of
xn, U = uo by the assumed uniqueness which contradicts u(x’) = uo(lx’D - E.

is even in xn and increasing in xn for 0, we see as above that u
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must depend on xn. Then must be a positive solution of
-0’u = f (u) which is below uo. Once again this contradicts Lemma 2.

There remains the possibility that u ~ 0 as ( ---~ oo and - 0 u = f(u)
on Since f (0) = 0 and f’ (o)  0, we can easily deduce u decays
exponentially (cp. Gidas, Ni and Nirenberg [18]). Thus we can easily obtain
a contradiction from the Pokojaev identity (cp. [24], Remark 2.4) and our
assumption on (12).

Hence our branch becomes unbounded by becoming unbounded for
(u, h) E D’. We analyze the behaviour at infinity. Assume (um, E D+ and
Ilu ||oo - oo as m - oo. By our decreasing properties um (0, 0) = 11 um 
Since - a as y ~ oo, a rather standard blowing up argument
shows that either stays bounded or we have a bounded positive
even solution of -Au = uP on R’ such that u is decreasing in xi for xi &#x3E; 0.
In the latter case, we can argue as in [13] to deduce on

x [-7T, jr] with our boundary conditions has many negative eigenvalues
corresponding to even eigenfunctions radial in x’ and decaying in x’ for m
large. (Once again this uses our assumption on p.) It remains to consider the

possibility that stays bounded. We show that this case does not
occur. Firstly, suppose 1 

---&#x3E; 0 as m ---&#x3E; oo. Now - aa is a
axn

solution of - 0394h = in L 2(SI) with Dirichlet boundary conditions
on 8Si. Here S, x This is impossible since our assumptions
imply - 0 uniformly on S, and since JS1 &#x3E; k f h2 if h E

as is easily proved by separation of variables. Here k &#x3E; 0. If
-~ a E (0,oo) as m 2013~ rescaled must converge

to a positive solution of -Av = vP on the infinite step x [-c, c] with
Neumann boundary conditions. We can extend this solution to be periodic in
xn and hence we can apply results in Proposition 1 to obtain a contradiction if
n = 3. It is here we need n = 3. We have proved the following theorem.

THEOREM 6. Assume that the conditions of Theorem 3 hold, n = 3, p &#x3E; 5, (12)
holds and yl-p f’(y) - B E (o, oo) as y -~ oo. Then the connected branch
D+ of solutions becomes unbounded by lIulloo and tending to infinity.
Moreover as this occurs the number of negative eigenvalues a of - A h - Àf’(u)h =
ah in X (counting multiplicity) tends to infinity.

REMARK 1. If 1  p  n+2 , an examination of our arguments show that
stays bounded (and hence Xm 2013~ oo as m 2013~ oo and 

converges uniformly to the unique positive decaying solution of Au = f(u) on
Ilgn as m - oo.) By Theorem 4, it follows that if f is real analytic, then, in
this case, the bifurcation is not vertical when it bifurcates from (uo(~,*), h*).
2. If f is real analytic on (-y, oo) the assumptions of Theorem 6 hold and the
branch D+ does not bifurcate vertically at (uo(~,*), À*), then we can combine
Theorems 4 and 6 and the methods in [13] to show that the good branch D’
must have infinitely many bifurcations or changes of direction as it becomes
unbounded. In particular, uniqueness fails for some X.
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Henceforth we assume n = 3 and f is real analytic. We now show if the
branch does not start out vertical when it branches at there is much

branching to higher harmonies (in xn) of arbitrary high order. More precesely,
we mean to solutions of large minimal period in xn. As in [4], the idea is
simple. In the space Xk of 2kn periodic (in xn ) even functions which tend to
zero as Ix’ I 2013~ oo uniformly in xn, an eigenvalue crosses zero as we move
along a branch and it crosses zero where zero is not an eigenvalue in X = X 1.
(Here we extend a solution u by periodicity.) Hence under some minor technical
conditions there will be bifurcation of solutions which are in Xk but not in X1.
These new solutions will not be the old solutions rescaled and tend to have large
minimal period in xn . The main difficulty is to indeed prove that an eigenvalue
crosses zero in Xk as we move along the branch (in fact for all large k) without
there being a crossing in X1. There is where we use the theory of Section 3.
We will work with the good sub branch D’ constructed at the end of Section 2.

More formally, let Xk = {u (x’, xn ) E u is continuous and even,
u is 2kx periodic in xn, u is radial in x’ and u(x’, xn) - 0 as Ix’ I --~ oo
uniformly in Note that X = X.

Suppose that (um, are an unbounded sequence on D’. We consider the
band spectrum in the sense of Section 3 of the operator - Ah - in

(- oo, -~,m f’ (o)) on the space of even functions in L2(JRn) which are radial in
x’. Note that we use here Remarks 1-4 at the end of Section 3 to ensure that the

spectrum of Wq is the same in many different spaces. Let {~,m (i ) : 0  1}~1 I
denote the bands. Note that by Remark 3 at the end of Section 3 working in
a space of even functions does not affect the bands. We prove that, given

 0 for 0 ::: l’  1, 1  i  k if m is large. This means that k of
the bands have crossed zero if m is large. By Remark 1 at the end of Section 3,
to prove this it suffices to find k orthogonal radial function ~1, - - - , ~k with
compact support in x (-1f,1f), such that fJRn  0
for 1  i  k and large m. We know from Theorem 6 and its proof that
as the branch D’ becomes unbounded we have for (um, Àm) on the branch,

- C E (0, oo) as m 2013~ oo while rescaled converges
uniformly on compact sets to a decaying positive solution w = wP on

Ilgn, w (0) = 1 such that w is radial in x’ and 16 is decreasing in xi for xi &#x3E; 0.

By the argument on p. 7 of [13], there exist k radial orthogonal functions hi of
compact support such that fRn  0 on T = (span fhil)B101.
(This uses our assumption on p.) It is then easy to prove (cp. [13]) that these
functions rescaled are the required functions ~i and we have proved our claim.

Next, we need to consider the bands at the bifurcation point X.).
This is much easier because we can separate variables. If Ài, i = 1, - - - , t
(where t could be infinity), are the eigenvalues less than -h* f’(0) =

on 
1 with radial eigenfunctions counting multiplicity, it

is easy to check that at uo(~,*), À*), Ài(1’) = inf + r2, 1 } or inf

{~,i -E- (k ~ i)2, 1 }. Note that it is easier to use the Block function decomposition
here (that is (9)) and that unlike earlier the bands are not numbered to be
increasing in i. Here k is a positive integer. Note that only finitely many bands
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touch or go below zero. Hence whole bands must move through zero as we
move along the branch D’ as we move from the bifurcation point to infinity.

We now prove that, if q is a large prime, there are points (W, À) on D"
where the Morse index of

in Xq changes as (u, h) crosses (u, h) along the arc D’ but -Ah - 
is invertible in X1. Moreover, we prove that, at all points close to (u, À) on
D’, but not (u, ~), -A h - is invertible in Xq. Define the Morse index
m (u, À, q) to be the number of negative eigenvalues of A - Àf’(u)/ counting
multiplicity on Xq. The main part of the proof is a counting argument as in [4].
At X*), only a finite number k of bands can intersect (- oo, 0) and
hence, by (11), ~,*, q ) is at most kq for large prime q. On the other
hand, as we move to infinity along D’ many bands totally cross zero. Hence,
if we choose a point on D’ where rk bands lie totally below zero,

rq (again by (11)). On D’, there are only finitely many points
dl, ... , ds on the arc D’ between (uo(~,*), h*) and (ui , Àl) where 
fails to be invertible on X (by Theorem 4). Consider one of these points, say

For this point, only finitely many bands = 1, ~ ~ ~ p, can intersect
zero (since - -Àf’(O) as i - oo uniformly in r). Now, for band
i, by Theorem 5, Xi has only finitely many zeros. Hence, by (11), we see
there is a bound independent of q for the multiplicity of the eigenvalue zero
of -ð - at di in Xq. Since there are only a finite number of di’s
and since the change of the Morse index between (uo(À*), X*) and (ul, is
of order q, we see that for large q, there must be other points on D’ between

and where the Morse index changes for all large q.
It remains to check the invertibility on Xq except at isolated points of

D’. Note that in Xq it is still a non-vertical Crandall-Rabinowitz bifurcation at

(uo(~.*), À*) and hence as in the proof of Theorem 4 (ii) invertibility holds at all
points in D’ near uo(~.*), X*) but not uo(~,*), h*). In the proof of Theorem 4
(b) in Section 2, we first constructed an unbounded curve D in D+ containing

X*) such that invertibility (in X1) holds except at isolated points. (This
curve may have self intersections.) Since we have already proved invertibility in
Xq holds near (uo (~,*), X*), we can use analyticity (technically Theorem VII, 1.2
in [23]), to prove that is invertible on Xq except at isolated points.
Since our good branch D’ is a subset of D, our claim follows.

If we choose (u2, À2) E D’ between (ui , and (u0(03BB*), h*) where -0 -
is invertible on XI but m(u, À, q) changes at (u2, À2), we prove there

is a bifurcation to solutions of - 0 u = Àf (u) in Xq ~ X 1. To do this, we modify
f smoothly for y &#x3E; + 1 so that f is bounded for large y. We now
apply rather standard bifurcation theorems to -Au = Àf(u) written in weak
form on the space T = {u E Wl,2(Sq) : u is even, u(x’, -q7r) = u(x’, q7r)l.
Here Sq - X [-q7r, q7r]. Note that the condition on the boundary is in
the trace sense. Our equation is easily seen to have a variational structure. It
is easy to see that written in the weak form we obtain a good weak equation
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on T which is Fredholm near (u2, Å2). The Fredholm property holds since the
derivative is a relatively compact perturbation of -A+ ku with y &#x3E; 0 and since

-Au + y u is coercive on T if k &#x3E; 0. Hence we can apply the main result
in [25] (or use [13]) if we check that the Morse indices for the weak equation
and our earlier equation on Xq agree. To see this, we simply check that at a
point (~, À) where the linearized operator L is invertible on T the Morse index
is k precisely when T = M ED N where dim M = k, (Lx, x)  0 on MB{0} and
L is coercive and positive on N. (Here ~ , } is the scalar product on T.) For
M, we can choose the eigenvectors of on Xq corresponding to
negative eigenvalues. (Here we are using standard regularity theory to ensure
that the weak solutions of the equation (Lu, v) = À(u, v) for all v in T (where
u E T ) are strong solutions of Lu = Àu in Xq. Hence Xq = M fl3 (N fl Xq ).
Hence we have a similar decomposition on Xq and thus the Morse indices
agree. Hence we have bifurcating solutions of -Du - in T. (It is

easy to check that weak solutions are strong solutions.) We are finished if
we prove, for these solutions (u, ~.), u is L°° close to u2 (because then f (u)
is unaffected by the truncation and our solutions are solutions of the original
equation). If (um, Àm) are solutions close to (u2, ~.2) in T x R, is L2
close to X2f(U2)- Since f (um) is uniformly bounded, it follows that Àmf(um)
is close in L’’(Sq) to À2f(U2) for all r with r &#x3E; 2. Hence it suffices to prove

that, if v E Xq, v is small in T and Av is small in for all r &#x3E; 2, then
is small. This follows simply by applying estimates on compact

sets of Sq (where r and r &#x3E; 2). This completes the proof of our claim.
We have proved the following theorem.

THEOREM 7. Assume that the assumptions of Theorem 6 hold, that f is real
analytic on (-y, oo) (where y &#x3E; 0) and the bifurcation in X at (Wo(X,,), À*) is not
purely vertical. Then for all large prime q there is secondary bifurcation to obtain
positive solution of -A u = Xf (u) on JRn of minimal period q1t in xn and decaying
to zero uniformly in xn as I x’ 2013~ oo.

REMARK. Note that we in fact prove that there are many of those secondary
bifurcations on a compact part of the branch D’ (even for a fixed large q). The
solutions we obtain are not the original solutions in XI rescaled because they
have minimal period q1C in xn and on x’ = 0 they increase and decrease at
least q times from xn = 0 to xn = qx.

Lastly, for this section, we need to prove that there are examples satisfying
Theorem 7. The difficulty is in proving the bifurcation is not vertical. We

suspect this is true for f (y) = yP - y (for appropriate p) but we are unable to
prove this. We prove it is true for fe (y) = where E is small, h
is a suitable real analytic function, which is rather flat at the origin and decays
rapidly at infinity. It is easy to see that the other conditions are satisfied and the

question is whether we can choose E and h so that the bifurcation is not vertical.
(To prove the uniqueness of the decaying radial solution on one can easily
use the implicit function theorem to obtain local uniqueness. One then uses
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very similar arguments to those in the proof of the compactness of bounded
sets of D+ in the proof of Theorem 3 to prove the compactness of the set of
solutions uniformly in c for small e). We in fact use a transversality argument
and prove that it is generically true. We work in the space Xi . Suppose by way
of contradiction that the bifurcation off (Eo(h*), À*) is always purely vertical.
By the proof of the Crandall-Rabinowitz theorem in [6], one easily sees that
there is a neighbourhood U of (uo(~.*), X.) in X 1 x R such that the solutions
of -A u = Àf(u) in U which depend on xn (for ,~, :s: ð and h bounded in
C2 on compact sets) are part of the curve { (u (a ) , À(a)) : jl) where X, u
depend continuously on a, E, h (for h given the C2 norm on compact sets).
Note that (u(o), ~,(o)) also depends on e and h. Since we are assuming the
branch is always vertical, Theorem 4 (i) implies that h is constant for la I ::: ii.
Moreover, by the proof of Theorem 1.17 in [6], will have

only a one-dimensional kernel on X 1 spanned by k(a) for /I (uniformly
in c, h). Choose ao with 0  ao  4jI. We will use a transversality argument
to prove that the kernel of this operator is zero for some small e and some
h which gives a contradiction to the verticality. We consider a fixed h (to be
chosen later) and consider the map on X 1

defined for t small and u near u = u (ao). Here X. (t) is the bifurcation

point which depends analytically on t. We prove that the total derivative of
F is onto at (u, 0) and hence by transversality as in Saut and Temam [33],
for most small t, zero is a regular value of the map u 2013~ F(u, t) when
F(u, t) = 0 and u is near u and hence the bifurcation cannot be vertical there
which contradicts what we have already proved. Now by our earlier comments
and self-adjointness, it is easy to see the u derivative of F at (W, 0) has range
of codimension 1 and the range is orthogonal to the kernel vector k(ao). Hence
we see that the total derivative is onto if and only if the t derivative at t = 0 of

has a non-zero component in the direction of k(ao),
that is,

where ~, ~ denotes the usual scalar product on x [-7r, 7r]).
Hence we need to choose h so that (15) holds.

By our earlier construction (in particular, the decreasing properties along
the branch), u(ao) only takes its maximum in the strip at (0, 0). We choose h
smooth so that h (y) is zero near y = 0, 0  h  1, h (u (ao) (0, 0)) = 1 and h
has support close to u (ao) (0, 0) and not containing u (0) (0, 0). This is possible
since u(a)(0, 0) strictly increases in a for small positive a. This follows since
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(where the last equation follows from a separation of variables and 00 is the
positive eigenfunction corresponding to the least eigenvalue of -Oh - f’(uo)h =
t h on L 2(R- I)). Hence h (u (ao ) (x’, xn ) ) = 0 on the strip except close to (0, 0).
Hence, if k (ao ) (o, 0) =j:. 0,

if the support of h is very close to u (ao) (0, 0). Note that, if ao is small, k(ao)
is close to k(0) (by continuous dependence since u(ao) is close to 
and hence k(ao) (0, 0) ~ 0. Hence (16) follows. Moreover, h (u (a)) =- 0 if a
is very close to zero by our choice of the support of h. Since we see that

Wo (X) and X,, are not changed by the term t h(u) for small t (for this choice
of h), ~.* (0) = 0. Thus (15) holds. Finally to obtain a real analytic h, choose
y2 &#x3E; u (oto) (0, 0) and choose r an integer with r &#x3E; 2. Then y -r h (y) is C2
on [0, y2] and hence we can approximate it uniformly in C2 on [0, y2] by
polynomials zm (y). Then zm (y) = yrZm(Y) exp (-m-1 y2) is real analytic with
fast decay at zero and infinity and uniformly approximates h on [0, y2] in the C2
norm. We then easily see that (zm(u(ao)), k(ao)) is close to (h(u(ao)), k(ao))
for large m. (Remember that k(ao) is in Ll since it decays exponentially in x’
on the strip, as in [10].) It is also easy but tedious to check that ~(0) depends
continuously on h (if h is given the C2 norm), Hence À~ (0) is small if h = im
and (15) holds for h = zm for large m (since X’(O) = 0 for our original h).
Hence we have proved transversality and our claim follows.
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