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Envelopes of Holomorphy in C2

GUIDO LUPACCIOLU *
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Vol. XXVIII (1999),

Mathematics Subject Classification (1991): 32D1o.

1. - Introduction

The aim of this paper is to present descriptions of the envelopes of holo-
morphy of certain classes of subsets of CC2, namely:

a) the open subsets which are complements of noncompact closed domains
bounded by strictly Levi-convex real hypersurfaces of class C2;

b) the compact subsets which lie on the boundaries of closed domain -
either compact or noncompact - bounded by strictly Levi-convex real hypersur-
faces of class C2.

More generally we shall consider an arbitrary two-dimensional Stein man-
ifold M2 as the ambient space, rather than CC2.

Let us recall that the envelope of holomorphy E (S) of an arbitrary subset S

of a Stein manifold M can be defined as the union of the components of
5 = which meet S. For a non-open subset S C M, S need not
be embedded in a complex manifold in any natural way. On the other hand,
if there exists a holomorphically convex set S’ c M containing S, with the
property that the restriction map - O(S) is bijective, then E(S) may
be identified with S’. In this connection we also recall that if a subset of a

complex manifold admits a fundamental system of Stein neighborhoods, then it
is holomorphically convex. (We refer to [12] for all these facts.)

The mentioned descriptions require us to take into considerations certain
holomorphic hulls of some subsets of M2 which are not compact sets. If S is
an arbitrary subset of M2 and K C S is a compact set, let us use the notation

*The author deceised on December 31 1996.

Pervenuto alla Redazione il 1 aprile 1996.
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that denotes the O(S)-hull of K, i.e.,

Now, let T be an arbitrary subset of S. Then we define the O(S)-hull of T,
to be the union of the O(S)-hulls of all compact subsets of T, i.e.,

where K ranges through the family of compact subsets of T. We have already
used this notion in our previous paper [19], where one can find results related
to the subject which is being discussed here.

Moreover we find it convenient to introduce, for a closed set F C M2, a
notion of "hull at infinity", in the following way. If S c M is an arbitrary
set containing F, we define the O(S)-hull at infinity of F h~~s~ (F), to be the
intersection of the O(S)-hulls of the subsets of F which are complements of
compact sets, that is

where G ranges through the family of compact subsets of F. Plainly, if F is

compact, h~~s~ (F) _ 0, but if F is noncompact, ~~)(~) may be nonempty;
for example, if there is a one-dimensional complex-analytic subvariety V of M2
with V c F, then V C h ~ ~S~ ( F ) . We have been led to consider the preceding
notion of hulls at infinity by some analogy with the notion of cohomology
of the ideal boundary of a noncompact space X, which is known to be the
inductive limit of the cohomology of X B G as G ranges through the compact
subsets of X (see [6]), and is sometimes also called the cohomology at infinity
of X and denoted by H~ (X ) .

That being stated, we can formulate our main results.

THEOREM 1. Let D C M2 be an open domain of holomorphy, whose bound-
ary bD is a real hypersurface of class C~, strictly Levi-convex with respect to D.
Put S2 = M2 B D. Then the envelope of holomorphy of Q, given by

In particular E (Q) is single-sheeted over Q.
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THEOREM 2. Let D be as in Theorem 1. Let K be a compact subset of bD.
Then the envelope of holomorphy of K, E (K), is given by

Indeed the sets (bD) B (bD B K) and (K) B (bD B K) are a
same Stein compactum containing K, K, say, such that the restriction map O(K) -
O(K) is bijective. In particular E (K) is single-sheeted over K.

Moreover, if K is holomorphically convex, then E(K) - K, i.e., K is a Stein
compactum.

THEOREM 3. Let D be as in the preceding theorems. Let K be a compact
subset of bD. Assume that K has a neighborhood basis N, in bD, such that each
N E N is a relatively compact open subset of bD (possibly disconnected), whose
boundary bN is the union of finitely many pairwise disjoint topological 2-spheres
of class C2. Then it follows that E (K) = h ~~D~ (K ) ~1) .

We emphasize that in the preceding three theorems D may be either compact
or noncompact and in the latter case bD is allowed to be disconnected. However
in the compact case, as hC;(D) (D) = 0, Theorem 1 yields only a result equivalent
to Hartogs’s extension theorem.

Moreover let us recall that K is said to be holomorphically convex if the
evaluation map K - spec(O(K)) is bijective, or, equivalently, if H 1 (K, T) =
H 2 (K,.F) = 0 for every coherent analytic sheaf, ,~’, on K (see [12]).

Some further comments are in order. 
_

Since every f E O(bD) can be written as f = f 1 - f2, with f, 1 E O(Q)
and f2 E O(D) and the restriction map C~(S2) ~ O(Q) is surjective, Theorem 1

is equivalent to the following result:

COROLLARY 1. Let D be as in Theorem 1. Then the envelope of holomorphy
of bD, E (bD), is given by

In particular E (bD) is single-sheeted over bD.

Moreover, since

( 1 ) We wish to point out that a sufficient condition which implies the mentioned property of bN is,
besides bN being of class C2, that HI (N, Z) = 0. This will be shown at the end of Section 5.
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with K ranging through the family of compact subsets of bD, it is not difficult
to see that the equality E (bD) = (bD) is also a consequence &#x3E;
of the first statement of Theorem 2.

The second statement of Theorem 2 seems to deserve some interest in
connection with the question raised by Harvey and Wells [12, p. 515] whether
every holomorphically convex compact set in a Stein manifold should be a
Stein compactum. This question was answered in the negative by Bjork [5],
who exhibited examples of compact holomorphically convex sets in 2,
which are not Stein compacta. On the other hand Theorem 2 gives a positive
answer to the question at least for the holomorphically convex compact sets
which lie on bD, when n = 2. in this connection we also recall tnat, n D is
compact, a compact subset of bD is holomorphically convex if and only if it
is "weakly removable" (see [18, Corollary 2]).

Combining Theorem 3 with the second statement of Theorem 2 gives in
particular the following result:

COROLLARY 2. Let D be as in the preceding theorems. Let K C bD be a

holomorphically convex compact set endowed with a neighborhood basis, in bD, of
topological 3-cells. Then K is O(D)-convex, i.e., = K.

Here the requirement that the boundaries of the topological 3-cells should
be of class C2 is not necessary, since known results on 3-manifolds and smooth-
ing of homeomorphisms ([20, Theorem 4] and [21, Theorem 6.3]) imply the
existence also of a neighborhood basis of K, in bD, of topological 3-cells with
boundaries of class C2, the essential point being the fact that two homeomorphic
3-manifolds of class C2 are C2-diffeomorphic. Corollary 2 is close to a theorem
of Forstneric and Stout [9], which yields the same conclusion, in the case that
D is relatively compact, under the additional assumption that the set K should
have a Stein open neighborhood X in which it is The first result
in this direction is due to Joricke [14], who obtained the equivalent result that K
is "removable" (see [7], [18], [23]) in the case that K is a compact totally real
disk of class C2. Forstneric and Stout resorted, for the proof of their theorem,
to the work of Bedford and Klingenberg [4] on the envelopes of holomorphy
of 2-spheres, and also our proof of Theorem 3 depends on that work, in that
we need a result from [4] to prove the vanishing of the two-dimensional holo-
morphic de Rham cohomology of a topological 2-sphere of class C2 embedded
in the boundary of a strongly pseudoconvex domain (Section 5, Proposition 8).

Theorem 3 is also useful to obtain more information in the direction of
Theorem 1 and Corollary 1, under some reasonably general additional conditions
on b D .

COROLLARY 3. Let D be as in the preceding theorems. Assume that bD can be
exhausted by an increasing sequence {Nn of relatively compact C2-bounded open
subsets (possibly disconnected), such that each boundary bNn is the union offinitely
many pairwise disjoint topological 2-spheres of class C2 (which is true in particular
in case bD is homeomorphic to IR3). Then
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In other words, h’ - (bD) is empty.
Finally, a reason of interest in respect of the above results is, in our

opinion, the circumstance that they do not extend to higher dimensions, in the
sense that, if one replaces M2 by a Stein manifold of dimension &#x3E; 3 as the
ambient space, the corresponding statements become false. We shall discuss
this point at the end of the article, in Section 6; in particular we will exhibit
an example, inspired by one of Chirka and Stout [7], which shows that for
all dimensions &#x3E; 3 may be multi-sheeted(2). On the other hand, at the

beginning of Section 6 we will also mention the weaker results which can be
obtained in the positive, for dimensions &#x3E; 3, in the direction contemplated here
(Theorem 4 and Theorem 5).

2. - Preliminaries

Consider a domain D as in the statements of Theorem 1 and Theorem 2.
Let us fix once for all a C° strongly plurisubharmonic exhaustion function
(D : M2 -+ R and an increasing divergent sequence of positive real
numbers all of which are regular values for both of the functions (D and (DlbD;
moreover let us put, for every n E N,

Then Dn is a relatively compact Stein open set in M2, such that bDn 
It is known that, since bD is strictly Levi-convex, the closed domain D admits
a neighborhoods basis of Stein open sets (for the noncompact case see [24,
Lemme 2]). Then, since Bn is an Stein compactum, it is readily
seen that D n is O(D)-convex, i.e. the restriction map O(D) - O(Dn) has dense
image, and consequently the following property, which will be used repeatedly
throughout the continuation of this paper, holds:

We shall also apply several times a pseudoconvexity result which refines
slightly a result of Slodkowski (see [ 16] and the references cited there), namely:

(2.2) Let C C M2 be a compact set, X C M2 a Stein open set containing C and
S C M2 a Stein open set such that C n S is empty. Then the open set S B ho(x) (C)
is Stein.

Moreover we need to recall a result on holomorphic extension of CR-
functions (see [23], [17] and references cited there):

~2~ The original example of [7] is suitable for the same conclusion only as regards the even dimen-
sions &#x3E; 4, thus excluding in particular dimension 3.
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(2.3) Let D cc M2 be an open domain and K C bD a compact set. Assume
that bD B K is a C1-smooth real hypersurface of M2 B K and that D admits a
Stein open neighborhood X in which it is an O(X)-convex Stein compactum. Then
every continuous CR-function on bD B K has a unique extension to a continuous
function on D B holomorphic on D B hO(jj) (K).

That being stated, we collect in a lemma three further properties that will
come directly in the proofs of our theorems.

LEMMA. For each n E N the following properties are valid:

(2.4) Every continuous CR-function on rn extends uniquely to a continuous function
on Dn B holomorphic on Dn B 

PROOF. By (2.1 ), in proving the lemma we may replace the 0(D)-hulls by
the corresponding O(Dn)-hulls.

Now, to prove (2.4), let e T be the connected components of Dn and
put, for each i e T, ð~ = bDn n An and bDn n bD. Then
each D~ is a Stein domain in M~, such that D~ is a Stein compactum, and r~ is
a real hypersurface of class C2 in M2 B On . In this situation we may apply (2.3):
every continuous CR-function on r~ has a unique extension to a continuous
function on -i which is holomorphic on Then,

C7(Dn ) 
since rn is the disjoint union of the 0393in, i e I, and (On ) -n

it is also true that every continuous CR-function on rn extends

uniquely to a continuous function on Dn B hO(ï5n) which is holomorphic
on Hence we see that (2.4) holds.

Next we prove (2.5). It suffices to prove that the inclusion

is valid. Since rn is strictly Levi-convex at each point with respect to Dn,
we can construct a relatively compact Stein open set D~ C M2 such that

Dn B On C Dn, On and Dn B On is Indeed D~ can be
obtained by pushing rn away from Dn by a small G2_-perturbation that leaves
brn fixed pointwise. Then consider the open set and make its 
hull The latter is a Stein and Runge open subset of such
that 

’~
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(see [19]). Since is a Stein set containing 1,, one can find
CR-functions on rn (of class C2) which cannot be holomorphically extended
through any boundary point, in Dn, of namely the restrictions
to rn of the functions holomorphic on h ~ (Dn ) ( Dn B D n ) which do not admit
holomorphic continuations to any larger open set; hence, granted the validity
of (**), if (*) were not true, this would lead to a contradiction to (2.3).

Finally let us prove (2.6). Since we can choose a Stein open neighbor-
hood X of such that Dn is O(X)-convex, and consequently =

ho(x)(C) for every compact set C c Dn, (2.2) implies that the three open sets
are Stein.

Moreover, by (2.5), the union I
is disjoint and hence it is a Stein open set as well. On account of the latter

fact, by a reasoning analogous to that used above to prove (*), one can show
that:

(t) There exist CR-functions on bDn B (rn B rm) (of class C2) which cannot
be holomorphically extended through any boundary point, in Dn, of [Dn B
hO(vn)(rn)] U [Dn B hO(15n) ((In B rm) U An)]-

On the other hand, (2.3) can also be applied to derive the property, parallel
to (2.4), in which one considers bDn B (rn B rm) in place of rn, and rn B rm
in place of An, respectively. Hence the following is true too:

(tt) Every continuous CR-function on bDn B (rn B rm) admits a continuous
extension to Dn B B 1m) holomorphic on Dn B B 1m).

Combining (’~) and (tt), we see that Dn B hO(Ï5n)(rn B rm) C [Dn B
This amounts to having hO(Dn) (rn)n

( (In B rm) U An) C hO(Dn) (rn B 1m), which yields the desired conclusion.~ ~ 

n

For the proof of Theorem 3 we shall need two results from [ 19] (see
Corollary 5 and Corollary 7 therein). For the convenience of the reader we
restate the results here.

(2.7) Let D C C M2 be a C2-bounded strongly pseudoconvexdomain and K C bD
a compact set, and put r = bD B K. Then for a continuous CR-function f on r
the following two conditions are equivalent: 

_

- fr f a = 0 for every COO a-closed (2, I)-form a on a neighborhood of D such
that supp(a) nK = 0.
- f extends uniquely to afunction in U B 1).

(2.8) Let D, K and r be as in (2.7). Then the following three conditions are
equivalent:

- E (r) 
- hO(D)(l) = D B 
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REMARK. We point out that all the properties discussed in this section,
except (2.2) and (2.8), remain valid if M2 is replaced by a Stein manifold Mr
of dimension r &#x3E; 2 as the ambient space. As regards (2.2) and (2.8), on
the contrary, for r &#x3E; 3 it is not true in general that S B is Stein,
nor that the three properties of (2.8) are equivalent, whereas it is still true

that = 0 for every coherent analytic sheaf, .~, on Mr
(see [16] and [17]). Since we have applied (2.2) in the proof of (2.6), the given
proof of (2.6) does not work for r &#x3E; 3. However it is possible to prove (2.6)
for general r &#x3E; 3, in a different way, by generalizing a result of Basener [3]
relative to the polynomial hulls of compact subsets of bBr. Basener’s proof of
his result appears to be tied up the ball case only m that it invokes an earlier

result of H. Alexander [1] ] on the connectivity properties of the polynomial
hulls of compact subsets of Since it is now known that Alexander’s
result generalizes from the ball case so as to cover classes of domains of a
Stein manifold Mr which include the connected components of the above Dn’s
(see [2], [15]), it turns out that Basener’s result generalizes as well, so as to
imply the validity of (2.6) for r &#x3E; 2.

3. - Proof of Theorem 1

We divide the proof of Theorem 1 into the proofs of four propositions.
PROPOSITION 1. The hull at infinity h 00 - (D) is a closed set in M2 such that

PROOF. It follows immediately from the definition, (1.2), of a hull at infinity
that 

-

hence to show that is closed in M2, it suffices to prove that so is
- 

O(D)

hOCD)(DBDn) for each n E N. Since the restriction map --+ O(DBDn)
is surjective, it follows (arguing as in [19, Lemma 4)] that On c 
and hence Dn) = h~~D) (D B Bn). Let us show that

In view of (2.1 ), the inclusion of the left hand side set in the right hand side
set follows at once from the above. As regards the reverse inclusion, consider
a compact set G c D B Bn . The local maximum modulus principle implies that
B, C Then, since
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the reverse inclusion holds as well. It follows that

which shows B Dn) to be closed in M2.

Next, since bD is strictly Levi-convex with respect to D, every compact
set G c D verifies bD n (G) = bD n G. Therefore, if z is a point of bD
and n is a positive integer large enough that z E Dn, it follows that

Consequently, z ~ /!-(D). This proves that bD = 0. and hence

that 

Finally, let z e and choose a positive integer m large enough
so that z e Dn m. In view of (3.2) it is plain that

On the other hand, by (2.5),

for every n E N. Then, as z V hO(D)(rn) for every n E N and z E Dn four.

n &#x3E; m, it follows that z E for n &#x3E; m, and hence z E h’ (D).- D - 

OD&#x3E;
This proves that D B hO(D) (bD) C hc;(D)(D). 0

D) O(D)

PROPOSITION 2. The hull at infinity (bD) verifiesO(D)

PROOF. Clearly, only the inclusion C (bD) has0 (D- (D) C h 
"0 

T)
to be proved. On account of (2.6) for m = n, we have, for each n E N,

hence, in view of (3 .1 ) and (3.2), we see that

I 
V4 hich, since (D) C (D B Dn), we infer that, for each n E N,
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On the other hand, since for any choice 

we also have, for each m e N,

and therefore, in view of (*), it follows that

Since this is true for each M E N, we may conclude that

PROPOSITION 3. The following two properties hold:

(i) M2 B hc;(D) (D) = S2 U [ho(D) (bD) B hc;(D) (bD)] = h~~M2~ (S2) B hc;(D) (bD);
(ii) Every f E O(Q) extends uniquely to an F EO(M2 B h- (D)).

PROOF. Since, by Proposition 1, D = h~~D~ (bD) U (D), it follows that

By Proposition 2, the last term is hr;(D) (bD), and hence the
, 

O(D) &#x3E;

first equality of (i) follows at once. Moreover, since the restriction map
C~(S2) -~ O(Q) is surjective, it follows that ho(M2)(o) n D = (see
[19, Lemma 4]), hence

which implies immediately the second equality of (i).
Next, to prove (ii), let f denote a holomorphic extension of f to an open

neighborhood of S2 and consider its restriction to bD, which is a CR-function
on bD of class C2. It suffices to prove that the latter has a unique continuous
extension, g, say, to D B (D) which is holomorphic on D B (&#x3E; 

_ _ 

0( )
Then F will be given by F = f on Q and F = g on D B h O(D) (D). By (2.3),
for each n E N there exists a unique extension of flrn to a continuous function
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on holomorphic on gn, say. Moreover, for
each n E N,

for, by the local maximum modulus principle,

hence on Dn B for each-n E N, and this implies the

existence of a unique continuous extension of to 

which is holomorphic on UnEN[Dn B namely the coherent union of
the gn’s. Finally, on account of (3.2), we have

and hence we conclude that the coherent union of the gn’s defines the function
g as is required above. 0

PROPOSITION 4. The open set M2 B (D) is Stein.

PROOF. For each n E N we put

Let us first prove that

It is readily seen that

where C ranges through the family of the compact subsets of M2 which con-
tain B n . By the local maximum modulus principle, for each such C and for
each n E N, we have

Therefore what we have to prove is that
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The validity of the inclusion of the left hand side set in the right hand side set is
evident. Conversely, let z be an arbitrary point in the right hand side set. Then,
if f E 0(D,, it follows that I f (z) I  I f 1, for every ~ E Bn n h O(D) (D B C)
whichever be the compact set C containing Bn. Hence If(z)1 :::: for every
~ E Gn, i.e., z E hO(Dn)(Gn). This proves (*).

Now, we can readily infer that the open set Bn B hc;CD) (D) is Stein, by0( )

resorting to (2.2). Since we can choose a Stein open neighborhood X of Dn,
such that the restriction map C~ (X ) -~ O(Dn) has dense image, and consequently

hOcx)(Gn), by (3.1) and (*) we have Bn B Bn B
and nence wee see at once that is Stein.

Moreover, since

Bn B h(D) (D) is Runge in (see [13]).
OD&#x3E; OD&#x3E;

Hence we may conclude that (D), being the union of an increas-o(T)
ing sequence of Stein open subsets, each of which is Runge in the subsequent,
is itself a Stein open subset of M2 (see [11, p. 215]). D

REMARK. The first three propositions of this section remain valid in the
setting of a Stein manifold M’ of dimension Y &#x3E; 2 as the ambient space, as
a direct inspection of the corresponding proofs shows, in view of the remark

at the end of Section 2 too. On the contrary Proposition 4 becomes false for
Y &#x3E; 3, as will be seen in Section 6. On account of the result of [16], it is

likely that for r &#x3E; 3 it should be still true that h°° (D), 0) = 0,0( )
for every coherent analytic sheaf, F, on however this does not seem to
deserve a relevant interest in connection with the subject of this paper.

4. - Proof of Theorem 2

Let K be a compact subset of bD as in the statement of Theorem 2 and

put

We divide the proof of Theorem 2 into the proofs of three propositions.

PROPOSITION 5. The compact.

PROOF. Let us first prove that, if m, n  n, then
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Indeed, in view of (2.5) and (3.1 ), one has

and since ho(D)(1-1) = ho(Dn ) (hn), it follows that

Moreover, since by the local maximum
modulus principle,

On the other hand, by (2.6),

and then (4.1 ) follows at once. Now, since, for any fixed M E N,

(3.1 ) implies that, for each m E N,

and consequently

Then, taking m large enough that the given compact set K is contained in rm,
it follows that

and consequently that

Since is a compact subset of D, in order to conclude the proof it
suffices to show that the set K) is open in D. As a matter of

fact, consider, for n &#x3E; m, a Stein open set D~ such that Dn B (K U An) C D~,
bDn = K U An and Dn B (K U An) is as can be obtain by
pushing rn away from Dn by a small C2-perturbation that leaves K and br,
fixed pointwise. Then Dn) is an open (Stein and Runge) subset
of D~, such that 
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PROPOSITION 6. The restriction map O(K) is bijective. Conse-

quently, K is also equal to the set K). Moreover, if K is

holomorphically convex, then K = K.

PROOF. Consider the two sets and 

and, for brevity, call them X and Y, respectively. Both of these sets are open
in M2 and X is Stein. Indeed X = D n ho(M2) (M2 B D), and 
is a Stein open set in M2 (see [19]); moreover at the end of the proof of
Proposition 4 we have shown that Y U (bD B K) is open in D. Furthermore, Y
is a Stein and Runge open set in X. As a matter of fact, giv~n a compact
set (jr c ~~, is contained In which is a compact subset
of D. On the other hand, by definition of K), there is a compact
set E c bD B K with G c and consequently ho(x)(G) C 
It follows that ho(x)(G) is contained in n which is a

compact subset of Y and hence it is itself a compact subset of Y. We claim
that consequently

and

As a matter of fact, there is an exact cohomology sequence with compact
supports

Plainly 0) = 0 and 0) = 0, and it is known that, since X and Y
are Stein, 0) = 0 and 0) = 0. Moreover it is also known that,
since Y is Runge in X, the map 0) is injective. In view
of these facts, the preceding exact sequence implies at once the validity of (*).
Now, we have

and since K and K are compact, there is also an exact cohomology sequence
with compact supports

from which, on account of (*) and (**), we infer that the restriction map

C~(K) -~ O(K) is bijective. 
~

The first assertion of the proposition implies that K c for,
if z is a point in D B there exists f E O(D) with f (z) - 1 and

maxK lfl I  1; then ( 1 - f)-l E O(K) and hence ( 1 - f ) -1 extends to be

holomorphic on a neighborhood of K, which means that z E D B K. It follows

that K = B ho(ï5)(bD B K).
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Next, suppose that K is holomorphically convex. Then = 0 for

every coherent analytic sheaf, T, on M2 ; in particular H 1 (I~, S22) = 0, with Q2
being the sheaf of germs of holomorphic 2-forms, and hence, by the exact
cohomology sequence with compact supports

it follows that

In this connection let us recall that, by a result of Greene and Wu [10], ev-
ery noncompact (connected) complex-analytic manifold of dimension r &#x3E; 1
is (r - I)-complete, and hence Hr(M, 6) = 0, for every coherent analytic
sheaf, 6, on A4. Consequently, an inductive limit consideration gives that
also Hr(E,6) = 0, for every subset E c .~1, which is the reason why
H2(I~, S22) - 0.

Now, the vanishing of Q2) is equivalent to having = X

(see [19, Theorem 4]), and since Y is Runge in X, so that = Y, the
latter property just amounts to saying that Y = X, i.e., I~ = K. 0

PROPOSITION 7. The set K is a Stein compactum.
PROOF. Let C be a compact neighborhood of K in bD, and consider the

set C). This is a relatively open subset of D, as follows from
the final part of the proof of Proposition 5, taking in it C in place of K.
Hence the set is compact. Since l~ can be obtained
as the intersection of a decreasing sequence of sets like this, it suffices to

prove that C) is a Stein compactum. Indeed, since
the set is a Stein compactum, it admits a neighborhood basis V of
relatively compact Stein open sets, and since bD = K, we can
choose V such that bD n V C C, for each V E V. Moreover let us fix an

exhausting family 9 of compact subsets of bD B C. Given G E g, we can find
a Stein open neighborhood X of G, such that = Then, by
resorting again to (2.2), we infer that, for every V E V and G E 9, the open
set is Stein. Since

we reach the desired conclusion. D

REMARK. Proposition 5 and Proposition 6 are also valid in the setting of a
Stein manifold AT of dimension r &#x3E; 2 as the ambient space, rather than M2, as
a direct inspection of the corresponding proofs shows, in view of the remarks at
the end of Section 2 and Section 3 too. Actually, as regards the r-dimensional
extension of Proposition 6, the assumption that Hr-1 (K, 0) = 0 is sufficient

to imply that K = K. On the contrary Proposition 7 becomes false for r &#x3E; 3,



584

as will be seen in Section 6. On account of the result of [16], it is probably
true that, also for r &#x3E; 3, Hr -I (k, ,T’) = 0; however, as the parallel property
of Mr B (D), this does not seem to be a relevant information for our

purposes. °~~/

5. - Proof of Theorem 3

l max limit the ( I 1C rplnt;vplxWe :. may limit ourselves to deal with the case that the domain c §J
ompact. Indeed, if D is not relatively compact, given any compact subset K
of bD, one can, by the procedure of [24], construct a Stein open set D’ with C2
boundary, which is the disjoint union of finitely many relatively compact strongly
pseudoconvex domains, such that bD’ contains a neighborhood, in bD, of K,
and D is O(D)-convex. Then, clearly, it suffices to prove Theorem 3 for any
connected component of D’ .

The following proposition is the essential point of the proof.

PROPOSITION 8. Let D C C M2 be a C2-bounded strongly pseudoconvex domain
and S C bD a topological 2-sphere of class C2. Then, is a holomorphic 2-form
defined on a neighborhood of S, it follows that

In other words, the holomorphic de Rham cohomology H 2 (S) _ 2(S) &#x3E; = 0.ho dS2 (S) 
*

PROOF. Let U be an open neighborhood of S such that W E S22(U). By
applying to bD a standard smoothing result for manifolds of class Cr ( 1  r)
imbedded in manifolds of class C° (see [22, Theorem 4.8]), we can find a C°-
bounded strongly pseudoconvex domain Di , with bD1 1 being C2 diffeomorphic
and C2 isotopically equivalent to bD, and so close to bD that the diffeomorphic
image of S, Si, say, is contained in U. Moreover we may assume that S1 1
is generically imbedded in M2, so that it has only finitely many complex
tangencies, all of which are either elliptic or hyperbolic. Then, we can apply to
S, the result of Bedford and Klingenberg [4, Theorem 1 ] (3), according to which
there is a small C2 perturbation S1, of S1 1 on bD 1, which has, in particular,
the following property: there is a smooth 3-manifold B’ in Di, such that

= B’ - E (S1 ) . Then, it follows that the form a) extends to a holomorphic

(3) Note of the editor. The author considers an arbitrary two-dimensional Stein manifold M. It is
to be observed that for the validity of Proposition 8, M should equal (C2. Proposition 8 is based
on the Bedford and Klingenberg theorem that is proved in fact only for (C2.
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form i-o on a neighborhood of B’, and hence, by Stokes’s theorem,

Now we can prove:

PROPOSITION 9. Let D be as in the preceding proposition and let K be a compact
subset of bD. Assume that K has a neighborhood basis.IV, in bD, such that each
N E N is a relatively compact open subset of bD (possibly disconnected), whose
boundary bN is the union offinitely many pairwise disjoint topological 2-.spheres
of class C2. Put r = bD B K. Then, if f is any continuous CR-function on r, it
follows that fr f a = 0, for every COO a-closed (2, 1) -form a on a neighborhood
of D such that supp (a) n K = 0. Consequently, E (K) = ho(i5) (K).

PROOF. Since D is a Stein compactum, there exists a Coo on a

neighborhood of D such that a = ap = and since supp(a) n K = 0, there
exists a neighborhood U of K in M2 such ap = 0 on U, i.e., f3 is a holomorphic
2-form on U. By assumption there exists N E N such that N C U, and hence,
on account of Proposition 8, it is readily seen that fbN ffJ = 0. Then, by
Stokes’s theorem, we have

It follows, in view of (2.7), that E (r) = and hence, in view of (2.8),
we achieve the desired conclusion. 0

REMARKS. (i) In connection with the assumption of Theorem 3, we point
out that, if A4 is an orientable topological 3-manifold with boundary, such that
HI (A~, Z) = 0, then it follows that the boundary bA4 of A4 is a union of topological
2-spheres. Indeed, the vanishing of the homology group HI (A4, Z) implies that
also the cohomology group H 1 (./l~l, Z) is null (recall that Hq (~, Z) is isomorphic
to Homz (Hq (., Z), Z), provided Hq -I(., Z) is a free Z-module). Then, by the
Poincar6 duality for compact manifolds with boundary (see [8, Proposition 9.1]),
also the relative homology group H2(A4, bA4; Z) is null. By the exact sequence
of relative homology

it follows that HI (bM, Z) = 0. This implies first that the connected components
of bA4 are orientable (see [8, Proposition 2.12]) and then, being orientable
compact surfaces of genus zero, that these connected components are topological
2-spheres.
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(ii) It is simple to show that Theorem 3 does not extend to higher dimen-
sions. Consider in C~ for Y &#x3E; 3, the open unit ball B and in s2r-1 = bIB the
two disjoint closed semi-2-spheres

and put K = E2UE2. It is evident that K verifies the assumption of Theorem 3.
On the other hand, 1 since 2 the intersection h h (7 2,, is nonempty, asOn thc othcr sincc thc intcrscction C)(3) (£f) ; is noncrnpt y, as
it contains at least the origin, it is trivially not true that every f E may
have a holomorphic extension to a neighborhood of (K). In the preceding
counterexample K is disconnected, but this does not affect its validity, since
also in Theorem 3 K is allowed to be disconnected. On the other hand in

Section 6 we shall be able to show a less trivial counterexample in which K
is connected.

6. - Non-extendability to higher dimensions

In the first place we state the weaker extension theorems that generalize
Theorem 1 and Theorem 2 to the setting of a Stein manifold Mr of dimension
r &#x3E; 2, rather than r = 2. In view of the remarks at the ends of Section 2,
Section 3 and Section 4, we have:

THEOREM 4. Let D C Mr be an open domain of holomorphy, whose bound-
ary bD is a real hypersurface of class C2, strictly Levi-convex with respect to D. Put
S2 = Mr B D. Then the three sets Mr B (D), Q U O(D) D O(D)

and hO(M2)CQ) B h-,,)(bD) are a same open subset of Mr, Q, say, such that the0(

restriction map C(S2) is bijective.

THEOREM 5. Let D be as in Theorem 4. Let K be an arbitrary compact subset
of bD, and put K = ho(D) (bD) B (bD B K). Then K is a compact set contain-

ing K, such that the restriction map C~ (K ) -~ O(K) is bijective. Consequently, K
is also equal to the set ho(ï5) (K) B ho(ï5) (bD B K).

Furthermore, if (K, F) = 0, for every coherent analytic sheaf, F, on K,
then K = K.

Now we wish to show that for r &#x3E; 3 the open set Q of Theorem 4 may
not be Stein, as well as the compact set K of Theorem 5 may not be a Stein
compactum.

Preliminarily, consider a C2- bounded strongly pseudoconvex domain 0 C C
Cr and a compact set R g bÐ. Let us push bO away from 0 by a small C2
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perturbation which leaves A fixed pointwise, so as to obtain a Stein domain,
call it Mr, with T ) fi c Mr and bMr n T = Jt. We may consider T as an
unbounded open domain of holomorphy in the Stein manifold AT. Then we

change the notations, so that D denotes the domain 0 when it is regarded as a
domain in AT rather than in C~, whereas bD and D denote the boundary and
the closure of D in Mr . Then &#x26;2) = bD and 0 = D U We claim that

As a matter of fact, consider the open sets Dn, n E N defined at the beginning
of Section 2. It is evident that, for each n e N, C 

whereas the local maximum modulus principle implies that f1 Dn C
C Hence, making the intersections for

all n E N gives the two inclusions (D) C (A) and (A) B fi C
_ 

OD&#x3E; 0)

hc;(D)(D) and (6.1) follows at once. 
That being stated, to produce an example, for r &#x3E; 3, in which S2 =

is not Stein, it suffices to consider the preceding construction,
taking as A the intersection of bO with any complex-analytic subvariety V of
C , of codimension q in the range 2  q  r - 1, passing through 0: since in

this case hO(Ð) (A) = j{U (V no), it follows, in view of (6.1), that Q = Mr B V ,
which is not a Stein manifold. Moreover, if we choose a suitably small open
neighborhood U of the variety V, also the interior of Mr B U is not Stein,
and hence the compact set D B U is not a Stein compactum. We can take
as U a Stein open neighborhood of V which is Runge in so as to have
u n 0 = Then the compact set K = bD B U verifies K = D B U,
thus providing an example, for r &#x3E; 3, of a compact set K C bD such that K
is not a Stein compactum.

Next we show that for r &#x3E; 3 the envelope of holomorphy of Q (which, by
Theorem 3, coincides with the envelope of holomorphy of S2) may be multi-
sheeted. Indeed Chirka and Stout [7, 4.5] exhibited a C°°-bounded strongly
pseudoconvex domain 0 C C 2, a compact set fi C bO (with 
being connected) and a function f E 0(D) B in such a way that f
can be continued analytically in the sense of Weierstrass to the whole T ) fi,
so as to give rise to two different determinations at each point of (A) A.
Therefore, by applying in this case the procedure described above, we can obtain
at once, on account of (6.1), a counterexample to being single-sheeted,
valid for all even dimensions &#x3E; 4. On the other hand, we can obtain also a
counterexample valid for all dimensions &#x3E; 3, rather than only for the even ones,
by modifying in a suitable manner the construction of Chirka and Stout. For

the convenience of the reader we give a complete description of the modified
construction, parallel to the description of the original construction given in [7,
4.5]. Consider in (Cr , r &#x3E; 3, the open unit ball B, and in = bB the two
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disjoint closed 2-spheres

Let r 1 and r2 be connected open neighborhoods, in S 2r -1, of 5~ and S2 ,
respectively, such that rl D F2 = 0, and put fi = S2r-1 B (rl U r2). Then let y
be a smooth arc in 0), (o, ... , 0, 1 ) }, which connects the
points (1, 0, ... , 0) and (o, ... , 0, 1), is orthogonal to MB at these points, and
verifies the following two conditions: a) if o is the function on C’ given by
~ (z 1, ... , zr) = z 1 - zr , then Yl = ~ (Y ) is a smooth arc m the upper halt

plane n c C, which connects the points 1 and - I; b) the point 2i belongs to
the relatively compact comp,onent of rI B yi. Since I z 1 - 1 on S2 U S2 ,
we may assume that r 1 and r2 have been chosen so small that z 1 - I  2

on r U r2. Hence we can define a continuous argument of z 1 - zr - 2i on
r U r2 U y which takes values in the interval (-~c, 0) on r 1 and takes values
in the interval (vr, 27r) on r2 . Consequently, the function f defined by

with the above mentioned argument function, is holomorphic on a neighborhood
of ri Uf2Uy, and i3 f  0 on f1, s f &#x3E; 0 on r2 . The envelope of holomorphy
of rl contains the compact 3-ball B 1 I = {z E s2r-1 : 1, i3z2 = 0,
Z3 = ... = Zr - 0}, and the envelope of holomorphy of r2 contains the compact
3-ball B2 = {z E s2r-l : zi = ... = zr-2 = 0, = 0, (r:5zr-l)2 + IZr 12 :::: I}.
Therefore the function f extends holomorphically into a neighborhood of Bi
and into a neighborhood of B2 with different values: r:5f  0 on B 1 and

-3
&#x3E; 0 on B 2 . It follows that the domain of holomorphy of f has two

different sheets at least on a neighborhood of R3 n B 2 . Finally, given a small
neighborhood V of y in C~r , such that the above function f is holomorphic
on V and V n Jt _ 0, consider a C°°-bounded strongly pseudoconvex domain
0 with Then fi is a compact subset of 6~) such that

is connected and f is a function holomorphic on a neighborhood of
whose domain of holomorphy is not single-sheeted. It follows that, by

applying in this case the procedure described above, we can obtain, on account
of (6.1), a counterexample to S2 being single-sheeted which is valid for all

dimensions &#x3E; 3.
We conclude the paper by providing a counterexample to the possibility of

extending Theorem 3 to higher dimensions, in which, unlike in the final remark
of Section 5, the compact set K is connected. By perturbing slightly the arc y
of the preceding construction, we can find a smooth arc y’ C contained in

a neighborhood of r U r2 U y where the function f of (6.2) is single-valued,
which connects two points pi, p2 E U close to ( 1, 0, ... , 0),
(0, ... , 0, 1), respectively, which is orthogonal to bB at these points and is
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contained in Then, given a small neighborhood V’ of y’
in Cr such that f is holomorphic on V’ and = 0, consider a C°-
bounded strongly pseudoconvex domain D with analogous
to the preceding domain Ð. Then 5~ U S2 c bD, and we can find a smooth
arc y" C [bD B (Sf U S2 ) ) U { ( 1, 0, ... , 0), (o, ... , 0, 1 ) }, joining the points
(1, 0, ... , 0) and (0, ... , 0, 1), such that f is single-valued on a neighborhood
of S2 sup S2 U y". Now consider again the two closed semi-2-spheres of the
final remark of Section 5, and put K = E 1 U E2 U y". It is evident that K
verifies the assumption of Theorem 3 and is connected; however the domain of
holomorphy of the function f is not single-sheeted over a neighborhood of the
origin, and consequently E(K) 
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