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Lyapunov Center Theorem for some Nonlinear PDE’s:
a Simple Proof

DARIO BAMBUSI

Abstract. We give a simple proof of existence of small oscillations in some non-
linear partial differential equations. The proof is based on the Lyapunov-Schmidt
decomposition and the contraction mapping principle; the linear frequencies Wj
are assumed to satisfy a Diophantine type nonresonance condition (of the kind of
the first Melnikov condition) slightly stronger than the usual one. with
d &#x3E; 1, such Diophantine condition will be proved to have full measure in a sense
specified below; if d = 1, we will prove that the condition is satisfied in a set of
zero measure. Applications to nonlinear beam equations and to nonlinear wave
equations with Dirichlet boundary condition are given. The result also applies to
more general systems and boundary conditions (e.g. periodic).

Mathematics Subject Classification (2000) : 35B 10 (primary), 35B32, 37K55
(secondary).

1. - Introduction

In this paper we give an extension of the Lyapunov center theorem to some
partial differential equations. The result we are going to prove is not really
new: even stronger results are known (see [1]-[6]), but our proof is new and
so simple that we think it is of some interest.

Consider a finite dimensional Hamiltonian system having an elliptic equi-
librium at 0; let wi be the frequencies of the linear oscillations about such an
equilibrium, assume that H (o) = 0 and pick up one frequency, say if

then the Lyapunov center theorem ensures that, on each surface H = E 2 with
small E, there is a periodic orbit uE with frequency close to wi, smoothly
dependent on e, and O (E 2 ) close to the linear mode with frequency The

proof is based on the implicit function theorem; condition (1) ensures that the
eigenvalues of the linear operator to be inverted in order to apply the implicit
function theorem, do not vanish.
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In order to generalize this result to nonlinear PDE’s (like nonlinear beam
and wave equation, see eqs. (4), (5)) one is confronted with the problem that,
since typically with some d &#x3E; 0, the sequence formed by the quantities
at I.h.s. of (1) has zero as an accumulation point. It follows that the linear

operator whose eigenvalues are given by the I.h.s. of (1) is not surjective,
and therefore the standard implicit function theorem cannot be applied. To
overcome such problem KAM theory [1]-[3] or the Nash-Moser implicit function
theorem [4]-[6] have been used. The results of [1]-[6] apply to systems whose
linear frequencies fulfill a suitable nonresonance condition of Diophantine type;
to discuss its generality, one can consider one parameter families of frequencies,
it turns out that the nonresonance condition is fulfilled for values of the parameter
forming a Cantor set of large measure. Existence of periodic orbits is then
ensured for values of E constituting a Cantor set of large measure.

In the present paper we give a proof of existence of small oscillations in
some equations of the form

where u belongs to a suitable Hilbert space, A is a selfadjoint, strictly positive,
operator with pure point spectrum, and f is a nonlinear map vanishing at

the origin. Our proof is based on the standard contraction mapping principle
and holds when the linear frequencies fulfill a nonresonance condition slightly
stronger than the usual one; its generality will be discussed shortly in this
introduction and in detail in Section 3.

We now present the main idea of our proof. We fix a frequency c~ close
to wi I and look for a periodic solution of frequency w. We make a Lyapunov-
Schmidt decomposition (see e.g. [7]), obtaining a 1-dimensional bifurcation

equation on the Kernel K of the operator j A’ (considered in
an Hilbert space of 2x-periodic functions) and an infinite dimensional equation
on K 1-. This latter equation (which will be called the Q-equation) is the one
where small denominators usually appear.

Our main point is that the linear operator obtained by linearizing at zero
the Q-equation (i.e. has eigenvalues given by

so that, if w fulfills

(with some positive y) then the quantities (2) lie outside a neighborhood of
zero. Therefore one can hope to use the standard implicit function theorem
to solve the Q equation. This remark is inspired by the trick used by R. De
La LLave [8] to obtain a variational proof of existence of periodic orbits in
some nonlinear wave equations. Then one proceeds more or less as in the
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finite dimensional case obtaining that, if w is close enouth to WI, there exists a
periodic orbit with frequency w. To obtain small oscillations, i.e. a sequence of
periodic orbits with frequencies tending to wi and accumulating at the origin,
we actually need a sequence of frequencies cv fulfilling (3) with a given y
and accumulating at wi. Its existence is the main assumption of our abstract
theorem (see Theorem 2.2).

A frequency vector Q = (coi, lù2, cv3, ... ) such that there exists a sequence
of cv’s satisfying (3) with the same y and converging to to, will be said to
have property y-NR; this is fundamental for the applicability of our method.
Then the problem is that of proving that such condition is non empty, and of
clarifyinfg how general it is. To this end we assume wi - Id and distinguish
the cases d &#x3E; 1 and d = 1. In the case d &#x3E; 1 we assume that cvl depends on a
real parameter T, and we will prove (under suitable conditions) that the property
y-NR is satisfied when the parameter T belongs to a set of full measure. If
d = 1 then the property y-NR can be satisfied, but for a set of frequencies
which, in some sense, is of zero measure.

In Section 4 we will give some applications of our general result. Consider
the nonlinear beam equation

with Dirichlet boundary conditions on [0,1f] and a, fJ positive parameters; fix a
linear mode, and one of the two parameters, e.g. a &#x3E; 0; then, if fJ belongs to a
subset of [0, oo] of full measure the linear frequencies have the property y-NR.
If moreover the nonlinearity fulfills a nondegeneracy condition, automatic if 1/1
is an odd polynomial, then there exists a sequence of periodic- orbits close to
the considered linear mode and accumulating at zero.

An application to the nonlinear wave equation

with Dirichlet boundary conditions on [0, x] is also made. If m belongs to
an uncountable subset of R, then we will obtain the same result as for the
nonlinear beam equation.

Our method can be easily generalized to other boundary conditions (e.g.
periodic).

Finally we point out that the smoothness property needed for the nonlinear
part 1/1 are much weaker than those required in [1]-[6] (see Sect. 4), indeed it
is enough to assume that 1/1 is C4.

2. - The abstract result

Fix a sequence S2 - ~3,...) of positive numbers and consider the
system of differential equations
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where u = (~1,~2,...) E 12 is a vector, A is a diagonal positive operator
defined by (Au)i := wi2ui, and are nonlinear operators. Here 12 is the
Hilbert space of the sequences such that

We fix the parameter s.
Concerning the nonlinearity we assume that its main part is a bounded

homogeneous polynomial of degree r (see e.g. [9]), with some r &#x3E; 2. Concern-

ing the higher order part 1(1) of the nonlinearity we assume that it vanishes at
the origin, has a Lipschitz first derivative and satisfies the estimate

where DI(1) denotes the derivative the map f (1). Remark that it follows that
f ~l~ has a zero of order r+1 at the origin. We will also denote f := f (0) + f (1).

The solutions of (6) that we will consider fulfill the equation in the mild
sense, i.e. they are solution of the system of integral equations

where (u°, ûO) are the initial data. Assume mi t y Vi t 1, with a positive y.
Define the Hilbert space 12 of the sequences v = (vi) such that is

square summable, then it is well known that under the above assumptions the
Cauchy problem for equation (6) is well posed in the mild sense in the space
~s X 12 (see e.g. [10]).

We will look for periodic solutions of (6) which are close to the first linear
mode

where e is the vector (1,0,0,... ). Analogously we will use the notation
el for the vector having each component equal to 0 but the l-th which is equal
to 1. We will also denote by Qc the sequence (w2, w3, W4, ... ).

REMARK 2.1. We did not assume cvl &#x3E; WI for 1 &#x3E; 1, so the first mode is
actually an arbitrary one.

DEFINITION. The fi-equency w will be said to be y strongly nonresonant
with S2e if the following inequality

holds.

DEFINITION Property y-NR. We will say that 92 has the property y-NR if
there exists a closed set such that any W E Wy is y strongly nonresonant
with ~c and moreover wi is an accumulation point of both Wy n (- oo, 
and Wy fl [oil, + oo).

In Section 3 we will discuss the generality of property y-NR.
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THEOREM 2.2. Consider system (6); assume that there exists a positive y such
that Q has the property y-NR, and that y, V I &#x3E; 1; assume also that

then there exist a strictly positive cv*, a set E C R having zero as an accumulation
point, a 1-1 map E 3 E ~--~ wE E Wy, onto Wy rl [col, WI + W*),  0 or onto

Wy fl (cvl - W*, coil, if f30 &#x3E; 0, and a family ofperiodic solutions of (6),
with the following properties

Moreover

REMARK 2.3. By the second of (9) u, has norm of order c.

PROOF. First we introduce a suitable Hilbert space H of periodic functions.
Let q have the representation

Define H C ~~([0,27rL to be the space of all the function of the form (10)
with 

- ~-

Remark that f (1) induces a Lipschitz map (Nemitski operator) 1-£ 3 q t-+- f(1) o
q E 1t whose Lipschitz constant is of order c" in a neighborhood of order c
of the origin. The map defined analogously by is also regular since it is
a bounded polynomial.

Fix W E Wy close to and look for periodic solutions of (6) with
frequency cv of the form

requiring that u is a solution of (6) one gets (formally) that q must fulfill the
equation

where the operator Lw is defined as the closure of the operator + A

(defined on valued functions). We will denote by D(L~) the domain
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of LW8 We look now for a solution q E D (L~) of (11), subsequently we will
discuss its regularity and prove that it defines a mild solution of (6).

We will denote K := Ker(Lw¡) = span {~1 }, and R := K-L; correspond-
ingly we will use the projectors P : M -~ ~ and Q = Id - P. We look for
solutions of (11) of the form

where c is a (small) parameter that will be eventually determined as a function
of w. To this end we write

with a still undetermined 6. Project (11) on K and R, using (w) and (12) one
obtains the system 

.

It is useful to consider the system formed by the equations (P, Q, cv) for the
unknowns 

We begin by studying the ( Q)-equation. First we invert the operator LwIR.
To this end remark that its eigenvalues Àjl are given by

so that, if w is y strongly non resonant with Qc one has, for j &#x3E; 1, I ~ 2 and

and the same inequality holds for Àjl I and hoi. Therefore LwlR has a bounded
inverse L-1. Moreover one has Y 1 C. So we multiply (Q) by Lwl 1
and apply to the so obtained equation the implicit function theorem. We thus
obtain that there exists a positive e such that, provided 0  E  e, then there
exists a Lipschtiz function qi(E) which solves (Q). Moreover it is easy to see
that e~ depends on w only through y and that

with a C4 independent of w.
The (P) equation then defines
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where t coincides with (8) and

and we denoted by (. ;. ~x the scalar product in ?~. Remark that fli (E, q’ (,e))
tends to zero as E -~ 0 uniformly with respect to cv E Wy.

Finally, we need to solve equation (cv). Recall that w is fixed, so equa-
tion (cv) is an equation for e. Upon insertion of (13), it becomes

If the term PI were absent then (14) would have been a 1-1 relation between E
and cv, and therefore choosing c in the set corresponding to strongly nonresonant
cv’s one would obtain the statement of Theorem 2.2. To deal with the true case

0 we use the contraction mapping principle, so, we rewrite (14) as

with it = Er-1. Fix a positive 8  1, then provided is close enough to cvl and
JL is small enough, the r.h.s. is a contraction of a ball centered at 

having radius of order ((to, 2 _ , and therefore, for any fixed to there
exists e unique tt = fulfilling such an equation and the estimate

with a suitable C5.
So, we constructed a solution q of equation (11). Remark that by con-

struction q E D(L).
We are now going to prove that such a q (t ) is also a mild solution of

equation (6). To this end recall that mild solutions depend continuously on
initial data and on parameters, and take a sequence q k E 1-(, of smooth 12
valued functions, such that qk converges (in 1-(,) to q and L,,q converges to
Lwq. Define 

-

then gk is smooth and, by the above properties, converges uniformly to zero as
k - oo. Moreover qk fulfills (classically, and therefore also in the mild sense)
the equation 

I J

Consider now the mild solution qM of (11) with initial data qM (o) - q k (0),
4 k (0) = 0, and denote by q M the mild solution of (11) with initial data

= q (0), = 0. Fix p &#x3E; 0. Remark that, since qk is defined for all
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times, the theorem on continuous dependence of mild solutions on parameters
and initial data ensures that, for any fixed ~’ &#x3E; 0 one can take k so large that

From this it immediately follows that q coincides with qM. 11

3. - On property y -NR

To study the generality of our Diophantine type nonresonance condition we
assume that with some d &#x3E; 1. We will distinguish the cases d &#x3E; 1
and d = 1.

3.1. - The case d &#x3E; 1

Assume that the frequency vector Q = S2 ( t ) depends in a differentiable
way on a real parameter i E rim, We will assume that the following
properties are fulfilled with some d &#x3E; 1 and for all r in the considered interval

with some strictly positive Here
Define the sets

we assume

where denotes the Lebesgue measure of the set A.
Finally we denote

has property

REMARK 3.1. Property (16) must be verified only for a finite number of
values of j, I, indeed, for large j, I it is a consequence of (15).
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THEOREM 3.2. Assume (15) and (16) then

The proof of this theorem will be split into a few lemmas and will occupy
the rest of this subsection.

We will use the notation

Our first task will be to evaluate

LEMMA 3.3. Assume that (15) holds and define

then, there exists a positive C* such that, provided y is small enough one has

PROOF. First remark that 54 0 implies

which, taking into account that y &#x3E; 0, implies

Secondly, for fixed j, I we have
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Assume I &#x3E; 1.(j), then the r.h.s. is larger than cl j/2. It follows that for such
values of I and j the quantity has at most one zero rji. For
T &#x3E; l one has

working out an analogous inequality for r  1’jl we easily get that

From this and from the limitation (17) one immediately gets

from which, summing over j the thesis follows.

LEMMA 3.4. Define

then one has

PROOF. We have to show that the measure of the union of the remaining
Rjl (y) (i.e. I  1. (j)) tends to zero as y - 0. To this end remark that such
sets are finitely many. Indeed if j is larger than some J* then l* ( j )  2 and
therefore the preceding lemma gives the estimates of all the considered sets.

We prove that

which is a finite union of sets with zero measure and therefore has zero measure.
To prove (20) just remark that given any r outside the set at r.h.s. of (20) one
has

and therefore such a r is outside of and therefore outside of

the l.h.s. of (20). So, the thesis follows. D
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LEMMA 3. 5. Fix Qc n (W2, (03, cv4, ... ), and let Wi E cvM ] be y strongly
nonresonant with Qc. Let WI be a sequence fulfilling aid, l &#x3E; 2 and

with Cv  con y /2a; then WI is y strongly nonresonant with i
Here 

I -,.r w W

PROOF. First remark that provided y  wm /2 the inequality I
implies 

-

from which So, that ld So
we study only the One has

PROOF OF THEOREM 3.2. We extract now the subset .A.y of iy formed by
the points which are accumulation points both from the right and from the left.

Define

and B := B1 U B2. Then Ãy is the disjoint union of B and a set Ay composed
by points which are accumulation points both from the right and from the left.
We choose the set of the statement of the theorem to be the one just defined.
It is easy to see that Bi is at most numerable, so that lAy I = Indeed,
consider B1 and fix T E Bi, choose a rational number in (r, i +6~); this gives
a biunivocal correspondence between 81 and a subset of the rational numbers.

It remains to prove that for r E Ay the frequency is the accumulation

point of a sequence of frequencies which are y nonresonant with But

this is a trivial consequence of Lemma 3.5. Indeed, let zk E ,A.y be a sequence
converging to t. It follows that is y strongly nonresonant with 
and that so, for k large enough is also

y strongly nonresonant with S2c(r) (with any y  y). So, cvl (tk) is the wonted
sequence of frequencies accumulating at WI (1"). Remark also that, since cl :0 0,
if ik &#x3E; r then also &#x3E; WI (t) and vice-versa. 11

COROLLARY 3.6. Let be the square roots of
the Dirichlet eigenvalues of a &#x3E; 0 then Q (a, f3) _--_ (co 1 (a, f3),
cv2(a, (3), W3(a, ~8), ... ) has the property y-NR with some y, for f3 in a subset of
[0, having full measure.
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3.2. - The case d = 1

We will use the continued fraction expansion of cv. Correspondingly we
will use the standard notation = [ao, a 1, ~2, - .. l with ai non negative integers
to mean 

,

PROPOSITION 3.7. Let with ao &#x3E; 1 and
be a sequence of positive numbers satisfying

assume that the sequence ai has infinitely many nonvanishing elements and is
bounded; define y, := infi &#x3E;2 (ai -I- 2)-1 assume also Cv  yl /4 and 3a &#x3E; c,,
then there exists a positive y such that Q has the property y-NR. Moreover, there
is family of frequencies (J) which are y strongly nonresonant with Qc, and which
accumulate both from the left and form the right at WI and have the power of the
continuum.

PROOF. We begin by proving that one has

This is a consequence of the following two facts (i) 2~ then l / j
is a convergent of to, (see [11, Th. 5C]). (ii) if In/jn is the n-th convergent of
cv I then one has 

- -

(see [11, p. 23]). Then an argument equal to that of Lemma 3.5 shows that

Then we study the case I = ao j . One has

if then it follows that wi is y strongly nonresonant with Qc. If ao = I

then j = 1 is not allowed, so the same conclusion holds. To show that W, is the
accumulation point of y-strongly nonresonant frequencies consider a sequence
b = 1 with bi E fO, 1). Then w(b) _ [aco, a 1-I- b 1, a2 -I- b2, ... ] is y strongly
nonresonant with S2~ with a constant y independent of b. Moreover the set of
the accumulates both from the right and from the left at col. 0
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COROLLARY 3.8. Define to be the square roots of the Dirichlet
eigenvalues of -axx -f- m on [0, 1f] then property y-NR holds for m belonging to
a non-numerable subset Moreover for any m in such a set, the family of w’s
which are y-strongly nonresonant with Qc and accumulate at cvi, is not countable.

A simple generalization of the above corollary is

COROLLARY 3.9. Let Vo E n ] be a function with zero average. Denote by
Ài = Ài(JL, m, Vo) the Dirichlet eigenvalues of -axx + m2 + on [0, 1f]. Then
there exists an uncountable set A C R and a constant 0  C(Vo)  00, such that, if
m E .A, and J  m2, the frequencies Wi := Ã fulfill property y -NR with
some y.

More general examples can be obtained taking into account known results
of Sturm-Liouville theory [12].

4. - Applications to nonlinear beam and wave equations

We are now ready to prove existence of small oscillations in nonlinear
beam and wave equations. We assume that the nonlinearity has the form

with some r &#x3E; 2 and 1/1(1) which admits two Lipscitz derivatives, vanish together
with its first derivative at zero and fulfills the inequality

from which in particular it follows that it has a zero of order r -~- 1 at zero.

It easy to verify that the nondegeneracy condition (8) holds provided r is
odd. The smoothness assumptions are fulfilled fixing the index s of the space
to be 1.

REMARK 4.1. If 1/1 is C4 and fulfills

all the assumptions on the nonlinearity are fulfilled.

To apply Theorem 2.2 we fix the parameters a, fi for the nonlinear beam
equation or m for the nonlinear wave equation in such a way that the linear
frequencies have the property y -NR with some y. This is possible in view of
Corollaries 3.6 and 3.8.

We thus have the following theorem which holds identically for the beam
and for the wave equations.
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THEOREM 4.2. Under the above assumptions there exists a family lu,1,,g of
periodic solutions of the considered equation; moreover E has an accumulation
point at zero, u, has frequency wf which is y strongly nonresonant with Qc, and the
following inequalities hold

sinx cos(t). E H1([o, 2~/cvE]; 
REMARK 4.3. In the case of the nonlinear wave equation we can ensure

that there are uncountably many periodic orbits (see Corollary 3.8).
REMARK 4.4. In the case of the nonlinear beam equation the same result

holds for all the other modes of oscillations, namely when ~l is substituted by

For the case of the nonlinear wave equation, Corollary 3.8 applyes only when
the frequency vector is orderd (i.e. wi  my for i  j). To prove existence
of higher normal modes one should show that there exist some values of m
corresponding to which the frequency vector with wk interchanged with col has
property y -NR. We did not try to obtain such result.

REMARK 4.5. The above theorem can be easily generalized to periodic
boundary conditions and to nonlinearities which depend explicitly on the space
variable.

REMARK 4.6. The function * (u) in (4) and in (5) does not need to be
odd.

REMARK 4.7. It is easy to realize that, if 1/1 is odd and has s -I-1 Lipschitz
derivatives (s &#x3E; 2), then the assumptions of Theorem 2.2 are fulfilled also
in 12. So one can ensure that the periodic solutions we found are of class
H ([0, n ] ) and that, in the case of the beam equation (4) they
are also of class Cl ([0, Hs -2 [0, 7r ]), while in the case of the wave
equation (5) they are of class 7r
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