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A Relaxation Theorem in the Space of Functions of
Bounded Deformation

ANA CRISTINA BARROSO - IRENE FONSECA - RODICA TOADER

Abstract. We obtain an integral representation for the relaxation, in the space of
functions of bounded deformation, of the energy

with respect to L 1-convergence. Here Eu represents the absolutely continuous
part of the symmetrized distributional derivative E u and the function f satisfies
linear growth and coercivity conditions.

Mathematics Subject Classification (1991): 49J45 (primary), 35J50, 49Q20,
73E99 (secondary).

1. - Introduction

The analysis of variational problems that model interesting elastic and mag-
netic properties exhibited by certain materials often involves minimization and
relaxation of nonconvex energies of the type

where Q c is an open, bounded set and the density function f satisfies
certain growth and coercivity conditions. In each case the function u in (1.1)
represents a specific physical entity and belongs to a space which is appropriate
to describe the material phenomenon in question.

In the context of perfect plasticity the function u represents the displacement
field of a body occupying the reference configuration S2 with volume energy
density f. In this case u belongs to the space B D of functions of bounded
deformation composed of integrable vector-valued functions u for which all
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components i, j = 1,..., N, of the deformation tensor E u
are bounded Radon measures. Thus, the study of equilibria leads naturally to
questions concerning lower semicontinuity properties and relaxation of

where Su represents the absolutely continuous part (with respect to the Lebesgue
measure) of the symmetrized distributional derivative E u .

Our goal in this paper is to show that the relaxation of the bulk energy
(1.2), in the space of functions of bounded deformation, admits an integral rep-
resentation where a surface energy term is naturally produced. In a forthcoming
paper we will consider more general linear operators A acting on Du for which
A(Du) is a bounded Radon measure (see also [12]).

We remark that lower semicontinuity for (1.2) has been established for
convex integrands by Bellettini, Coscia and Dal Maso in [5] and for symmetric
quasiconvex integrands (see Definition 3.1) by Ebobisse in [9], where he proves
that symmetric quasiconvexity is a necessary and sufficient condition for lower
semicontinuity. A relaxation result has been proved by Braides, Defranceschi
and Vitali in [6] in the case where the bulk energy density is of the form ~~~u 112
(i.e. f(~) := l~12) up to constants (where for any N x N
matrix A, AD := A - .1 tr(A)I is the deviator of A), and the total energy
also includes a surface energy term. In our work no convexity assumptions are
placed on the volume density f.

Precisely, for u E BD(Q) we consider the energy

and the localized functional

defined on the set of all open subsets V of Q.

Assuming that f is continuous and satisfies growth and coercivity conditions
of the type 

~

where C &#x3E; 0, we show that F(u, .) is the restriction to O(Q) of a Radon
measure It which is absolutely continuous with respect to ,CN + E’u 1, where
Eu = £u£N + Elu, and ,CN stands for the N-dimensional Lebesgue measure.
By the Radon-Nikodym Theorem it follows that
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and the question now is to identify the densities and ft,. The main ingredient
of our approach is the blow-up method introduced by Fonseca and Muller [10]
which reduces the identification of the energy densities of the relaxed functional
to the characterization of T(v, Q) when Q is a unit cube and v is obtained as
the blow-up of the function u around a point xo. Similar ideas have been used
in the context of B V-functions (see, for instance [2], [4], [7], [11]) where, in
order to identify the density of the absolutely continuous part one chooses
a point xo of approximate differentiability of the function u satisfying

Using the L 1-convergence, as E - 0+, of the rescaled functions

to the homogeneous function vo(y) = Vu(xo)y, which is guaranteed by (1.3),
it is possible to reduce the identification of the energy density of the abso-
lutely continuous part ILa, to a relaxation problem where the target function is
homogeneous.

However this reasoning cannot be applied to the B D framework where the
equivalent of (1.3), replacing Vu(xo) by £u(xo), is, in general, false (see [1]).
To overcome this difficulty we will use a Poincar6-type inequality

where P is the orthogonal projection onto the kernel of the operator E (cf. [13],
see also Theorem 3.1 in [1]). This, together with a compact embedding result,
will ensure the L 1-convergence we need to proceed.

We organize the paper as follows: in Section 2 we recall the main properties
of the space B D which will be used in the sequel. In Section 3 we state our
main theorem, prove a version of De Giorgi’s Slicing Lemma and show some
properties of the localized functional T7(u, V). Section 4 is devoted to the
characterization of the absolutely continuous density JLa, whereas It, is studied
in Section 5.
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2. - The space of functions of bounded deformation

Let Q’ be a bounded, open subset of with Lipschitz boundary r. We
denote by B(Q), and the family of Borel, open and open subsets
of S2 with Lipschitz boundary, respectively. We use the standard notation,
LN and xN-1, for the Lebesgue and Hausdorff measures. We recall that the
symmetric product between two vectors u and V E R , u 0 v, is the symmetric
N x N matrix defined by u := (u ® v + v 0 M)/2, where Q9 indicates
the tensor product. We denote by B(x, p) the open ball in R N of centre x
and radius p, by Q (x, p) the open cube of centre x and sidelength p, while

will be used to indicate the cube with two of its faces perpendicular
to the unit vector v. When x = 0 and p = 1 we shall simply write Band Q.
Let Q’ := Q niX xN = 0}, SN-1 := aB and (ON := .eN (B).

By C we indicate a constant whose value might change from line to line. As
usual, W,,q (0, denote Lebesgue and Sobolev spaces, respec-
tively, Co(0, R N) is the space of ]RN -valued smooth functions with compact
support in Q, and Cp (Q, R N) are the smooth and Q-periodic functions from
Q into R N

For u define S2u as the set of the Lebesgue points of u, i.e.
the set of points x E Q such that there satisfying

The Lebesgue discontinuity set Su of u is defined as the set of points which
are not Lebesgue points, that is Su : = S2 B Qu. By Lebesgue’s Differentiation
Theorem, Su is ,CN-negligible and the function u : Q - JaeN, which coincides
with u ¡;,N -almost everywhere in Qu, is called the Lebesgue representative of
u. We say that u has one sided Lebesgue limits u + (x ) and at x E S2 with

respect to a suitable direction Vu (x) E SN -1, if

where Then the rescaled

functions I converge in

When u + (x ) ~ u - (x ) , the triplet (u + (x ) , u - (x ) , vu (x ) ) is uniquely determined
up to a change of sign of vu (x ) , and a permutation of (u + (x ) , u - (x ) ) . If

u+ (x) = u-(x) then x E S2~ and the one sided Lebesgue limits coincide with
the Lebesgue representative of u. The jump set Ju of u is defined as the set of

points in Q where the approximate limits u+, u - exist and are not equal. We
use [u](x) to denote the jump of u at x, i.e. [u](x) = u+(x) - u-(x).
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DEFINITION 2.1 ([14]). The space of functions of bounded de, formation,
is the set of functions u e whose symmetric part of the

distributional derivative Du, Eu := is a matrix-valued bounded Radon
measure. We denote by the subspace of functions u e for which

We recall that Korn’s Inequality holds in certain subspaces of e.g.
for functions u e such that u E with 1  p  +00, and
E u e precisely, there exists a constant C = such that

and thus this subspace of LD(Q) coincides with JRN). A counterexam-
ple due to Omstein [15] shows that Kom’s Inequality does not hold for p = 1
and that the space LD (Q) differs from the Sobolev space 

We recall some properties of functions of bounded deformation that will
be used in the sequel. For a more detailed study of BD(Q) we refer to [1],
[5], [13], [17], [18], [19] and [20]. Notice first that the space BD(Q) endowed
with the norm

is a Banach space.
We cannot expect smooth functions to be dense in with respect to

this topology but it can be shown, see for instance [19], that such a density
result is true in a weaker topology (cf. Theorem 2.6).

Given u, v E we define the distance

and we denote by intermediate topology the one determined by this distance: a

sequence in BD(Q) converges to a function u E BD(Q) with respect
to this topology, and we write Un -~ u, if

If un -~ u in L 1 (Q, jRN) and lEu,1(0)  C then u E BD ( Q) and 
Indeed, Eu, converges weakly-* in the sense of measures to

some measure /,t, and by the linearity of the operator E, it = Eu, so that
u E BD(Q). The inequality follows from the lower semicontinuity of the total
variation of Radon measures.
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LEMMA 2.2 (Lemma 4.5 [3]). Let  and let
I /

be a

non-negative function such that for every
For any n and

Then u, and

i) for any non-negative Borel function h : ; 1,

whenever, 

ii) for any positively homogeneous of degree one, convex function 0
[0, + oo [ and any 8 E 10, dist (xo, a 0) [ such that 3))

PROOF. i) In the same way as it was shown for the distributional derivative

of B V functions, it can be proved that = for every x E S2

with dist(x, &#x3E; n . Then, by Fubini’s Theorem, we get

ii) Letting h - 1 in part i) and since we obtain
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Thus

and since Eu in the sense of measures in B(xo, 3), the result now
follows by applying Reshetnyak’s Theorem (see [16]) (note that the hypotheses
on 0 imply that 0  o (w )  C ~~ w ( I ).

The proof of part iii) is carried out exactly as in [3] since it is independent
of the operator E. 0

The following result summarizes the properties of the trace operator, see [ 1 ],
[13] ] and Chapter II of [19].

THEOREM 2.3. Assume that S2 is a bounded, open subset of R N with Lipschitz
boundary r. There exists a linear, continuous, and surjective trace operator

such that tr u = u if u E BD(Q) n C (Q, This operator is also continuous
with respect to the intermediate topology.

Furthermore, the following Gauss-Green formula holds

for every i

Adapting the proof of Lemma 11.2.2 in [ 19] it is easy to show the following
proposition (see also [1] ] and [13]).

PROPOSITION 2.4. If M is a countably (HN-1 , N - 1) rectifiable Borel subset
of Q and u E BD(Q) then

where vM is a unit normal to M and u± are the traces of u on the sides of M
determined by VM.

In the sequel, given u E BD(Q) and V E 000 (S2) we use the notation tr u

or u I a v to indicate the trace of u on the boundary of V.

PROPOSITION 2.5. If u, v E BD(Q), and w C S2 has Lipschitz boundary, then
the function w defined by 

-

belongs to BD(S2) and

where v is the outward unit normal to ac~.
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For the proof we refer to [19] and [13]. The following result, proved
in [19] (see also [13]), asserts that it is possible to approximate a function
u E BD(S2) by a sequence of smooth functions which preserve the trace of u.

THEOREM 2.6. Let Q be a bounded, connected, open set with Lipschitz bound-
ary. For every u E BD(Q) there exists a sequence of smooth functions C

such that Un ~ u and tr un - tr u. If, in addition,

A Poincar6-type inequality holds, precisely

THEOREM 2.7. Let S2 be a bounded open set with Lipschitz boundary. There

exists a constant C = C (Q) such that for every u E BD (Q) with tr u = 0

For the proof see [19], Remark 11.2.5, and also [13]. 
NNote that the kernel of the operator E is the class TZ of rigid motions in 

composed of affine maps of the form Mx + b where M is a skew-symmetric
N x N matrix and b and therefore is closed and finite-dimensional.
Hence it is possible to define the orthogonal projection P : R. This

operator belongs to the class considered in the following Poincar6-Friedrichs
type inequality for B D functions (see [1], [13] and [19]).

THEOREM 2.8. Let S2 be a bounded, connected, open set with Lipschitz bound-
ary, and let R : R be a continuous linear map which leaves the elements

ofR fixed. Then there exists a constant C(S2, R) such that

REMARK 2.9. Let C (Q) denote the smallest constant for which (2.2), (2.3)
hold. Then, as usual, a simple homothety argument shows that = 

The following embedding result, proved in [19], Theorem IL2.4 (see
also [13]), will be used in Sections 4 and 5 to obtain strong L 1 convergence
of a sequence which is uniformly bounded in BD(Q).

THEOREM 2.10. Let S2 be an open, bounded subset with Lipschitz bound-
ary. q  N
In particular, if {un } is bounded in BD(S2) then there exists a subsequence such

that - u in L1 (S2, RN) and u E BD(Q).

The next theorem was proved in [11 ] (see also [ 13]).

THEOREM 2.11. For every u E BD(SZ) the jump set Ju is a countably
(HN-1 , N - 1) rectifiable Borel set.
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This result, together with Proposition 2.4, yields the following decomposi-
tion of the Radon measure Eu (see Definition 4.1 and Remark 4.2 in [1]):

where Su is the density of the absolutely continuous part of Eu with respect
to ,CN, Elu is the singular part, E’u is the so-called Cantor part and vanishes
on Borel sets B with HN-1 (B)  +00 (see Proposition 4.4 in [1]).

DEFINITION 2.12 (cf. Definition 4.6 in [1]). The space of special functions
of bounded deformation, denoted by SBD(Q), is the set of functions u E BD(Q)
such that the measure Ecu in (2.4) is zero, i.e.,

The next lemma will be used in Section 5 to identify the surface term of
the relaxed energy Q).

LEMMA 2.13 (Lemma 2.6

Its proof is based on the definition of rectifiable set and on the version
of Lebesgue’s Differentiation Theorem proved by Ambrosio and Dal Maso [2]
(see [11] for details).

3. - Statement of the main result

Let be a continuous function satisfying

and for some C &#x3E; 0. Assume also that there exist A,L&#x3E;0,0~~1 such
that

where the recession function, foo, of f is defined as
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DEFINITION 3.1. The function is said to be symmetric-
quasiconvex if, for every

whenever

Note that the symmetric quasiconvexity property (3.3) is independent of
the size, orientation, and centre of the cube Q.

Given a function f : define its symmetric quasiconvex
envelope S Q f by

As it was proven for the usual quasiconvex envelope (see [8] Chapter 5), it is

possible to show that S Q f is the greatest symmetric quasiconvex function that
is less than or equal to f. Moreover, the definition (3.4) does not depend on
the domain, i.e.

whenever Q c R N is an open, bounded set, with = 0.

REMARK 3.2. If f is upper semicontinuous and locally bounded from above,
it is easy to see, using Theorem 2.6 and Fatou’s Lemma, that in the definition
of symmetric quasiconvexity may be replaced by u E LDper(Q).

REMARK 3.3. Let f : R satisfy the growth and coercivity condi-
tions (3.1). Then SQf also satisfies (3.1) and

Moreover, if f is symmetric quasiconvex then so is f °°.
The first statement is easily verified. As for the second one, we have for

any u and for some sequence {tk} with tk --* 
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By the growth condition (3.1 ), we may apply Fatou’s Lemma to obtain

The following lemma will be used in Section 4.

LEMMA 3.4. Let be a continuous function satisfying
I for some constant
and SUPN , then

PROOF. We divide the given integral into two terms

The growth condition on g, together with the hypotheses on un and vn, ensure
that the sequence + vn)(.) - g(uo + is equi-integrable. Thus,
since un ~ uo strongly in the measure of the set {x e Q : :

I &#x3E; 1 { can be made arbitrarily small and thus for any E &#x3E; 0 there

exists an no such that Jl  E/2 for every n &#x3E; no.
On the other hand, using the uniform continuity of g on the closed ball

of radius II Uo II 00 + 1 + SuPn centered at 0, it follows that .l2  /2 for

every n &#x3E; no. .. 0

Let u E and define

We consider the functional defined for every V E by

The main result of this paper is the following integral representation for
the relaxed energy Q) of F(u, Q) when u E SBD(Q) (see also Proposi-
tion 3.9).

THEOREM 3.5. If f : R is a continuous function satisfying (3 .1 ) and

(3.2), then for every u E SBD(S2) we have

for every open subset V of Q.
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REMARK 3.6. This integral representation does not provide a full description
of the functional since we consider only the case where the Cantor part of the
deformation tensor is zero. To extend this representation result to the whole
space B D a more complete characterization of the Cantor part of the measure
Eu is needed.

In this section we shall establish some properties of the relaxed functional,
while the remaining sections will be devoted to the characterization of the
volume and surface terms, respectively.

We shall use the following version of De Giorgi’s Slicing Lemma (see also
[4] and [7]) which allows us to modify a sequence on the boundary without
increasing the energy.

PROPOSITION 3.7. Let V C R N be an open, bounded set and let f : R

satisfy the growth condition (3.1 ). Let {un }, { vn } be sequences offunctions in B D ( V )
such that Un - Vn - 0 in supn  IEunl(V)  +00 and it,

IEvnl(V) - (V) - Then there exist a subsequence and a sequence { wk } I C
B D ( V ) such that Wk = Vnk near the boundary of V, Wk - Vnk --&#x3E;. 0 in L 1 ( V , JRN),
and

p p

PROOF. Without loss of generality we may assume that

Then, by (3.1 ), there exists a bounded Radon measure À such that

Choose as k -~ oo and such that

Let be a smooth cut-off function such that if
I 

and dist ( , and and dist (

and define
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Then , near the boundary of V, and

On the other hand, as
from the growth condition on f it follows that

where

Thus, by the strong convergence of un - vn to zero in and (3.5),

where

By a standard diagonal argument, we may choose a subsequence nk ~ oo and a
sequence -~ 0 such that satisfies the required properties. 0

REMARK 3.8. If the sequences {un }, are more regular, e.g. if un, vn E

W1,1(V, :raeN) or Un, Vn E then so is the sequence 

The localized relaxed functional has the following properties



32

PROPOSITION 3.9. Under hypotheses (3 .1 ) and (3.2)

3 - .) is the restriction to O(Q) of a Radon measure.

We use the same notation for .) and its extension to the Borel subsets
of Q.

PROOF. The proof of 1) follows from a standard diagonal argument, whereas
2) is an immediate consequence of the growth conditions on f, of the lower
semicontinuity of the total variation of Radon measures and of Theorem 2.6.

To prove 3), we begin by showing that for every u E BD(Q) and every
U, V, W e O(Q) with W CC V CC U

Indeed, let and t be such that
in

Let Vo E be such that W cc Vo C C V and = 0. Applying
Proposition 3.7 and Remark 3.8 to { vn { and u in Vo, we obtain a sequence

~ such that vn = u near the boundary of ’ 
°

~ in

) and

By Proposition 3.7 and Remark 3.8, now applied to and u in
.... . /~ 1 TT 7 1 1 I- ~ ~ B T 7 TT 7B1..........

there exists a sequence such that

neighbourhood of ) and

Define
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Then and

Now let be such that in . and

Since is bounded in it follows that there exists a
bounded Radon measure it on S2 such that for a subsequence (not relabelled)

in the sense of measures, and so

By the definition of X(u, .), for every

Let now V E and E &#x3E; 0 be fixed, and consider W E with
and /L(V B W)  ~ . Then

By (3.9), applying (3.10) with and then (3.7) for U := Q, we g

Letting E ~ 0+ we obtain for every V E O(Q). It

remains to show that U)  ¡L(U) for every U E O(Q). In order to do this,
we fix again an E &#x3E; 0 and choose V, W E O(Q) such that W C C V C C U
and + lEul(U B W)  E. By (3.6), (3.7), and (3.10), we get

To conclude it suffices to let 
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For any u E BD(Q) and define

In order to identify the surface term of the relaxed energy we will follow the
general method for relaxation introduced by Bouchitt6, Fonseca and Mascarenhas
[7]. The idea is to compare the asymptotic behaviours of m(u, Q(xo, 8)) and
.F(u, Q (xo, 8)) as 8 - 0+, and to show, via a blow-up argument, that relaxation
reduces to solving a Dirichlet problem (see Lemma 3.12). The following three
lemmas are entirely similar to Lemmas 3.1, 3.3 and 3.5 in [7]; for completeness
of the presentation we include their proofs here.

LEMMA 3. lo. There exists a positive constant C such that for any u l, U2 E
and any V E we have

PROOF. Given 6 &#x3E; 0 consider the set Vs := {x E V dist (x, a V) &#x3E; 8} 1 and
let v E be such that V = u2 on a V. Define vs E by vs := v in
Vs and vs : := u i in S2 B Vs. Then, by the definition of m, and by virtue of the
additivity and locality of .~’,

By (3.6),

The first two terms in (3.12) tend to zero as 8 -~ 0, and as for the third one
we have

Therefore from (3.11), (3.12) and (3.13) it follows that

Taking the infimum over v and using the fact that
we obtain

Interchanging the roles of u 1 and U2 the proof is concluded.
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As in [7], fix and define J Let

and for set

Since is a decreasing function, we define

LEMMA 3.11 (Lemma 3.3 [7]). Let U E BD(Q). Under conditions 1), 2), 3)
of Proposition 3.9, for any V E 

PROOF. Since F(u, .) is a Radon measure and m(u, V)  V), the

inequality m*(u, V) ~ V) is clear. To show the reverse inequality, fix

3 &#x3E; 0 and let be an admissible family for m8(u, V) such that

where Let now vs E be such that

and

Define

where Clearly On the other hand, given
using the fact that v’ - u = 0 in N8, and integrating by parts



36

(see (2.1)) over the cubes (~ we get

Hence

in the sense of distributions, and due to the lower bound in (3.6) and (3.14),
(3.15), the right-hand side is a bounded Radon measure on S2, and we conclude
that v8 E BD(Q).

By (3.14) and (3.16) Thus, by (3.6),

Since is the restriction of a measure, by (3.14) and (3.15) it follows
that 

-I"V’I

The result is now a consequence of the lower semicontinuity of ,~’(~, V)
provided we can show converges to u strongly in L 1 ( V , Indeed,
if this is the case, then
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Since vs = u on by Poincar6’s Inequality (2.2) and Remark 2.9, there
exists a constant C &#x3E; 0 such that

Hence

Since the sequence IlEv8l(V)18 is bounded by the coercivity condition (3.6)
and (3.17), it follows converges to u strongly in 0

LEMMA 3.12 (Lemma 3.5 [7]). IfJ’ satisfies conditions 1 )-3) of Proposition 3.9
then

The proof is the same as in [7] since it does not depend on whether we
are considering the distributional derivative D or its symmetrized part E.

REMARK 3.13. The conclusion of this lemma still holds replacing Qv(xo, s)
by U(xo, s) := xo + ~, where U is any bounded, open, convex subset of R N
containing the origin.

The following result shows that in the definition of the Dirichlet functional
m one may consider more regular functions.

LEMMA 3.14. If the function f satisfies (3.1 ), then for every u E BD(Q) and
every V E 

PROOF. Clearly mo(u, V) ~ m(u, V). To show the reverse inequality, fix
8 &#x3E; 0 and let v E be such that v = u on 9V and m(u, V) ~ F(v, V) -8.
Consider a sequence un E such that un - v in 

and, using Theorem 2.6, let vn E satisfy in JRN),
on 9V - on 9V - and It suffices

now to apply Proposition 3.7 to } and {vn }, and, in light of Remark 3.8,
there exists a sequence of functions in such that wk = u on
a V and

and we conclude by letting
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4. - The volume term

PROPOSITION 4.1. If u E BD(Q) then

where

This result follows immediately from Theorem 3.1 in [9], where f is
assumed to be symmetric quasiconvex. For completeness, we provide below a
slightly modified argument.

PROOF. Let 1 be such that in and

By passing to a subsequence (not relabelled), there exists a finite non-negative
Radon measure À such that

Thus, it suffices to show that for

Consider a point xo E S2 such that

where the sequence of E ~ 0+ is chosen such that ~(9 6(~0~)) = 0. It is
well-known that properties (4.1)-(4.3) hold for LN-almost every xo E Q.

Then
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where

By (4.1), (4.4), and the coercivity hypothesis on f, we obtain

and so, applying Theorem 2.8,

where P is the projection of BD(Q) onto the kernel of the operator E. Theo-
rem 2.10, together with (4.5) and the fact that E PUn,E = 0, implies the existence
of a RN) such that

and this, in turn, entails

On the other hand, given 0 E Co ( Q), from the ’strong convergence in L 1
of un to u and the convergence of Eu, to Eu in the sense of measures, we
deduce that
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by (4.2) and (4.3). We have thus showed that in the sense
of measures, which, together with (4.7), yields

Extracting a diagonal subsequence I , according to (4.6),
(4.7) and (4.8), we then have, by (4.4)

By virtue of Proposition 3.7, without loss of generality, we may assume
that on a Q . Hence by the definition of S Q f , Remark 3.2 and (4.8),
we have 

--

PROPOSITION 4.2. Let U E BD(S2). every I-

PROOF. Choose a point xo E S2 such that (4.2) and (4.3) are satisfied, and

where the sequence of E ~ 0+. is chosen such that
W - - , , . v t

and let o be such that

Extend 0 to R N by periodicity and define

Then and we define
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Then, , so that

is admissible for . Hence we obtain,

where, by changing variables and using the periodicity of 0, and (4.9),

It remains, therefore, to show that /2 = 0 and, finally, to let

By Lemma 2.2 and setting

where we have used (4.2), the fact that E ~, 0+ were chosen such that

and (4.3). Then, since sup,,



42

-~-oo, using Lemma 3.4 we conclude that

5. - The surface term

PROPOSITION 5.1. Let u E Then, under hypotheses (3.1), (3.2),

where

and

PROOF. Since u+, u- are Borel functions and Ju is rectifiable, writing
almost every xo E Ju we have

and

Choose one such point xo E J. Let and set

By Lemma 3.12 the limit in (5.3) is equal to

Recall that
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By Lemma 2.13 the point xo can be chosen to satisfy also

Also, from Lemma 2.13 it follows that

so that u, - in the intermediate topology of and since the

trace operator is continuous with respect to this topology (cf. Theorem 2.3),
we deduce that

We have, by (5.3), Lemma 3.10 and (5.4), (5.5),

Hence
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REMARK 5.2 In view of Remark 3.13 and (5.6), setting

where {1~1,... is an orthonormal basis of R , the surface energy

density g is given by

for all 

We will show now that the surface energy density may be more explicitly
characterized.

PROPOSITION 5.3. If (3.1 ), (3.2) hold and if u E SBD(Q), thenfor HN- I -almost
every Xo E Ju

PROOF. By Lemma 3.14, for every xo E Ju the function g is

given by

where and Hence, for any

there exists a function wk,£, depending also on s, such that

on and setting

and
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Using hypothesis (3.2), the growth condition of (S Q f )°°, and H61der’s inequal-
ity, it follows that

By the coercivity of S Q f (cf. Remark 3.3) and (5.7) it follows that

and thus

Set

Then E so using the symmetric quasiconvexity of
(cf. Remark 3.3) we obtain

From (5.7), (5.8) and (5.9) we conclude that

It suffices to let
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To show the reverse inequality, for , set

where the parallelipiped was defined in Remark 5.2. Then We has the same
trace as xo) when (x - xo) - v = ~ 2 but not on the remaining lateral
faces of the boundary of Qk,,(XO)- In order to obtain an admissible sequence for
m(uxo,v(. - xo), Qk,e(XO)), we consider a smooth function E Coo(Qk,e(XO)),
depending only on, , such that
Thus has the same trace as

), and, in view of Remark 5.2,

By definition of symmetric quasiconvex envelope, fix and let
be such that

Extend q5 to R N by periodicity and define

By Theorem 2.6, let be such

that i on and define

Then strongly in
. Hence lUk,E,nj is admissible for
and therefore, as
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it follows from (5.10) that

where Now,

where we used the periodicity of 0 and (5.11 ). -

On the other hand, as

Also

From the convergence of in the intermediate topology,
together with the fact that

we deduce that



48

also

with

and

since which implies that
and where we used once again the fact that Thus we
conclude that
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