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Structural Properties of Singularities
of Semiconcave Functions

PAOLO ALBANO - PIERMARCO CANNARSA

Abstract. A semiconcave function on an open domain of R" is a function that can
be locally represented as the sum of a concave function plus a smooth one. The
local structure of the singular set (non-differentiability points) of such a function
is studied in this paper. A new technique is presented to detect singularities that
propagate along Lipschitz arcs and, more generally, along sets of higher dimension.
This approach is then used to analyze the singular set of the distance function from
a closed subset of 
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1. - Introduction

Although the term "singularity" may suggest the idea of a technical topic
for specialists, we believe that the object of this paper could be of interest
for a general audience. In fact, we shall study the set of points at which a

(semi)concave function u : S2 ~ R, defined on an open domain Q c fails
to be differentiable.

Such a set, hereafter denoted is "small" if estimated by Lebesgue
measure: being locally Lipschitz, u is also differentiable almost everywhere
in Q. On the other hand, a set of Lebesgue measure zero can be very "bad"
and have no structure whatsoever. For a concave function, however, one might
conceivably to be a more regular set than for a general Lipschitz
continuous function.

A possible approach for this analysis is to give upper bounds for the sin-
gular set. For instance, one can show can be covered by countably
many Lipschitz hypersurfaces of dimension n - 1, or, in the language of geo-
metric measure theory, that £(u) is countably (n - 1)-rectifiable. Apart from
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earlier contributions for specific problems like in [ 16], to our knowledge the first
general results in this direction are due to Zajicek [29], [30] and Vesely [25],
[26]. Similar rectifiability properties were later extended to semiconcave func-
tions in [3]. Related and improved versions of these results can be found
in [1], [2], [5].

Another perspective, opposite to the previous one, is to obtain lower bounds
for the singular set. We shall here adopt such a point of view, trying to

answer the following natural question: how to find the isolated singularities of
a concave function u ? Conversely: are there conditions ensuring that a given
point belongs to a connected component of dimension

v &#x3E; I? In the latter case, we say that the singularity at xo propagates along a
v-dimensional set.

This problem was first studied in [10] for semiconcave solutions to Ha-

milton-Jacobi-Bellman (HJB) equations, and then in [4] for general semiconvex
functions. In the first reference, singularities were shown to propagate just
along a sequence of points. In the second one, on the contrary, conditions
were given to derive estimates for the Hausdorff dimension of the singular set
in a neighborhood of a point xo Such conditions were expressed in
terms of the superdifferential of u at xo-a nonempty convex set denoted by
D+u(xo). The results of [4], however, have at least two drawbacks. The first
one is that they still allow the connected component of ~ (u ) containing xo to
be a singleton; the second is that they require the assumption dim D+u (xo)  n.

In the present paper, we develop a new method to study propagation of
singularities addressing each of the issues we have raised above. For this

purpose, we introduce a topological condition on D+u (xo) that implies no
restriction on the dimension of this set. Under such an assumption, we show
that ~ (u) contains the Lipschitz image of a v-dimensional convex set, and that
such an image has positive v-dimensional Hausdorff density at xo, for some

integer v &#x3E; 1 that we compute explicitly.
Besides being more powerful, the construction set forth in this paper seems

more straightforward than the one of [4]: the geometric assumption ensuring
the propagation of singularities is certainly easier to use and understand in
the present form. All this being said, let us also note that a more restrictive

semiconcavity property is here required for u than in the above reference.
For the case of v = 1, an earlier version of our propagation theorem was

given by the authors in [ 1 ] . Even in this special case, however, the result we
here propose improves substantially the one obtained in [ 1 ], as explained in
Remark 4.6 below.

Since convex analysis occupies such a central position in mathematics, good
reasons for studying properties of convex functions should be familiar to most
readers.

In addition to the above considerations, we would like to mention the

application that motivated our personal interest in this problem, namely the
analysis of the singular set of solutions to HJB equations. Except for local
results, the theory of these equations is based on suitable notions of weak



721

solutions, as singularities may develop even if the initial data are smooth. On
the other hand, the solutions of interest for applications - at least for problems
with regular data - are semiconcave. Indeed, the first global existence and
uniqueness results for HJB equations were obtained in such a class of functions,
see [15], [20] and [22] for further reference. Even in the context of more recent
PDE theories, like viscosity solutions or minimax solutions (see [12], [13], [14]
and [24]), semiconcavity has a role to play as it represents a maximal regularity
property of generalized solutions. Semiconcavity results for viscosity solutions
to HJB equations and for the value function of related Optimal Control problems
are described in [6], [21] ] and [8], [9], [10], [18], respectively.

For easier application to HJB equations, we will formulate our propagation
results for semiconcave - rather than concave - functions. In order to keep
the length of this paper under control, however, we will just present one of the
possible applications, discussing the classical eikonal equation. More general
types of HJB equations will be studied in a forthcoming paper.

As is well-known, the distance function ds from a nonempty closed set

S C Rn is a semiconcave solution of the eikonal equation = 1. From the
point of view of best approximation theory, the singularities of ds have been
investigated by many authors. In [7], the is described proving that,
in the case of n = 2, the non-isolated singularities of the metric projection
propagate along Lipschitz arcs. Such a result is extended to Hilbert spaces
in [28]. As an application of the propagation result of Section 5, in the present
paper we will construct connected components of higher dimension.

To conclude this introduction let us explain how the paper is organized.
Section 2 contains the general notation used in the sequel. In Section 3 we
recall the basic properties of semiconcave functions, of their superdifferentials,
and of their singular sets. The next two sections are devoted to propagation
of singularities: we treat propagation along arcs in Section 4, and then, in

Section 5, along sets of dimension v &#x3E; 1. The reason for treating the one-
dimensional case first, is that the Hausdorff estimate for the density of £ (u) is
immediate if v = 1, and so our method becomes really elementary. Finally, in
Section 6, we discuss the above mentioned application to the distance function.

2. - Notation

Let n be a positive integer. We denote by (., .) and I the Euclidean scalar
product and norm in R n. For any R &#x3E; 0 andxoczr n we set

and we abbreviate BR = BR (0). We denote by B R (xo) the closure of BR (xo).
Let A be a subset of R . We use the notation diam(A) for the diameter of A.
We write
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to mean that x E A and x xo. Moreover, for a family of subsets
of R’~, we use the symbol

to denote a sequence xi E Ai i converging to x.
Let N be another positive integer. We denote by Lip(A; IRN) the space of
all Lipschitz continuous maps defined on A, that is the space of all functions

f : A - satisfying

for some constant L &#x3E; 0. We refer to any constant L verifying the above
inequality as a Lipschitz constant for f. The infimum of such constants is the
Lipschitz seminorm of f, denoted by Lip( f ).
Given an integer v E { 1, ... , n }, we recall that A is said to be v-rectifiable

if A c f (Rv) for some mapping f E Lip(Rv; II~n ) . We also agree with the
convention of saying that A is 0-rectifiable if A is a singleton. More generally,
we call a set A countably v-rectifiable, v E {O, ... , if A = Ui Ai for some

family of v-rectifiable sets.

For any real number V E [0,11], the v-dimensional Hausdorff measure of A is
defined as

where

and r(t) = is the Euler function. Moreover, the Hausdorff
dimension of A is defined as H-dim A = inf{v &#x3E; 0 : 7~ (A) =0}. If A is

convex, then 1í-dim A coincides with the classical dimension of A, that is the
dimension of the smaller affine hyperplane containing A.
If f E then it is easy to show that

Given a nonempty closed set S c R", we denote by ds the Euclidean distance
function from S, i.e.

If S is convex, then denotes the normal cone to S at x, that is
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3. - Basic properties of semiconcave functions

For any xo, x 1 E we denote by [xo, x I ] the line segment

The open segment is defined similarly.
Let A c R". A function u : is concave on A if

for any pair xo, xl E A such that [xo, xl ] C A. Clearly, the above notion reduces
to the standard definition of concave function if A is convex. We now define
a more general class of functions.

DEFINITION 3.1. A function u : A - R is called semiconcave if, for some
constant C E R,

for any xo, x I E A such that [xo, x I] c A. We refer to such a constant C as a
semiconcavity constant for u on A.

It is easy to check that

(3.1) u is semiconcave on A is concave on A .

For an open set of Q c R" we can further extend the above class of functions

introducing locally semiconcave functions.

DEFINITION 3.2. A function u : ~ 2013~ R is called locally semiconcave in Q
if u is semiconcave on every compact subset of Q. We denote by SC(Q) the
class of all locally semiconcave functions defined in Q.

We now proceed to review some differentiability properties of locally semi-
concave functions in an open set. To begin, let us recall that any u E SC(Q) is
locally Lipschitz continuous (see e.g. [17]). Hence, by Rademacher’s Theorem,
u is differentiable a.e. in Q and the gradient of u is locally bounded. Then,
the set

is nonempty for any x E Q. The elements of D*u(x) will be called the

reachable gradients of u at x. The superdifferential of u at x is given by the
convex hull of D*u(x), that is
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It is shown in [10] that D*u(x) is contained in the (topological) boundary of
D+u (x), i.e.

From (3.3) it follows that D+u (x) is a nonempty compact convex set and that

where L is any Lipschitz constant for u in a neighborhood of x. Like for
concave functions, we have that u is continuously differentiable at x if and

only if D+u (x) is a singleton.
Now, let C be a semiconcavity constant for u on an open set Q’ C C

Q. Then, using (3 .1 ), one can show that a vector p E belongs to the

superdifferential of u at a point x E Q’ if and only if

The above inequality has several consequences. An immediate corollary is the
fact that, for any pair x, x’ E S2’,

Inequality (3.6) is also useful to check the validity of many calculus rules for
the superdifferential, such as Fermat’s rule, that is 0 E D+u(x) at any local
maximum or minimum point x for u, and the sum rule

Notice that the above inclusion reduces to an equality if at least one of the
functions u, v is continuously differentiable at x. Another easy consequence
of (3.6) is the upper semicontinuity of D+u as a set-valued map, that is

REMARK. The notation for superdifferentials and reachable gradients is by
no means standard in the literature. Here, we have adopted a terminology
that is used in the viscosity solution context we are more familiar with, but
analogous concepts - though denoted differently - are widely used in the
literature, see e.g. [11]. To help the reader who is accustomed to the language
of nonsmooth analysis, let us add a few comments. First, we observe that the
usual definition of the superdifferential D+u (.x) is usually different from ours,
and can be applied to any function u. For semiconcave functions, however, it
can be proved that D+u (x) is given by formula (3.3), and coincides in turn
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with the proximal superdifferential a P u (x ) . Moreover, we note that reachable
gradients could be defined for locally Lipschitz functions as well. In this case,
the convex hull of D*u(x) is a possible characterization of Clarke’s generalized
gradient au(x) ([11, Theorem 8.1 p. 93]), which is therefore equal to D+u(x)
whenever u is semiconcave. Finally, for any u E SC(Q), D*u(.x) coincides
with the limiting subdifferential aL u (x) of nonsmooth analysis.

We conclude this brief review of the generalized differentials of a semicon-
cave function with a characterization of reachable gradients that will be used
in the sequel.

PROPOSITION 3.4. Let u E Then, for any x E Q,

PROOF. Let us denote by D4u(x) the right hand side of (3.9). Since D+u
reduces to the gradient at any differentiability point of u, we have that D*u(x) C

Now, to show the reverse inclusion, let us fix a point p = pi,

with pi E D+u(xi) and xi E Q as in (3.9). Recalling the definition of D*u, for
any i E N we can find a vector p7 E D*u(xi) and a point xi E Q, at which u
is differentiable, such that

Then, x* - x and

as I - oo . Hence, p E D*u(x). D

The last part of this preliminary section will be focused on the singular set
of a semiconcave function u. More precisely, given u E SC(Q), we denote by

the set of all points x E Q at which u fails to be differentiable. In light
of the above remarks, such a set could be also described as the set of points
x E Q at which D+u(x) is not a singleton or, equivalently, as

The points of E (u) are the singular points, or singularities, of u. For a more

accurate analysis of the singular set let us define, for any integer k E f 0, ... , n },



726

Then, the family is a partition of Q, and

The next definition introduces the magnitude of a point, a natural concept that
will be used in the sequel.

DEFINITION 3.5. The magnitude of a point x E Q (with respect to u) is the
integer

If x is a singular point, then 1  n.

As we noted above, the set of all differentiability points of has

full measure in Q. Therefore, ~ (u) has measure 0. Even a superficial analysis
of the behaviour of a concave function suggests the idea that the "size" of

should decrease as k increases. A rigorous result for such a conjecture
can be given in terms of rectifiable sets.

THEOREM 3.6. Let u E SC(Q). Then, for any k E f 0, ... , n ~, is

countably (n - k) -recti, fiable. is countably (n - I)-rectifiable
and En (u) is at most countable.

The above theorem is essentially due to Zajicek [30]. Extensions to more
general classes of functions have been obtained by several authors, as reported
in Section 1.

4. - Propagation of singularities along Lipschitz arcs

Let u be a semiconcave function in an open domain Q C M~. The rec-

tifiability properties of ~ (u), recalled in the last section, could be regarded
as "upper bounds" for ~ (u ) . From now on, we shall study the singular set

of u trying to obtain "lower bounds" for such a set. More precisely, given a
point xo we are interested in conditions ensuring the existence of other
singular points approaching xo. The following example explains the nature of
such conditions.

EXAMPLE 4.1. The functions

are concave in R 2, and (0, 0) is a singular point for both of them. Moreover,
(0, 0) is the only singularity for u 1 while
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So, (0, 0) is the intersection point of two singular lines of u2. Notice that (0, 0)
has magnitude 2 with respect to both functions as

The different structure and £ (u2) in a neighborhood of xo is captured
by the reachable gradients. In fact,

In other words, (3.4) is an equality for u 1, and a proper inclusion for u2.

The above example suggests that a sufficient condition to exclude the existence
of an isolated singular point xo should be that D*u(xo) fails to cover
the whole boundary of D+u(xo). As we shall see, such a condition implies
a much stronger property, namely that xo is the initial point of a Lipschitz
singular arc.

We recall that an arc x in 1~n is a continuous map x : [0, p] ~ p &#x3E; 0.
We shall say that x is singular for u if the support of x is contained in Q
and x(s) E E (u) for every s E [0, p] . The following result describes the "arc
structure" of the singular set ~ (u ) .

THEOREM 4.2. Let xo E S2 be a singular point of a function u E SC(Q).
Suppose that

Then there exist a Lipschitz singular arc x : [0, p] -~ Rn for u, with x(O) = xo, and
a positive number 6 such that

Moreover, xo for any s E (0, p].
Observe that Theorem 4.2 gives no information on the magnitude of x(s)

as a singular point, besides the trivial estimate 1  k (x (s ) )  n. However,
Theorem 3.6 implies that the support of x contains at most countably many
singular points of magnitude n. In other words, there exists no singular arc of
constant magnitude equal to n.

REMARK. We note that condition (4.1) is equivalent to the existence of two
vectors, po E R’ and q E Rn B 101, such that
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Indeed, (4.4) and (4.5) imply that Conversely, if (4.1)
holds true, then (4.4) is trivially satisfied by any vector po E aD+u(xo)BD*u(xo),
and (4.5) follows taking -q in the normal cone to the convex set D+u(xo) at

po. The importance of a condition of type (4.4) was initially pointed out in [4].
REMARK. It is easy to see that the support of the singular arc x, given by

Theorem 4.2, is a connected set of Hausdorff dimension 1. Indeed, from the
Lipschitz continuity of x it follows that the support of x is I-rectifiable, while
property (4.2) implies that the 1-dimensional Hausdorff measure of x([O, T]) is

positive.
The idea of the proof of Theorem 4.2 relies on the geometric intuition that
the distance between the graph of u and a suitable plane through (xo, u(xo)),
transverse the graph of u, should be maximized along the singular arc we expect
to find. We will be able to construct such a transverse plane using a vector
of the form po - q, where po and q are chosen as in Remark 4.3. Indeed,
condition (4.5) implies that Po - q rfi D+u(xo), and so the graph of

is transverse to the graph of u. We single out this step of the proof in the next
lemma, as such a technique applies to any point xo of the domain of a concave
function, regardless of the regularity of u at xo. For xo E 1: (u), we will then
show that the arc we construct in this way is singular for u.

LEMMA 4.5. Let C be a semiconcavity constant for u in BR (xo) C Q. Fix

po E a D+u (xo) and let q E R" B [01 be such that

Define

Then there exists a Lipschit.z arc x : such that

Moreover,

where L is a Lipschitz constant for u in BR (xo).
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PROOF. Let us define, for any s &#x3E; 0,

Notice that Q~s is the difference between the affine function in (4.6) and the
function which is a concave perturbation of u.

Being strictly concave, ~s has a unique maximum point in BR (xo), that
we term xs. For technical reasons that will be clear in the sequel, we restrict
our attention to the interval cr, where a is the number given by (4.8).
Let us define x by 

’

We now proceed to show that x possesses all the required properties.
First, we claim that x satisfies estimate (4.9). Indeed, by the characterization

of D+u given in (3.6), we have that

for any x E BR (xo). Moreover, Po - q tt. D+u(xo) in view of condition (4.7).
Since this fact implies that there are points in BR (xo) at which 0, is positive,
we conclude that 0,(x(s)) &#x3E; 0. The last estimate and (4.13) yield

and so (4.9) follows from (4.8).
Second, we proceed to check (4.11). For this purpose we note that, on

account of estimate (4.14), the choice of cr forces x(s) E BR(xo) for any
s E Hence, x (s ) is also a local maximum point of q5s. So, by the
calculus rules for D+u we recalled in Section 3,

for any s E (0, a]. Clearly, the last inclusion can be recast in the desired

form (4.11).
Third, to prove (4.10), we show that lims~o p(s) = po, where p is defined

in (4.11 ). Let 15 = for some sequence Sk  0. Then, taking the
scalar product of both sides of the identity
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with p(sk) - po and recalling property (3.7), we obtain

Now, observe that the right-hand side above tends to 0 as k ~ o, in view
of (4.14). Moreover, p E D+u(xo) since D+u is upper semicontinuous; so,

(q,15 - po) &#x3E; 0 by assumption (4.7). Therefore, (4.15) yields 115 - 0 in
the limit as k -~ oo. This proves that p = po as required.

Finally, let us derive the Lipschitz estimate (4.12). Let r, s E [0, or]. Us-
ing (4.11) to evaluate x(s) and x(r) one can easily compute that

Now, taking the scalar product of both sides of above equality with
and recalling (3.7), we obtain

Hence, for any

because L provides a bound for D+u in BR(xo). This completes the proof. D

_ 

PROOF OF THEOREM 4.2. To begin, let us fix a radius R &#x3E; 0 such that

C S2 . We recall that, as noted in Remark 4.3, the geometric assumption
that a D+u (xo) B D*u(xo) be nonempty is equivalent to the existence of vectors
po E and q E II~’~ B 101 satisfying

Applying Lemma 4.5 to such a pair, we can construct two arcs, x and p, that
enjoy properties (4.10) and (4.11). Moreover, the same lemma ensures that x
is Lipschitz continuous and that x(~) ~ xo for any s E (0, a].

Therefore, it remains to show that the restriction of x to a suitable subin-
terval [0, p] is singular for u, and that the diameter of D+u(x(s)) is bounded

away from 0 for all s E [0, p]. In fact, it suffices to check the latter point.
Let us argue by contradiction: suppose that a sequence Sk + 0 exists such that
diam(D+u(x(sk))) - 0 as k ---&#x3E; oo. Then, by Proposition 3.4,

contrary to (4.17).
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REMARK 4.6. An earlier version of the above technique of proof was used in
[1, Theorem 4.1] in order to construct a Lipschitz singular arc x for u. The new
idea introduced in the present paper, is the different choice of the function 0, to
maximize. A direct consequence of such a choice is the existence of the right
derivative of x at 0, that we were unable to obtain in [ 1 ] . Such a property will
play a crucial role for future applications to Hamilton-Jacobi-Bellman equations.
Apart from (4.2), another entirely new result is estimate (4.3) for the diameter
of D+u along the singular arc.

5. - Lipschitz singular sets of higher dimension

In the previous section we proved that the singularities of a function u E
SC(Q) propagate along a Lipschitz image of an interval [0, p], from any point
xo E Q at which D*u(xo) fails to cover the whole boundary of D+u(xo). Such
a result describes a sort of basic structure for the propagation of singularities
of a concave function. However, concave functions may well present singular
sets of dimension greater than 1. The next example is a case in point.

EXAMPLE 5.1. It is easy to check that the singular set of the concave
function

is given by the coordinate plane

Moreover,

Therefore, one can apply Theorem 4.2 with xo = 0 and po = 0, but this

procedure only gives a Lipschitz singular arc starting at 0, whereas one would
expect a 2-dimensional singular set. Actually, a more careful application of
Lemma 4.5 suggests that a singular arc for u should correspond to any vector
q # 0 satisfying (4.7). Moreover, such a correspondence should be 1-to-1

in light of (4.10). Since (4.7) is satisfied by all vectors q E such that

~+~=1,~=0, one can imagine to construct the whole singular plane
x3 = 0 in this way.

The next result generalizes Theorem 4.2, showing propagation of singular-
ities along a v-dimensional set. The integer v &#x3E; 1 is given by the number of
linearly independent directions of the normal cone to the superdifferential of u
at the initial singular point, as conjectured in the above example.
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THEOREM 5.2. Let xo E Q be a singular point of a functions u E SC (SZ) .
Suppose that

and, having fixed a point , define

Then a number p &#x3E; 0 and a Lipschitz map
such that

Moreover,

for some 3 &#x3E; 0.

REMARK 5.3. As one can easily realize, Theorem 5.2 is an extension of

Theorem 4.2. The property

though absent from the statement of Theorem 5.2, is valid in the present case as
well. In fact, it can also be derived from (5.1), possibly restricting the domain
of f.

As in the previous section, we first prove a preliminary result.

LEMMA 5.4. Let C be a semiconcavity constant for u in B R (xo) C Q. Fix

po E a D+u (xo) and define

Then a Lipschitz map i exists such that

Moreover,

where L is a Lipschitz constant for u in BR (xo).
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PROOF. Let us set, for brevity,

We proceed as in the proof of Lemma 4.5 and consider, for any q E N B f 0},
the function

and the point xq given by the relation

Then, we define cr as in (5.4) and f by

Arguing as in the proof of Lemma 4.5, we obtain

and

Hence, denoting by h(q) the quotient in (5.9), assertion (5.6) follows.
To prove (5.5) we must show that

For this purpose, let {qi } I be an arbitrary sequence in N f1 B, B 101 such that
qi ~ 0. Since h is bounded, we can extract a subsequence (still termed {qi })
such that exists and

for some q E N satisfying lq-1 = 1. We claim that limi--+oo h(qi ) = 0, which in
turn implies (5.10). Indeed, let us set
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and observe that p E D+u(xo) as D+u is upper semicontinuous and f is con-
tinuous at 0. Taking the scalar product of both sides of the identity

with h (qi ) and applying inequality (3.7), we deduce that

where the last estimate follows from (5.8). In the limit as i - oo, the above

inequality yields 
-

Hence, recalling that q E N, we conclude that p = po. Our claim is thus

proved.
The reasoning that shows the Lipschitz estimate (5.7) is the same as in the

proof of Lemma 4.5, and is therefore omitted. D

We are now ready to prove the main result of this section.

PROOF oF THEOREM 5.2. Keeping the notation N = N D+u(xo) (po) as in the
proof of Lemma 5.4, let us denote by L(N) the linear subspace generated by
N, and by 7r : R" 2013~ L(N) the ortoghonal projection of R’ onto L(N).

Having fixed R &#x3E; 0 so that C Q, let f : N Rn be the

map given by Lemma 5.4. Arguing by contradiction - as in the proof of
Theorem 4.2 - the reader can easily show that a suitable restriction of f to
N f1 Bp , 0  p  a, satisfies (5.3). In particular, f(q) for any
q E N n Bp. Moreover, (5.1) is an immediate consequence of (5.5).

Therefore, the only point of the conclusion that needs to be demonstrated,
is estimate (5.2) for the v-dimensional Hausdorff density of the singular set
f(N n Bp), or, since HV is traslation invariant,

We note that the above inequality can be deduced from the lower bound

since
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Now, using the shorter notation F (q ) = 7t(xo - f(q)), we observe that (5.11 )
can in turn be derived from the lower bound

Indeed, for any sufficiently small r, say 0  r  Mp where M := Lip(f), we
have that

The rest of our reasoning will therefore be devoted to the proof of (5.12).
To begin, we note that, in view of (5.1 ), the map F : N n Bp -~ L (N) introduced
above can be also represented as

where Consequently, the function

satisfies

Let us define

where rr denotes the relative boundary of N n Br and drr the distance from rr .
Using the limit (5.13), it is easy to check that Nr # 0 provided r is sufficiently
small, say 0  r  po  p. We claim that

Indeed, having fixed y E Nr, let us rewrite the equation F (q ) = y as

Now, observe that C and that the continuous map Hy (q) satisfies

Therefore, applying Brouwer’s Fixed Point Theorem, we conclude that q =
Hy (q) has a solution q E So, our claim (5.15) follows.
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Our next step is to obtain the lower bound

for the density of the set Nr introduced in (5.14). To verify the above estimate
let q be a point in the relative interior of N, with le¡I = 1. Then, using the
notation Ba := Ba f1 L(N) to denote v-dimensional balls, we have that

for some a E (0, 1/2]. On account of (5.13), there exists ro E (0, po) such that

Hence,

Now, combining (5.17), (5.18) and the definition of Nr, we discover

Estimate (5.16) is an immediate consequence of the last inclusion.

Finally, to complete the proof, it suffices to observe that (5.12) follows
from (5.15) and (5.16). D

Remark 5.5. Though clear from (5.2), we explicitly note that Theo-
rem 5.2 ensures that, in a neighbourood of covers a rectifiable set

of Hausdorff dimension v. Moreover, from formula (5.1) it follows that the set
c E (u) possesses tangent space at xo whenever the normal

cone N D+ u(xo) (Po) is actually a vector space. This happens, for instance, when
xo is a singular point of magnitude k (xo)  n and one can find a point po in
the relative interior of D+u(xo), but not in D*u(xo). Then, it is easy to check
that ND+ u (xo) ( pp) is a vector space of dimension v = n - k (xo) .

6. - Application to the distance function

In this section we examine the singular points of the distance function ds
associated to a nonempty closed subset S of 

We denote by projs(x) the set of closest points in S to x, i.e.

The next proposition collects the properties of ds we need for the analysis.
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PROPOSITION 6. l. Let S be a nonempty closed subset of Rn. Then the following
holds: .

(i) ds E SC (JRn B S).
(ii) ds is differentiable at x ~ S if and only if proj s (x) is a singleton.
(iii) For any x ~ S and any y E projs(x), ds is differentiable along the segment

Y1.
(iv) For any x V S

The above assertions are either known in the literature, or can be easily deduced
from known properties. In particular:
(i) is proved in [9, Proposition 3.2] (see also [6, Chap. 2, Example 4.5]);
(ii) is a well known property, see e.g. [19, p. 62]

(iii) is very easy to check;
(iv) holds at any differentiability point of ds (see e.g. [11, Chap. 1, Theo-

rem 6.1]), and so D*ds(x) is contained in the set in the right-hand side
of (6.1); the reverse inclusion follows from (iii).

The following theorem characterizes the isolated singularities of ds.

THEOREM 6.2. S be a singular
point of ds. Then the following properties are equivalent:
(a) x is an isolated point of E (ds).

Property (c) above was observed by Motzkin [23] in the case of n = 2;
it was later extended to Hilbert spaces in [28]. Here, we give an independent
proof of this result in Euclidean spaces, using our analysis of singularities for
semiconcave functions.

PROOF. (a) ==~ (b) This implication is an immediate corollary of the prop-
agation result of Section 4. Indeed, should a D+ds (x) ~ D*ds (x) be nonempty,
then Theorem 4.2 would ensure the existence of a non-costant singular arc with
initial point x. In particular, x could not be isolated.

(b) ~ (c) I Assume (b). First, we claim that x must be a singular point of

magnitude k(x) = n, i.e. dim D+ds(x) = n. For suppose the strict inequal-
ity k(x)  n is verified. Then, the whole superdifferential would be made
of boundary points and so, owing to (b), D+ds(x) = D*ds(x). Therefore,
D+ds(x) 1 as all reachable gradients of ds are unit vectors. But the last
inclusion contradicts the fact that D+ds (x) is a convex set of dimension at

least 1. Our claim is thus proved.
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Now, use the fact that D+ds(x) is an n-dimensional convex set with

to conclude that D+ds (x) = B i and D*ds (x) = a Bl .
Finally, invoke formula (6.1) to discover

as stated in (c).

From Proposition 6.1 (iii) we know that ds is differentiable along
each segment ]x, y[ with y E projs(x) = 3Br (x) . So, ds E {x}) and
the proof is complete. D

We note that, in particular, the distance from a simply connected set S c R 2
has no isolated singularities in ~2 B S.

The propagation of the non-isolated singularities of ds along Lipschitz arcs
has been established in both Euclidean and Hilbert spaces, see [7] and [27],
[28] respectively. To construct higher dimensional singular sets for the metric
projection onto S, we will now apply the theory of Section 5.

We recall that an exposed face E of a convex set D C R" is the intersection
E = D n H, where H is any support hyperplane to D. Equivalently, a vector
p belongs to an exposed face of D iff ( p, q ) = max p~ E D ~ p’, q ) for some unit
vector q E 

In the following, we will use the shorter notation

In view of the first identity in (6.2),

THEOREM 6.3. Let S be a nonempty closed subset and x V S be a non-
isolated singular point of ds . Then Ps (x) has an exposed face of dimension at least 1.
Moreover, if y is in the relative interior of an exposed face E of Ps(x) satisfying
dim E &#x3E; 1, then dim N Ps(x) (y) is a lower bound for the Hausdorff dimension of the
connected component of x (ds).

PROOF. Since x is a non-isolated singular point of ds, Theorem 6.2 ensures
that

Now, simple arguments of convex analysis show that any vector p E a D+ds (x ) B
D*ds(x) belongs to some exposed face V of D+ds(x), with dim V &#x3E; 1. Then,
recalling (6.2) and (6.3) we conclude that x - ds (x) V is an exposed face of
Ps(x).
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By similar arguments we have that, if y is in the relative interior of an

exposed face E of with dim E &#x3E; 1, then

and Then, to complete the proof, it suffices to

apply Theorem 5.2 to the distance function. 0

The next result immediately follows from the previous one since, owing to (6.3),
the dimension of Ps(x) coincides with k(x), the magnitude of x.

COROLLARY 6.4. Let S be a nonernpty closed subset of R n and x ~ S be a
singular point of ds . Then n - k(x) is a lower bound for Hausdorff dimension of the
connected component of x in E (ds).

A typical situation that is covered by Corollary 6.4 is when projs(x) -
for some k E f 1, ... , n - 1 } provided that the vectors yl - yo, ... ,

, 
Yk - yo are linearly independent. In this case the connected component of x in
~ (ds) has dimension &#x3E; n - k.
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