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Minimal Surfaces and Deformations of

Holomorphic Curves in Kähler-Einstein Manifolds

CLAUDIO AREZZO

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXIX (2000), ~ ]

To the memory of my friend Giorgio Valli

Abstract. In this note we give explicit examples of stable nonholomorphic mini-
mal surfaces representing classes of type (1, 1) in Kahler-Einstein 4-manifolds of
negative scalar curvature. We use the implicit function theorem for the area func-
tional to deform some holomorphic rational curves as minimal surfaces for nearby
Kahler-Einstein metrics, and some results in the theory of deformations of Hodge
structures to prove that the generic of these deformations cannot be holomorphic
for the deformed complex structure. We also show that this strategy cannot work
in the Ricci-flat case, by getting a riemannian proof of the fact that a rigid nodal
curve in a K3 surface can be deformed into a holomorphic curve in any direction
which keeps the class of type (1, 1).

Mathematics Subject Classification (1991): 58E12 (primary), 53A10 (secondary).

1. - Introduction

A classical problem in the theory of volume minimizing submanifolds in
K5hler-Einstein manifolds (K-E, from now on) is to determine their relationship
with holomorphic submanifolds.

We know that only classes of pure type in the Hodge decomposition can
be represented by holomorphic submanifolds. If we ignore this restriction many
examples are by now known of area minimizing surfaces in classes not of

type ( 1, 1 ), and these are therefore not holomorphic. Most of the examples
known are in fact lagrangian surfaces in K-E 4-manifolds of negative scalar
curvature ([13], [14], [17], [21], [24]). When restricting to ( 1, 1 ) classes, the

problem becomes more delicate, because these classes can be represented by
a divisor (in general not effective) by Lefschetz (1, I)-Theorem. We therefore
end up studying also the problem of whether a non-effective divisor is a volume
minimizer.

Pervenuto alla Redazione il 5 luglio 1999 e in forma definitiva il 23 febbraio 2000.
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Atiyah and Hitchin ([4]) found an example of an area minimizing (as proven
by Micallef-Wolfson in [16]) two-sphere in a Ricci-flat noncompact 4-manifold
which cannot be holomorphic w.r.t. any compatible complex structure. For
other results in the noncompact case see [1], [3] and [15].

From now on we focus our attention to compact K-E manifolds, M, and
to its compact submanifolds.

Our problem depends on two parameters, the real dimension m of M, and
the sign of ci (M) (equivalently, the sign of the scalar curvature of M). In the

following list we summarize some of the most important results, so to highlight
the missing spots, some of which will be filled in this note.

1. [12] If M = Pm with the Fubini-Study metric, then every stable (i.e.
minimizing up to second order) minimal surface is an algebraic cycle.

2. [19] A stable minimal two-sphere in a Kdhler manifold with positive holo-
morphic bisectional curvature is plus or minus holomorphic.

3. [16] If m = 4, cl (M) &#x3E; 0, and the normal bundle of the stable minimal
surface admits a holomorphic section, then the surface is holomorphic w.r.t.
a complex structure compatible with the metric.

4. [16] If m = 4, cl (M) &#x3E; 0, then a stable totally real (i.e. without complex
and anticomplex points) minimal surface has genus zero.

5. [7] If m = 4, cl (M) = 0, and the Euler characteristic of the normal bundle
of the stable minimal surface is at least -3 , then the surface is holomorphic
w.r.t. a complex structure compatible with the metric.

6. [15] If M is a flat 4-torus then every stable minimal surface is holomorphic
w.r.t. a complex structure compatible with the metric.

7. [2] For k &#x3E; 4, every flat m = 2k-torus contains a stable minimal surface of
genus k, which is not holomorphic w.r.t. any complex structure compatible
with the metric.

In this note we will provide a general method to construct stable minimal
surfaces which are not holomorphic but which still represent classes of type
(1, 1). We will show that the method works in a satisfying manner when
cl (M)  0, does not for cl (M) - 0 (which is one of the problems listed by
Yau in his famous Open Problems [25]), and we will explain the difficulties left
in the case of positive scalar curvature. What seems to us to enhance interest
in this construction is that when the method does not work to give stable

nonholomorphic minimal surfaces, it provides an application to the Infinitesimal
Hodge Conjecture, which is a problem of considerable interest in Algebraic
Geometry.

The main idea is to start with a holomorphic curve Co in a fixed K-E

manifold (M, go) and to apply the implicit function theorem (IFT) to the area
functional to construct surfaces arbitrarily close to Co which are minimal for
some K-E metric near go. To use the IFT we need to start with a Co with
no Jacobi fields, which is equivalent by a theorem of Simons ([18]) to the

nonexistence of global sections of the normal bundle to Co in M. Moreover

when this happens we can be sure that the deformed minimal immersion is in



475

fact stable, because of the continuity of the eigenvalues of the second variation
of the area operator (if they are all positive at time 0, they will stay positive
at least for small variations, see [2]).

Because of the existence and uniqueness result in the solution of the Cal-
abi conjecture for ci (M)  0, we can think of the change of K-E metric as a
change in the complex structure on the underlying differentiable manifold and
viceversa. We then want to find a K-E manifold with a class a in the second

homology group, which is of type ( 1, 1 ) for some complex structure Jo, and in
fact represented by a holomorphic curve Co, and for which there are deforma-
tions Jt in the moduli of complex structures for which a stays of type ( 1, 1 )
but for which the curve Co cannot be deformed in a family of holomorphic
representatives Ct. The existence of such classes on certain algebraic manifolds
is a classical problem in Algebraic geometry, known as (Grothendieck’s) In-

finitesimal Hodge Conjecture. Some examples are known to exist, but, as one
expects, they are very special. Indeed, if M is an algebraic hypersurface of P3
and Co c M is a complete intersection, Steenbrink ([20]) proved that such a
phenomenon cannot occur. More generally, Bloch in [5] found an equivalent
condition for the existence of the family Ct.

What this strategy suggests is to look at the following subspaces of the
space of infinitesimal deformations of complex structures on M at Jo, T:

1. = {infinitesimal deformations of complex structures for which a stays
of type (1, 1)};

2. Tc = { infinitesimal deformations of complex structures for which Co can
be deformed in a family of holomorphic curves }

Of course Tc C 7c,.
The moral is then the following: every time we find a holomorphic curve

Co C M, whose normal bundle has no global sections and for which, hav-
ing set a = [Co], 7~ is nonempty and different from Tc, then we will have
for the generic nearby K-E metrics a stable non holomorphic minimal surface
representing a. We show that such a curve exists at least in one example:

THEOREM l.1. There exists an open subset of the 40-dimensional moduli space
of smooth quintic hypersurfaces of p3 whose elements contain a nonholomorphic
embedded two-sphere which is symplectic, stable, minimal for the associated K-E
metrics, and of type (1, 1 ) for a 36-dimensional family of complex structures.

In the proof of the above result we will describe more precisely this open
set in the moduli space.

Of course the case of quintic surfaces should be seen as the simplest situ-
ation when the described phenomenon occurs. In particular, by taking complex
surfaces of higher degree one can construct also stable minimal surfaces with
all the same properties and of higher genus.

We then go on to analyze what happens when ci (M) = 0, i.e. for Calabi-

Yau manifolds. If m = 4, the afore mentioned result of Micallef-Wolfson proves
that if the normal bundle to a stable minimal surface has a global holomorphic
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section 0), then the surface is in fact holomorphic w.r.t. some

complex structure compatible with the metric. On the other hand, we know
that any small deformation of a holomorphic curve satisfies the "adjunction
formula", in the sense of Chen-Tian ([6], see formula (2) on page 479), and
therefore use their results (formula (1) on page 479) to relate its number of

complex and anticomplex points to topological quantities. In a Calabi-Yau
this implies that all possible nonholomorphic minimal (not a priori necessarily
stable) deformations of a holomorphic curve (regardless of how big is)
are totally real, and therefore holomorphic w.r.t. a different complex structure
(by a result of Wolfson, [23]), thus getting an application of minimal surface
theory to the infinitesimal Hodge conjecture.

THEOREM 1.2. Let M be a K3 surface equipped with the Ricci-flat Kähler
metric, and let Co be an immersed holomorphic curve in M such that h° (v E ) = 0
(therefore Co has to be a "nodal " 2-sphere). Then for any smooth deformation of
complex structure Jt on M for which a = [Co] is of type ( 1, 1 ), there is a smooth
family Ct of curves holomorphic w. r. t. Jt.

For m &#x3E; 4 we do not have at our disposal anything similar to Chen-
Tian and Wolfson’s results, which were crucial to prove the above results.
Nevertheless for a two-sphere with ho(v) = 0 in a Calabi-Yau threefold the
adjunction formula gives directly that the normal bundle has h 1 - 0, which
implies Bloch’s semi-regularity and therefore the deformability of holomorphic
curves in every direction.

The last case to study is when cl (M) &#x3E; 0. The following is essentially
contained in Micallef-Wolfson ([16]):

PROPOSITION l.1. Let M be a K-E 4-manifold with positive scalar curvature.
If £ C M is a stable minimal immersion which satisfies the adjunction formula,
then E is a holomorphic (or antiholomorphic) two-sphere. In particular all stable
minimal deformations of holomorphic curves are holomorphic.

This shows that small stable minimal deformations of holomorphic curves
in this case have to remain holomorphic. It also follows from Chen-Tian’s

work, via a maximum principle argument, that a symplectic minimal surface
in a K-E 4-manifold of positive scalar curvature has to be holomorphic (I owe
this remark to G. Tian), which implies that all stable nonholomorphic minimal
surfaces have to have lagrangian points (if they exist).

We do not know what happens when m &#x3E; 4. As for the negative curvature
case, it is possible to construct examples of holomorphic curves in K-E mani-
folds of positive scalar curvature, for which there are deformations of complex
structures which keep the class of type ( 1, 1 ), but for which a holomorphic
representative does not exist. Unfortunately it is intrinsic of the Fano case that

0 which raises the problem of whether the deformed minimal map
given by the Implicit Function Theorem is stable (now 0 being in the spectrum,
some negative direction for the second variation of area operator could arise).
A further difficulty arises from the possible existence of continuous families of
automorphisms of Fano manifolds, which causes a great deal of problems in
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proving the existence of nearby Kdhler-Einstein metrics. We believe this to be
a very interesting and challenging problem.

Another aspect worth pointing out is that the strategy used in this note can
be applied also to higher dimensional subvarieties, while, with the exception
of [12], all known techniques to study this kind of problems is based on the
identification of minimal immersions with conformal harmonic maps, which is
true only for two dimensional domains.

We leave these questions for further investigations.
This project has been carried out while the author was at the Massachusetts

Institute of Technology. It is a pleasure to thank Gang Tian for his exceptional
help, mathematical and otherwise. I wish to thank also Gabriele La Nave for

helping me in some of the algebraic details of this work.

2. - The implicit function theorem for the area functional

There are several versions of the IFT for minimal surfaces and harmonic

maps into riemannian manifolds, depending on the spaces of maps and metrics
one wants to allow. For harmonic maps it has been proved by Eells-Lemaire in
[14] and extended to the area functional near a strictly stable (possibly branched)
minimal immersion of a two-dimensional domain by Lee in [14], exploiting the
fact that such a minimal immersion is a conformal harmonic map and thus

relying on Eells-Lemaire’s theorem.
The version we want to use in the following part of the paper is due to

B.White ([22]). In this case the class of maps allowed are only immersions,
which is enough for our applications, but might not be when looking at the

problem with m &#x3E; 4 and cl (M) &#x3E; 0, where allowing branched immersions
might be useful.

THEOREM 2.1. Let N and M be smooth riemannian manifolds with N compact
and dim N  dim M. Let r be an open set of Cq riemannian metrics on M, and
let M be the set of ordered pairs (g, [u]) where g E rand u E C j,a (N, M) is a g-
minimal immersion (here we denote by [u] the set of all maps obtained by composing
a fixed one with all diffeomorphism of N).

Then M is a separable cq- j - Banach manifold modelled on r, and the map

n(g, [u]) = g is a cq-j Fredholm map with Fredholm index 0. The kernel of
has dimension equal to the nullity of [u] with respect to g (i. e. the maximum

number of linearly independent normal g-Jacobi fields of u).
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3. - Deformations of Hodge structures and minimal surfaces

The IFT gives a rather clear picture of the local structure of the moduli
space of minimal immersions. In this section we want to use some notions of
the theory of infinitesimal variations of Hodge structures to understand the local
theory of deformations of holomorphic curves, for which a standard reference
is [9]. In particular we want to describe the spaces Ta and Tc defined in the
introduction. Let us first consider the case of M a hypersurface of P 3 and
let C be a holomorphic curve in M. From now on we indicate by the
normal bundle of X in Y, and by a the class represented by C.

The standard inclusions then give the following sequences:

which in cohomology induce

It was proved by Bloch ([5]) that

More generally (i.e. not requiring m = 4) we can think of % as the kernel
of the map H 1 (M, T M) --o. HO~n-2) (M, cC) obtained by contraction with the
element in C) Poincaré dual to a.

PROOF OF THEOREM 1.1. First let us recall that the space of quintic hypersur-
faces in p3 has complex dimension 56 -1 = 55 and that of the space of quartic
rational curves is 16. Moreover dimH(2,O)(M, cC) = 4 and dim HO (Nclm) = 0
by adjunction. This implies that the codimension of 4x in T M) is at

most 4.
We now want to know the dimension of the space of quintics which contain

some quartic rational curve. This can be done by estimating the dimension of
the space of quintic which contain a fixed (generic) quartic rational curve. This
is a classic case of postulation problem, which is solved in [10] by proving
that the sequence 

~ 

is exact. This implies directly that the generic fibre of the projection from the
incidence variety

to the space of rational curves of degree 4 has dimension 30 and therefore that
the incidence variety has dimension 50. Being the projection complex analytic
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and each C rigid in any M, the codimension of Tc in T M) is 5. Recall
also that dim H 1 (M, T M) - 40, which gives the number of effective moduli
of quintic surfaces (see e.g. Kodaira ([11]) pag. 240).

Now, since dimHo(Nc/M) = 0, the IFT tells us that for any deformation of
complex structure, there is a corresponding deformation of maps Ot from S2 to
M which is minimal for the K-E metric associated to the complex structure by
Yau’s solution of Calabi’s Conjecture. The stability is ensured by the continuity
of the eigenvalues of the second variation of area operator. Moreover these
two spheres are symplectic because they are smooth deformations of holomor-
phic curves and therefore if cvt is the Kähler form for Jt, 

&#x3E; 
has to be

nondegenerate everywhere for small I t 1.
Such a map cannot be holomorphic precisely when the deformation is

outside the locus Tc and it will keep the class of type (1, 1) if it is in 
The dimensional counting above shows that these two space do not coincide.
Therefore, if B, n) is a sufficiently small complete effectively parametrized
complex analytic family (as in th classical theory of Kodaira, [11] pag. 215) of
smooth quintic hypersurfaces with central fibre = Mo, s.t. Mo contains
a rational curve of degree 4, then all the fibres in M contain a stable minimal
symplectic embedded 2-sphere which cannot be holomorphic away from a 35
dimensional subfamily, but which represent a class of type (1, 1) in a subfamily
of dimension 36. D

PROOF OF THEOREM 1.2. Also in this case we associate to any complex
structure a unique Ricci-flat K-E metric. The difference with the situation above
is that given any 2-homology class and any hyperkahler metric, there exists a
unique complex structure compatible with the metric for which the class is of
type (1, 1).

Now, if we take a family of complex structures Jt for which a stays of
type (1, 1), and we look at the corresponding minimal surfaces given by the
IFT, these are either holomorphic or not. If not, Wolfson proved that under our
assumptions, having called P the number of complex points and Q the number
of anti-complex points of the minimal surface E representing a,

Moreover, since a satisfies the adjunction formula,

Therefore P = Q = 0, i.e. the minimal surface has to be totally real,
and then holomorphic w.r. t. another complex structure on M ([23]). But this
is impossible since a can be of type (1, 1) for a unique compatible complex
structure, therefore had to be holomorphic w.r.t Jt. C7
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PROOF OF PROPOSITION 1.1. Once again, the adjunction formula with Chen-
Tian formulae (which for immersed surfaces were proved by Webster and Wolf-
son [23]) with cl (M) &#x3E; 0 imply P = Q = 0, so the surface has to be totally
real. Micallef-Wolfson ([16], Corollary 6.2) proved that such a surface has to
be a two-sphere. But then the normal bundle v ~ has to be of the form 
a E Z. If a &#x3E; 0, 0 and therefore E is holomorphic by [16].

If a  0 we have 0  cl (M)([E]) - 2 + a - 2DP, where DP is the
number of double points of the immersion. So the only possibility is a = -1
and D P = 0. If E were not holomorphic then one can construct explicitely a
holomorphic section of K ® v E as in [ 1 ] and [16], which is impossible in our
case. D
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