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Propagation of Analyticity of the Solutions to the
Cauchy Problem for Nonlinear Symmetrizable Systems

KUNIHIKO KAJITANI - KAORU YAMAGUTI

Ann. Scuola Nonn. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999),

Abstract. This paper is devoted to the study of propagation of analyticity of the
solutions to the nonlinear Cauchy problem. Under the assumption that the system
is nonsmoothly and uniformly symmetrizable and the initial data are analytic in
space variables, one can prove that the solutions belonging to some Gevrey classes
become analytic in space variables.

Mathematics Subject Classification (1991): 35L45 (primary), 35L60 (secondary.)

Introduction

We shall investigate the propagation of analyticity of solutions to the Cauchy
problem for nonlinear hyperbolic systems with non-smooth symmetrizer. Con-
sider the following equation in (0, T) x Rn,

where u, f are vector valued functions of N-components and are

N x N matrices defined in [0, T] x Rn x G (G is a bounded open set in RN).
Denote A(t, x, ~, u) = x, u)~~ . We say that A(t, x, ~, u) is uniformly
symmetrizable, if there are a symmetric matrix R (t, x, ~, u) E L° ((0, T) x Rn x
R n x G) and co &#x3E; 0 such that

for a.e.(t, x, ~, u) E [0, T] x Rn x Rn x G and (RA)(t, x, ~, u) is symmetric
for a.e. (t, x, ~, u) E [0, T ] x Rn x Rn x G. We remark that A (t, x, ~, u) is

Pervenuto alla Redazione il 30 settembre 1998 e in forma definitiva il 9 marzo 1999.
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uniformly symmetrizable if and only if A (t, x , ~ , u ) is a uniformly diagonalizable
hyperbolic matrix. This equivalence is proved in [6].

We introduce some function spaces and their norms and semi-norms. For
d &#x3E; 1 we denote by y ~d ~ (B ) the set of functions u (x ) E 
satisfying for all p &#x3E; 0

Denote by ,,4 (B ) the set of real analytic functions u (x) defined in B satisfying
that there is p &#x3E; 0 such that oo. For B C Rn, G C RN denote by
y ~d ~ (B ; A(G)) the set of function f (x , u ) defined in B x G satisfying that for
any p &#x3E; 0 and for some po &#x3E; 0,

For p &#x3E; 0, d &#x3E; 1 and m E R define

stands for a Fourier transform of u, ~~ ~ h = h2 -I- I ~ I2 and for p  0
define Hp,d as the dual space of Denote = For

a topological space X we denote by T]; X) the set of functions which
are k times differentiable, if k is a nonnegative integer (k - Hölder continuous,
if 0  k  1 ) in X with respect to t in [0, T]. We start to state the result
of the linear equations. When the coefficients Aj are independent of unkown
functions u, we know the following result.

THEOREM 1. Assume A(t, x, ~) - Aj(t, x)~j is uniformly symmetriz-
able and the coe.ffccients x) E T ]; yCd)(Rn)) for j = 1,... , n and

Ao(t,x) E CO([O, T]; y (d) (R n)). If 0   1 and 1  d  1 + ic,c, then for
any Uo E Ld(Rn) and f E CO([O, T]; Ld(Rn)) there exists a solution u(t, x) E
C 1 ([0, T] ; Ld(Rn)) of the Cauchy problem (1)-(2).

Moreover if Lu = 0 in r (t, x) and u = 0 on rei, x) n {t = 0 1, then u = 0
in r(t, x), where we denote by rei, x) the set {(t, x) E [0, t] x Rn; I x - xl [ 

t), 0  t  il stands for the maximum of Àj (t, x, ~) I~ respect
to ( j, t, x, ~) and Àj(t, x, ~) are the eigen values of A(t, x, ~)).

The proof of this theorem can be seen in [7].
Next we consider the nonlinear Cauchy problem (1)-(2). Then we get the

following local existence theorem.
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THEOREM 2. Assume that A(t, x, g, u) is uniformly symmetrizable and Aj (t, x, u)
( j = 1, ... , n) belong to T ]; y (d) (Rn ; A(G)), Ao(t, x, u) is in CO([O, T] ;

A(G)). If 0  it  1 and 1  d  1 -f- JL, for any uo E L3(Rn) and
f E CO([O, T ]; then there is To E (0, T ) such that there exists a solution
u E C1([0, To); Ld(R n)) of the Cauchy problem (1) - (2) with T = To.

Moreover if we take f - 0 and the initial data uo = SqJ, where E &#x3E; 0 and

qJ E Ld(Rn), the time of existence of solution To = To(s) tends to the infcnity for
S - 0.

We remark that when the coefficients are smooth in the time variable, The-
orem 2 proved in [5] in the case of general hyperbolic systems (not necessarily
symmetrizable).

Moreover we can investigate the propagation of analyticity of solutions to
the Cauchy problem (l)-(2), when the initial data are analytic.

THEOREM 3. Let 0  i  T. Assume that A (t, x, u) is uniformly symmetriz-
able and Aj(t, x, u)U = 1, ..., n) belong to T]; A(R n x B)), Ao(t, x, u)
is in C°([o, T ]; A(R n x B)) and besides assume that the coefficients x, u)
( j = 0,1, ... , n) are real analytic with respect to (x, u) E (r (I, x) f1 {t = t}) x G.
Let u in be a solution of the Cauchy problem (1)-(2). If
0  it  1 and 1  d  1 + and uo(x) is analytic in r’1 {t = ol
and f (t, x) is analytic with respect to x in r (I, x) n {t = t } for t E [0, î], then the
solution u(t, x) is analytic with respect to x in r (I, x) n {t = t} for any t E [0, i].

When L is strictly hyperbolic, Theorem 3 has proved by Mizohata in [10]
in the linear case and by Alnihac and Métivier in [ 1 ] in the nonlinear case

respectively. When L is a second order degenerate hyperbolic and a higher
order hyperbolic operator with constant multiplicity, Spagnolo in [ 11 ] and Ci-
cognani and Zangihrati in [3] proved Theorem 3 in Gevrey classes respectively.
Cicognani in [2] treated this problem when L is strictly hyperbolic and the co-
efficients are Hölder continuous in the time variable. This result asserts that if
the symmetrizer is smooth, the above Theorem 3 holds for d  (I - i.c) -1. Re-
cently D’Ancona and Spagnolo in [4] investigate the propagation of analyticity
for non-uniformly symmetrizable systems.

1. - A priori estimate

We shall derive a priori estimate in Gevrey class Hp,d (Rn) for uniformly
symmetrizable linear systems. For m, p, ~ E R(0  8  p  1) denote by

the usual symbol class of oder m of p 9 3 type. For simplicity we write
S’~ = Sro and introduce the seminorms as follows,
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where (~ ~ h = (h 2 + ~~)2(/x &#x3E; 0 is a large parameter).
Next we define the symbols of Gevrey class in For d &#x3E; 1 denote by

the set of symbols a E Sm satisfying for any p &#x3E; 0,

Define for p E R

for u e H’;. Then maps from Hm to H’;¡ - p,d continuously. Moreover
for a e ydsml 1 we can see that a (x, D) maps from H’;,d to 

1 continuously
and consequently 

’ ’

maps Hm to Hm-ml continuously, where Hm = {u E S’(Rn); (~~h u(~) E

is the usual Sobolev space. Moreover we can prove the following
proposition.

PROPOSITION 1.1. Let d &#x3E; 1, p E R, a E ydsm. Then the symbol of a ( p , x , D )
given by (1.2) belongs to Sm and satisfies

where the remainder term r (a ) ( p , x , ~ ) belongs to and moreover there

are C independent of h, p and ho(p) &#x3E; 0 such that for h &#x3E; ho(p)

The proof of this proposition is given in Lemma 1.2 of [7].
We shall derive a priori estimate for the linear operator L,

We assume that A(t, x, ~) - is uniformly symmetrizable. Let

be functions in such that = 1

and 1 and c (-1,1), supp Xo(t) C (0, T). For the

symmetrizer R (t, x , ~ ) of A (t, x , ~ ) we define an approximate smooth symbol
of R following the idea of Kumanogo-Nagase in [8],

Then we can prove easily the following lemma.
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LEMMA 1.2. Assume that A(t, x, ç) is unifomly symmetrizable and belongs
to T ]; where 0  it  1. Let 0  80, 8, p  1 be chosen such that

,eo = min{8, 1 - p,80/vtJ &#x3E; 0. Then R(t,x,ç) given in (1.6) belongs to 
at R (t, x, ç) is in and moreover there is h » 1 such that R (t, x, ç) satisfies,

for u E L 2 and

uniformly in t E [0, T].

We shall now prove the following result.

THEOREM 1.3. Assume that A(t, x, ~) is uniformly symmetrizable and the
coefficients Aj (t, x) (j = 1,..., n) are in C " ([0, T] ; y (d) (R n)) and Ao(t, x) in
C 0 ([0, T ]; y (d) (R n)). If 0  it  1 and 1  d  1 -~- and to E [0, T ], then there
is a positive function p (t) E T ]) such that for any u (t, x) E T ] ; L3)
we have,

for t E [to, T].

PROOF. Put vet, x) = ep (t) (D) h Ild u (t, x). Then it follows from (1.3) and (1.4)
of Proposition 1.1 that we have

where

belongs to Hence to derive (1.7) it suffices to prove the

following estimate
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for t E [to, T], where we denote by II . Il e the norm of Sobolev space Hf. For
simplicity we prove (1.10) with t = 0. Define for v(t) E C 1 ([to, T ]; L2) n
CO([to, T]; HI),

Then it follows from (i) in Lemma 1.2 that there are h &#x3E; 0, co &#x3E; 0 and c 1 &#x3E; 0
such that we have for t E [0, T]

with respect we get

Taking account of Lemma 1.2 we can see easily

We can take 6, 80, p such that

if d  1 + A where co is given in Lemma 1.2. Then we can choose p (t ) as

follows,

Therefore from (i) of Lemma 1.2, (1.11) and (1.12) we obtain (1.10) for ~=0. D

Let R &#x3E; 0 and x Denote B ( R ) = {x [  R } . We define a
Gevrey space over Denote by L d ( B ( R ) ) the set { u E y~~ (B(R)); 3 E E

s.t.u = u inB(R)} and for u E Ld(B(R)) we introduce a norm as
follows,

Let (t , x ) e [0, T] x R n and pet) a real valud continuous function defined
in [0, T]. For rei, x ) defined in Theorem 1 we denote x ) = rei, =

s) for s e [0,f]. Then we note that if u is in for any
(t, x) E (0, T x Rn, u belongs to 
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THEOREM 1.4. Assume that the same conditions as in Theorem 1.3 are valid
and let u E C  ([0, T]; to E [0, T ) and p (t) is given in Theorem 1.3. Then
there is a positive constant C such that we have

E [to, ~°’~.
PROOF. Put f (t , x ) = L u (t , x ) . Let f e such that

/ = f in n {t 2: to) and uo(x) in such that uo(x) = 
in Then it follows from Theorem 1 in the introduction that there

is a solution u of the Cauchy problem Lu = 1, for t e (t°, t~, x e Rn and
= uo satisfying x) = u (t, x) in rei, x) and the estimate ( 1. lo). Noting

that we get the estimate (1.13) taking
the infimun of 1 in (1.10). D

2. - Local existence theorem

In this section we shall prove Theorem 2 in the introduction by use of the
standard contruction mapping method. We may assume the initial data 0
and f (o, x) n 0 without loss of generality, if necessary, changing the unknown
function u = w + uo + ~(0)~. We define for To E (0, TL M &#x3E; 0,

where p (t) is given in Theoren 1.3. For v E Xm (To, M) we define an operator (D
from X m (To, M) to by 4S(v) = u which is a solution of
the following Cauchy problem,
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Then we can prove that 4S is a mapping from X,,, (TO, M) into itself, if we
choose To, m, M suitably. First we take m E N sufficiently large such that for
u , v E we have from Lemma 1.2 in [5],

Next we prove belongs to Xm (To, M). Since v is in Xm (To, M),
= = l, ... , n) are in and

~~" (t , ~y = ,4v(t, A, L (t, h ) is in Tv ]; Therefore it folluws from
Theorem 1 and (1.7) of Theorem 1.3 (with uo n 0) that by use of (2.4) we
can see that the solution u = ~ (v) in C~([0, To]; L3(Rn)) satisfies

if we choose To = To(M) &#x3E; 0 small enough, because of IIf(O)IIHm (Rn) = 0.p(0),d

Finally we shall prove that if we let To &#x3E; 0 more small (if necessary), we have
for v 1 , V2 E X m (To, M)

Put w = ~ (vl ) - ~ (v2). Then w satisfies

Hence using again (1.7) and (2.4) we get

which implies (2.5), if To &#x3E; 0 is sufficiently small. Thus we can obtain a
solution in X m (To, M) of the Cauchy problem (1)-(2). Moreover when f - 0
and uo = eqs, we can take f = EØ in the equation (2.2). Hence we can see

easily that we take To = Thus we have proved Theorem 2.
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3. - Propagation of analyticity

To investigate the analyticity of solutions to the Cauchy problem (1)-(2),
we introduce a convinient norm in T]; following the idea of
Lax [9], Mizohata [10] and Alnihac and M6tivier [ 1]. Let (i, ~C) E (0, T ] x Rn
and defined in Theorem 1. Denote = n { t = s } . Let a

positive integer N &#x3E; 2, to E [0, T) and 0  Y  1. For u E T ] ; 
we denote

where for k &#x3E; 1 and r2(0) = Ào. Then we can choose Ào &#x3E; 0

such that

for p = 0, 1, 2,... and a e N n . In brief we write if there is

no confusion. 
’ ’

LEMMA 3.1. For vi E = 1, ... , n, denote vf3 =

v~l v~2 ... Then there is Co &#x3E; 0 such that for 2 :::: N, t e [to, I] ,

and for

(iii) Let d &#x3E; 1, B (R) = {x E Rn; Ix - x~ I  R} and a(x) E A(B(R)) satisfying
I  00. Then there is ii (X) E satisfying that a (x) - a (x)

in B (R) and for any p &#x3E; 0 there are C &#x3E; 0 such that

(iv) Let a (x) E x)) satisfying I  00. Then there are C &#x3E; 0

such that



480

(v) Let G an open set in RN and A(t, x, v) is analytic in (x, v) E Bto (i, x) x G
and saisfies

Then if (" "» 
 po/n, the composite function A o v (t, x) =p(t),d 0 

A(t, x, v(t, x)) satisfies that there is C &#x3E; 0 such that for t E [to, tj

The proof of this lemma will be given in the appendix. We remark that
it follows from (v) of Lemma 3.1 that if A(t, x, v) is analytic in (x, v) E

Bra (t, x) x G, we have for 2  la I  N, t E [to, t)

where C is independent of N.

THE PROOF OF THEOREM 3. Let u be satisfied with (1)-(2). Since u E

C°([0, T]; for any E &#x3E; 0 there is r &#x3E; 0 such that

for t E + I)-r], i = 0, 1,..., [TI-r] - 1 and t E [[T IT]T, T], where
[.] stands for the Gauss notation. We shall prove that u(t, x) is analytic in

x E for t E (i + 1 ) t ] by induction of i. First we can prove our
assertion for i = 0 applying the Cauchy-Kowalevski’s theorem , letting r &#x3E; 0

small if necessary. Assume that is analytic in x E Then we

may assume that

Put v (t, x) = u (t, x) - Since u is a solution of (1), v satisfies
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where x, v) = x, v + x)) and

Then it follows from (3.5) that Ai and f- satisfy the condition of (v) in

Lemma 3.1. Therefore Ã j and f satisfy (3.3) with to = From now on

we take to = iT and denote = i r . Differentiating (3.6) with respect
to x we get 

’ ’

where

Therefore by use of ( 1.13) of Theorem 1.4 we obtain

On the other hand from (3.2), (3.3) and (3.4) we have if in brief [[ . [[ =
II 
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Here we choose r = r(t) = roe-y(t-iT), where 0  ro  1 and y &#x3E; 0. Denote

Noting that 1 we have from (3 .11 )

Hence for a ~ [ &#x3E; 2 we have from (3.10) and (3.11 )

and noting that we get for
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Since C’~ Y(t) _ ro and for

la I &#x3E; 2, we get from the above estimates,

for t E [i -r, (i + 1 ) i ] . We shall prove that y (t )  E for t E [i r, (i + 1 ) i ] , if we
choose ro &#x3E; 0 small enough and y &#x3E; 0 sufficiently large. Assume that there
is tl E (i + 1 ) i ] such that y (tl ) = E and y (t )  E for t E (ir, Since

= 0, we have t1 &#x3E; ir. It follows from (3.12) that

for t E Here we take y &#x3E; 0 satisfying ~~y = 1/2. Hence we get
from (3.13) and r (t)  ro,

2Cyt
Solving this inequality, we have y(t)  2Cro(l + (1 - 2E ) -1 t e 1-2E ) for t E

[i i, tl). This contradicts y (tl ) = E, if we choose ro &#x3E; 0 such that

Thus we can get y (t )  E for t E [ir, (i + ] and consequently we have
proved Theorem 3.

Appendix

Here we shall prove Lemma 3.1. First we note that it follows from (2.4)

for u, v E C°([0, T ]; For simplicity we denote = 

and lul = IuIr,N.
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PROOF OF (i). We prove this by induction of I ~ 1. Let I = 2. We write

vf3 = Then by use of (A.1 ) and (3.2) we have

which proves (i) for = 2, if we take Co &#x3E; Cm (Cn + 1). Assume (i) is valid

for 1 &#x3E; 2. We write vf3 = vf3-ev, where lei = 1 and denote v = ve for

simplicity. Then

which implies (i) for if we take Co &#x3E; Cm(Cm + Cn + 1).
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PROOF OF (ii). For M = N we write vfl = wi w2 .. , wM . Then

where N~ = aJ. Since M &#x3E; N &#x3E;: lal = L, we can arange

where the summation of (i 1, i 2 , ... , i L ) runs over ( 1, 2,..., M). Let laij ( &#x3E; 2

for j = 1, 2, ... , .~ and laijl [ = 1 L. Taking account of
for 2 and for 1,

we can estimate,

Noting that r2(lal) = 1 for lal :::: 1 and using (3.2),

Thus we obtain from the above inequality,

which proves (ii).
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PROOF OF (iii). Since a(x) is analytic in x E B(R) and B(R) is a closed

set, there is E &#x3E; 0 and such that £(x) is analytic in B (R + E ) and equal
to a (x ) in B ( R ) . Let X (t) E y ~d ~ (R ) satisfying that X (t) = 1 
X (t) = 0 for It I :::: R + e /2. Define ii (x) - a (x ) X (x ) . It is easily seen that
a(x) satisfies (iii).

PROOF OF (iv). For a E ,A.(B (R)) we take a defined in (iii). Then we can
estimate applying Proposition 1.1,

for u E Hence we get (iv) from the definition (3.1 ) and (iii).

PROOF OF (v). We have by Taylor’s expansion,

Hence we get from (iv)

Taking account that

we obtain (v) from (A.2), (i) and (ii).
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