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Arithmetic Properties of the Cohomology of Artin Groups

CORRADO DE CONCINI - CLAUDIO PROCESI -

MARIO SALVETTI - FABIO STUMBO

Abstract. In this paper we compute the cohomology of all Artin groups associated
to finite Coxeter groups, with coefficients in the following module Rq : let R :=

Q[q, ] be the ring of rational Laurent polynomials and let Rq be given by
the action defined by mapping each standard generator to the multiplication by
-q. Case An was already considered in a previous paper where the "cohomology
table" has nice elementary arithmetic properties. Here also there are similar (more
complicated) arithmetic properties for the infinite series, where the methods of
proof are similar. For exceptional cases we used a suitable computer program.

Mathematics Subject Classification (1991): 20F36.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999), pp. 695-717

Introduction

Let R : _ ~ [q , q -1 ] be the ring of rational Laurent polynomials in one
variable q. Let B r (n ) be the Artin braid group with n strings and let Rq be
the Br (n)-module given by the action over R defined by mapping each standard
generator of Br(n) to the multiplication by -q. (REMARK: this action coincides
also with the determinant of the Burau representation of Br(n)). In [DPS] the
cohomology of Br(n) with coefficients in R9 was computed. All cohomology
modules are cyclotomic fields (or zero) and the table (Hi (Br(j); Rq))i,j has a
very interesting arithmetic behaviour.

Here we consider all other Artin’ groups, associated to finite irreducible
Coxeter groups. We compute the cohomology of these groups with coefficients
in the same module Rq, where the action is still given by multiplication by -q.
The results have a similar flavour to those obtained for the case An. (Instead
of the cohomology of an Artin group, we prefer to speak of that of its Coxeter
graph ).

The methods of proof are similar to the ones developed in [DPS] (case An):
we consider a filtration of subcomplexes of the algebraic complex, coming
from [S] (see also [DS]), which computes the cohomology of Artin groups.

Partially supported by M.U.R.S.T. 40%
Pervenuto alla Redazione I’] maggio 1999 e in forma definitiva il 28 luglio 1999.
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The cohomologies of these subcomplexes are related in short exact sequences
with the cohomology of Artin groups of type A and different ranks. We look
at boundary operators in the associated long exact sequences and determine the
conditions in order that such boundaries vanish. Then, starting from below, we
use induction and results in [DPS] to recover the cohomology of the Artin group.

The exceptional cases are obtained by using a suitable computer program:
we present here a table containing all their cohomology groups. This case is
included here for completeness: a similar table was already given in [S] (we
correct some misprints appearing there).

Let denote the cyclotomic polynomial of primitive d -roots of 1 and let

be the associated cyclotomic field, thought as R-module.

THEOREM (case B~ ) .

and for s &#x3E; 0

In case Dn the algebraic complex which computes the cohomology splits as a
direct sum of two subcomplexes, which are the invariant and anti-invariant parts
with respect to a suitable involution. The invariant subcomplex is isomorphic
to the complex for type An _ 1. We obtain the following description.

For n E N, let kin or k|2(n-1) but ktn-11.
THEOREM (case Dn). With the convention that

if h is an integer
otherwise,

we have that

and, for s &#x3E; 0,

if s is an even integer larger than 2

otherwise.
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The following tables collect our results for type Bn and 10:

The integer cohomology of Artin groups for the series B and D was dis-
cussed in [G]; that of exceptional cases in [S].

Our results in case of infinite series agree with stability results which were
found in [DS 1 ] .

The "top" cohomology of Artin groups was obtained in a more general
form in [DSS].
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1. - Notations and recollections

We recall here the main results of [DPS], generalizing the notations used
there.

Let (W, S) be an irreducible finite Coxeter system of rank m, with as-

sociated Coxeter graph r := rw. The vertices of r correspond to S, which
we identify to { 1, ... , m I using the standard correspondence of [Bo]. Let Gw
be the Artin group of type W (see [Br]); in case Am, W is the symmetric
group 1 and Gw is the braid group Br(m + 1). In general, if the standard

presentation for W is

then standard presentation for Gw is

where each member is a word of length m(s¡, Sj) (see [Br], [D]).
Let R be a commutative ring with 1 and let q E R be a unit. Let R~, be the

Gw-module where the action is given by mapping each g,s to the multiplication
by -q. In [S] an algebraic complex computing the cohomology of Gw with
coefficients in Rq was produced (see also [DS] for generalizations). Here we

consider the case Rq = Rq, where R~ is the module given in the introduction.
We think to the cohomology of Gw as that of its Coxeter diagram rw.
Let C(rw) be the above complex in case rw. In dimension k, Ck = R k

is the free R-module with basis given by all subsets of S of cardinality k.
We indicate such subsets through their characteristic functions, as strings

of 0, 1 of lenght m (which can be multiplied by justaposition). The degree Is [
of a string s is the number of its 1’s .

Given a subset J of S, let Wj c W be the parabolic subgroup generated
by the elements in J. For the corresponding string s(J), let us define

where l (w) is the length of a reduced expression of w. Notice that s(J) ! =

1 s!, where sl , ..., sm are the strings corresponding to the connected com-
ponents of the subgraph of rw generated by J.

The coboundary d : Ck -+ is defined by:

The sign J) is defined as
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We remark the following computational rules deduced from the above for-
mula :

In order to make computations, we use the explicit expressions of s (J) ! in
the different cases. Let us introduce the usual notations

as the q -analogue of the numbers n, n !, n ! !.

Type A

when the subgraph generated by J is of type Am (see also [DPS]).

Type B

when the subgraph generated by J is of type Bum.

Type D

when the subgraph generated by J is of type Dm.
To end this section, let us recall the main results in [DPS] for case Am.

Hereafter, we denote the complex of case A,n simply by Cm . Let h &#x3E; 2 and
set: 

, - , , , , ,

By the rules above one has

where vh (i ) are cocycles (see [DPS, Lemma 1.5]).
The main result in [DPS] is the following
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THEOREM (case Am).

2. - Case Bm

In this section we compute the cohomology of the complex Jm := C(Bm),
using formulas given in previuos section. To point out the different behaviour
of the last node of Bum, we box the last node of strings of type B.

In order to do induction we shall consider the following subcomplexes and
maps.

Take the map

7r is clearly a homomorphism of complexes with kernel the subcomplex L m 1
having as basis all strings ending with 1.

We continue in this way getting maps

which induce isomorphisms of complexes:

up to which has as basis

with differential i

The starting point of the computation is of course the computation of the
cohomology of which is clearly 0 except for

We need to do induction and thus it is again necessary to describe also
the cohomology of the complexes L~.
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3. - Preparation for the Main Theorem

We use an argument similar to that used for type An in [DPS]. Consider
the exact sequence of complexes

and look at a typical piece of the corresponding long exact sequence:

We know the terms

which are either 0 or irreducibles of type {/x}, generated by the appropriate co-
homology classes. Therefore we can analyze the change in the module structure
from to 

The main point is the computation of the connecting homomorphisms, that
we separate in two cases:

3.2 CASE A). We may assume that . then, by induction,

if and only if
is an integer

The module is irreducible and generated by the class of ,zh (s).
LEMMA 3.3. If h := "~-~s +1~ is an integer then,

generated by the class of zh (s ) and:

a) If h 2 (k + 1) (or h 12m) the map 6 is equal to 0.
b) If h 12(k + 1), (or h 12m), the map 6 is different, f ’rom 0.

PROOF. In order to compute the transform of Zh (s) under the connecting ho-

momorphism we lift zh (s ) to E Lm and compute 

We perform the computation as follows: first, compare

with By formula ( 1.1 ) we have
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a) If h 12 (k + 1) then

is a coboundary in Lm+1.
b) Assume now that h X2(k + 1). We have

Since h does not divide 2(k + 1 ) we have that 4$h divides

hence we can define the cocycle

and

We claim that [2(k+ 1)][zh,k+1 (s)] is a non zero element in Hm-2s+I 

The cohomology class of Zh,k+l (s) is non zero since it projects times

-2s+l 
(Dh

the cohomology class of in Hm-2s+lCm-(k+1)-I[k], which is non 0 and
generates a module isomorphic to {h}.

Therefore the claim follows since h A2(k + 1) and the elements [2(k +
1)], are not zero in { h } . D

3.4 CASE B). We assume that =1= 0 then:

if and only if sh = m - k = (m - k - 1 ) + 1, h is an integer.
The module {h } is irreducible and generated by the class of vh (s) .

LEMMA 3.5. If h := is an integer so that Hm-2(s-1)-1 Cm-k-I [k] = {h}:

a) If h is even or it is odd and does not divide k, the map 6 is equal to 0.

b) If h is odd and divides k (or divides m) the map 6 is different from 0.
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PROOF. As we have done in Lemma 3.3, in order to compute the image of
the cohomology class of vh (s) under the connecting homomorphism:

we lift to

We have
and compute ,

a) If h does not divide 2k then 4$h divides and so lifts

in Lk to the cocycle and thus is different from

0 in the irreducible {h }).
b) If h divides 2k thus we can write

When we apply the differential to this lift we get up to a sign

We set

Observe that this element lies in Lh+k-1 1 and its image in 

Cm-(h+k) is exactly Zh(S - 1). The element zh (s -1 ) gives a non 0 cohomology
class in the module H(s- 1)(h-2)+l Cm-(h+k-l)-l generating a submodule isomor-
phic to {/x}. Hence the cohomology class of vh,k+1 (s) in Hm-2s-l Lh+k-l is

non zero and the module it generates has a factor isomorphic to {h } .
In order to show that zh (s - 1) gives a non 0 cohomology class in

we prove that the contribution of the factor fhl to Hm-2(s-1)
Lm+k-1 1 does not disappear when passing to 

For this let us remark that whenever we pass from a level r + 1 of the

filtration to r we have the exact sequence:
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so an irreducible factor in of type {h } can disappear in
only if and In particular only when

which is not our case. Thus in the inclusion

-the factor is not cancelled.
m - -

In fact we have shown that, in the element

generates a submodule with a factor of type {h } .
To finish we verify that if h is odd then
In fact

and since h divides 2k it must divide k and its next multiple is k -f- h and so
the claim follows. Assume now h = 2r and r divides k, the factor 2(k + r)
gives 0 in ih I finishing the proof of the Lemma. 0

Summarizing:

is an integer, then and

a) If h 12m the map 6 is equal to 0.
b) If h X2m, the map 6 is different from 0.

is an integer, then and

a) If h is even or it is odd and does not divide m, the map 3 is equal to 0.
b) If h is odd and divides m the map 6 is different from 0.

Consider

. and A(s, k) be the class of the Grothendieck group; then:

is an integer and does not divide 2m then passing from A (s, k +
we have that is deleted.

If h := m-k is an integer and h is even or it is odd and does not divide m,
s

passing from A(s, k + 1) to A (s, k) we have that fhl } is added.

Conclusion:

i) h odd and h does not divide m : if m - hs &#x3E; k then {h } has been added
but if m - hs &#x3E; k + 1 then {h } has been also deleted so there remain only the
odd h which do not divide m and with m - hs = k or h := m-k if the latter

s

is an odd integer and h 
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ii) h even: then m - sh &#x3E; k implies that {h} is added but if h does not
divide 2m then if m - gh &#x3E; k + 1 it has also been deleted.

So add all even g  and g 12m and all even g with g and

if even and does not divide 2m. It follows:

unless is an integer and h Xm

is an integer and h 1m

Consider now

Let B(s, k) be the class of H- -2(s- ’) Lkin the Grothendieck group; then:
If h := an integer, h is odd and divides m, we have that fhl is deleted

passing from B(s, k + 1) to B(s, k).

If g : is an integer if g 12m, from B (s, k ~ 1 ) to B (s, k) we have that
{ g } is added.

Conclusion:

hum odd: if m - h (s -1 ) &#x3E; then {h } has been added, but if m - hs &#x3E; k
then {h} has been also deleted; so it remains only the odd with m - hs = k

or h : = if this is an odd integer.

The odd divisors of m which appear in B(s, k) are subject to

The even divisors of 2m which appear in B (s, k) are subject to

Therefore:

For s = 1 nothing is ever added but only the odd divisors h of m with m -hs &#x3E; k
have been deleted.
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4. - The Theorem

From previuos discussion we get the main theorem in case Bm.

THEOREM.

For k = 0, we have:

5. - Case D

We now consider the complex of Section 1. We define an involution
of this complex as follows:

It is easy to see that this involution is compatible with the differential, so that

where Km is the sub-complex of the a-invariant elements while P,~ is that of
the cr-antiinvariant elements.

A basis for Km is clearly given by all elements of the form 11/2(AIO +
A01), A00} where A is any string supported in { 1, ... , m - 2}. We have
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PROPOSITION. The unique linear map p : Km - Cm - 1 such hat

is an isomorphism of complexes. In particular, for all s &#x3E; 0,

if sdivides m - 1

otherwise

and

if ’s divides m

otherwise.

PROOF. The proposition follows immediately from the definitions and from
Theorem 1.1. D

Since we have that = H * Km E9 it remains to compute
the cohomology of Pm. A basis for Pm is given by the elements { 1 /2(A 10 -
A 01 ) , All} I where A is any string supported in { 1, ... , m - 2 } .

We now filter Pm by setting Gm = Pm, and, if i = 2,..., m - 1, Gm equal
to the span of the elements A 1 i , with A any string supported in 1,... m - i.
Let us now recall that in [DPS] we have denoted by the kernel of the

map 7r : Cm-2 defined by Jr(A0) = A and = 0 for each A

supported in { 1, ... , m - 2 } .
We now consider the map y : G£ - by y(All) = 0, y(1/2(A10-

A01) = Al. It is easy to see that y is a map of complexes whose kernel is

G2 so that we get an exact sequence

If k &#x3E; 2, we have a map y - yk : G~ -~ Cm-k-I[k] given by y(A01k) = A,
Y (A 1 k+ 1) = 0, whose kernel is G~+ I so that we get an exact sequence

Finally, is the complex

translated by m - 1, where 6 is the multiplication by [2(--1)][-]
This last fact gives the starting point of our computations i.e.
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6. - Preparation for the main theorem

Our aim in this section is to compute the cohomology of Pm = G~ . To do
this we shall compute the cohomology of each of the complexes G~ proceeding
by reverse induction on k. We already know the cohomology of Gm-1, so that
we have the starting point of our induction.

We start by considering the case k &#x3E; 1. We have an exact sequence

From this sequence we get a long exact sequence, of which we need to
compute the connecting homomorphism, to be able to deduce the cohomology
of G~ .

We split this in two cases:

Given a positive integer n, we let Sn be the set of integers which are either
divisors of n or of 2(n - 1) but not of n - 1. In other terms Sn is the set of

integers h such that the cyclotomic polynomial 4Sh divides [2(n-1 )][n] .[n-1] 
*

In order to compute the cohomology of the complexes Gm, we need to
compute some coboundaries. Recall that for 1  k  m - 1, we have an exact

sequence

Also we have that is non zero if and only if s is a proper
divisor of m - k - 1. If this is the case, setting h - m-k-I we have

LEMMA 6. l. Let k &#x3E; 1. Consider

Then d 0 0 if and only if the, f’ollowing conditions hold
1) s is a proper divisor of m - k -1 so that Hm-2s Cm-k-l [k] = {h } with h = m-k-1.s

2) h does not lie in Sm.

PROOF. We have already recalled that =1= 0 if and only if
condition 1 ) is satisfied. If this is the case Hm-2s Cm-k-1 [k] is isomorphic to
fhl and generated by the class of zh (s ) .

So, assuming condition 1 ), lift Zh(S) to E Gk. We have [h ] zh (s )
01k = d(wh)Olk. Now 

m
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from which

If h E Sm, then since h divides so that

the element is a coboundary in and

Assume now h ft Sm. Again h ft Sk+1. The equality

implies that it is enough to show that the class of the element is

non zero in Gm+1. Working modulo G/§+, we see that it suffices to see
that the class of the image
is non zero. A simple direct computation shows that this class equals the class
of which we know to be non zero, proving our claim. D

We now pass to case B) and analyze the coboundary

Set Qm equal to the set of divisors of m which are either odd or equal to 2.

We have

LEMMA 6.2. Let k &#x3E; 1. Consider

0 if and only if the following conditions hold
= 

2) h E Qm.

PROOF. One has that is non zero if and only if our
condition 1) is satisfied. Furthermore if this is the case, 
= {/x} and it is generated by the class of So from now on assume that

condition 1) is satisfied. 1

where

It is easy to see that if and only if h tf- Qm. If this is the case, then



710

so that, as in Lemma 6.1, d = 0.
So assume h E Q, so that 4$h does not divide y.

Remark now that one has that 4Sh divides so that

This element lies G n+h-1 1 and its class in

equals, up to sign, (Dh 1 [h ] y times the class of the generator zh (s - 1). ince

by (Dh does not divide y, we deduce that the cohomology class of (Ph’ [h]d
does not vanish in 1 and generates a module iso-

morphic to {h } . Let us see that this submodule does not disappear passing from
Consider the sequence

with

Since we know that

is either 0 or, if s divides m - r, equals to { mS r }, we deduce that our submodule
in 1 isomorphic to ih) } cannot be canceled when passing to

This implies that d 0 0, proving our claim. 1:1

Before we proceed let us recall that by our definitions

otherwise.

Notice also that

if m is odd

if m is even.

We can use now the two lemmas above to compute the groups for

1 k m-2. We have
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PROPOSITION 6.4. Let

otherwise.

PROOF. By 6.3 we have our result for k = 1. Set

We have an exact sequence

Our inductive hypothesis and Lemma 6.2 easily imply that

hand Lemma 6.3 implies that

unless s is a proper divisor of k + 1 and does not lie in Qm. Assume this
is the case. The module {~} is irreducible and does not appear among the
irreducible factors of It follows that the sequence

splits in all cases and this together with the above considerations learly implies
our claim.

PROPOSITION 6.5. Assume 2  k  m - 2, then

PROOF. One obtains the proof of this proposition using the computation of
the groups and Lemmas 6.2 and 6.3, in a fashion similar to that of

Proposition 6.4. We leave the details to the reader. 0
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It remains to compute by using the exact sequence

Let us recall that we have and, for

(the other cohomology groups vanish).
In the first case, {h } is generated by the cohomology class of

while in the second one it is generated by 
On the other hand the cohomology of G 2 is given by

if m is odd

otherwise;

is an integer larger than 2

otherwise

is an odd integer

otherwise .

The first statement is clear. As for the second, in order to deduce it

from Proposition 6.4 we have to see that there is no integer h &#x3E; 1 with

 h  2S 2 and 2h E Sm. Indeed, if 2h = ~, it is clear that t &#x3E; s, so that

we have 2S3  h  This implies m - 3(s + 1)  0, hence h  3/2, a
contradiction. The case in which 2h is a divisor of 2(m - 1) (but not of m - 1)
is completely analogous and in the same way one deduces our third statement
from Proposition 6.5. We leave the details to the reader.

LEMMA 6.7. The coboundary

is always injective.
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PROOF. It is clear from the above that we can assume that h = m-2 is an
s

integer and that h &#x3E; 2, so that = {h} is generated by the class of

We lift this class in Gm to

Since the boundary of this chain lies in Gm, in order to compute it it suffices

to determine the components which end by 11. One obtains for the boundary
the expression:

The class of this element maps under on

the class which is a generator of So

Since the R module = fhl } is irreducible we deduce that d

is injective.

Let us consider now the boundary

LEMMA 6.8. The coboundary

does not vanish iff h = m is an odd integer.
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PROOF. We can clearly assume that h = m is an integer with h &#x3E; 2 so that

(h) is generated by the class of vh (s). This class lifts in Gm,
to

if s &#x3E; 1, while, if s = 1, it lifts to 1 m -2 ( 10 - 01 ) . Computing the boundary
one obtains:

if s &#x3E; 1 and

ifs=1.

It is easy to see that 4Sh divides [2(h-2)]!! iff h is even.
[h-2].

Assume this is the case, 6.9 is divisible by 4$h so its class in H’n-2s+2Gm
is zero.

Assume now that h is odd. Then 6.9 gives a non zero class in H’n-2S+2Gm 1
since its image in 1] I is a non zero multiple of the class
zh (s - 1). We show that when passing from to 

2  r  h - 1, this class remains different from 0.

Indeed, consider the exact sequence

We know that

if s - 1 divides m - r

otherwise.

Since in the given interval h # ~2013~ the factor {h} appearing in Hm-2s+2G’"m-l 
1

by Proposition 6.5 must lie in the image of so we have done. D

Using this lemma and our previous computation of it is immediate
to see
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PROPOSITION 6.10. The cohomology groups of the complex Gm are

and, for s&#x3E;O,

is an even integer larger than 2

otherwise.

7. - The Theorem

Adding the cohomology of A,,-,, we get the main theorem:

THEOREM 7. l. With the convention that

if h is an integer
otherwise,

we have that

and, for 

is an even integer larger than 2

otherwise.

REMARK. Notice that i  m, can have multiple components, in
contrast with cases Am and B,,1
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8. - The exceptional cases

Here we give the table of cohomology for all exceptional cases. As said
in he introduction, this was obtained by using a suitable computer program: we
correct here some misprints in the analog table considered in [S].

where
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