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Resolvent Positive Operators and Inhomogeneous
Boundary Conditions

WOLFGANG ARENDT

Dedicated to Rainer Nagel on the occasion of his sixtieth birthday

Abstract. In a first part resolvent positive operators are studied. It is shown that
the inhomogeneous abstract Cauchy problem has mild solutions for sufficiently
smooth and compatible dates. The heat equation with inhomogeneous boundary
conditions is considered in the second part. It is shown that it is well-posed if and
only if the domain is Dirichlet regular. Moreover, the asymptotic behaviour of the
solutions is studied. Here we apply the first part to the "Poisson operator" which
is resolvent positive but not densely defined and does not satisfy the Hille-Yosida
condition. Finally, we prove analogous results for general elliptic operators with
measurable coefficients.

Mathematics Subject Classification (2000) : 35K20 (primary), 47D06 (secondary).

Introduction

Let S2 be an open, bounded set with boundary r. Given continuous func-
tions w : [0, oo) x r - R, uo : Q - R we consider the heat equation with
inhomogeneous boundary conditions

In this paper we study well-posedness of the problem and the asymptotic
behaviour of its solutions as t - oo. For this we use an operator theoretical

approach which is of independent interest.

Supported by DFG in the framework of the project: "Regularitdt und Asymptotikjwr elliptische
und parabolische Probleme ".
Pervenuto alla Redazione il 2 novembre 1999 e in forma definitiva il 22 maggio 2000.
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It is well-known that the Hille-Yosida theorem gives an efficient tool to
prove well-posedness of parabolic problems using results on elliptic problems.In
our context, however, this transfer is done with help of a resolvent positive
operator which is not densely defined and does not satisfy the Hille-Yosida
condition. It is a natural operator on whose resolvent in 0 solves
the Poisson equation. We call it the "Poisson operator". Two abstract results on
resolvent positive operators are proved to study well-posedness of the problem
Poo(uo, ~).

1. If A is a resolvent positive operator on a Banach lattice, then for uo E D(A),
f E such that

the inhomogeneous Cauchy problem

has a unique mild solution. We prove this by constructing a Hille-Yosida op-
erator on an intermediate space and applying a result of Da Prato-Sinestrari
[DS87] for non-densely defined Hille-Yosida operators.

2. We show that every mild solution of (ACP) is positive whenever f &#x3E; 0
and 0.

Via the Poisson operator, the problem ~p) is transformed into an
abstract Cauchy problem. Then (*) becomes the natural compatibility condition

and the result of 1. yields solutions of cp) for smooth

data. The second result gives an a priori estimate which allows to prove well-
posedness.

The results on asymptotic behaviour are obtained by applying relatively new
Tauberian theorems for individual solutions (cf. [ArBa99], [AP92], [Chi98],
[Ner96]) to the Poisson operator.

More specifically we obtain the following results. The parabolic problem
cp) is shown to be well-posed if and only if Q is Dirichlet regular. This

is not new; it had first been proved by Tychonoff [Tyc38] in 1938 with help
of methods of integral equations. Other proofs were given by Fulks [Ful56],
[Ful57] and Babuska and Vyborry [BV62] (see also Lumer [Lum75]). But,
besides its simplicity, our approach has the advantage to work if general el-

liptic operators in divergence form with bounded measurable coefficients are
considered instead of the Laplacian. The corresponding result, Theorem 6.5, is
new in the generality considered here. Our new framework allows us to deduce
the parabolic maximum principle from the elliptic maximum principle by Bern-
stein’s theorem on monotonic functions (Theorem 6.6). So far it seems that

merely operators in non-divergence form with Holder continuous coefficients
had been considered by Chan and Yound [CY77] with help of barriers.

Concerning the asymptotic behaviour we show that u(t) converges in 
if cp(t) converges in C(r) as t 2013~ oo. We also study periodic and almost
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periodic behaviour. It is shown that the solution u is asymptotically almost
periodic whenever the given function w on the boundary is so. Moreover, we
show that for each (almost) periodic function w there exists a unique initial
value uo such that the solution u is (almost) periodic.

It should be mentioned that Greiner [Gre87] has developed an abstract

perturbation theory for boundary conditions by extending operators to a direct
sum of the given space with a boundary space. Moreover, resolvent positive
operators had been studied before under various aspects (see [Are87a], Thieme
[Thi97a], [Thi97b], Nussbaum [Nus84] and Borgioli and Totaro [BT97] for very
different applications).

Concerning a very detailed recent account on well-posedness of parabolic
problems with barrier methods we refer to Lumer and Schnaubelt [LS99].

The paper is organized as follows. In Section 1 we derive abstract results on
resolvent positive operators. The Poisson operator is studied in Section 2. Well-
posedness of the heat equation with inhomogeneous boundary conditions is the
subject of Section 3. The asymptotic behaviour of its solutions is investigated in
Section 4, and in Section 5 the results are extended to the inhomogeneous heat
equation. Finally, we consider general elliptic operators instead of the Laplacian
in Section 6. The proofs in Section 3 are given in such a way that they are
valid in this more general case. However, now they are no longer self-contained.
We need the De Giorgi-Nash result on Holder continuity of weak solutions of
elliptic equations as well as regularity results on the boundary due to Littman,
Stampacchia and Weinberger [LSW63] with their applications in [Sta65, Section
10]. To be complete, we give a proof of the elliptic maximum principle for
distributional solutions in the appendix.

0. - Preliminaries

Let A be a (linear) operator on a complex Banach space X. Thus A is
a linear mapping from a subspace D(A) of X, the domain of A, into X. By

we denote the spectrum, by g(A) the resolvent set of A. We denote by
A ) = (A - the resolvent of A if h E (J(A). Note that A is closed

whenever Lo , (A) 54 0.
If A is an operator on a real Banach space X, we extend A to the com-

plexifation of X. By a(A) we always mean the spectrum of this extension.
Let T &#x3E; 0. By W 1 ~ 1 ( (0, t ) ; X ) we understand the space of all functions

f : [0, r] -~ X which are of the form

for some We let

is continuous}, is continuously
differentiable}. Note that
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If S2 c I~n is open, C (0) denotes the space of all continuous real valued
functions on S~; by C (Q) we denote the continuously differentiable functions
and by D(S2) the test functions.

Let Y be a Banach space. We consider the Banach space

BUC(R+ ; Y) = { f : R+ - Y : f is bounded, uniformly continuous}

with uniform norm

For 17 E R , y E Y we let

be given by By )
R, Y E Y } we denote the space of all almost periodic functions on R+ with
values in Y.

We let and denote by

the space of all asymptotically almost periodic functions on R+ with values
in Y. It is a closed subspace of BUC(R+; Y). For u E AAP(R+; Y) we let

be the mean of u in 77 E R and denote by

the frequencies of u. If u E AAP(R+; X), then u(t) exists if and only
if Freq(u) c 101. A function u E AAP(R+; X) is r-periodic (i.e. u(t+r) .T- u(t)
for all 0) if and only if Freq(u) C 2: Z. We refer to [Fin74] and [ArBa99]
for all this.

1. - Resolvent positive operators

Let X be a Banach space, and let r &#x3E; 0. Let A be a closed operator. We
consider the inhomogeneous Cauchy problem

where and are given.
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DEFINITION 1.1. a) A mild solution of (ACP) is a function 1
such that and

b) A classical solution of (A CP) is a function
such that (AC P) is satisfied.

Here we consider D(A) as a Banach space for the graph norm. It is
obvious that every classical solution is a mild solution. Moreover, if u is
a mild solution, then it is a classical solution whenever u E C~([0,r];X).
Concerning the terminology we should mention that Da Prato and Sinestrari
[DS87] reserve the term "mild solution" for the case where A is the generator
of a Co-semigroup T. Then a unique mild solution always exists and is given by

In the general case the term "integral solution" is used instead in [DS87].
We say that A is a Hille. Yosida operator if there exist R, M ~ 0

such that (w, oo) c e(A) and

for all X &#x3E; w , n E No. This means that A satisfies the conditions of the Hille-
Yosida theorem besides the density of the domain. We recall the following
result proved by Da Prato-Sinestrari [DS87].

THEOREM 1.2. Let A be a Hille-Yosida operator. Let f E W 1~~ ((o, 1’); X),
uo E D (A). Suppose that Auo + f (0) E D (A). Then (AC P) has a unique classical
solution.

REMARK 1.3. a) Theorem 1.2 can also be obtained from the theory of
non-linear semigroups, see Bénilan-Crandall-Pazy [BCP88].
b) A proof on the basis of integrated semigroups is given by Kellermann-Hieber
[KH89].

c) A proof with help of "Sobol ev-towers " is given by Nagel and Sinestrari
[NS94].

Now let X be a Banach lattice. An operator A on X is called resolvent
positive, if there exists some R such that (w, oo) c e(A) and R(À, A) 2:: 0
for all h &#x3E; w. We denote by
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the spectral bound of A. If A is resolvent positive, then 0 for all
A &#x3E; s (A). Moreover, if s (A) &#x3E; - oo, then s (A) E a~ (A) (see [Are87a]). Finally,

Now we prove the main result of this section.

THEOREM 1.4. Let A be a resolvent positive operator,
Uo E D(A). Suppose that

Then (ACP) has a unique mild solution.

PROOF. By a usual rescaling argument we can assume that s (A)  0. We
consider the space

Then Y is a sublattice of X and a Banach lattice for the norm

In fact, it is clear that defines a norm such that and

~ implies . We show that is complete.

Let Y, E Y such that There exist X, E X+ such that

Let in X. Then where

in X. Since for

it follows that

This completes the proof that (Y, II 11 Y) is a Banach lattice.

It is clear that Y - X and that R(O, A) defines a continuous operator
from X into Y. Moreover, D(A) ~ Y. Denote by B = A Y the part of A
in Y. Then (s(A), oo) ci2(B) and R(À, B) = Let y E Y , 
R(o, A)x, where x E X+. Then fork &#x3E; 0 , A)yl  A)R(o, A)x =

R(O, A)x. Hence Ilylly. We have
shown that B is a Hille-Yosida operator. 

-

Now let such that
Consider
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Then

By Theorem 1.2 there exists a function v E C([0, r]; D(~))UC~([0, r); Y)
such that v(0) = vo and v(t) - v(0) = B fo v (s ) d s g (s ) d s . Note that A is
a continuous operator from D ( B ) into Y, and Y - Z. Hence u : := 2013A o v E
C ([0, -r 1, X). Moreover,

. Thus u is a mild solution of (AC P) . D

COROLLARY 1.5. Let A be a resolvent positive operator on a Banach lattice
X. Let f E -C); X ) , D(A) such that Auo + f(O) E D(A) and
A(Auo -I- f (0)) + / (0) E D(A). Then (ACP) has a unique classical solution.

PROOF. By Theorem 1.4 there exists a unique function v E C ([o, -r]; X)
such that fo v (s)ds E D (A) and v (t) - v (0) = A fo v (s)ds + fo f (s)ds for all
t E [0, z ] where Then u E

Thus u is a
classical solution of (ACP). 0

REMARK 1.6. a) We note from the proof of Theorem 1.3 the following:
Let A be a resolvent positive operator on X. Then there exists a Banach lattice
Y such that D (A) 2013~ Y - X and such that the part B of A in Y is a Hille-
Yosida operator. In particular, a(A) = a (B) and B) = for all
X E (J(A). Thus also B is resolvent positive.

b) Another construction [Are87a, Theorem 4.1 ] shows that every densely defined
resolvent positive operator A on X is part of a generator B of a positive
Co-semigroup on a Banach lattice Z such that D(B) - X - Z. However, in
this construction it is essential that the domain of A is dense. So the result is
not suitable for our purposes.

Finally, we want to discuss positivity of mild solutions.

THEOREM 1.7. Let A be a resolvent positive operator on a Banach lattice X.
Let uo E X+ , f E C([o, t]; X+) and let u be a mild solution of (ACP). Then
u (t) &#x3E; 0 for all t E [0,r].

For the proof of this result we cannot use the techniques used above. The
point is that f (t) might not take values in D(A), which is typically the case
for the application we have in mind. There, Theorem 1.7 will allow us to

deduce the parabolic maximum principle from the elliptic maximum principle
(see Section 3 for the Laplacian and Section 6 for general elliptic operators).

For the proof of Theorem 1.7 we use some results about integrated semi-
groups. Let A be a resolvent positive operator on a Banach lattice X. Then
by [Are87b, Corollary 4.5], A generates a twice integrated semigroup S, i.e.
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S : R+ --&#x3E;. £(X) is strongly continuous, = 0, and

for all x E X , À &#x3E; max{s (A) , OJ.

LEMMA 1. 8. The function S is increasing and convex; i. e.
~. S (tl ) --~ ( 1- ~,) S (t~) in the sense ofpositive operators for all t1,

PROOF. Let x E X+ , x* E X*. Since (-1)nR’(~,, A) (n) = n!R(À, A)n+1, I
the function = ~R(~,, A)x, x*) is completely monotonic. By Bernstein’s
Theorem (see [Wid71, Section 6.7]) there exists a : R+ ~ R increasing such
that a (0) = 0 and r (.k) = e-Àtda(t) (h &#x3E; s (A)). Integration by parts yields

for all ~, &#x3E; max{s (A), ©}, where
Note that the function fJ is convex. On the other hand

for all k &#x3E; It follows from the

uniqueness theorem that

REMARK 1.9. A discussion of vector-valued versions of Bernstein’s theorem
is given in[Are94].

PROOF OF THEOREM 1.7. Let u be a mild solution of (ACP) where uo =
for all

is a classical solution of the inhomogeneous Cauchy problem

with It follows from

[Are87b, Proposition 5.1 ] that W e C~([0,r];X) and v = w". Since v (t) =
it follows that w E C~([0, 1’]; X) and u = w ~3~ . By Fubini’s theorem

we have
A* f -* · n

Thus We show that w’ is convex. This

follows from the first term by Lemma 1.8. Let = 0 for t  0 and

S(t) for t &#x3E; 0. Since S is convex, increasing and ,S (o) = 0, it follows

that S is convex. Hence is also convex

in t &#x3E; 0. Since it follows that u is positive.
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2. - The Poisson operator

Let S2 c R’ be an open, bounded set with boundary r = We say
that Q is Dirichlet regular, if for all ~O E C(r) there exists a solution u of the
Dirichlet problem _

Note that automatically u E if u is a solution of Moreover,
there is at most one solution. If S2 has Lipschitz boundary, then S2 is Dirichlet
regular. But much less restrictive geometric conditions on the boundary suffice.
We refer to classical Potential Theory ([DL87, Chapter 2], [Hel69], [GT77,
§ 2.8]. Let C(Q) = { f : w Q - R continuous} which is a Banach lattice for

pointwise ordering

and the supremum norm

On we consider the Laplacian Amax with maximal distributional domain

Here we identify C(2) with a subspace of as usual. One always has
C C1 (SZ), but also C2(Q) (see [DL87, Chapter 2]). So it

is important to consider the Laplacian with distributional domain.
Next we consider the space X = C(r). It is a Banach lattice for

the ordering ( f, ~p) &#x3E; 0 if and only if 0 for all x E S2 and cp(z) &#x3E; 0 for

all z E r and the norm

On X we define the operator A given by

Thus, for i we have

if and only if

i.e., u is solution of the Poisson equation. For this reason we call A the Poisson
operator.
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PROPOSITION 2.1. Assume that Q is Dirichlet regular. Then the Poisson operator
is resolvent positive and s (A)  0.

PROOF. I

. It follows from Theorem 7.2
that u  0.

b) We show that 0 E e(A). Let f E C(~) , ~O E C(r). Denote by En the
Newtonian potential. Let = f (x ) for x E SZ and f (x ) = 0 for x E R" B Q.

IV N

Let w’:= -E,, * /. Then w E C(R") = f in (we refer to
[DL87, Chapter II § 3] for these facts). Let 1/1 := w~r E C (r). Let v be the

solution of the Dirichlet problem

have shown that -A is surjective. It follows from Theorem 7.2 that -A is

injective. Thus -A is bijective. Since A is closed, we have 0 E e(A).

Since I

R (0, A) for h E Q. This implies that Q is closed. Thus Q is open and closed
in R+. Consequently, Q = I~+ . D

Note that

In fact, since polynomials are dense in C(Q) one has D(Ama,) = C(Q). This
implies (2.2). 

___ - ___

Identifying D(A) with C(Q), the part of A in D(A) becomes the operator
Ac defined on by

Since Ac is identified with the part of A in D (A) one has Q(A) c In

particular, if S2 is Dirichlet regular, then

Also the operator Ac is not densely defined. But it is sectorial in the sense
of the following theorem. Thus the operator Ac generates a holomorphic semi-
group in the sense of Sinestrari [Sin85], see also the monograph by Lunardi
[Lun95, Chapter 2] for properties of these holomorphic semigroups (which are
not strongly continuous in 0).

THEOREM 2.2. Assume that Dirichlet regular. Then there exist an angle
- , .- , . - - ...
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PROOF. Consider the Laplacian L on Co(R") given by

Then L generates the Gaussian semigroup, which is bounded and holomorphic.
In particular, there exists Mo &#x3E; 0 such that

whenever Reh &#x3E; 0.

We show the same estimate for ~ A be an
extension of f such that I

we obtain

We have shown that

This implies the claim by a usual analytic expansion (see e.g. [Lun95,
p. 43]). 0

By Ao we denote the part of 0 ~ in that is Ao is the operator on
defined by

Since D(S2) C D(Ao), the operator Ao is densely defined.

COROLLARY 2. 3. Assume that Q is Dirichlet regular. The operator Ao generates
a bounded holomorphic Co-semigroup To on Co(Q).
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Theorem 2.4 had been proved in [ArBe98] with help of Gaussian estimates.
The easy direct proof given here is basicly a consequence of the maximum
principle. In a different form (not using the Poisson operator as we do) it is
due to G. Lumer (cf. [LP76] where a more abstract context is considered). We
are most grateful to G. Lumer who explained us his argument.

If S2 is Dirichlet regular, then it has been shown in [ArBe98] that a (Ao) =
cr (02) where A2 is the Dirichlet Laplacian in L2 (S2); 

Moreover,

where T2 is the Co-semigroup generated by A2-
Next we prove further spectral properties of the Poisson operator.
PROPOSITION 2.4.

(a) One has C C Q(Ao).
(b) If 0 is Dirichlet regular, then ~O(A) _ 
(c) fl Lo , (Ao) :0 0, then Q is Dirichlet regular.

if and only if )

b) Assume that S2 is Dirichlet regular. Let k E o(0~). For cp E C(r) denote by
the solution of the Dirichlet problem Define

This shows that

have shown that

c) Assume that there exists

Thus u is a solution of

REMARK 2.5. Assume that S2 is Dirichlet regular. Let A be the Poisson

operator.

a) The operator A has discrete spectrum, consisting merely of point spectrum. In
fact, let h E cr (A) c a(Ao). There exists u E D(Ao) B f 0} such that Aou = Àu.
Hence (u, 0) E D(A) and A(u, 0) = X(u, 0). But the resolvent of A is not

compact if n &#x3E; 2 (in fact, if (u, 0) = R (0, A)(0, then - A u = 0 , Mjp = cpo
So compactness of R(o, A) would imply compactness of the unit ball of C(I’)).
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b) A is not a Hille-Yosida operator. In fact, for h &#x3E; 0, since
for R(Â, A)(o, lr) _ (w),, 0) , = lr, so Â.

c) However, the part of A in {OJ is generator of a Co-semigroup and
the part of A in C(Q) Q3 {0} is a Hille-Yosida operator. In fact, identifying

101 with C (S2), the part of A in Q3 {0} is just Ac.
d) Since D(A) = Q3 fOl, the part Ay of A in the Banach space Y = D(A)
is not densely defined.
e) The situation is different if B is an operator on a Banach space X such that
lim sup B) II  oo. Then lim ÂR(Â, B)x = x for all x E D(B). Thus,

_____ 

k--*C)o

the part of B in Y = D(B) is densely defined.

3. - The heat equation with inhomogeneous boundary conditions

Let S~ C R’ be an open, bounded set with boundary r = Let r &#x3E; 0.
Given u o E E C ( [o, r], C ( r ) ) we consider the problem

DEFINITION 3.1. A mild solution of is a function

such that

Eventually we will see that every mild solution is of class C°° on (0, t] x S2;
but at first we show existence and uniqueness of mild solutions with help of
the results of Section 1 and 2. 

-

Consider the Poisson operator A on X = Q3 C’(r). Recall that

D(A) = fl3 fOl and A(u, 0) = (Au , -Ulr). It follows from the Stone-

WeierstraB theorem that
we consider the Cauchy problem

PROPOSITION 3.2. Let Uo = (uo, 0), where Uo E C(Q), let

Let i. Then U is a mild solution of (3.1 ) if and only if U (t) =
for some u E C([0, i]; C(f2)) which is a mild solution of
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PROOF. Assume that U is a mild solution of (3.1 ). Then

for all t E [0, r]. Thus U(t) = (u(t), 0) for some u E C([0, t]; Now
the claim is immediate from the definition of A and Definition 3.1. D

Now let Uo E so that Uo = (uo, 0) E D(A). Let cp E C ([0, T ]; C(r)),
(D(t) = (0, cp(t» (t E [0, r]). Then the consistency condition (1.2) of Theorem
1.4 looks as follows

i.e.

This is obviously a necessary condition for the existence of a mild solution of
Pt (u o, 

Since A is resolvent positive if Q is Dirichlet regular, Theorem 1.4 gives
the following result:

PROPOSITION 3.3. Assume that Q is Dirichlet regular. Let Uo E 

cp E 1 «0, r); C ( r ) ) such that Then there exists a unique mild
solution of Pt (uo, cp).

Next we obtain the weak parabolic maximum principle as a direct conse-
quence of Theorem 1.7. It will serve us as an a priori estimate.

PROPOSITION 3.4. Assume that S2 is Dirichlet regular. Let u be a mild solution
of Pt (uo, Let c+, c- E R such that

PROOF. Note that e (t ) = defines a mild solution of .
Let Then v is a mild solution of
Since I it follows from Theorem 1.7 applied

The other inequality is proved
in a similar way.
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It follows in particular that

for each mild solution u of P, (u 0, Here we consider C ([0, -r 1; C(r2» and
C([0, r]; C(F)) as Banach spaces for the norms

respectively.
THEOREM 3.5. Assume that S2 is Dirichlet regular. Let Uo E C(Q), ~O E

C ([0, -c ]; C (I)) such that uol, = ~o (0). Then there exists a unique mild solution of

PROOF. Choose uon E such that lim,,,,, uon = uo in C(2). Choose
wn E t ) ; C(r)) such that (f)n(O) = -~ ~p as n -~ oo in

C([0, r]; C(r)). By Proposition 3.3 there exists a unique mild solution u n of

By (3.3) we have

Hence is a Cauchy sequence in Let i

in Then ; ~-

and since Amax is closed, it follows

and We have shown that u is a

mild solution of

COROLLARY 3.6. Assume that Q is Dirichlet regular. Let i

C 1 (R+ ; C ( r ) ) such that

Then there exists a unique function u E r ]; C(Q» such that
for all t E [0, -r] and 

-

Note that (3.4) is a necessary condition for (3.5).
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PROOF. Let v be the mild solution of 0). Let I
Then u E C~([0, r]; and

Moreover, for all 1

So far, we saw that for each uo E and y§ E C([0, i]; C(r)) satisfying
= uolr there exists a unique mild solution. If we want u to be differentiable

in time at 0 the additional hypotheses of Corollary 3.6 are needed. However,
we now show that the mild solution u is always of class C°° on (0, t] x S2. In

fact, we may identify u with a continuous function defined on [0, r] x SZ with
values in R by letting u (t, x ) = u (t ) (x ) (t E [0, -r ], X E ~2).

The following Theorem 3.7 is well-known for classical solutions (see [E98,
2.3 Theorem 8, p. 59]), and we use the argument given there. But additional
arguments have to be given which take into account that our mild solutions are
merely defined in terms of distributions.

THEOREM 3.7. Assume that S2 is Dirichlet regular. Let Uo E C(~2) , ~O E

C([o, ri ; c(r)) such that Let u be the mild solution of P, (uo, cp).
Then

PROOF. a) Assume that Then

Now we argue as in the proof of [E98, 2.3 Theorem 8, p. 59] taking care of
the fact that here v(t) is not supposed to be regular, but just in D(Amax). Let
0  to s r , xo E S’Z . Choose r &#x3E; 0 such that B (xo, r ) : _ 

- - - , - 

,

E E such that E = 1 on C’, E = 0 on ([0, and E = 0
on fOl x R". Let w = ~ . v. Then w E C~([0, r]; and 
Now.recall that D(Aa,,) C C1 (Q). The injection is continuous by the closed
graph theorem, where carries the graph norm and C1 (Q) the natural
Frechet topology. In particular, v : [0,r] --* is continuous whenever
K C 03A9 is compact. We have,

Hence t , where

Note that f - 0 on ((0, r] x S2 B C) U C’ . Extending f to R" by 0 we obtain a
continuous function f : [0, r] -~ Denote by G the Gaussian semigroup
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on Since
it follows from semigroup theory that

for all 0  t  t , , x E Since f = 0 on C’ and out of C, the function w
is of class Coo in a neighbourhood of (to, xo) in (0, t] x Hence v and also

b) Now consider the general case where = Take the solution wo
of the Dirichlet problem D(w(0)). Consider v (t ) = u (t ) - wo. Then v is a mild
solution of

and v(0)j = 0. Denote by To the Co-semigroup generated by Ao on 
Let w (t ) = v (t ) - Then w is a mild solution of P(0, Hence
w E C°°((0, r] x S~) by a). Observe that To(t) = Since T2 is

holomorphic, we have T2 E C°°((0, oo ) ; for all k E N. It follows from
interior regularity (cf. [Bre83, Théorème IX.25]) that C H2k loc (0). Hence
for each M E N there exists k E N such that C cm(O). This injection is
continuous by the closed graph theorem. Thus E C°°((0, 00); C’(0))
for all This implies that To(’MO) E x ~). Hence v =

and consequently

REMARK 3.8. Having proved Theorem 3.7, the parabolic maximum principle
is a classical result (cf. [E98, 2.3.3]). However, as we will see in Section 6,
the approach to the parabolic maximum principle presented here remains valid
for elliptic operators with measurable coefficients for which Theorem 3.7 no
longer holds.

In the next theorem we reformulate Theorem 3.5 in connection with The-
orem 3.7. For this, we consider the parabolic domain

with parabolic boundary

where 1
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THEOREM 3.9. Assume that Q is Dirichlet regular. Then for every
there exists a unique function u n C°° (S2t ) such that

Thus, (3.6) is formulated exactly as the Dirichlet problem, the Laplacian
being replaced by the parabolic operator -4- - 0, S2 by the parabolic domain
QT and r by the parabolic boundary 1~-.

It is remarkable that also the parabolic problem (3.6) is well-posed whenever
the Dirichlet problem for the Laplacian is well-posed. Next we prove the
converse assertion. At first we consider solutions on R+ instead of finite time
interval.

Let cp E C (Il~+ ; C ( r ) ) , u o E C ( SZ ) . We say that u is a mild solution of
the problem

if A fo’ u (s) ds = u (t) - uo in and = for all t &#x3E; 0. If u is a
mild solution of Poo(Mo, cp), then for all r &#x3E; 0 its restriction to [0, r] is a mild
solution of P, (uo, q;). Thus, there exists at most one mild solution. Moreover,
if S2 is Dirichlet regular, then for all q; E C ( [o, 00); C ( r ) ) , u o E such
that = there exists a unique mild solution u, and we then know that

THEOREM 3 .10 . Let S2 be a bounded, open set. Assume that for all u o E C °° ( SZ )
there exists a mild solution u of Poo(UO, cp) where ~p (t) = uOlr for all t &#x3E; 0. Then S2

is Dirichlet regular.

PROOF. Let B be an open ball containing Q. We show that D(cpo) has
a solution if ~oo = Uolr for some test function Uo E D(B). Since the space
F := Uo E D(B)l is dense in C(r), it follows that Q is Dirichlet

regular (see [DL87, Chapter 2, § 4]). Let Uo E D(B), ~po cp(t) = CPo
for t &#x3E; 0. Let u be the solution of Let v (t) := u (t) - uo. Then

) and v is a mild solution of

for all
It follows from [ArBe98,

, , -- /. "Fe 11

Lemma 2.2] that 1

Consequently, Hence 1

. Here T2-denotes the Co-semigroup on generated by the
Dirichlet Laplacian on LZ (S2) . Denote by U the Co-semigroup generated by the
Dirichlet Laplacian AB on (Observe that B is Dirichlet regular). Then
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for. . r. 

Theorem 2.1.6]). Then for

Since j§ converges uniformly on B as t ---&#x3E; 00 (to 
it follows that = fo converges uniformly on Q to some function
Voo as t - 00. Since E it follows that On the other

hand, v(t) converges to 02) Duo in L2 (S2) as t -~ 00. It follows that
. Let 1 Then

COROLLARY 3.11. Let Q be a bounded, open set. Let i &#x3E; 0. Assume that for
every Uo E C(Q) there exists a solution u of Pr(UO, cp) where = uolr, for all
t E [0, -r]. Then S2 is Dirichlet regular.

PROOF. Let u o E C(~2). Let cp(t) = uOlr for all t &#x3E; 0. Let u E

C ( [0, t ] ; C ( S2 ) ) be the solution of Let vo = u ( t ) and let v E

C ([0, -r 1; be the solution of Prevo, Extend u by letting u (t) = vet-i)
for t E (i, 2 i ]. Then u is a solution of P2, (uo, ~p). Iterating this argument we
obtain a solution on R+, and the result now follows from Theorem 3.10. 1:1

4. - Asymptotic behaviour

Let Q c Rn be open and bounded with boundary f. In this section we

study the asymptotic behaviour of u(t) as t - oo for solutions u of Poo(uo, cp)
as defined in Section 3. We start by Cesaro convergence.

PROPOSITION 4.1. Assume that SZ is Dirichlet regular. Let cp : 11~+ -~ be
continuous and bounded. Assume that

Let Uo E C (S2) such that uOlr = and let u be the solution of Poo(Uo, Then

Moreover,
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PROOF. Taking Laplace transforms we have and
, Denote by w(h) the solution of the Dirichlet problem

Then and

Thus, Let u, be the solution of .
Now (4.1) implies that ~(~) 2013~ in C ( r ) as À  0. It follows from the
maximum principle that hw(h) - u, as À ~ 0 in C (S2) . -

R (o, Ac)(uo - Moo) in as À  0. Consequently, À(û(À) - w(h)) --~ 0 in
as À  0. This implies that = in C(~2). By a well-

known Tauberian theorem [HP57, Theorem 18.3.3] or [AP92, Theorem 2.5])
this implies (4.2). Cl

Next we consider uniform continuity.

PROPOSITION 4.2. Let w E BUC(R+; C (r)), uo E C (S2). Assume that w(0) =
Let u be a mild solution of cp). Then u E BUC (R+ ; C (C2)).

PROOF. For
- , . , , , . ,

Then U8 is the mild solution of P(u(S), o3). Since

) and u3 -~ 0 in C(Q) as 8 ~ 0 it follows from (3.3) that
uniformly on R+. This means that u is uniformly continuous.

Using Proposition 4.2, the Tauberian theorem [ArBa99, Corollary 3.3] gives
us the following result.

THEOREM 4.3. Assume that Q is Dirichlet regular.
Let cp E A A P (R+; C(r», u o E C(f2) such that = Denote by u the

mild solution of P (uo, cp). Then u E AAP(R+, X) and Freq(u) = 
Moreover if

then u 1 is the mild solution
and u2 the mild solution of.

PROOF. Consider the function vet) = (u(t), 0). Then by Proposition 4.2,
v E BUC(R+; X). Let ~(t) - (0, cp(t». Then (D E AAP(R+; X) and v is a
mild solution of

where A is the Poisson operator. Since s (A)  0, it follows from [ArBa99,
Corollary 3.3] that V E AAP(R+; X), hence u E AAP(R+; C(Q)). Moreover,
it also follows that Freq(v) c In particular, Freq(u) C Freq ( cp) U {0}.
Now Proposition 4.1 implies that Freq(u) c Freq(cp). The converse is obvious.
The last assertion is a direct consequence of [ArBa99, Proposition 3.4]. C7
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COROLLARY 4.4. Assume that S2 is Dirichlet regular. Let cp : C (r) be
continuous such that limt,,,,, = exists in C(r). Let Uo E C(f2) such that

= uolr and let u be the mild solution of P,,,,(uo, cp). Then u(t) = u,,,
in where u,,,, is the solution of the Dirichlet problem 

PROOF. We have cp E AAP(R+; C(r)) and Freq(cp) c 101. It follows from
Theorem 4.3 that u E AAP(R+; and Freq(u) c 10). Consequently, u(t)
converges in as t - oo. It follows from Proposition 4.1 that is the
solution of C1

COROLLARY 4.5. Assume that Q is Dirichlet regular. Let cp E AP(R+; C (r)).
Then there exists a unique Uo E C(Q) such that = uolr and such that the mild
solution u of cp) is almost periodic.

PROOF. EXISTENCE: Let vo E such that Voir - w(0). Let v be the

mild solution of P(vo, cp). Then v = v 1 -f - v2 where Vi 1 E AP(R+; C(~2)) , V2 E

C(~2)). By Theorem 4.3, v, is the mild solution of ~p).
UNIQUENESS: Assume that the mild solution M of cp) is almost

periodic. Then V = u - u E AP(R+, and v is the mild solution of

u o, 0). It follows from Corollary 4.4 that v (t ) = 0. Hence

v (t) ‘ 0. 0

In the situation of Corollary 4.5, if w is r-periodic, then also u is r-periodic.
This follows since Freq(u) C Freq(cp) C 

5. - The inhomogeneous heat equation with inhomogeneous boundary condi-
tions

Let S2 C be a Dirichlet regular, bounded, open set with boundary r.
Given uo ’E C(~2) , cp E C (f’)) such that uoir = w(0) and f E C (R+; 
we consider the problem

A mild solution is a continuous function u : such that

~ and

for all t &#x3E; 0. It is clear from Section 3 that there is at most one mild

solution of Consider the operator Ac on and denote by
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Tc the (generalized) holomorphic bounded semigroup Tc on (see [DS87,
Section 2]). Note that Tc is not a Co-semigroup since is not dense. For

f E C(S2)), the function

defines a mild solution of P(O, 0, f ) by [DS87, Proposition 12.4]. By Section
3 there exists a unique mild solution w of P(uo, cp, 0). Hence u = v + w is a
mild solution of P(uo, cp, f). We have shown the following.

THEOREM S .1. Let such
that uOlr = cp(O). Then there exists a unique mild solution of i

Notice that the semigroup Tc satisfies

for some M &#x3E; 0 , E &#x3E; 0. This follows from the definition [DS87, (10.3)] and
the fact that  0. Concerning the asymptotic behaviour we obtain by the
arguments of Section 4.

THEOREM 5.2. Let f E AAP(R+ ; C (f2)), cp E AAP(R+ ; C(r)) , uo E C(2).
Assume that Let u be the mild solution of cp, f). Then

COROLLARY 5.3. Let be continuous.
Assume that , exists in C (0) and I
Let u such that i Let u be the mild solution oj" 1
Then exists in C(Q) and

Under more restrictive regularity assumptions Corollary 5.3 is proved by
Jost [Jos98, Satz 4.2.1] by completely different arguments. For more general
parabolic equations see also Friedman [Fri59].

6. - Elliptic operators

In this section we generalize the results on well-posedness proved for the
heat equation in Section 3 to arbitrary parabolic equations with measurable
coefficients. It is remarkable that again Dirichlet regularity is a sufficient con-
dition whatever the coefficients are. For this we use a result due to Littman,
Stampacchia and Weinberger [LSW63] and its consequences in [Sta65] .for the
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corresponding elliptic problem. Again a resolvent positive operator yields the
transition to the parabolic problem. In particular, the parabolic maximum prin-
ciple is proved for arbitrary elliptic operators in divergence form (Theorem 6.6).

Let Q C R’ be an open, bounded set with boundary r. We consider ellip-
tic operators using the notation and some results of Gilbarg-Trudinger [GT77,
Chapter 8]. Let aij E i, j = 1,... n, be real functions such that

for all ~ E x-a.e. where a &#x3E; 0 and let d, bj, Cj E L°° (S2) be real coefficients,
j = 1,... n. We consider the elliptic operator L, formally given by

Defining the form

for i we can realize L as an operator L :
’ 

given by

We assume throughout this section that

which is equivalent to saying that

Let A2 be the realization of L in L 2 (Q) with Dirichlet boundary conditions;
i.e.,

Then A2 is associated with the form a on the form domain more

precisely, the form a is elliptic; i.e.,
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for all u E Hol (S2) and some constants f3 &#x3E; 0, N E R, and the operator A2 on
L2 (n) is given by .

Thus A2 generates a holomorphic semigroup T2 on Now we define

Lmax on by

We recall the elliptic maximum principle.

PROPOSITION 6.1. Let u E D(Lmax) such that

Then 0 on S2.

PROOF. a) If u E H (Q) such that (6.4) holds and u+ E Ho (Q), then u  0

by [GT77, Theorem 8.1, p. 179].

b) Let E &#x3E; 0. Assume that (u - s)+ # 0. Then (u - 8)+ has compact
support in Since it follows that

. Since one has

Thus a) implies that (

COROLLARY 6.2. such that

Then

PROOF. a) We assume first that Since
and Thus Proposition 6.1 implies that

b) If 0  ~, is arbitrary, then So the claim follows

from a) where L has to be replaced by
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Let X = C(f2) EÐ C(r) as before. We define the Poisson operator AL on
X assooiated with L by

We emphasize that in the following proposition the notion of Dirichlet regularity
is understood with respect to the Laplacian, exactly as it was defined in the

beginning of Section 2.

PROPOSITION 6.3. Assume that Q is Dirichlet regular. Then AL is resolvent
positive and s (AL ) - 0. Moreover, D(AL) = C(Q) 0153 {OJ.

PROOF. 1. Let k &#x3E; maxico, 01 where w is given by (6.2). We show that
~ 2013 L is surjective. We extend the coefficients to by setting

for x and d(x) - ci (x ) = 0 for x E B ~2. Denote by
~ the corresponding elliptic operator on and by A2 its

realization in Let g E C(2) , cp E C(r). Extend g by 0 to a function
defined on Let v = R(À, A 2 ) g . Then V E and Àv - L v = g in

By the famous result of De Giorgi and Nash [GT77, Theorem 8.22] the
function v is continuous. Let * = vlôn. By [GT77, Theorem 8.31 ] (in the case
where is connected; see [Sta65, Section 10] for the general case), there exists
w E such that = 0 in D(Q)’and cp-1fr. Now let
u = v + w. Then Àu - L u = g in u E and y r + y r = ~o.
Thus (u, 0) E D(AL) and .

2. Let (u, 0) E &#x3E; 0 such that (h - AL)(u, 0) = (9, ~0) - 0. It
follows from Corollary 6.2 that u  0. This implies in particular that k - AL
is injective for h &#x3E; 0. We have shown that k E and R(;,, AL) &#x3E; 0 for
all X &#x3E; max{O, w } . 

-

3. We show that D(Lmax) = C(Q), which implies the second claim.
a) If u E then it has been shown in [ArBe98, Theorem 4.4] that there

exist un E D(Lmax) such that un -~ u in C(2) as n ~ oo.
b) Let v E C(2). Let h &#x3E; By the proof of Proposition 2.1 there

exists w E such that

Then , Thus by a). Hence t



664

Lets For ) and 1 we consider the

problem

A function ~ is called a mild solution of uo, cp) if

and

As in Section 3 one sees that a function u E C([O, r]; is a mild solution
of uo, w) if and only if the function

is a mild solution of

where
Next we prove well-posedness 01 P, (L, uo, cp) We use the following simple

lemma.

LEMMA 6.4. Let K be a compact space and F a dense subspace of C(K). Let
T : F --* X be linear and positive, where X is a Banach lattice (X = C (Q) ED C (r)
in our case). Then T is continuous.

Proof. There exists u E F such that u (x) &#x3E; 1 /2 for all x E K. Let f E F
be real valued. Then - ]] f I .f I ( .f I ( o0 2u . Hence, - I I .f T f 
I I .f 1l002Tu. It follows 1  211 Tu II. D

THEOREM 6.5. Assume that SZ is Dirichlet regular. Let Uo E C(Q), (p E

C ([0, -r 1, C(f» such that uOlr = Then there exists a unique mild solution u

of P, (L, uo, cp). Moreover, u &#x3E; 0 if uo &#x3E; 0 and cp &#x3E; 0.

° 

PROOF. 1. It follows from Theorem 1.7 that a solution u of P, (L, uo, ~p)
satisfies u(t) &#x3E; 0 (t E [0, -r]) if uo &#x3E; 0 and &#x3E; 0 for t E [0, -r]. This implies
uniqueness.
2. Let i Then

can be identified with Let )
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For
Then

It follows from Theorem 1.4 that there exists a unique mild solution of
(6.7). Consequently, there exists a solution of P1 (L, uo, cp).

Denote by T : F -~ C([O, t], C(S2)) the mapping T(uo, cp) := u, where u
is the mild solution of P1; (L, uo, cp). Then T is linear and positive by step 1.
Since F is dense in G (cf. the proof of Theorem 3.5), T is continuous by
Lemma 6.4. Denote by T : G ~ C([0, r], C(-Q)) the continuous extension of
T. Then, if (uo, ~0) E G, u = f(uo, cp) can be approximated by mild solutions
in C([0, t], C(~2)). This implies that u is a mild solution of Pr (L , uo, ~0) since
Lmax is a closed operator (which follows from the closedness of the operator
AL). 0

Next we prove the parabolic maximum principle. The case where

(i.e. = 1 ~ ) plays a special role. Then Theorem 1.7 yields the result
immediately. In the general case (assuming merely the inequality (6.1 )) we
use Bernstein’s theorem ([Wid71, Section 6.7]) to pass from the elliptic to the
parabolic case. More precisely, if f : JR+ -+ R is bounded and measurable then
f (t) &#x3E; 0 a.e. if and only if

This is actually proved first by Stieltjes in a letter to Hermite in 1893 and
remains valid if f takes values in 

THEOREM 6.6 (Parabolic maximum principle). Assume that Q is Dirichlet

regular. Let up E C(Q), cp E C ([0, r], C(r)) Letc+, c- E R
such that

Assume (6.8) or that c-  0  c+. Let u be the mild solution of Pt (L, uo, ~p). Then

for all,
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PROOF. 1. Assume (6.8). Then e(t) n 1 ~ is the solution of Pr(L, lr).
Now the proof is the same as the one of Proposition 3.4.
2. Let We show that

The case c+ = 0 is covered by Theorem 6.5. So we
can assume that c+ = 1. Letting f (t) = 1 - u(t) for t E [0, t] and f (t) = 1
for t &#x3E; r and observing that condition (6.9) becomes.

Let , We have show that
i One has by

Hence, Since u &#x3E; 0 by Theorem 6.5, it follows

that and

Now Corollary 6.2 implies that hwo s b) Let n E N and assume that
One has by (6.6),

‘Hence by the inductive
hypothesis. Since 1 r , it follows from Corollary 6.2 that 
Thus (6.10) is proved.
3. (t e [0, r]) where c+ &#x3E; 0. Let v be the

solution of It follows from 2. that (t E [0,T]).
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The function w = v - u is the solution of hence w 2:: 0 by
Theorem 6.5. Hence c+ 1 ~ (t e [0, r])..
4. Let 0 such that

Then -u is the solution of 
it follows from 3. that hence for all D

7. - Appendix: The maximum principl

Recall the classical weak maximum principle ([E98, p. 329]). Let S2 c R n
be open and bounded.

. THEOREM 7.1. Let h a 0. Let u E C (Q) n C2 (S2) such that (À - 
I such that ~- Then u(x)  M for all

Let for all write

Let p, , 8 &#x3E; 0, be a mollifier, i.e.
define

then and More-

over,

THEOREM 7.2. Let u E C(0) , 0 such that 6.u  0 in D(S2)’. Assume
that for all Z E a SZ 

-

Then u  0 on S2.

PROOF. Suppose that M : := supx u &#x3E; 0. Then K := {x u (x ) = M} is a
non-empty compact subset of S2. Let w C Q be open such that K C cv C w C SZ.
Then

Let By (7.1 ) there exists E &#x3E; 0 such that : 1

M2 and -, Since this

contradicts Theorem 7.1.
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