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On del Pezzo Fibrations

MASSIMILIANO MELLA

Abstract. A Fano-Mori space is a projective morphism with connected fibers and
canonical class relatively antiample. These objects are conjecturally the building
blocks of uniruled varieties and of projective morphisms between smooth varieties.
In the paper are investigated properties of the fundamental divisor of Fano-Mori
spaces. It is proved a relative base point freeness result, conjectured by Andreatta
and Wisniewski, and a relative good divisor statement for del Pezzo fibrations.

Mathematics Subject Classification (1991): 14J40 (primary), 14D99, 14F17
(secondary).
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Introduction

A projective variety X is called Fano if a multiple of the anticanonical
divisor -Kx is ample. To such a variety is naturally associated a Cartier
divisor H, the fundamental divisor, and a positive rational number x(X), the
index. If i (X) and dim(X) are "close" enough it is then possible to understand
lot of X using properties of H ~ I such as base point freeness or existence of
sections with "good" singularities.

In the same way, to a Fano-Mori space, that is a morphism f : Y- T with
connected fibers and -Ky f -ample, it is possible to associate a fundamental
divisor L E Pic ( Y ) and a positive rational number r. It is quite natural to

expect that if r is "close" to dim F, for all fibers F of f, then also in this
relative case it is possible to understand better this morphism using properties
of the generic section of a fundamental divisor.

While the study of Fano varieties dates back to the beginning of the cen-
tury, [Fa], the understanding of the generic element of the fundamental di-
visor is comparatively quite recent even for high index varieties and it has

been a breakthrough of the theory since it allowed to reduce the dimen-
sion of objects studied, [Sh], [Ful], [Rel], [Me]. Almost all is known in

the relative case is contained in the pioneering works of Kawamata, [Ka2]

Pervenuto alla Redazione il 12 marzo 1998 e in forma definitiva il 12 maggio 1999.
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and Andreatta-Wisniewski, [AW I], which, essentially, deal with relative Pro-

jective spaces and Quadrics. In [AWI] ] the authors study contractions with

dim F  r + 1 - e(dim Y - dim T), and prove that under this hypothesis the
fundamental divisor is relatively free. The byproducts of this theorem have then
been applied to study various and different situations, see [AW2] for an account.
We have now a good knowledge of these contractions when Y is smooth.

In the present paper we are interested in the next step, that is contractions
with dim F  Y -dim T). In this range it is known the classification
of possible fibers for:

- Y smooth and dim T = 1, [Fu2],
- isolated 2-dimensional fibers of elementary contractions from smooth 4-

folds to 3-folds, [Kac], [AW3],
- isolated 2-dimensional fibers of extremal contractions from smooth n-folds
when the fundamental divisor is relatively free, [AW3], we will prove in
Theorem 2.6, that this hypothesis is always satisfied,
Furthermore elementary divisorial contractions of smooth 4-folds are mainly

understood, [Be], [Fu3].
It is immediate to observe that relative base point freeness is out of con-

sideration in general, since already smooth del Pezzo surfaces of degree 1 fail
to have it. In the absolute case Fujita, [Ful ], proved that LT del Pezzo varieties
have good divisors, that is the generic element of the fundamental divisor has at
worse the same singularities of X. In Section 3 we will prove that the same is
true for del Pezzo fibrations and similar results are valid also for more general
contractions.

To study the fundamental divisor of an extremal contraction the first task is
to understand if there is a section not containing any irreducible component of
a fixed fiber. In our case this is by far the most complicate problem and indeed
we are able to solve it only for special classes of contractions, see Section 2
for the details. As a by-product we obtain the proof of relative spannedness
in some cases. In particular the fundamental divisor is relatively spanned if

the contraction is a (d, 1, 1 )-fibration, 0, see Definition 1.3. This

proves a Conjecture of Andreatta-Wisniewski and concludes their classification
of isolated 2-dimensional fibers of Fano-Mori contractions, [AW3, Section 5].
Observe that L ~ I may a priori be empty, even for r close to dim F. To overcome
this problem we follow [AWI] ] set up of local contractions.

The second step is to produce a divisor with mild singularities, that allows
to start an induction process, this is the content of Proposition 3.3. Finally,
in Theorem 3.5, we prove that smooth del Pezzo fibration always have good
divisors.

The main tool used all trough the paper is Kawamata’s theory of CLC
minimal centers of LC singularities. I would like to thank Y. Kawamata for

sending me the latest version of his subadjunction formula, [Ka4], this enlarged
version helped me to greatly improve and simplify a former manuscript on
this topic. This theory is a new dictionary, for Kawamata’s Base point free
technique, which is particular useful in our situation. Indeed we could roughly
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say that Kawamata’s Bpf reduces the problem of finding sections of a divisor
to these of, producing a log variety, and proving a non vanishing on a smaller
dimensional variety. In the category of Fano-Mori spaces the latter question
is answered using the geometric conditions imposed to the contraction, see the
lemmas of Section 2.

ACKNOWLEDGEMENTS. I would like to thank Prof Tyzr6b for correcting
many inaccuracies of my part. Many thanks are due to the referee for valuable
comments and suggestions that improved the exposition and for pointing out
errors and wrong statements which filled up the previous version.
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1. - Preliminary results

We use the standard notation from algebraic geometry. In particular it is

compatible with that of [KMM] to which we refer constantly and everything is
defined over C.

In the following - (respectively -) will indicate numerical (respectively
linear) equivalence of divisors and E will always stand for a sufficiently small
positive rational number. 

,

Given a projective morphism / : X2013~F and A, B E Div(X) then A is

f -numerically equivalent to B if A. C = B. C for any curve contracted

by f ; and A is f -linearly equivalent to B ( B ) if A - B - f * M, for some
line bundle M E Pic(Y), we will suppress the subscript when no confusion is

likely to arise.
A contraction is a surjective morphism f : Y- T, with connected fibers,

between normal varieties. Let f be a contraction and L an f -ample Cartier
divisor then f is said to be supported by Ky + r L if there is an r E Q such
that Ky 

A contraction f : Y~ T is called of fiber type if dim Y &#x3E; dim T or bira-
tional otherwise. We will say that a contraction f : Y ~ T is Fano-Mori (F-M)
if Y is LT and - y is f -ample. In the F-M case, which we will treat mainly,
by Kawamata-Shokurov base point free theorem, for m » 0 and A E Pic ( T ) am-
ple, f is the morphism naturally associated to sections in 
this is why we say that f is supported by Kx + rL.

EXAMPLE 1.1. Let us give some immediate examples of F-M spaces, which
justify also their name. If T = SpecC and f is the constant map, then Y



618

is just a Fano variety, the opposite of this situation is when f is birational,
these morphisms are usually called extremal contractions and were initially
investigated by Mori in his celebrated paper, [Mol].

We will treat various type of contractions to simplify both the treatment
and the statement of the results it is convenient to introduce the following
definitions.

DEFINITION 1.2. Let f : Y ~ T a contraction supported by Ky + rL. Fix
a finite set of fibers Fl,... Fk of f and an open affine S C T such that

f(Fi) E S for i = 1, ... , k. Let X = f -1 S then f : X- S will be called
a local contraction around I Fi 1. If there is no need to specify fixed fibers
then we will simply say that f : X -~ S is a local contraction. In particular
S = Spec(H°(X, Ox)).

DEFINITION 1.3. Let f : X-S a local contraction around F. Let r =

inf{t E Q : Ky + for some ample Cartier divisor H E Pic(X)}. Assume
that f is supported by Ky+rL. The Cartier divisor L will be called fundamental
divisor of f. Let G a generic non trivial fiber of f then the dual-index of f
is

the character of f is

and the difficulty of f is

We will say that is the type of f.

REMARK 1.4. If all possible values of a parameter are considered we
will simply put a * in its place..In relation to general literature on F-M

contractions, we have the following: (0, 0, 0) contractions are smooth blow ups,
( -1, 1, -1 ) fibrations, are scroll, (0, 1, 0) are quadric fibrations, ( 1, 1, 1 ) are

del Pezzo fibrations, (-1, 1, *) are adjunction scroll and (0, 1, *) are adjunction
quadric fibrations. In this notations the main theorem of [AWI] ] states that the
fundamental divisor of a contraction of type (*, is relatively free.

We will use the local set-up developed by Andreatta-Wisniewski and the
notions of horizontal and vertical slicing.

LEMMA 1.5 ([AWI ]) (Vertical slicing). Let f : X -~ S be a local contraction
supported by Kx -f- r L, with r :::: -1 + E y ( f ). Assume that X has LT singularities
and let h be a general function on S. Let Xh = f * (h) then the singularities of Xh
are not worse than these of X and any section of L on Xh extends to X.
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Vertical slicing is used to reduce the "bad locus" to a subset of finitely
many fibers only.

LEMMA 1. 6 ([AWI]) (Horizontal slicing). Let f : X --* S be a local contraction
around { Fi } supported by Kx + r L. Let Xk = n§ Hi, with Hi E ~ ILl generic divisors.

i) Let fl Xk = g o fk the Stein factorisation of flxk : X k -~ S then fk : X k -~ Sk is
a morphism with connected fibers, around { Fi n (n§ Hi ) }, supported by K Xk +
(r - and Sk is affine. In particular if Xk is normal then fk is a local
contraction.

Assume that X has LT singularities, r &#x3E; E y ( f ) and k  r -f- 1 - E y ( f ).
ii) The singularities of Xk are not worse then that of X outside of BsllLl, and any

section of L on Xk extends to a section of L on X.

PROOF. We will sketch it since the set up is slightly different from [AW 1 ] .
i) is just Stein factorisation and adjunction formula once noticed that fjxk (Xk)

Ox 00Xk)).
For ii) the first statement is just Bertini theorem, while for the latter consider

the exact sequences

Thus to prove the assert it is enough to prove that = 0, for
i  r - e y (f ). But this is equivalent, using inductively the first sequence
tensored, to -i L) - 0, r - 6/(/) and j &#x3E; 0, which follows
from K-V vanishing. 0

Horizontal slicing is used to apply induction arguments, going from the
local contraction f : X- S to the local contraction fi : 

REMARK 1.7. If r &#x3E; 1 + ey( f) then fix 1 = f, 1 and in particular it has
connected fibers, [AWl, Lemma 2.6], therefore it is enough to consider the
restriction to have a lower dimensional contraction. This is no more true when
r is smaller. For instance there are examples due to Mukai, Shepherd-Barron
and Wisniewski of contractions f : X4 -+ S3 with exceptional fiber two copies of
p2 meeting at a single point and with a fundamental divisor relatively free, [Kac]
[AW2]. Nonetheless using part (i) of the above lemma we can always associate
a lower dimensional contraction f 1 around the fibers we are interested in. That
is why we need to consider a finite set of fibers in Definition 1.2, because
even if we start with only one fiber after a slicing we could have to study
a finite number of disjoint fibers all together. Note that there is a morphism
Sj - S induced by the morphism of rings H°(X, and when

we substitute f by fl we are not allowed to use all functions in but only
those coming from Os.

The main tool we will use is Kawamata’s notion of C L C minimal centers.
Let JL : Y-X a birational morphism of normal varieties. If D is a Q-divisor
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(Q-Cartier) then it is well defined the strict transform tt* 1 D (the pull back
JL* D). For a pair (X, D) of a variety X and a Q-divisor D, a log resolution is
a proper birational morphism p : Y ~ X from a smooth Y such that the union of
the support of JL; 1 D and of the exceptional locus is a normal crossing divisor.

DEFINITION 1.8. Let X be a normal variety and D = an effective

Q-divisor such that Kx + D is Q-Cartier. If it : Y-X is a log resolution of
the pair (X, D), then we can write

with F = 2:j disc(X, Ej, D)Ej for the exceptional divisors Ej. We call ej :=
disc(X, Ej, D) E Q the discrepancy coefficient for Ej, and regard -di as the

discrepancy coefficient for Di.
The pair (X, D) is said to have log canonical (LC) (respectively Kawamata

log terminal (KLT), log terminal (LT)) singularities if di  1 (resp. di  1,
dl = 0) and ej &#x3E; -1 (resp. ej &#x3E; - 1, ej &#x3E; -1) for any i, j of a log resolution

Y-~ X . The log canonical threshold of a pair (X, D) is lct (X, D) := sup{t E
Q: (X, tD) is LC}.

DEFINITION 1.9. A log-Fano variety is a KLT pair (X, A) such that for
some positive integer m, -m(Kx -f- A) is an ample Cartier divisor. The index
of a log-Fano variety i (X, A) : = sup { t e Q : 2013(~ + A) for some ample
Cartier divisor HI and the H satisfying -(Kx + i (X, 0)H is called
fundamental divisor.

PROPOSITION 1.10 ([Am]). Let log-Fano n fold of index i ( X ), H
the fundamental divisor in X. If i (X) &#x3E; n - 3 then dim ~ 0.

Let us now recall the notion and properties of minimal centers of log
canonical singularities as introduced in [Ka3]

DEFINITION 1.11 ([Ka3]). Let X be a normal variety and D = ~ di Di an
effective Q-divisor such that Kx + D is Q-Cartier. A subvariety W of X is
said to be a center of log canonical singularities for the pair (X, D), if there
is a birational morphism from a normal variety it : Y--+X and a prime divisor
E on Y with the discrepancy coefficient e  -1 such that A (E) = W. For

another such ~’ : Y’ -* X, if the strict transform E’ of E exists on Y’, then we
have the same discrepancy coefficient for E’. The divisor E’ is considered to
be equivalent to E, and the equivalence class of these prime divisors is called a
place of log canonical singularities for (X, D). The set of all centers (respectively
places) of LC singularities is denoted by CLC(X, D) (resp. PLC(X, D)), the
locus of all centers of LC singularities is denoted by LLC(X, D).

THEOREM 1.12 ([Ka3], [Ka4]). Let X be a normal variety and D an effective
(Q-Cartier divisor such that Kx + D is Q-Cartien Assume that X is LT and (X, D)
is LC.

i) If Wl, W2 E CLC(X, D) and W is an irreducible component of WI n W2, then
W E CLC(X, D). In particular, there exist minimal elements in CLC(X, D).
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ii) If W E CLC(X, D) is a minimal center then W is normal
iii) (subadjunction formula) Let H an ample Cartier divisor and E a positive ratio-

nal number. If W is a minimal center for CLC(X, D) then there exist effective
Q-divisors Dw on W such that (Kx + D -= Kw + Dw and (W, Dw)
is KLT.

In the next section we will frequently use pairs (X, D) which are not LC.
To be able to treat this situation let us introduce the following definition and
make some useful remarks.

DEFINITION l.13. The log canonical threshold related to a scheme V C X of
a pair (X, D) is lct(X, V, D) := infit E Q : V n LLC(X, 0}. We will
say that (X, D) is LC along a scheme V if lct(X, V, D) &#x3E; 1.

REMARK l.14. Let Z E CLC(X, lct (X, V, D)D) a center and assume that
Z intersects V, then (X, lct (X, V, D)D) is LC on the generic point of Z.
If (X, D) is not LC then Theorem 1.12 is in general false. On the other hand
the first assertion stays true, also under the weaker hypothesis that (X, D) is LC
on the generic point of w, n W2. In fact the discrepancy is a concept related
to a valuation v, therefore we can always substitute the variety X by an affine
neighbourhood of the generic point of the center of v, see also Claim 2.12.

Before ending this section let us spend a few words on the perturbation of
a log variety (X, D) by means of an arbitrarily small Q-divisor.

1.15 (Perturbation of a log variety). Let (X, D) a log variety and assume
that (X, D) is LC and W E CLC(X, D) is a minimal center. Then we will
have a log resolution tt : Y-~ X with

this time we put also the strict transform of the boundary on the right hand
side. Since (X, D) is LC and W E CLC(X, D) then ei &#x3E; -1 and there
is at least one ej - -1 such that It (Ej) = W. The main problem here is
that to apply Kawamata’s Bpf we need to have one and only one exceptional
divisor with discrepancy -1 and W as a center. To fulfill this requirement it
is enough to choose generic very ample M such that W c Supp(M) and no
other Z E CLC(X, D) B {W} is contained in Supp(M), this is always possible
since W is minimal in a dimensional sense. We then perturb D to a divisor
Di :== (1 2013 6i)D + 62~, with 0  Ei « 1 in such a way that

- = ¿:m¡E¡ + P, with P ample, this is possible by Kodaira lemma.
After this perturbation the log resolution looks like the following
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where the Ej’s are integral irreducible divisors and - W, A is a tt-

exceptional integral divisor and = 0. It is now enough to use the ampleness
of P to choose just one of the Ej. Indeed for small enough 3j &#x3E; 0 P’ :=
P - 2:j=l 6jEj is still ample therefore we produce the desired resolution

here and all trough the paper after a perturbation we will always gather together
all the fractional part with negative log discrepancy in P and A, respectively
the ample part of it and the remaining. If instead of an ample M we choose
a nef and big divisor, we can repeat the above argument with Kodaira lemma,
but this time we cannot choose the center JL (Eo) like before, and in particular
we cannot assume that at the end we are on a minimal center for (X, D). An
instructive example is the following.

EXAMPLE 1.16 (see also [AW3]). Let Y a smooth degree 1 del Pezzo n-

fold and H the fundamental divisor. Consider X := 
the total space of the dual bundle with the zero section Yo c X. Let

f : X- Z the contraction of Yo to a point, that is Z = kH)).
This is a F-M space and f is a birational contraction around Yo supported by
Kx + (n - 2)L, where L Let Hi e ILl I be generic sections and consider
the divisor D = Yo + 2:~ Hi, then D- f (n - 1 ) L and by standard properties of
del Pezzo varieties (X, D) is LC and CLC(X, D) = Hi, Yo ni Hi, x} I where
x = BslILI. In particular ix) } is the minimal center for (X, D). Let M = Ox,
then M is f -nef and f -big and if we perturb D by means of M we get a log
resolution as in ( 1.1 ) but = x. This can be easily seen by a direct
calculation or using the results of Section 2 to derive the contradiction that I
should be spanned if Z = x.

Nevertheless all results, like normality and subadjunction stay true for A(Eo)
since the existence of a resolution as in (1.1) implies that it is minimal for

(X, D~).
We can also extend the above arguments to log varieties (X, D) which are

only LC at the generic point of a subvariety W, even if in this case nothing
can be said about singularities or subadjunction.

2. - Existence of sections on local contractions

The main result of this section is that a local contraction of type (d, 1, 1) has
sections in the fundamental divisor non vanishing on any irreducible component
of the fixed fiber F when 1. This is crucial since it is the first step of the
inductive procedure we are aiming to apply.

Let us start with some technical lemmas. The following is just a restatement
of [AWI , Th 2.1 ], in the dictionary of CLC minimal centers.
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LEMMA 2.1. Let f : X -~ S a local contraction supported by Kx + r L around
F, and D a D==tY L. Assume X is LT and that Z E CLC(X, D), with
Z C F and (X, D) is LC on the generic point of Z. If y  r + 1 - dim Z, then
there exists a section of ILl not vanishing identically on Z.

PROOF. Let us perturb D to D, 1 : _ (1 - El)D + EZ M, for some ei « 1
and M E I f -very ample. Then we may assume that (X, D1 ) is LC at the

generic point of Z and D 1 =- yl L with y,  r + 1 - dim Z. Furthermore by
Kodaira lemma we have a log resolution 03BC: Y-X, of (X, D1) with

where E is an irreducible integral divisor, A, and B are integral divisors, A
and P are Q-divisors such that: lt(E) = W c Z, A is A-exceptional, = 0,
W 7= ¡L(B) and P is ( f o We stress that E, A, B, P and A have
not common irreducible components. Let

then and N(t) is (foJL)-ample whenever 
0. Thus K-V vanishing yields

for i &#x3E; 0 and t + r - 0. Consequently

A is effective and tt-exceptional and ¡L(B), thus any section in H° (Y, it*L
+A - B), not vanishing on E, pushes forward to give a section of L not

vanishing on Z. To conclude the proof it is, therefore, enough to prove that
ho(E, + A - B) &#x3E; 0. Let p(t) = x (E, + A - B), then deg p(t) 
dim Z. Furthermore thus p(t) = ho(E, + A - B) &#x3E; 0 for
t » 0 . If W is a point then p ( 1 ) = p(t) &#x3E; 0. If dim W &#x3E; 0 then by equation
(2.1 ), p (0) &#x3E; 0 and pet) = 0 for 0 &#x3E; t &#x3E; - dim Z -~ 1. Therefore we have

enough zeros to ensure that h° (E, ¡L* L + A - B) = p(l) &#x3E; 0. 0

LEMMA 2. 2. Let f : X- S a local contraction supported by Kx -I- r L around
F. Fix a subvariety Z C F, and a Q-divisor D, with Assume that X is

LT, (X, D) is LC along Z, and W E CLC(X, D) is a minimal center contained in
Z. Assume that one of the following conditions is satisfied:

i) r - y &#x3E; max f 0, dim W - 3 },
ii) dim W  1 and r - y &#x3E; -1.

Then there exists a section of ILl not vanishing identically on W.
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PROOF. Since D is LC along W we can assume that there exists a log
resolution JL : Y-X of (X, D) with

where E is an irreducible integral divisor, A, and B are integral divisors, A
and P are Q-divisors such that: ¡L(E) = W, A is p-exceptional, = 0,
Z n p (B) = 0 and P is ( f o /-t)-ample. Let

then N (t) is ( f o p)-ample whenever t + r - y &#x3E; 0. In particular if any of the
conditions of the lemma are satisfied by K-V vanishing we have the following
surjection 

-

Since A does not contain E and is effective then

In particular any section of HO(W, gives rise to a section in L)
not vanishing identically on W. Therefore to conclude the proof it is enough to
produce a section in By subadjunction formula of Theorem 1.12
there exists a Q-divisor Dw such that

for any 0  6 « 1.

In case (i) since r - y &#x3E; 0 then by equation (2.3), for sufficiently small 8,
(W, Dw) is a log Fano variety of index i(W, Dw) = r - y - 6 &#x3E; dim W - 3.
Therefore we can apply Proposition 1.10.

If dim W = 1 then W is smooth. Since r - y - 6 &#x3E; -1 by relation (2.3)
0  L. W &#x3E; 2g(W) - 2 thus h° ( W, Ljw) &#x3E; 0 by R-R formula. 0

In case of birational contractions we "gain a vanishing more" from per-
turbing with 

LEMMA 2.3. Let f : X --~ S a local contraction supported by Kx + rL around
F, and D a D= f y L. Assume X is LT and f birational.

Let dim(LLC(X, D) n F) = w and assume that there exists W E CLC(X, D)
with W C F satis, fying one of the following conditions:

i) (X, D) is LC on the generic point of W and y  r -f- 1 - w;

ii) (X, D) is LC along W, w = 2 and r - y = 0;
iii) (X, D) is LC along W, w  1 and r - y = -1.

Then there exists a section of I L not vanishing identically on L L C (X, D) n F.
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PROOF. The proof of i) and iii) is exactly as in Lemmas 2.1, 2.2 once
noticed that since f is birational we can perturb D with the f -nef and f -
big divisor Ox. The difference here is that we cannot choose the minimal
center after the perturbation, see example 1.16, but just one center contained in
LLC(X, D) n F. For ii), following the proof of Lemma 2.2, we have only to
prove that &#x3E; 0. Let Lw then by K-V vanishing applied
to (2.2) we have

for i &#x3E; 0 and t &#x3E; 0. Furthermore by projection formula -f-A ) ) =
see for instance the proof of the theorem in the Appendix. Thus by

Leray spectral sequence we have X ( W, = 1 and 
Let v : V-~ W a log resolution for (W, Dw), then by subadjunction formula (2.3)

W has rational singularities hence
formula

Thus by R-R

Just to warm up let us start to prove that there is a section non vanishing
on the whole fiber, even for a broader class of contractions.

PROPOSITION 2.4. Let f : X-S be a local contraction of type (*, *, 1»,
supported by Kx + r L around a fiber F. Assume that X is LT and one of the
following holds:

i) r &#x3E; 0 and (D  3, i. e. dim F  r + 3;
ii) (D  2 - E y ( f ), i. e. dim F  r + 2 - e (dim X - dim S).
Then there is a section of L ~ not vanishing identically along F.

PROOF. The claim is immediate when f is finite, thus we can assume that
r &#x3E; - I + E y ( f ) in ii). Let { gi } be general functions on S vanishing at f(F) and
D = Llif*(gi), with li « 1. We can assume that (X, D) is LC along F with
minimal center Wand LLC(X, D) C F. Then W satisfies the assumptions of
Lemma 2.2 or those of Lemma 2.3, thus there is a section of I not vanishing
along F. More in detail we conclude by: Lemma 2.2 i) for r &#x3E; 0, Lemma 2.3
ii) for r = 0 and dim F = 2, Lemma 2.2 ii) for 0 &#x3E; r &#x3E; - l, Lemma 2.3 iii)
for r = -1 and dim F = I . 11

REMARK 2.5. The above is a sort of ideal proof for this kind of results. Un-
fortunately, arguing as in Proposition 2.4 we cannot predict in which irreducible
component of F is contained W.

We can now state the main result of this section.

THEOREM 2.6. Let f : X-*S be a local contraction supported by Kx + rL
around a fiber F. Assume that X is LT, and either f is of type (d, 1, 1 ), with d  0
or F is reducible and f is of type ( 1, 1, 1 ). Then ILl is relatively spanned by global
sections around F. That is BsllLI Supp(Coker( f * f*L-~ L)) does not meet F.
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REMARK 2.7. The above theorem was proved by Kachi, [Kac, Theorem 4.1 ],
in case X smooth, dim X = 4, dim S = 3 and f elementary with isolated
2 dimensional fibers. The general statement for type (d, 1, l)-fibrations was
conjectured by Andreatta-Wisniewski, [AW2, Conj 1.13].

PROOF. Let V = B s 11 L n F. Let be general functions on S vanishing
at f (F) and Do = ~ li f * (gi ), with li « 1. Define co = lct (X, V, Do) and

Let Zo E 2 a center such that dim Zo  dim W, for any W E Z. Our plan is to
produce a section non vanishing identically along V so to derive a contradiction.
We have to distinguish between various cases.

CASE 2.8 (Zo c V). Then (X, coDo) is LC along Zo and by Lemma 2.2
we have the desired section.

Therefore Zo gt V. Let Hi e I a generic divisor and

c 1 = sup { t E Q : (X, coDo + tH1) is LC along Zo n V } .

Since Hl is a Cartier divisor containing V then 1.

CASE 2.9 (Cl  1). Then

Moreover Zo gt V and it has the smallest dimension between all centers in

Z thus cl &#x3E; 0. So that any W E is

contained in By construction (X, coDo + cl HI) is LC along Zo n V,
therefore by Theorem 1.12 (i), keep in, mind the Remark after Definition 1.13,
there exists a minimal center W satisfying the following conditions:

Hence Lemma 2.2 produces again the section needed.

Let Z 1 E Z1 a center such that dim Z 1  dim W, for any W E Zi. Observe

that any irreducible component of Zo n H, belongs to ZI, therefore dim Zi 1 
dim Zo  r + 1.

CASE 2.10 (Zl 1 c V and r &#x3E; 0). Then (X, Di) is LC along Z 1 and we

conclude by Lemma 2.2, this is as in Case 2.8.

We can iterate the above procedure substituting the log variety (X, coDo)
and the center Zo with the log variety (X, D 1 ) and the center Z 1. Repeating



627

the same arguments either we derive a contradiction as in (2.9) (observe that
r + 1 - 1 thus the inequalities of Lemma 2.2 are fulfilled for r &#x3E; 1),

or we produce a log variety (X, D2) and a new center Z2. More generally we
can iterate finitely many times to produce log varieties (X, Dk ) and minimal
centers Zk such that:

By this procedure we can assume that (X, exists, Zr is a curve,
which is an irreducible component of a fiber of and 1 is a set of

points in V. Let it : Y-X a log resolution of (X, D,+,) and Gj 
X k - and Yk = Y n (n1 G j ). Furthermore we can assume that

pk Yk-Xk is a log resolution for all k’s, where all relevant divisors
have simple normal crossings. It is important to stress two points here.
- The resolution has only simple normal crossing thus, when discrepancies on
X k are defined, for any exceptional divisor Ej such that Ej 0, by
adjunction formula, disc(Xk, coDOlxk’ = disc(X, Dk, Ej).
- Zk C Zk-I n Hk is irreducible, (X, Dk) is LC on the generic point of Zk and
Zk gt V 

Let us briefly sketch the conclusion of the proof, before going into technical
details. We will produce a birational morphism cp : Xr-*Scp, with Zr as a fiber.
This can be done, at least in a complex neighbourhood of Zr, and tells us that

Then the general principle, see for instance Lemma 2.3, is that in this
way we gain a vanishing more perturbing with To gain this vanishing
we have to overcome the problem that the perturbation is only defined in a
complex neighbourhood of Zr. To do this we will carefully perturb our starting
Q-divisor Dr in such a way that we can compare it with the one perturbed
directly on X r and then extend the section found in Yr to a section defined on
the whole of Y. To accomplish the latter we need to work all trough the proof
with the fixed resolution p, therefore when we have a center of LC singularities,
we have also to exhibit a place of LC singularities on the variety upstairs, see
Claim 2.12.
Let us now deep into technicalities.

CLAIM 2.11. There exists a complex neighbourhood Zr in X r and a
birational contraction cp : such that U is LT and Zr is a fiber of (p. In

particular 

PROOF (of the Claim). Let us prove by induction that Xk is LT in a

neighbourhood of Zk, this is true by hypothesis for Xo := X and Zo. Then

Xk is a Cartier divisor of and, by Bertini theorem, it can be not LT only
along By our construction (X, Dk ) is LC along Zk-I n V and
Zk-I c Supp(Do) therefore by adjunction formula we have only to prove that
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Xk is non singular in codimension 1 in a neighbourhood of Assume that
this is not true, then there is a codimension 2 subvariety W C Xk-I along which
X k is singular. In particular W c (BslILI and Zk gt W. Moreover
since terminal singularities are smooth in codimension 2 then W E CLC(X, Dk).
Indeed if 1 is smooth along W then while 1 is

singular along W then there exists a valuation with center W of non positive
discrepancy and 1. So in any case we have a place of LC
singularities over W. But then W n Zk E CLC(X, Dk) and this is impossible
by our assumption on the dimension of Zk.

If 0 then is already birational. If J(/) = 1 and F is reducible
then choose a very ample divisor M E Pic(Xr) such that Supp(M) does not
contain the points of intersection of Zr with the other components of the fiber
F n Xr. Then we can shrink S to a complex neighbourhood of f (F) in such
a way that M = Mz + MF, where Mz and MF are effective Cartier divisors
such that Mz . C = 0 for any curve C C ( F n Xr ) B Zr, and MF n Zr = ø.
Using the sections of MF we define a birational contraction w : U C X r -+ Scp,
from a complex neighbourhood U of Zr, supported by KXr with Zr as a fiber.
Shrinking Scp, to a complex neighbourhood we can assume that U
is LT and therefore by K-V vanishing all necessary vanishing are still
true in this analytic situation, for details see [Kal] ] and [Na]. D

This tells us that /-t is an isomorphism on the generic point of Xk con-
taining Zk. Furthermore by the above Claim we are allowed to talk about

discrepancies in a neighbourhood of Zr. We will take advantage of this in

Claim 2.12 and in (2.13), to shift our attention on the manifold Yr.

CLAIM 2.12. There exists a divisor such that co Dojx )
and JLr(E) = Z,.. In particular lct (Xr, Zr, = 1.

PROOF (of the Claim). The idea of the proof of this claim is the following.
We want to present a place of log canonical singularities for (X, Dr ) in Y

with center Zr and which intersects Yr. Since Yr = nGi, Zr C and the

Gi ¡ E PLC(X, Dr ) we will use Shokurov Connectedness and induction to prove
that Yr cannot be disjoined from the places of Log Canonical singularities over
Zr. We are interested in properties of valuations with centers Zr. Therefore we
can assume that the whole of X shares the same properties of the generic point
of Zr, that is we can assume that X is LT, L is spanned and (X, Dk) is LC for
k  r + 1. We can now argue by induction since Xk is LT by Bertini theorem.
By the induction hypothesis there exists a divisor Ek C Yk such that Ek E

and = Zk. Let Mk e ImLlXk 1, a generic divisor whose
support contains Zk, e = multEk co Do and e = multEk Mk . Let a, 1 = ele, 1 then

for any E « 1 Ek E P L C ( X k , Furthermore the

only element of P L C ( X k B Zk , which exists on

Yk is By Connectedness theorem, [Sh2] see also [Ka3], there exists a
divisor EkE C Yk such that ,

¡L(EkE) = Zk and Since there are only finitely many
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exceptional divisors on Y then there is a fixed Ek = EkE for a sequence e-0.
To proceed with the induction let and to conclude let E = Er. 0

2.13 (Perturbation on X). Let
such that

with (

with all
Let and Mi e such that

with all ei V Z, Feil = for any i, Zr+ 1 n LLC(X, D) = 0, and P is

( f o In the perturbation we have distinguished two divisors M1 and
M2 to stress that M1 1 is used as always, cfr. (1.15), to introduce the ample
divisor P, while M2 will be used in the next step (2.14).

Let Dk := (D - Hj)lxk and define A - B := f2:e¡E¡ - E2~,G*M2~ .
Then A is it-exceptional and z,+, n p(B) = 0. Using the ampleness of P and
adjunction formula we also have, Y - 1 and Q-divisors Ak, Pk

Let

with 3k &#x3E; 0, r - 1. Here and in the following, =-f means that we
are considering numerical equivalence with respect to the initial contraction f,
keep in mind the Remark after Lemma 1.6.

A is p-exceptional and n B = 0 thus to conclude the proof
of the theorem it is enough to produce a section of JL* L - B + A) not
vanishing identically along By K-V vanishing applied to (2.5) we
have for any a surjection

Therefore to prove the theorem it is enough to prove that there exists a section
in (p*L - B + non vanishing identically along Itr 1 ( Z,-+ 1 ) .

What remains to be done is to prove the nonvanishing on the manifold Yr.
This is the argument of the next and final step.

2.14 (Non vanishing on Yr). To simplify notations let us assume that the
complex neighbourhood U, of Claim 2.11, where cp is defined is the whole
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X r . We can do it since we will only compare divisors restricted to E C Y,
see (2.12). Let 

-

and

Then we can assume that:

- lct(Xr, Zr, i)) = lCt (Xr, Zr, = 1,
- pr is a log resolution for both divisors,
- since M1 - cp* 0 Scp is ample then the result of the two perturbations is the
same, that is to say

Furthermore D and Dcp are obtained from (1 20136o)coDojXr Just adding an
arbitrarily small effective Q-divisor therefore

If we define then, by (2.6),

(2.7) and B - Bly, are effective and E is not contained in 

Using the perturbation divisor M2 we can moreover assume that

It is enough to choose a generic divisor M2 such that MUITE,. M2 = multE¡ 
for those i such that p(Ei) C Z,+, (this can always be achieved choosing a
generic M2 containing a prescribed ideal supported on define E2 = E3 - E 1
and then rescale everything such that m(El + (2) « 1. 

’

For the log resolution A, : Yr-Xr we have

where = Z, and 1 n = 0.
We can therefore define a divisor
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Using the vanishing gained with w in (2.9), arguing as in Lemma 2.3 (i) we
prove that is not empty. Furthermore, see for instance
the appendix,

Since and z,+, n ¡L(B) = 0 then there exists a section

which is not vanishing identically along [tr 1 (Zr+1). By K-V applied to (2.8)
we have the following surjection

and by relations (2.7) we have an injection

/1-1 Zr+l is not contained in thus the above section extends to
the required section in

not vanishing identically along itr D

An immediate corollary is the classification of isolated 2-dimensional fibers
of Fano-Mori contractions.

COROLLARY 2.15. Let f : X- S a local contraction around F from a smooth
n-fold X. Assume that f is supported by Kx + L and F is an isolated 2-dimensional
fiber. Then the only possibilities for (F, L IF) are those listed in [AW2, Proposi-
tion 4. 3. 2 J.

REMARK 2.16. Moreover all the arguments of [AW3, Section 5] regarding
fiber type contractions are true without the assumption on relative base point
freeness of the fundamental divisor. This seems a good starting point for an
higher dimensional generalisation of A-W classification, but if one tries to use
an inductive method, by means of horizontal slicing, to study higher dimensional
isolated fibers, soon realizes that after the first slice the jumping fibers are no
more isolated, see also [AW3, Section 4], I would like to thank Marco Andreatta
for signalling me this point. A simple example is the following. Let with

coordinates zi’s and with coordinates ti’s. Let us consider the variety
given by X := (2: t¡’Zi - 0) C C" x Then X is smooth and admits-a

morphism f : X ~ (Cn such that all fibers on fOl are and the special
fiber over (0, ... , 0) is pn-1, for any n &#x3E; 3. The contraction f is supported
by Kx + (n - 2)0(1) and after any slice, for n &#x3E; 4 there is a 1-dimensional

component of fibers JIDn-2. It is my feeling that, due to this behaviour, the study
of higher dimensional isolated fibers is inseparable from that of more general
(d, *, 1) fibrations, with d  0.

As a first step toward a better comprehension of these morphisms we have
the following.
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THEOREM 2.17. Let f ’ : X -* S be a local contraction supported by Kx + r L
around a fiber F. Assume that X is LT and F is any irreducible component of Fred.

i) If f is of type (d, 1, 1 ), with d  0, then 0 ( F, = 0, in particular F is
normal.

ii) If F is reducible and f is of type (1, 1, 1 ), let v : the normalisation of
F, then A(F, v*L) = 0.

REMARK 2.18. The first part of the above theorem has been proved in [AW3,
Th 1.10] under the assumption of relative base point freeness.

PROOF. Let 3 = L di, F- F. 
_

For i) we have to prove that L.~) ~ ~ + r + 1. To do this we will
prove that there are at least 6 + r + 1 independent sections of H°(X, L) not
vanishing identically on Fo. By Theorem 2.6 and Lemma 1.6 we reduce to the
case of a contraction f : X- S supported by Kx with one dimensional fiber F
and irreducible component with L - F = 8. Then by assumption f is
birational. Let H ElL I a generic section then H n F is a reduced scheme of
length 8. Furthermore by Lemma 1.6 all sections of I extends to sections

of therefore this is enough to conclude.
In case ii) we cannot use the same arguments as in i) since to produce the

birational contraction cp, as in the proof of Theorem 2.6, we have to switch to
an analytic neighbourhood which may well not contain the whole fiber F. To
overcome this problem we will directly work on sections of F in the following
way. Let Hj ElL I generic sections. Then by Bertini theorem and Theorem 2.6,
Xk := X n (n1 Hj) is LT and there is a contraction fk : Xk-Sk supported
by KXk + (r - Let Fk := F n X k , as observed during the proof of
Theorem 2.6, there is also a birational contraction cp : from a complex
neighbourhood Ur of Fr, which has Fr as an irreducible fiber, therefore 
Let g : F- F be a resolution of F. Since is spanned then we have also
the embedded resolutions gk : Fk- Fk and an isomorphism gr : in

particular

Let Lk = g~L then Lk is nef and big therefore

by K-V vanishing. For Y - 1 we have the following exact sequence

and by vanishings (2.11) and (2.10) we inductively prove that = 0,

for any k  r. This means that 0(F, L) = 0 and therefore implies our

conclusion. D
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EXAMPLE 2.19. Let us give some examples of these contractions. Let
W := C" x C Cn x 1 and define X := = 0) n W. Then X
is smooth and admits a contraction, supported by Kx + (n - 3)0(1), onto C’
such that all fibers on C" B {0} are and the special fiber over (0, ... , 0)
is ~n-2. Let V := x I~1 x P ), with tl,..., t6 the coordinates of the 
Define X = + t2z2 = 0) C V x C2 C I~5 x C2 then X is smooth and the
contraction onto C2 is supported by Kx +20(1) and has generic fiber ~2 and
one special fiber Pl 1 x P’ l x P .

For reducible or non reduced fibers let X = + 2:~ si f i - 0), where
fi are degree 3 homogeneous polynomials of I~l and si are affine parameters.
Then X c is a cubic hypersurface and if k &#x3E; l one can choose fi in such
a way that the special fiber is either reducible or non reduced even if X is
smooth. In the non equidimensional case one can consider a quadric bundle
over C~ with discriminant passing trough the origin, then an hyperplane section
as above, (2: t¡ z¡) gives the desired contraction.

Summing up all we have done in this section we can state the following
result about the fundamental divisor of (d, y, (D)-fibrations.

COROLLARY 2.20. Let f : X- S a contraction supported by Ky + r L around
a fiber F. Let H a generic section and assume that f satisfies one of the
following:

- (*, 1, 1 ).
- (*, *, 2 - e y ( f)) with F irreducible.
- (*, *, 3 - E y ( f )) with F irreducible and r &#x3E; 0.

Then H does not vanish identically on any irreducible component of F.

REMARK 2.21. The assumption that L is a Cartier divisor is crucial for this
kind of results and cannot be relaxed to Weil divisor. In fact there are flipping
contractions of terminal 3-folds for which all divisors in ~ - Kx I contain the
whole flipping curve, [Mo2, Section 9].

3. - Good divisors on (1, 1, 1 ) -contractions

DEFINITION 3.1. Let f : X- S a local contraction of type (d, y, 1», sup-
ported by Kx + rrL. Then we will say that f has good divisors if, after maybe
shrinking S, the generic element H ElL I has at worst the same singularities as
X and fiH : H-SH is of type (*, *, 1».

REMARK 3.2. Note that both the character and the dual index of the

contraction can change after an horizontal slice, think to non equidimensional
contractions with one dimensional generic fiber.

In this section we are interested in answering the good divisor problem for
contractions of type (1, 1, 1), i.e. del Pezzo fibrations.
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PROPOSITION 3.3. Let f : X --* S be a local contraction supported by Kx + r L
around a fiber F. Assume that X is LT and either f is of type ( 1, 1, 1 ) or F is
irreducible and f is of type (*, *, 2 - E y ( f )), with r &#x3E; 0. Then f has good
divisors.

PROOF. Let H E I L I a generic section and assume that H is not LT. By
Bertini theorem LLC(X, H) c thus by Theorem 2.6 we can assume
that F is irreducible and, maybe shrinking S, that all fibers are irreducible
since X is normal and f has connected fibers. Then by vertical slicing we
can assume that LLC(X, H) C F. Let D = H + 8f*(g), for some 8 « 1

and g function on S vanishing at f (F) . Then again LLC(X, D) C F and
y = l.c.t.(X, D)  1. Let W E CLC(X, yD) a minimal center. Then by
Corollary 2.20 dim W  dim F thus by Lemma 2.2 we derive a contradiction.
More in detail if r &#x3E; 1 by Lemma 2.2 i), if 1 &#x3E; r &#x3E; 0 by Lemma 2.2 ii). 0

COROLLARY 3.4. Let f : X -+ S be a local contraction supported by Kx + r L
around a fiber F. Assume that X is either canonical or terminal, r &#x3E; 1 and f is
either a ( 1, 1, 1 ) contraction or F is irreducible and f is of type (*, *, 2 - E y ( f ) ).
Then f has good divisors.

PROOF. This is just a direct consequence of Proposition 3.3 and the definition
of canonical and terminal singularities. In other words one could say that the

generic section of I has only terminal singularities along 0

We are now ready to prove the main result of this section.

THEOREM 3.5. Let f : X- S a local contraction of type (1, 1, 1), supported by
Kx + rL around F. Assume that X is smooth. Then f has good divisors.

PROOF. Let H ElL I a generic section, by vertical slicing we can assume
that Sing(H) C F. Furthermore by horizontal slicing, using inductively Proposi-
tion 3.3 and Theorem 2.6 we know that 0. Let x E 
k = codx f and p = max {1, r } . Let li « 1, gi ’s generic functions vanishing at
s = f (F) with multx = k. Let Do and

for m &#x3E; 0 and Hj e )L ) I generic elements.

CLAIM 3.6. (X, Dm ) is LC in a punctured neighbourhood of x, for m » 0.

PROOF (of the Claim). Let Z C BsllLI be any positive dimensional sub-
variety. Since dim Z n F = 0 then (X, Dm) is LC along Z by vertical slicing
and Lemma 2.2 (ii). We have therefore only to care about subvarieties of F.
To do this we will work with a fixed log resolution A : Y--* X obtained in the
following way. Let ms the maximal ideal of s E _S and Z c Ox, the inverse
image ideal. Let X’-* X the blow up of Z~, and X -~ X’ a resolution of sin-
gularities. Finally let Y-~ X a log resolution of the base locus of I and of
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(X, Do). Observe that it is a log resolution of (X, Dm ) for any m, furthermore,
by Hironaka theorem we can assume that p is a sequence of blow ups with
smooth centers in smooth varieties. Finally since p factors trough the blow up
of I and the gi’s are generic function vanishing at s then (X, Dm) is LC at
the generic point of F.

Let now E C Y a p-exceptional divisor, and Z = JL(E). Assume that
Z c F is a positive dimensional subvariety, and x E Z. Let h = codF Z. Since

Hj are generic then k ~ h / m . Let any factorisation of

JL with Y smooth and Z C Y any subvariety with a ( E ) - Z and v ( Z ) = Z.
Let v* 1 Dm and, if v is an isomorphism on the generic point of F,
F = If Z 1: F or F does not exist, then him + E. If

Z c F then + 1 and + him. Therefore for any
valuation E, exceptional for it, we have disc(X, E, Dm ) :::: - 2:~ We

are working with a fixed resolution p, therefore , for some fixed integer N and
rational E 1 « 1, independent on E and m, we have E E  E 1 and e  N. In

particular E V CLC(X, Dm), for m » 0. 0

If all Hi are singular at x then 
°

Thus x E CLC(X, Dm ) and we derive a contradiction by Lemma 2.2 (ii). 0

REMARK 3.7. The same result is true for contraction of type (*, *, 2 -
Ey ( f )), with r &#x3E; 0, around an irreducible fiber F. The main difficulty is to

prove that dim Bsl I L n F  0, this time we cannot use Theorem 2.6. This can
be done by a long and quite involved study of all the possible reducible fibers
that can appear after an horizontal slice. Since at the moment there are not

interesting applications for this variant of Theorem 3.5, we prefer to leave it in

the author’s keyboard.
REMARK 3.8. To complete the understanding of the fundamental divisor

of (1, 1, 1) fibrations, it would be important to understand the irreducible non
reduced fibers. The main point here is to understand if there are non reduced
fibers whose reduced structure is a degree 1 del Pezzo, the stronger statement
that the reduced structure has 0 A-genus should hold. If the answer were no

then the fundamental divisor would be spanned whenever the generic fiber has
degree &#x3E; 2, reproducing the classical result of del Pezzo surfaces. I tried to

prove this, at least in the smooth case using deformation of rational curves, but
the only result I had is that if such a fiber exists then the reduced component
has to be not normal.
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Appendix

Let (X, D) a LC pair and W a minimal center, then by Kawamata’s sub-
adjunction formula in Theorem 1.12 (W, Dw) is KLT, therefore in particular W
has rational singularities. In this appendix we give a direct proof of this fact.
The idea of such a proof originated reading [Ko, Section 11 ] and we think it
is interesting in its own even if it is weaker than Kawamata’s assertion.

Let us start with a lemma which is probably well known.

LEMMA A.1. Let f : Y-X a projective surjective morphism of normal
schemes. Assume that Y is CM ay2d A is a locally free sheaf on Y, then f* A is

locally free in codimension 1.

PROOF. Let k = dim X, n = dim Y and x E X be a point with dim x = k -1.
Our hypothesis are stable under localisation in X, therefore we can assume
that X is a smooth curve and x E X a closed point. Let F = f -1 (x ) then

and we have therefore to prove that 

0, [Ko, Lemma 11.4]. By formal function theorem for any coherent sheaf ~" on

THEOREM A.2. Let (X, D) be LC and W a minimal center in CLC(X, D).
Then W has rational singularities.

PROOF. After perturbing D we can assume that there exists a log resolution
p : Y-X of (X, D) with the following properties:

p-exceptional.
- the projection E ~ W is factorised as E C Y 0’ V C C X with
V smooth and birational.

Furthermore the assertion is local therefore we can also assume that X is
affine. Let us now follow [Ka3, Th 1.6], by K-V vanishing

Replace D by ( 1 - 6)D to get

The structure sequence of E and the above vanishing yields to a surjection

and vanishings

Since A is exceptional , therefore
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CLAIM A. 3. is a line bundle.

PROOF (of the Claim). Let G := G is locally free in codimen-
sion 1 by Lemma A.1. fJ is birational and fJ* G ’" Ow thus G is a rank one
coherent sheaf. Since V is smooth the claim is equivalent to prove that G is
S2 .

Let B the support of the exceptional locus of P, then G is locally free
outside of B. By [Gr, Prop 3.7] it is enough to prove that G) = 0. By
Leray spectral sequence H 1 ( V, G) = 0, let us consider the long exact sequence
associated to local cohomology

Since W is normal and ~,,G - C~w then

We can therefore conclude that G) = 0. o

We want now to apply Elkik vanishing theorem [El], see also [Ko], to this
end let us write the canonical class in the following way

By the claim G is a P-exceptional divisor and by the above vanishing and
Grauert theorem we have

Therefore the following vanishing are also true, [El],

We already now that W is normal therefore by the latter we conclude that W
has rational singularities. D
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